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Introduction and main results

In this paper we want to study some class of strongly coupled quasilinear parabolic
systems. Our main interest is to show that under certain structure conditions it is
possible to prove the existence of classical solutions, which exist globally in time.

To be precise, let 2 = R" be a bounded domain with smooth boundary, T> 0
and Q; = Q x (0, T) the space-time cylinder. The evolution of the vector function

w Qr - RN
is supposed to be governed by the reaction-diffusion system
) ub + div(j*) =f*(x, t,u,Vu)on Qp, 1<k<N
where the so-called flux-vectors j* are affine in Vu:
Jp=— Al(x, t,uyul + Bi(x, t,u) .

Here and in the sequel we use the summation convention, where the greek indices
run from 1 to n, latin indices from 1 to N, and v, resp. v, denote partial derivatives.
We shall assume, that A% e C,(Qr x R", R) and the strong Legendre-condition to
hold:

There is a Ay > 0, such that

2 AR (x, 1, 0)EFEE 2 Ao |E)* for EeR™, (x,1,0) € Qr x RV .
Further
3) BheC,(Qr xRN R), f*eC(QrxRYxR"™, R) with

|f(x, ¢, 0, p)| £ a(loh)(d + |pI?) .
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The system is complemented by initial boundary conditions
“4) u* = 0 (“Dirichlet-condition”) or
j*+v = 0 (“no-flux-condition™) on 8Q x (0, T)
for each k, 1 < k < N, where v denotes the

outer normal of 092 .

©) u(x, 0) = ug(x)€ C2(£2)
which is supposed to be compatible with (4)
in case of Dirichlet-condition .

In fact the smoothness assumptions and the growth restriction may be relaxed in
order to state the local existence of a unique classical solution. This might be
proven either via fixpoint arguments in Hoélder spaces [GM] or via analytic
semigroups in L,-spaces [A2].

The problem to answer is the question, whether this solution can be continued
to a global solution. It cannot be expected that this is possible in all circumstances,
as certain counterexamples seem to indicate, that solutions may start smoothly and
even remain bounded, but develop a singularity after finite time (cf. [SIM]).
Though the coefficients of those counterexamples are not smooth, but only con-
tinuous, this makes it plausible that some additional information about the
structure of the system is needed in order to guarantee the existence of giobal
classical solutions. These informations have to open the possibility to control some
lower-order norms a-priori.

Now, in the semilinear case with smooth coefficients, independent of u, it is
enough to control the L -norm of all possible classical solutions (see e.g. Redlinger
[R]). In contrast things are more complicated in the general quasilinear case.
Fortunately there is now an elaborated existence theory developed by Amann [Al,
A2, A3], suitable for the case of only Holder continuous coefficients via analytic
semigroups in “weak” extrapolation spaces. From this we get the following.

Proposition. Let T > 0 be arbitrary, (2), (3) hold and assume that u solves (1), (4), (5)

classically on [0, T]. If one has an a-priori bound for u in C, . (Qr)¥ with
o > nf(n + 1), which may depend on T and the data, then the (unique) solution exists
globally in time.

Proof. The proof is a consequence of [A2, Theorem 4.3] and {A3, Theorem 2].

Remark 1. Note, that C, ,,(Qr) = C.([0, T], Co(2)) with a continuous embed-
ding for a = 0 + 2¢ < 1. The space C, ,(Q7) consists of those continuous func-

tions defined on Qy, which are a-Hélder continuous with respect to the parabolic
distance d((x, t), (y, 5)) = |x — y| + |t — s|"/2.

Remark 2. The bound for o may be relaxed in certain situations — e.g. if the
boundary conditions (4) are only of Dirichlet type. As we derive estimates for
arbitrary a < 1, this is of no importance in our situation.

Thus we are faced with in fact two problems, which may be treated separately. On
the one hand, we still have to estimate the maximum of an assumed classical
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solution. On the other hand we have to prove Holder estimates for solutions u, for
which the quantity sup |u(x, t)| is already known. To the author’s knowledge there

[
are only few situations where the second task has been accomplished - the case of
diagonal systems, meaning A% = 6% a,, (see [GS]), and the case of certain triagonal
operators [A4].

We shall show in this paper that the same is possible for the following strongly
coupled system:

6) There are matrices a, c* of class C, with a symmetric ,
such that the fluxvectors j* are given by

j¥ = —alx, t, )Vu* + r*(x, t,u) — c*(x, t, y) VH .

