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Introduction and main results 

In this paper we want to study some class of strongly coupled quasilinear parabolic 
systems. Our main interest is to show that under certain structure conditions it is 
possible to prove the existence of classical solutions, which exist globally in time. 

To be precise, let f2 c IR" be a bounded domain with smooth boundary, T > 0 
and f2 r = g? x (0, T) the space-time cylinder. The evolution of the vector function 

u: ~-~ - ,  IR N 

is supposed to be governed by the reaction-diffusion system 

(1) u ~ + d i v ( j  k) =fk(x ,  t, u, Vu) on Dr,  1 < k _ < N  

where the so-called flux-vectors j k are affine in Vu: 

- A , ~  ( x ,  t, + t ,  . 

Here and in the sequel we use the summation convention, where the greek indices 
run from 1 to n, latin indices from 1 to N, and vt resp. vx, denote partial derivatives. 
We shall assume, that A~ e C2(~r  x IR N, IR) and the strong Legendre-condition to 
hold: 

There is a 2o > 0, such that 

(2) 

Further 

~ ~ =  A~(x ,  t, t))~i ~k > Ao[~l 2 for ~ I R  "~, (x, t, v ) e ~ r  x IR N . 

(3) B~ e C2 (~r  x IR N, IR), fk  e C2 (~ r  x IR N x IR "N, IR) with 

If(x, t, v, p)l ~ a(Iv[)(1 + ipla). 
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The system is complemented by initial boundary conditions 

(4) u k = 0 ("Dirichlet-condition") or 

j k. V = 0 ("no-flux-condition") on 0O • (0, T) 

for each k, 1 _< k _< N, where v denotes the 

outer normal of Of 2. 

(5) u(x, O) = Uo(X) ~ C2(~) 

which is supposed to be compatible with (4) 

in case of Dirichlet-condition. 

In fact the smoothness assumptions and the growth restriction may be relaxed in 
order to state the local existence of a unique classical solution. This might be 
proven either via fixpoint arguments in H61der spaces [ G M ]  or via analytic 
semigroups in Lp-spaces [A2]. 

The problem to answer is the question, whether this solution can be continued 
to a 9lobal solution. It cannot be expected that this is possible in all circumstances, 
as certain counterexamples seem to indicate, that solutions may start smoothly and 
even remain bounded, but develop a singularity after finite time (cf. [SJM]). 
Though the coefficients of those counterexamples are not smooth, but only con- 
tinuous, this makes it plausible that some additional information about the 
structure of the system is needed in order to guarantee the existence of global 
classical solutions. These informations have to open the possibility to control some 
lower-order norms a-priori. 

Now, in the semilinear case with smooth coefficients, independent of u, it is 
enough to control the Lo~-norm of all possible classical solutions (see e.g. Redlinger 
[R]). In contrast things are more complicated in the general quasilinear case. 
Fortunately there is now an elaborated existence theory developed by Amann [A1, 
A2, A3], suitable for the case of only H61der continuous coefficients via analytic 
semigroups in "weak" extrapolation spaces. From this we get the following. 

Proposition. Let  T > 0 be arbitrary, (2), (3) hold and assume that u solves (1), (4), (5) 
classically on [0, T]. I f  one has an a-priori bound for  u in C~.~]2(~TT) N with 

> n/(n + 1), which may depend on T and the data, then the (unique) solution exists 
globally in time. 

Proof  The proof is a consequence of [A2, Theorem 4.3] and [A3, Theorem 2]. 

Re m ark  1. Note, that Cct, a]2(~'~T) C CE([-0 , T], Co(~)) with a continuous embed- 
ding for ~ = 0 + 2e < 1. The space C,.,/2(OT) consists of those continuous func- 
tions defined on ~2T, which are ~-H61der continuous with respect to the parabolic 
distance d((x, t), (y, s)) = [x - Yl + It - sl 1/2. 

Re m ark  2. The bound for ~ may be relaxed in certain situations - e.g. if the 
boundary conditions (4) are only of Dirichlet type. As we derive estimates for 
arbitrary ~ < 1, this is of no importance in our situation. 

Thus we are faced with in fact two problems, which may be treated separately. On 
the one hand, we still have to estimate the maximum of an assumed classical 
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solution. On the other hand we have to prove H61der estimates for solutions u, for 
which the quantity sup [u(x, t)[ is already known. To the author's knowledge there 

G 
are only few situations where the second task has been accomplished - the case of 
diagonal systems, meaning A~ = 6ika,~ (see [GS]), and the case of certain triagonal 
operators [A4]. 

