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I Introduction and statement of results 

In this paper we study steady flow of an inviscid, incompressible medium through a 
bounded, simply connected domain f2 =c ~3. Our goal is to construct solutions with 
nonvanishing vorticity of the boundary value problem 

(v(x). V)v(x) + Vp(x) = 0,  x e f2, (1.1) 

divv(x)=O, x e O ,  (1.2) 

n(x)" v(x) = f(x),  x e ~?f2, (1.3) 

where v(x)eP, 3 denotes the velocity and p(x)>0 the pressure of the flow. n(x) 
denotes the exterior unit normal to the boundary 0f2 at x e 0Y2. Of course, the given 
function f must satisfy 

I f(x)dSx= I n(x)'v(x)dSx= I divv(x)dx=O. (1.4) 
ON O~ 

It is well known that for simply connected domains f2 the problem (1.1)-(1.4) has 
an irrotational solution (v, p), which is unique up to addition of constants to the 
pressure. Namely, in such domains any velocity field v with 

curly(x)=0 (1.5) 

for all x e f2 is a gradient field 
v(x)=Vq)(x), (1.6) 

and from (1.2) and (1.3) it follows that 

&o(x) = O, x e O,  (1.7) 

O 
On q)(x)= f(x),  xeO(2. (1.8) 
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The Neumann boundary value problem (1.4), (1.7), (1.8) has a solution ~0, which is 
unique up to constants. Therefore the velocity field v given by (1.6) is unique. To 
construct the pressure p note that with the relation 

(v" V)v = V(�89 2) -  v • curl v 

the Eq. (1.1) can be written as 

- v  • curly + V(�89 2 + p ) = 0 .  (1.9) 

From (1.5) we thus obtain that 

�89 z + p = const. 

It is clear that the functions v, p thus constructed satisfy (1.1)-(1.3). 
It is much less obvious whether the problem (1.1)-(1.3) has solutions 

representing flows with nonvanishing vorticity. On physical grounds one expects 
many such flows to exist. On the other hand, the conventional expectation is that 
these flows are unstable and that in physical reality a steady flow governed by 
(1.1)-(1.3) would switch immediately into a turbulent flow because of the absence 
of viscosity. A general experience in mathematical physics seems to be that lack of 
stability of the objects under consideration introduces difficulties into the existence 
proof for these objects, and in many cases these difficulties have not yet been 
overcome. The fact that the existence of irrotational solutions of (1.1)-(1.3) can 
easily be proved would then be attributed to the introduction of artificial stability 
by the requirement curly(x)= 0, which excludes turbulent motion. 

We shall prove, however, that if (vo, Po ) is a solution of (1.1)-(1.3) satisfying 
Vo(X)+O for all x e O  and has sufficiently small vorticity, then there exist a 
neighborhood of this solution and flows with nonvanishing vorticity in this 
neighborhood, which satisfy (1.1)-(1.3) and two additional boundary conditions. 
These additional boundary conditions hold only on that part of the boundary, 
through which liquid is entering the domain f2, and prescribe the vorticity of the 
flow on this part of the boundary. They are necessary because the requirement 
curly = 0 used in the construction above is dropped. Moreover, we show that any 
such flow is stable in the sense that in the neighborhood mentioned above it is the 
unique flow satisfying (1.1)-(1.3) and the additional boundary conditions, and that 
it depends continuously on the boundary data. In particular, such flows with 
nonvanishing vorticity exist in a neighborhood of the irrotational solution of 
(1.1)--(1.3) constructed above. 

To see what these additional boundary conditions should be, apply the 
operator curl to (1.9). This yields 

curl (v x curl v) = 0. (1.10) 
From the relation 

curl(v x z) = v div z + (z . V )v  - z div v - (v . V ) z  (1.11) 

and from divv---0 we conclude that (1.10) is equivalent to 

(v. V) curl v = [(curl v)" V] v, (1.12) 

the Vorticity Transport Theorem, also called Helmholtz' equation, cf. [10]. The 
Eqs. (1.2), (1.3), (1.12) constitute the velocity-vorticity formulation of the boundary 
value problem (1.1)-(1.3). In simply connected domains both formulations are 
equivalent. 
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If the velocity field v is known, then (1.12) can be considered to be a system of 
first order partial differential equations for curly, the characteristics of which 
coincide with the stream lines of v. This means that (1.12) can also be considered to 
be a system of linear ordinary differential equations for curl v along stream lines. It 
follows that if curly is known at one point of a stream line, it can be computed 
along the whole stream line from (1.12). By definition, stream lines z ~-,co(z) are 
solutions of the system 