Here H = H(x, t, u) is some Cj-function ,
such that with some yo,y, > 0:
0*H
volnl? £ s Gt Wi < 1 ln?
ou' Ou

for neRY, (x,t,w)eQr x K .

. . OH
N The coeffcients A% := a,,6* + ¢k o
fulfill (2), and (3) holds with sup {a(|u|)lue K } small .
(8) oH 0, if the Dirichlet-condition

ol leexo,m

is supposed to hold for u' in (4)
(This technical condition should be superfluous ,

but we were unable to remove it) .

Then we have

Theorem 1. If u is a solution of the diffusion system of type (6), (7) and u(Q_T) c K,

then for o < 1 the norm of u in Cy 42 (821) is bounded in terms of K, T and the data,
where K is some compact set.

In order to apply the above proposition, we have to give an estimate for K, too.
Naturally, we have to impose some growth condition. The following theorem
holds:

Theorem 2. Assume (6), (8), (2) (with K = RY) and for all (x, t, v)eQ_T x RY

0H
(9) E(Xa t’ v)-f(x, t, [ P)§30|Pl2+c(1 +l1.7|2), 80<}vo?o

(10) laa—’f(x, : v)’ +‘—§—g(x, L) s el + o)
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(11 |r|+6_H( tv)““z—( t,v)| < c(l +|vf)
k ou; b du;0x, X LU= v

(12) Iaaﬁ(xa ta U)l §C

(13) |chg(x, &, 0) S c(1 + |v])™t .

Then M:= sup |u(x, t}| is bounded in terms of T and the data.
O

Let us remark, that this is a general theorem. In concrete cases there might be
different methods to get a-priori information about K; e.g. in biological or chemical
systems, K belongs usually to the positive cone, and more sophisticated methods
can be applied.

The consequence of the theorems above and the proposition is

Theorem 3. Systems of type (6) together with the above assumptions have global
classical solutions.

As already mentioned systems of this type occur e.g. as biological models, with
u representing some (sub-)species, and one may think of H as a function describing
environmental influences. Naturally this influence might depend on the species
itself (via overpopulation, production of waste, pollution etc.). Each fluxvector in
our type of system consists of two parts - one diffusive part according to Fick’s law
and another in reaction on H, which may be different for each species. The case
where the environmental influence H does not depend on u (but with cross
diffusion, N = 2) was discussed by Shigesada et al. [SKT] (see also [O, p. 88]).

As a special example modelling cross diffusion of two species, consider the
system

(14) u, — div(eVu + ¢, (w)d,(v)Vv) = fi(u, v)
v, — div(aVv + ¢, (v) dy (u)Vu) = f,(u, v)

together with initial boundary conditions.
Systems of this type have been studied e.g. by Shigesada et al. [SKT], Deuring
[D], Matano and Mimura [MM], and Schnadt [Sch]. Our results imply the

Corollary. Assume that if T >0 and if (u,v) is a classical solution of (14), then
0<u,vEClug,vg, T) and the uniform Legrende condition holds along the

d
solution. If further 0 £ d;(t)/c;(t) and 0 < ¢ ggi(./d,-(t)/c,-(t)) are bounded on
[0, Clug, vg, T)] for i = 1, 2, the solution exists globally.

Proof. Let H = [(d1(t)/c1(t))*"* dt + [ (d2(t)/ci(t))"/? dt. Then it is easy to see, that
0 0
(14) is of the type considered in Theorem 1.

We think that the technique to derive C, ,/;-estimates presented below may be
modified and adjusted to some other concrete (two-species) models. This would
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reduce the problem of existence of global solution to the derivation of L,-bounds
like in the semilinear case.

Holder-estimates
The weak form of the system may be written as follows:

I O O

if ' = 0 on 0Q x [O T7] in case of Dirichlet-condition for the i-th component.
0H
Then take ' = —¢ with ¢ 2 0 and sum the resulting equations to get

dH dH . PH
" i{z"’*E”’“”d‘%‘i’*ﬁi{““ﬁ"‘wmund’

o d 0?2
(el )
+n&w% }@

oH 0H . 0*H

t

a0 = 39 = AT
ot P ox, g ou' dx,

fo

. OH
with eq = and d,p := a5 + Cyp e

éH
Note, that dzn*n® = Ao |n|* (let & = Mo i
. H
(]et & =0, ol (Z,)— in (2)). Hence the third term on the left is bounded from
u
below by [ Aoyo|Vul* .

in (2)) and also that azn*n® = Aoln)?