We shall show in this paper that the same is possible for the following strongly 
coupled system: 

(6) There are matrices a, c k of class C2 with a symmetric,  

such that the fluxvectors jk  are given by 

j k  = __ a ( x ,  t, u)Vu k -4- rk(x ,  t, U) - -  c k ( x ,  t ,  u ) V H  . 

Here H = H(x, t, u) is some Ca-function, 

such that with some ?o, ?x > 0 : 

02H 
?olr/I 2 < ( t,u)rhrlk < = e e~d~u ~ 'x '  = 71 

(7) 

for tl~IR N, (x,t,U) C-~TTXK. 

The coeffcients ik . _ _  ek OH A ~ p . -  a~6  ik + ~ Uu~ 

fulfill (2), and (3) holds with sup {a(]u[) lu~K}  small.  

0H ~a • (0, T) = 0, if the Dirichlet-condition (8) Ou r 

is supposed to hold for u i in (4) 

(This technical condition should be superfluous, 

but we were unable to remove it).  

Then we have 

m 

Theorem 1. I f  u is a solution of  the diffusion system of type (6), (7) and u((2r) ~ K, 

then for ~ < 1 the norm of  u in C,.,/E(OT) is bounded in terms of  K, T and the data, 
where K is some compact set. 

In order to apply the above proposition, we have to give an estimate for K, too. 
Naturally, we have to impose some growth condition. The following theorem 
holds: 

Theorem 2. Assume (6), (8), (2)(with K = IR N) and for all (x, t, V)~-~'-~ T X ~ N  

OH 
(9) Ou (x, t, v) . f (x ,  t, v, p) < eolpl 2 + c(1 + Iv[2), eo < 20?0 

OH 0H ] 
(10) ~ 7 ( x , t , v )  + ~ ( x , t , v ) ]  _<_c(1 + Ivl 2) 

UE uxp 
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OH v) 
(11) ]rkl + ~UI(X, t, + 

32H V) 
~ ( x ,  t, < c(1 + Ivl) 

(12) la,a(x, t, v)l ~ c 

(13) Ic~a(x, t, v)l = c(1 + Ivl) -~ 

Then Mo:= sup lu(x, t)l is bounded in terms of T and the data. 
Or 

Let us remark, that this is a general theorem. In concrete cases there might be 
different methods to get a-priori information about K; e.g. in biological or chemical 
systems, K belongs usually to the positive cone, and more sophisticated methods 
can be applied. 

The consequence of the theorems above and the proposition is 

Theorem 3. Systems of  type (6) together with the above assumptions have global 
classical solutions. 

As already mentioned systems of this type occur e.g. as biological models, with 
u representing some (sub-)species, and one may think of H as a function describing 
environmental influences. Naturally this influence might depend on the species 
itself (via overpopulation, production of waste, pollution etc.). Each fluxvector in 
our type of system consists of two parts - one diffusive part according to Fick's law 
and another in reaction on H, which may be different for each species. The case 
where the environmental influence H does not depend on u (but with cross 
diffusion, N = 2) was discussed by Shigesada et al. [SKT] (see also [O, p. 88]). 

As a special example modelling cross diffusion of two species, consider the 
system 

(14) u , -  div(aVu + cl(u)dz(v)Vv) =f l (u ,  v) 

v, - div(~Vv + c2(v) dl (u)Vu) =f2(u, v) 

together with initial boundary conditions. 
Systems of this type have been studied e.g. by Shigesada et al. [SKT], Deuring 

[D], Matano and Mimura [MM], and Schnadt [Sch]. Our results imply the 

Corollary. Assume that if T > 0 and if (u, v) is a classical solution of (14), then 
0 < u,v < C(uo, Vo, T) and the uniform Legrende condition holds along the 

1 

solution. I f  further 0 < di(t)/ci(t) and 0 < 6o <-~(x/di(t)/ci(t)) are bounded on 

[0, C(uo, Vo, T)] for i = 1, 2, the solution exists globally. 

u 

Proof Let H = S(dl(t)/cl(t)) 1/2 dt + ~ (d2(t)/cg(t)) ~/2 dr. Then it is easy to see, that 
0 O 

(14) is of the type considered in Theorem 1. 

We think that the technique to derive C,.,/2-estimates presented below may be 
modified and adjusted to some other concrete (two-species) models. This would 



Class of strongly coupled parabolic systems 715 

reduce the problem of existence of global solution to the derivation of Loo-bounds 
like in the semilinear case. 

H61der-estimates 

The weak form of the system may be written as follows: 

C ,), 
if ~ = 0 on Of~ x [0, T] in case of Dirichlet-condition for the i-th component. 

Then take ~ = ~?H Ou ~ ~b with ~b > 0 and sum the resulting equations to get 

"'d dH i 6~2H k 

rl OH "1 
+ ~ { a ~ a e a -  =~ui}~ ~ 

c?H 0H 02H ~H 
with eo = - ~ ,  e~ = --'Oxp g~ - Oui Ox~ and d~ := a~  + ci~ c~ul. 

OH 
Note, that d~M/~t/r > 2oJq ]2 (let ~7 = i/~ 0u i in (2)) and also that a~Ml%l t~ > 2oJq [2 

let ~ = t/~co', co• in (2) . Hence the third term on the left is bounded from 

below by 5I 207o IVul2q~. 
Or 

Due to (6)-(13) standard estimations imply 

fdH ~" d dH 
(16) z ~ b  + j] ~eTx Cx, + <551Vul2r _-< 

Or fl Qr 

 lul C+ ) R4 + Q~q)x, + 1)lVHl2q 5 

where el > 0 and IRI + IQ~l < c(lul 2 + 1). 
If we are in the situation of Theorem 1, assuming that u(f2r) c K, we get 

similarly - j u s t  assuming (6), (7), (8) - 

dH dH 
(17) _!S-~ ~b + 55d=~o~ dx~ Cx. + ~2551Vu1~o~ =< c55(lo, + Ivul~)q~ + Ivq~l �9 

(16) resp. (17) are the starting points for our considerations. 

Proof of  Theorem l. Suppose l ul =< Mo on Or. By adding a suitable constant 
(depending on Mo), we may assume, that infH = 1. Due to [G-M],  we may 

N 
assume, that the c~-H61dernorm ofu  on a small slice 0 _< t < t~ is estimated in terms 
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of the data, so that we may restrict ourselves to times larger than �89 > 0. Take 

(Xo, to )S f2r  with to >_- �89 and let QR := [to -- R 2, to] x (BR(XO) C~ ~2) for R with 
R 2 < �89 Let #R' = sup H. 

Q. 

We are going to show the following 

Alternative. Let Co > 0. Then there are 6 = 6(eo) > O, fl = fl(eo)e(O, 1) and C(eo), 
R(eo) such that for all R < R(Eo) 

either(A) #O2R < (1 --fl) #2R + C(eo)R 

or(B)  ~ - I u - u R I  2=<cowi thua=jXJu  
QR Q5 

holds. Here ?C~-v := ~ I~ v(x, t) dx dt and 
QR I Y_~R I Q~ 

[QRI = meas QR = ~ dxd t  . 
O_. 

Once this is shown, the claim of Theorem 1 follows easily: Considering the 
sequence Rk = 6k2R(eo), we see, that (B) must occur for some Rk with 
k < ko = ko(Mo, Co) - otherwise, iterating (A) would imply 

( ,UR,o<(1--fl) k~ /~Ro+ l _ f i _ 6 ]  < 1  

for suitable chosen ko, contradicting #a > 1. 
Now, provided eo is taken sufficiently small depending on the data, Theorem 3.1 

of [G-S] implies for all c~ < 1, that :~- [u-uR]  2 < c l R  ~ for all R with 
QR 

cl = c(Mo, Co, ~) uniformly in (Xo, to). As is well known, this implies an estimate for 
the H61derconstant in terms of cl. 