Qr
Due to (6)—(13) standard estimations imply

(16) | L ﬁda,,d b+l IVuP o =

”(R“Qa"’ T

where ¢, > 0 and |R| + |Q%| < c(Ju|* + 1). o
If we are in the situation of Theorem 1, assuming that u(Qr) c K, we get
similarly — just assuming (6), (7), (8) -

\VH? ¢>

(17) H ¢+_”.daﬂd éx, +62H|Vu| ¢<CH (1+|VH*)¢ + |V .
(16) resp. (17) are the starting points for our con51derat10ns.

Proof of Theorem 1. Suppose |u| £ M, on ?2: By adding a suitable constant

(depending on M,), we may assume, that infH = 1. Due to [G-M], we may
[on
assume, that the a-Holdernorm of u on a small slice 0 < ¢t < ¢, is estimated in terms
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of the data, so that we may restrict ourselves to times larger than 1t > 0. Take
(xo0, to) € Q7 with to = 4, and let Qg:= [to — R?% to] x (Br(xo) N Q) for R with
R? < 4t,. Let pg:=sup H.

Ox

We are going to show the following

Alternative. Let g5 > 0. Then there are § = d(gg) > 0, f = Beo)€(0,1) and c(gy),
R(&) such that for all R < R(s,)

either(A) pszr = (1 —f) par + c(€0)R

or (B) flu — ugl? < g with ug =ffu
Or 0r

holds. Here fv:= —— f[v(x, t)dxdt and
O |QR| O

|Qr| = meas Qg = [{dxdr .
QR

Once this is shown, the claim of Theorem 1 follows easily: Considering the

sequence R, = 6*2R(g,), we see, that (B) must occur for some R, with
k < ko = ko(Mg, &) — otherwise, iterating (A) would imply

c(eo)R(e0)

<1 = P — | <1

Ur, = ( B) <,URQ+1_ﬁ_5

for suitable chosen kg, contradicting pg = 1.
Now, provided g, is taken sufficiently smali depending on the data, Theorem 3.1
of [G-S] implies for all a <1, that fflu — ugl* < c;R* for all R with

Or
c; = c(My, &9, ) uniformly in (x,, t,). As is well known, this implies an estimate for
the Holderconstant in terms of ¢;.

Proof of the alternative. Let = p,p. We start with (B) and assume, that

meas {(x, )€ Q1 +or | H £ (1 — p)u} < p|Q1 + gl

where g, pe(0, 3) will be chosen below.

Put ¢ =(H — k), 5n? into (17), with ke R and 5 a cutoff-function on
Q,r Wwith respect to Qi — meaning a smooth function with support in
[to — 4R? o] x Bag(xo), 0 <n<t np=1 on [to— (3R?), t0]x Bsp(xo) and
|Vn|? + |11,| < cR72 Then

gy {f IVul>(H —k)+ + 4o | IVH*n?
Q%R Hzk

< cff{(H — kA (V0P + 0] +n*) + |[VH|? (H = k) 2} + cR™2 |
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Chose k== (1 — 2p)u, hence (H — k), < 2pu on Q,x, and assume p so small, that
2ppc < Ay. Then

I IVul(H — k)4 < c(pu)R" + R 2.
Q3R

Let Ag:={(x,1)€Qu+qr!H = (1 — p)u}. Then (H—k), 2 pu on A, and by
assumption

(18) 1Qu+ar \Aol < plQ1+0rl -
Therefore
RZ
(19) ffivuP < cR"<pu + —) < cpuR"
Ao pu

as we may assume R < pp, because the opposite inequality would imply that (A)
holds and nothing is left to show.
Next, we need the standard inequality

(20) [[ IVul> < cR" .

(1 +a}R

This follows from (17) by letting ¢ = e -»* with s large enough to absorb the
terms on the right hand side by standard estimations.

Now we need the following Sobolev-Poincaré-Inequality (see [LU, p. 45,
(2.10)]):

2
2n n+t1
[ JoP<e | |Vv|An+1-< | |v1>+

B,nQ B,nQ B,nQ

for functions with § v =0.

B, Q
Letv=u— §  u; we get after integration with respect to time:
BU*")R nQ
g 2 2n
2 ff fu— 4§ u| Sc- [ |Vul["#1.-Rn¥T.
Q(l+u)R B(1+a)k NnQ Qumm

The righthandside of (21) will be estimated by (18), (19), and (20). First we have

L

UIVMI—"*lé(HIVuIZ) 100t 2o T
Ao Ao

n n2 n+2

§ Cpn+1 Rn+1 Rn¥+1

and then we note

2n rTInT 1
_” |Vu|m§< ” |Vu|2> |Q<1+a)R\Ao|m

Q(l-hr)R\AO Q(l+o‘)R
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by adding these estimates we get

2 1
(22) jj § ul = cprt1R" 2
(1+\1)R 4l+n)RmQ
2n n? n+2
as + + =n+2.
n+1 n+1 n+1
2
As u— [ oul < | Ju—cP=< [ |u—c|® for all ceRY we
Brn Brn Q Br n Q Bmu.nm
also have
2 1
(23) fflu— 4 u| ScprriR™?.
Or Brn Q2
The next task is to estimate the quantity
2
D—” f u—ug|, ug=Ffu.
Qr | BRn Q Qr

We have
to 2

f ulx t)dx—L ] f ulx, s)dxds

2
Brn Q R to— R? Bgn Q
2

D < cR" Zsup
t

<cR ™ "Zsup

s, t

[ (ulx, 1) — u(x, s))dx

Br N Q

In order to proceed, we integrate the system from s to ¢, multiply by ¢ -d and
integrate, where ¢ is a cutoff-function on By; 4+, g With resp. to Bg and d = 0 on 0Q,
d = 1if dist(x, 8Q2) = do, |Vd| £ cdg . From

[ edi(x, 1) — ui(x, s))dx
nQ

B(l+0)R

t
+f  f Aful +r)ed) = | [flod
s B nQ s “M’Rr\(l

it follows

[ edulx,t) —u(x,s)dx| <c [f (IVul+ 1)< ! >
nQ R do

B(l +a)R Q(l +aIR

+ca(Mo) [f |Vul® + cR"*?

Q(l+a)R

with a(Mg) small.
Choose dy = oR. Then

[ a-4a

BrnQ

< coR"
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and

E:=| | (u(x,t)— u(x,s))dx
B nQ

R

= [ (ux, 1t~ ulx, s)e(x)dx

B .nQ

HA

§ (ux, 1) — ulx, s)) pdx
BRnQ

+ coR"

IA

[ (ux 1) —u(x,s)pddx
Q

=+ CUR” + ClB(1+o')R\BR|

BR(l+a) n

[ |Vul+ R R (Mo)R"
e u C e .
oR ¢ oR cato

IA

Qll+le

This integral is estimated as above by splitting the region of integration into 4, and
Q1 +a1r \Ao, the result is

[ IVu| S cp*RHL.
Q(1+6}R
This implies

L

R pt ,
E< cR"<a + g p—) < cR"p?
g g

if R < p?, 0 =pt
Going back to the estimation of D, we see that

D < cR"*?pt .
Combined with (22), we end up with

1
Jflu — ugl? < cprT < g
Qr

if p = p(eo), 0 = pleo)*, R = Rigo).

Let us now consider the other part of the alternative, this is (A). In this case we
may assume that

(24) meas{(x, )€ Qu+arlH = (1 — p)pt} 2 plOr(+6)

with ¢ and p given by the first part of the proof. Let 0 < ¢ < pe~! and define

H
V:=—ln<1—; +8>+1np.

Note that on Q,x we have the trivial estimate

Vgln(3>
&
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H L
and V20 < 1 — — + ¢ < p; hence (24) implies
7
(25) meas {(X, )€ Qu+ar| VZ 0} £ (1 — P Q1 +oyr! -
H -1
Let now g == <1 —-—+ 8> , hence
U

dv  gdH dv _gdH
== d = .
dx, pdx, an dr U dt

Therefore let ¢ = g(p, ¢ 2 0in (17) to get
U

50+ B oo+ i G0+ coff IV

<[00 +1VVDe + [[2 0.0, + L VYt

Assume, that supp ¢ < {(x, 1)|V 2 0}, hence g~ < p on supp ¢ and we see that
for p < po the last term is absorbed by the third term on the left side.
This gives (with g < &7 1)

v dv
(26) ”E e+ f[IVIV e + Hdapal;q)x, Se(pe) *fo + clu)™ ' [[IVel .