Proof  o f  the alternative. Let # = P2a- We start with (B) and assume, that 

meas{(x, t)~Q(I+~)RIH < (1 - p)#} < plQ(I+~I~I 

where a, p e (0, �88 will be chosen below. 
Put  ~ b = ( H - k ) + r / 2  into (17), with keIR and rt a cutoff-function on 

Q2R with respect to Q~R - meaning a smooth function with support in 
[ t o - 4 R  2,to]xB2R(xo),  0 __< r/ __< l, r / - 1  on [ to-(zaR2), to]XB~R(Xo) and 
IVt/J 2 + ]thl __< cR -2. Then 

e2 ~ [Vu]2(H-  k)+ + 2o ~ IVHI2t/2 
QaR H > k 

cyy{(H - k)2+ (IVr/I 2 + Irh[ + r/2) + JVHI2(H - k)+r/2 } + cR "+2 �9 
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Chose k := (1 - 2p)#, hence (H - k)+ < 2p/~ o n  Q2R, and assume p so small, that  
2p#c  < 2o. Then  

J'l IVul2( H - k)+ < c ( p # ) Z R "  + c R  "+2 . 

O_JR 

Let Ao :=  {(x, t ) eQ( I+~)RIH > (1 - p)/~}. Then  ( H -  k)+ > p/~ on Ao and by 
assumption 

(18) 

Therefore 

IQ(l+,r)R\Zol < P l Q . + ~ ) R [  �9 

(19) ~ IVul 2 < cR" p p  + < cp#R"  
Ao 

as we may assume R < p#, because the opposite inequality would imply that (A) 
holds and nothing is left to show. 

Next,  we need the s tandard inequality 

(20) f~ [ Vu[2 --< cR" . 

Q(I +a)R 

This follows from (17) by letting q) = e S U . r / 2  with s large enough to absorb the 
terms on the right hand side by standard estimations. 

Now we need the following Sobolev-Poincar6-Inequali ty (see [LU, p. 45, 
(2.10)]): 2 

I v l 2 < c  ~ IVvl "+~" .[ Ivl 
B o c~ s Bp c~ f2 Bp c~ Q 

for functions with ~ v = 0. 
Bpc~ f2 

Let v = u - jr u; we get after integration with respect to time: 

U 2 2n 2n 
( 2 1 )  i ~  /A - -  j r  ~ C~ ~ i  ] V u  ~ o R  n + l  . 

Q(I +a)R B(I +~)R ~'~ Q Q(I +~)R 

The righthandside of (21) will be estimated by (18), (19), and (20). First we have 
n 

I lv.t  _<- il IVul to,, + o , .  
Ao Ao 

n n 2 n + 2  

<= c p , + l  R ~ R , + I  

and then we note  
n 

i i  IVu[ "~i- --< i i  I Vul2 IQ, I+~) R\AoI"+I  
Q(, +~)n\Ao Q. +o)R 

n 2 1 n + 2  

< c R , + i  p ,+  l R , +  l ; 
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by adding these estimates we get 

(22) j'j" u -  ~: 
Qo +.)R Btl +~)R c~ (2 

a s  ..... 
2n n 2 n + 2 

n + i + n ~ l  + n + l - n + 2 "  

As ~: u _  j" u 2 <  j " 
BR c~ t~ BR c~ O BR m O 

also have 

lu - cl2 ~ 

U 2 1 
.= < c p n + ~ R  n+2 

I u - - c ]  2 for all c ~ I R  N we  
BRtl +o) ~ (2 

U H 2  1 (23) 5I - -~ < cee+ , R e+ 2 . 
OR BR c~ s 

The next  task is to estimate the quant i ty  

/A R 2 7 ~ !  U - -  H R ~- bl D : =  ~ a  
Be 

We have 

1 _t~ ds 2 
- 3 c u(x, s)dx D < c R e + 2 s u p  3 ~ u ( x , t ) d x  ~ t o J R 2 B R n a  

t B R n O  

s ) )dx  2 < c R - e + 2 s u p  j (u(x, t ) - -  u(x,  
s,t BR C~ Q 

In order  to proceed, we integrate the system from s to t, multiply by q).d and 
integrate, where ~o is a cutoff-function on B(1 +~)R with resp. to BR and d - 0 on 8f2, 
d = 1 if dist(x, 8s > do, ]Vd] < cdo  1. From 

~od(ui(x, t) - ui(x,  s)) dx  
B r.,~ (1 +o)R 

, ' -0 Uxa + r~)(~od)x. = 
s B{I +a)R C~ Q s BiI+~IR n s 

it follows 

I ,,,,x j q3d(u(x, t) - u(x,  <= c j j  (IVul + 1) + 
B~I+~)R ~ ~ QII+~)R 

+ c a ( M o )  ~j [Vu[ 2 + cR e*2 

Q(I +~)R 

with a ( M o )  small. 
Choose  do = aR. Then  

(1 - d) < c a r  e 
BR f2 
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and 