Our aim is to show, that (25) and (26) imply a better estimate for ¥ than the trivial
one on a smaller cylinder.

Choose first ¢ = V', 5% where 5 is a standard cutoff-function with # = 1 on
QsR. From (26) we get
7

IWIVVL PV +IVVL ) S VROV + Ind) + (Ve + D(ue) ™2
QER QZR

and therefore (assuming R < ue)

27) [fIvv, 2y, < cR"(l + (m >2>

Os,

Next we take ¢ = 2V+11 (%) X121, 12(0) With t; € [to ~ R?, ty,] and 5 a cutoff-function
on By + o)L+ ) with respect to Br(i+a); 8 < 1 will be chosen later. Note that
(1 + o)1+ 5) <(3)* <3. Then from (26) we get (with B, = Br+q N @,
By = Bra 4 oy1 + 6 N 2)

[ V3G ta)dx + oIV P+ Vard £ | V3 () d
B3 B
+ cfJUVV VeIVl + (ue)~2Vin?)

+cff(IVVei(ue)™ M n® + Vin|Vnl)
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where the double integrals are taken over [¢4, t,] x B;. Using Holder’s inequality
and the trivial estimate for V, , we get

28) [ Vilx t2)dx < [ VAi(x, ty)dx + th J U+ V)Vl + (ue) 20?)
B,

B2 ty By

[ V2 (x, ty)dx + cR"<1 + 1n<§>>5_2 )

B

lIA

Next we have to choose t; appropriately.

Let I' = [to — (1 + 0)*R2, to — gu + 6)?R?] and
A, ()= {xeB, nQ|V(x,t) = k} .
Then there is some t; €I’ with {4y g1 +0)(f1)] = (1 - g—>|BZ| because otherwise
meas {(x, )€ Qr1+0)| V+ = 0}
2 §I|A0,R(1+a)(t)tdt

2
= <1 —§> (1 +6*)R?|B;| > (1 — p)IQr(1+)| »

contradicting (25).
Therefore, for all t, with ¢, e[to - g(l +0)?R?, to],

29) | VEi(xty)dx < <In<§>>2{<l - g) + ca”} IB,| + cR"<1 + ln<

Let ye(0, 1) and M > O be arbitrary — from (29) we get

™D

)

2
(30) (YM)Y1A,m Rt + o1 + 9)(E2)] S <ln<g>> {1 — % + 55} |B,| + co|Bylo~*.

Now choose 9, such that &5 < -g and assume, that

AR , p\!
o o (m(?)) <1 2)

a P
() et M

Then
P
P2 Apm R + o + B)(E2)] <1 - —3—2>|Bl\
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hence
P
[Amra+ o+ @) S {1 —— |IB;]
50
if y = y(p) close to 1. Therefore, for fixed t,, Poincare’s inequality is valid and
implies

f(V—yM)Ldx <cR* | |VV|*dx
By VzyM

R?
< — VVitvd
=M >j IVVI*Vdx
<R [ IVV.PPV.d
<— X
—VMVgo + +
and integrating with respect to t,, we get with (27)
Rn+2 p 2
32 - yM): < 1+In|*~
@ Jo-me (o))

%
for Ry = <g> (1 + o)R, and using (31.a) we end with

(33) {f (v — yM)R §c(1 +1n<§>>.
Or,

As a third choice we take ¢ = (V — k), #? in (26) for k = yM > 0, where # now
denotes a cutoff-function on Q,, with respect to Q,,, R, < p; < p; £ Ry, with
IVa|?> + |41 < c(py — p2)~ % Then one gets with I, = [to — p?,1o], assuming
R £ pe,

(34) sup | (V—k2dx+ [[[V(V = k), |?
I, B,,n@ Q..

P2

Sclpr—p) 2 [f(V = k) +CR2j)Akm Hlde .

o1 Pl

Define now M = sup V'; we claim that
Q?}R,

(35) M§c<ﬁ(V—yM)i>%+1
Ok,

which follows from Lemma 1 below.
It is in fact a variant of a well known technique (see e.g. [LUS, Lemma 7.3,

p. 116]).
Then by (33) and (35)
M? < c1<1 + ln<g>> )
€
Now choose ¢ < pe~! so small that

o1+ (02)) o) (-36)
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32 - p 2 2 P 2
and —coé 4 <(In=) |1 — , ¢o from (31.b). Then M? < ln— =
P e 16 Y

and this obviously holds also, if the assumptions (31) are not valid, pr0v1ded only
that R < pe. Therefore in all cases

either sup V' £ <1 ——£><lng> or u<e iR,
Oun. 32 &

In terms of H, this means

poar = (1 — Pluzr + ¢R

1 -1 — %)
with § = %<§> , b= p(%) — & > 0. This finishes the proof of the altern-

ative and the theorem.
We close this part with the proof of

Lemma 1. Let VeHS N L, B,:=B,(x¢) N Q,I,=[to —r* to], Q, =1, xB,, 4 ()=
{xeB,|V(x,t)= k}, R > 0 and suppose that

sup [ (V= k3 dx + [{ [V(V = k)4 2

Iz B,y Q2

<cilpr —p2) 2TV = ki + e R72 [ | Ay ,1 (1)) dt

Qo1 Ias
for 3R<p, <py SR k2yM, withy<1and M:=supV. Then
Q2g,

M < c(ers s n)( ff (V—vM)2+>2 +1

Or,

Proof. Let 1:= %(1 + l> > 1; ko = max {yM, 7'} will be choosen later. Define
monotone sequences ’
kyi=tho — ko(t —1)17° 7~ 7ky
R=pi=(3+4%47%R, n3R,, and let
I = (_gj (V= k)5 .

Let k;‘ = %(ks-i'i + ks), p;k = %(ps+1 + ps)’ ﬂ;k* = %(p;k + ps) and @5 a cutoff-func-
tion on B, with respect to B, . Then by Sobolev’s imbedding theorem (assume
nz3)

s+1 = jj V k5+1)+(ps
Qor
<c [ A, 0 |nj|VV Kyo1)+ 202 + (V — ko) | Voo, dxdt
Tpr Byy
2

< cepsup A, O
I
P

X((p;k* — p;k)—Z II (V~ k5+1)?§- + I{_2 j IAkS+|,p?*(l)ldt> .

Qpn ]pn
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As by assumption also

(ke s — k¥ sup|A; | ()] Ssup | (V- k¥)3

Tpx Toy Bpp
SclpF—p) 2 [ (V—k8)i + o R72 [ Ay (@) dt
0 prr Ipee
we get .
Iy Scett (ks+1_k) n

1+
X<(ps'~ps+1)_21s+R——2 _[ |Ak:‘,p;‘*(t)|dt> .
Ip:‘*

On the other hand
I, = (V — k)? = (k* — k,)? j | Agr e (0)| dt

Qpr Loz
and therefore
T 2s T 2s
R72(ps— psi1)” | A ()] dt £ C(ﬂ(z) ko?l, < TZC@)(&) I
e
This gives
2 4 4 2 2
Loy Sc(t)ettmkgn R™27wb IV n: = AD LT h

4 4 \2
with b= tn4**s max{l, (Z) } > 1.

As it is easy to see, I, — 0, provided

Ip <A™ 2b 4, hence if (V' — yM)% < e(z, ¢y, n)ks .
Ok,

Therefore choose

ko = maX{VM, T_l’ C(T’ 1 n)_%<ﬁ(V— yM)i >%}

Oz,

and get M := sup V < tk,. Due to 1y < 1, the claimed estimate follows.
3R,

A-priori bounds in C,

We intend to give an a-priori estimate for M, = sup|u(x, t)| under the natural

Qy
growth conditions (9)—(13) of Theorem 2, together with (6), (7), (8), T > 0 fixed. The
starting point is the inequality (16)

(1G04 oo = J1 (R0 + 0%+ g VP9 ) or 920

where |R|+|Q“|§C(Iu|2+ 1).
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By assumption %°|u|2 —¢; £ H < ¢o + ¢ |ul? for certain constants ¢; = 1. Let
(36) ko = max {2c0, max H(x, 0, u(x, 0))}