E : =  j" 
Bsr~Q 

= 

Bgc~O 

BR c~ Y2 

(u(x, t) - u(x,  s ) )dx  

(u(x, t) - u(x, s) ) q~(x) dx 

(u(x, t) - u(x,  s))q~dx + caR" 

< B ~ n ~ ( u ( x ' t ) - - u ( x ' s ) ) q ) d d x  + c a R " + c I B ( I + ~ ) R \ B R I  
R(I  +~) 

=<--~e ~ IVul + cR" a + ~ + ca(Mo)R" 
Q(I +elR 

This integral is estimated as above by splitting the region of integration into Ao and 
Q(~ +~IR \Ao,  the result is 

IVul < cp~ R "+1 
Q(I +a}R 

This implies 

R p ~ )  
E < cR" a + - -  + - -  < cR"p ~ 

G G 

if R < p~, a = p~. 
Going back to the estimation of D, we see that  

D < cR"+2p ~ . 

Combined with (22), we end up with 

1 
~ l u  - uRI 2 < c p . +  l < t o  
QR 

if p = P(~o), a = p(eo) +, R < R(eo). 

Let us now consider the other  part  of the alternative, this is (A). In this case we 
may assume that  

(24) meas{(x, t)EQ(I+~)RIH < (1 -- p)/t} > pIQR(I+~}I 

with a and p given by the first part  of the proof. Let 0 < e < p e -  1 and define 

+ e  + l n p .  

Note  that  o n  Q2R we have the trivial estimate 
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H 
and V >  0 ~ 1 - - -  + a ~ p; hence (24) implies 

(25) meas  {(x, t)EQ(I+~)R] V >  0} < (1 - p)IQ(I+~)RI. 

Let n o w g : =  1 - - - + e  , hence  
# 

dV g dH dV  g dH 
dx~ g dx~ and dt # dt 

g 
Therefore  let ~b = -~p, ~o > 0 in (17) to get 

dV dV  d dV  dV  

Assume, that  supp q~ c { (x, t) l V > 0}, hence g -  1 =< p on supp <p and we see that  
for p __< Po the last te rm is absorbed  by the third term on the left side. 

This gives (with g __< e -1) 

d V  d~, dV 

Our  a im is to show, tha t  (25) and (26) imply a bet ter  est imate for V than the trivial 
one on a smaller  cylinder. 

Choose  first <p = V+ t/2, where / / i s  a s tandard  cutoff-function with t/_=_ I on 
Q~R" F r o m  (26) we get 

~S Ivy+  12 v+ + )vv+  12) __< c j j  v~+ (Iv~l 2 + Iv, L) + (v+ + I)(~0 -2 
Q_~R Q2R 

2 

and therefore (assuming R ~ #8) 

(27) ~ ]VV+ 12 V+ ~ cR" 1 + In . 
Q3R 

2 

Next  we take ~p = 2V+ q2(x)xE,,,,2~(t)with t~ ~ [to - R 2, to ] and t / a  cutoff-function 
on BR(1 +~)(1+ 33 with respect to BR(~+~); "~ < �88 will be chosen later. No te  that  
( l + a ) ( 1  + 6 ) < ( � 8 8  ~. Then  f rom (26) we get (with B 2 = B R ( I + ~ ) c ~ O ,  
B1 = BRO + ~)0 + g) c~ ~)  

V2+(x, t2)dx + Co~]VV+ 12(I + V+)/72 < ~ VE+(x, t~)dx 
B2 BI 

+ c I I ( I v v +  Iv+ ~Iv~l + (us)- 2 v+ n2) 

+ c~(IVV+ I(~E)-~ 2 + v+tt[Vttl) 
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where the double integrals are taken over It1, t2] x B1. Using H61der's inequality 
and the trivial estimate for V+, we get 

t2 

(28) ~ V2+(x, tz)dx<= ~ VZ(x, tx )dx+c~ if((1 + g+)lVtI[2 ---~ (],/~3) 2/12) 
B2 BI t l  BI 

B1 

Next we have to choose tl appropriately. 

Let I '  = [to - (1 + a)2R 2, to - 2(1 + a)2R 2] and 

Ak,.(t) = {x e B. c~ f21V(x, t) >= k} . 

Thenthereissometl~I 'with jAo,ml+~)(tl)] __<(1- 2)[B2[ because otherwise 

meas{(x, t ) e Q R . + ~ l  V+ > 0} 

>_- ~ IAo,. .  +~)(t)l dt 
I '  

1 - -  (1 + o-2)RaIB2I > (1 -- p)lQmx+,,) , 

contradicting (25). 

Therefore, for all t2 with t 2 e [ t o -  2(1 +~)2R2, to 1, 

} (29) ~ VZ+(x, ta)dx<= in 1 -  d - C g  1821 
B2 

Let 78(0, 1) and M > 0 be arbitrary from (29) we get 

(30) (yM)21A~M,R(1 + ~)(1 + ~)(tz)l < In 1 -- ~ + ~3" IN21 + co IN113 ̀ .4 �9 

Now choose 3, such that 86 < -p and assume, that 
= 8  

(31) (a) (ln ( P ) ) 2  _-< M2(1 - ~6)  -1 

(b) c0 g-4 ~ P M  2 �9 

Then 
T2IAeM, R(I + ~,(I + 3)(t2)[ <= (1- -  ~2 )IBI ' 
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hence 

'ATM, R(I + a)(I + 6)(t2)' <= ( 1 -  5 ~ ) ' B I  [ 

if 7 = Y(P) close to 1. Therefore, for fixed t2, Poincare's inequality is valid and 
implies 

I ( V -  TM) 2 dx <= ce2 I IVgl 2 dx 
BI V >= ),M 

R 2 
< 5 [VVi 2 gdx  
= 7M v__> 7M 

r 2 
< j IVV+12V+dx 
= yMv>= o 

and integrating with respect to t2, we get with (27) 

(32) II ( V -  2M) { < c ~ - -  1 + In 
QR, 

(2; for R1 = (1 + a)R, and using (31.a) we end with 

QR, 
As a third choice we take ~b = (V - k)+t/2 in (26) for k > 7M > 0, where r/now 

denotes a cutoff-function on Qm with respect to Qo2, ~R1 < P2 < Pl <_ R1, with 
IV~12 + I~/+1 < C(pl- p2) -2. Then one gets with I o = [ t o -  pZ, to], assuming 
R _-</~e, 

(34) sup ~ ( V - k ) 2 + d x  + ~ [ V ( V - k ) + I  2 
lp2 Bo, n ~2 Qa~ 

<= c(p, - p 2 )  -2 S J ( V -  k)2+ + cR -2 ~ IAk,m(t)ldt. 
Qp, Ip, 

Define now M := sup V; we claim that 

(35) M < c ( V -  7M)2+ + 1 
1 

which follows from Lemma 1 below. 
It is in fact a variant of a well known technique (see e.g. [LUS, Lemma 7.3, 

p. 116]). 
Then by (33) and (35) 

Now choose e < pe-1 so small that 

c* (1 + (ln P ) )  =< (ln ( P ) 2  (1 - ~ 6 ) )  
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and 32Co6-4 < In 1 - , Co from (31.b). Then M 2 < In 1 - 

and this obviously holds also, if the assumptions (31) are not valid, provided only 
that  R < #e. Therefore in all cases 

either sup V < ( 1 -  3 ~ ) ( l n P )  or # =< e - l R .  
Q~RL 

In terms of H, this means 

#~2R < (1 -- fl)g2R + cR 

with ~5 = g~ ] ,/~ = p - e > 0. This finishes the proof of the altern- 

ative and the theorem. 

We close this part with the proof of 

Lemma 1. Let V~H~ c~ Loo, Br := Br(xo) c~ s I~ = [to - r 2, t o ] ,  Qr =It xBr,Ak,~(t)= 
{xeB,[ V(X, t) > k}, R > 0 and suppose that 

sup ~ ( V -  k)2+ dx + ~ I V ( V -  k)+ 12 
Io; Bo2 (2p2 

C l ( P l  - -  / 3 2 ) - 2  I~ ( r - -  k) 2 -t- c lR  -2 ~ [Ak, pl(t)]dt 
Q;~ lp~ 

for �88 <= P2 <= Pl <= R, k > 7M, with y < 1 and M ' =  sup V. Then 

M < c(cl, y, n V -  ~M + 1. 
QR~ 

Proof L e t z ' = � 8 9  + ~ ) >  l ; k o > m a x { v M ,  r - t }  will be choosen later. Define 

monotone  sequences 

ks :=  

R >=ps:= 

I s :=  

rko - ko(~ - 1 ) ~  -s ,~ ~ko 

(�88 + �88 "~ �88 and let 

SS ( v  - ks) + 
Qos 

Let k* = �89 + ks), ps* = �89 + Ps), p's* = �89 + Ps) and ~os a cutoff-func- 
tion on B0. with respect to Bp~+. Then by Sobolev's imbedding theorem (assume 
n > 3 )  