Q

. . — 2 ko

and take some testfunction ¢ with supp ¢ < {(x, t)eQTIH = ko). Then |ul®> = o

1

on supp ¢, hence the last term of (16) is bounded by —= jj IVH|?¢. Now let

C3

= ,H:= e ¢ =H-y with suppy < {(xteQT|H>k0} Then the last
00

term can be absorbed on the left side; we get

1, dA

=[f=-v H T lﬁx SHRHiP+Q(Hl//)

sg, dt d
Now let k = ky == e*e, Y= (H — k. “¥10.0- By definition of kg, ¥ (x, 0} = 0, hence
fort<T

FIH =A@+ 20 §fIVEH — k). 2
Q 0Q,
~ dH

+(H ~ k) >Xﬁ 2 IZ> :

dx, dx,

< sjj<RH(ﬁ — k). + Q“<ﬁ

Q

Let B:=max (Ju(x, t)]> + 1) with to to be chosen. Then the right hand side is
0,
bounded by

B2+ V)[[(H - k)2 +Pyasp)+ A ffIVEH — k). 2
Q, Q,

and we end with
(37 FH -k @+ [[IVH - B P <Aff((H - 02 + BPrasr)
Q Q, Q
for t < to, k = ko, A = ¢(s*B* + 1).
t
Let first k = ko, y(¢) == § (H — ko)3 (). Then by (37) y(t) < Af y(s)ds + AKZ|Q|t.

Q - 0 .~
Now Gronwall’s inequality implies y(f) < k§|Q|e*. Therefore Iy = [{(H — k)3 <
Q.

[Tl k)3 < k2| | e for k; > k. By the following Lemma 2, there is some

Q,
c4—c4(Q,n), mdependent of ty, such that (37) 1mplles H < 2k,, provided

Io < ¢ k?A~172. The last obviously holds for k? = ¢ 1A2k efo, As ko = e2/%,
we arrive at the estimate

H<elQ,n = A‘*e’“‘J/2
= )0

Going back to H, this means

A
H é k0C5(1 + lnA) +'2‘St0
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hence
4 24
B é—kocs(l + lnA) + __t() + Cg -
Yo Yo $
k
Let ko : = emax (|u(x, f)* + 1). Then B = - =S—CS, A =c(l + ¢ 2) and we get

Q

to

B < B{ec,(1 + |lng]) + co(1 + e Nito} + 5 -

Choose e¢=¢; so small, that e;c,(1 +|lng|)<% and then ¢, with
cq(1 + &7 Mty < % — the result is B < 2¢g. Note, that this conclusion holds only, if
for this g, the corresponding k, fulfills (36). But otherwise a bound for B is
immediate; therefore

max |u(x, 1)|* < max{2c0, 2cger L er ! max H(x, 0, u(x, 0))} )
Q, Q

As ¢ and t, depend only on structure constants, the same procedure works on all
slices Q2 x [(k — 1)to, kty], which combines to a bound for M,. This proves
Theorem 2.

We still have to prove

Lemma 2. Assume

sup fw—kEF + [[IVe— k)P Aff((0— k3 + k¥ 24)
t<TQ Qr Qr

for k = ko with some A 2 1. Then there is some ¢, = ¢(Q, n) > 0, independent of T,
such that

”(U —ko)i S e k§A™1 72
Qr
implies
supv £ 2k, .
Qr

Proof. Let ky:= 2k — 27 %ko 7 2ko, k¥ = 3(ks11 + k)
I:=(fv—k)Z and  A(0) = {xeQlv(x, 1) 2 k} .
Qr

By Sobolev’s Imbedding

2
I = CSUP|Ak,H(t)|;<” V(0 — kg 1)+ |2 + (v - ks+1)2+>
t Qr
2 t
< 2cAsup| Ay, ()" <Is + k3| |Aksﬂ(t)|dt>
t 0

2
é 26Asup1Ak5H(t)|; <Is + k52+1(ks+1 - ks)_zls> .
t
As sup|Ay,,, (Ol(ks s — k¥)* S sup [ (v — k)3
t t Q

S A+ k¥ — k)77 1)
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we have
2 .2 2 4
Igoy ScA TR Tk

Now it is well known, that y,, ; < cb*pl ¥ implies

1 k1 1 *
Vi £ ¢TEb(cTbyo) T,
. l l 2 4 n 2 n2
hence y;—0,if ¢ > 0 and b2y, < 1. Therefore I,—0,if I, < c(A T rkor) 2(41 *5)~ %
hence the claim.
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