Is+, < I~ ( V -  k~+,)z+ ~o~ 
0p* 

2 
< c ~ IA k .... p,(t)l ~ ~ I V ( V -  ks+~)+ [2q)2 + ( V -  ks+,) 2 IVq)~12dxdt 

lp* Bp* 

2 
<-_ ccl sup IA k .... 0.(t)l~ 

/ \ 

\ Qp,, Ip** / 
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As by assumption also 

(ks+l - -  k*s)ZSuplAk . . . .  p . ( t ) [  =< sup ~ ( V -  k*) 2 
Ip~ lp~ Bp* 

<= c~(p* - p**)-2 I~ ( V -  k*) 2 + c ,R -2 
Qp** lp** 

we get 
4 

Is+l <= cc~+~"(k~+l -- k~)-~ 

On the other hand 
I~ > 

and therefore 

R-2(ps -- ps+,) 2 

This gives 

[Ak.,p**(t)[ dt 

2 

( x ( p ~ - p ~ + , ) - 2 I s + R - 2  ~ [Ak.,p**(t)]dt 
Ip** 

( V - -  ks)~ > (k* - ks) 2 ~ [Ak. ,p . . ( t ) [d t  
Qp** lp** 

[Ak .p . . ( t ) ld t<=c(r)~  ) ko2Is<-_v2c(z Is.  
lp** 

2 4 4 2 2 
Is+ 1 <= c(z)c~+~ko~R-2-;bSl~s+~" = AbsIls+~ 

with b : =  zn42+n max 1, > 1. 

As it is easy to see, Is - 0, provided 
n n 2 

Io < A - ~ b - ~ ,  hence if 3C~- (V - 7M) 2 < c(r, cl, n)k 2 �9 
Qn, 

Therefore choose 

{ ( ko : = ma x  7M, z - t , c ( z ,  cl ,n) -�89 ~ - ( V -  )'M)Z+ 
QR, 

and get M := sup V < zko. Due to z7 < 1, the claimed estimate follows. 
Q1Rt 

A-priori bounds in Co 

We intend to give an a-priori estimate for Mo := suplu(x, t)l under the natural 
f2r 

growth conditions (9)-(13) of Theorem 2, together with (6), (7), (8), T > 0 fixed. The 
starting point is the inequality (16) 

ss( c ) I I - ~ 4 ;  + IId~p~x C~X~ < Rc~ + Q~(ox, + Ivgl2~b for 4~ > 0 
~r or p ~ \  (I u12 + 1) = 

where IRI + IO~l ~ c(lul 2 + 1). 
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By assumption 4 1 u l 2  - c2 _-< n __< Co + cl lul 2 for  ce r ta in  c o n s t a n t s  c~ > 1. Let 

(36) ko > max {2co, maxH(x, O,u(x, O),} 

ko and take some testfunction q5 with supp q5 c {(x, t)~f2~lH > ko}. Then lul z > 
= = 2 C  1 

on suppqS, hence the last term of (16)is bounded by ~ I V H I 2 4 ~ .  N o w  let 
'~0  f2~ C3  - -  r 

s :=  2oko ' /7  := e ~n, q5 = / 7 " 0  with supp0 c {(x, t)ef2rlH > ko}. Then the last 

term can be absorbed on the left side; we get 

s ~I-  ~ + d~ "zp tPx~ = < I~ R/7 0 + Q~(/7 0 )x~ . 
f2r 

Now let/~ > ko := e ~k~ 0"  = (/7 - /~)  +" Zto.,~. By definition of ko, 0(x, 0) = 0, hence 
for t_< T 

I ( / 7  - ( t ) +  f f l v ( / 7  - I 
f2 f2, 

Let B:=max(lu(x, t )12+ 1)with to to be chosen. Then the right hand side is 
~to 

bounded by 

c(s2B 2 + 1) ~((/7 -- ~')2 +/~2Zg > E ) + 2o~  IV(/7 --/~)+ 12 

and we end with 

( 3 7 1  ~ ( / 7 - k ) 2 ( t l  + ~I lV( /7-k)+lg  < AIj((/7-Fc)2+ + rc2Z~>E) 
Q, E2, 

for t < to,/~>/~o, A = c(sZB 2 + 1). 
t 

Let first/~=/~o, y(t):= ~(/7 - k'o)2+ (t). Then by (37) y(t) < A~y(s)ds + AkZlf2lt. 
f2 O 

Now Gronwall's inequality implies y(t)< k2lQleA'. Therefore Io := ~ ( / 7 -  ]~1)  2 

~2t o 

I ~ ( / ~  - -  k ' l )  2 ~_ k g ~ e  At~ for k'l >/~o. By the following Lemma 2, there is some 
~t  0 
c4 = c4(O,n), independent of to, such that (37) implies /7 __< 2kl, provided 

n n 

Io < c 4 k ~ A - l - L  The last obviously holds for ]~ := cgiA~k~)e m~ As k'o -- e c3/x~ 
we arrive at the estimate 

/7 <= c (2, n, A4e At~ . 

Going back to H, this means 

A 
H < kocs(1 + lnA) + ~sstO 



726 M. Wiegner 

hence 
4 2 A  

B < - - k o c s ( 1  + lnA) + - - - - t o  + c6 �9 
7o ?o s 

Let k o ' =  emax( lu (x ,  012 + 1). Then B - ko _ c ,  A = e(1 + e -2) and we get 
f2,o 8 $8 

B =< B{eCT(1 + Ilnel) + c7(1 + e-1) to} + Cs �9 

Choose  e = ~1 so small, that  elc7(1 + I lnel l )  =< �88 and then to with 
c7(1 + el- '  )to _-< �88 - the result is B =< 2c8. Note,  that  this conclusion holds only, if 
for this e~ the corresponding k0 fulfills (36). But otherwise a bound  for B is 
immediate;  therefore 

m axJu(x, t ) ,  2 _< max{2c0 ,  2c8~11, ~i -1 m a x H ( x , O , u ( x , O ) ) } .  
g4o f? 

As e~ and  to depend only on structure constants,  the same procedure  works  on all 
slices O x [ ( k -  1)to, kto], which combines  to a bound  for Mo. This proves  
Theo re m 2. 

We still have to prove  

L e m m a  2. Assume 

sup S (v - k)2+ + j'j" [V(v - k)+ 12 < A ]']" ((v - k)2+ + k2zv > k) 
t _-< TI2 Or ~2T 

for k > ko with some A > 1. Then there is some cl = c(f2, n) > O, independent o f  T, 
such that 

n 

5S(  - k o g  <-_ c ,kgA 
O r  

implies 
sup v < 2ko . 
OT 

Proof. Let ks :=  2ko - 2-Sko/~ 2ko, k* = �89 + ks) 

I s ' =  S~(v - ks)~ and Ak(t) = {x~f2[v(x,  t) > k } .  
O r  

By Sobolev 's  Imbedd ing  

 (ss ) Is+ 1 ~ csuplAk,+~(t)l ~ IV(v - ks+l)+ 12 + (v - ks+l)  2 
t \ Or 

<= 2cA sup I Ak,,l (t)[~ Is + ks + 1 ~ I Ak,+, (t) l dt 
t 0 

2 <-_ 2cAsuplAk,+,(t)l  ~ Is + ks+x(ks+l - ks) -eIs  �9 
t 

k 2 ) +  As s u p l A k , + , ( t ) l ( k s + l  - k * )  2 < s u p ~ ( v -  * 2 
t t O 

< A(Is + l " * 2 { L ' *  - -  ks) -2 ls )  rvs \~ 
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we have 
2 2 2 4- 

I ,+ 1 ~ cA a +~i~+;(41 +~)Sko;. 

Now it is well known, that Yk+ 1 < cbky~ 1 +~) implies 
1 k 1 1 

Yk <-- c--;b?(cTb~yo)(1 +~)~ , 
1 1 2 4- n 2 n a 

henceyk--,O, i f e > O a n d c - i b - y o < l .  Thereforels 0, iflo < c(A1+~ko~)-5(41+") - ~  
hence the claim. 
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