d 
d-z- co(z) = v(co(z)) 

of ordinary differential equations. From this definition it immediately follows that 
any stream line contains at most one point x E af2 with 

n(x) " v(x) = f (x) < O, 

and therefore it is possible to prescribe curly(x) at any point x e 0f2 with f ( x ) <  O. 
On the other hand, in all the solutions with nonvanishing vorticity we construct, 
the domain O is covered by stream lines starting at such points. This follows from 
the following properties of these solutions v: They are continuously differentiable, 
satisfy v(x)40 for all xeO,  and do not have closed stream lines. Moreover, the 
length of all stream lines is uniformly bounded, and any stream line that is 
tangential to the boundary at one point is completely contained in the boundary. 
To assure that v has these properties it is necessary to make special assumptions 
for the unperturbed flow Vo. In particular, Vo must have these properties, but since 
the last property is not necessarily stable against perturbations, we must add 
another technical condition, which is precisely formulated in the theorem stated 
below. 

It follows that curly(y) is uniquely determined for all ye(2 if we prescribe 
curly(x) for all xe&9  with f (x )<0 .  Observe however, that it is not possible to 
prescribe all three components of curly independently, because (1.10) yields 

n(x). curl(v(x) x curl v(x))= 0 (1.13) 

for all x e 00, which implies by Stokes' theorem that the component (v x curlv)r of 
(v x curl V)loa tangential to 0(2 is equal to the tangential gradient Vr g of a function 
g : 00--*R. Here and in the following we mean by (v x curlv)r and Vrg vectors in R3 
tangential to 00. As boundary conditions for curly we therefore choose 

n(x)" curly(x)= h(x), (v(x) x curlv(x))r = Vrg(x) (1.14) 

for all x e Of 2 with f (x )  < O. h and g are given functions. From (1.9) it follows that 
(1.14) is equivalent to the requirement that there exists a constant c with 

�89 Iv(x)l 2 + p(x)  = g(x)  + c 

for all x e 0f2 with f (x )  < 0, and in the following we use this form of the boundary 
condition (1.14), where we also normalize p such that c--0. 

We remark that for any vector field z satisfying 

(v" V)z = (z. V)v 

the relations n(x). curl(v(x) x z(x)) = 0 and divz(x) = 0 are equivalent on the set of all 
x~O~2 with f (x )<0 .  To see this note that (1.11) yields 

n �9 curl(v x z)= n.v  divz = f d i v z .  
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Therefore the condition imposed by (1.13) on the boundary values of the vector 
field z=cur lv  can be considered to be a consequence of the relation 
divz = div curl v = 0. 

To state the main result of this paper we need some spaces of functions defined 
on the part of the boundary Of/where f is negative. To introduce the norms of 
these spaces we now state several definitions and notations, some of them are 
standard. 

For  an open set F ____ R e and for any nonnegative integer k let Hk(F ) = Hk(F , ]R m) 
denote the usual Sobolev space of functions from F into IR" with norm 

Here/~ =(//~ . . . .  , fie) is a multi-index. We assume that the bounded domain f/__cll 3 
is of class C% As usual, this means that there exist open subsets U 1 . . . .  , U, of N 3 

/1 

with 0f/__c U ui, and diffeomorphisms ~/" D3~U~, where 
i = 1  

De={yeRe:lyl<l},  

such that 

and 

Uic3f/= (Pi(D3c3{x3 > 0}). 

Hk(0f/,~1.") denotes the usual trace space. The functions ~,vi:D2~0f/with 

~/(r ~ 2) = ~(~ 1, ~ 2, 0) 

define coordinate systems on 0(2. Let e l , . . . ,  ~u: Of/~lR be a partition of unity on 
0 0  with 0 < ~i < 1, supe i c__ IP i (D2)  ' and with 7i ~ ~i ~ C~ ~ (D2)- As norm of Hk(Of2, ~") 
we use 

# 

Itqllk,On = Y, Z I I ( o ~ i ~ 1 7 6  �9 (1.15) 
i = 1  I~l_<k 

For  f eH2(Of/,~ ) let 

Of 2_ =Of/_(f)={xeOf/: f(x)<O}, 
(1.16) 

0f/+ = 0 f /+ ( f )=  {x e Of/:f(x) > 0}. 

Of/_, Of/+ are open subsets of the C+-manifold Of/, because f is continuous. 
Therefore they are themselves C+-manifold. The boundary of Of/+_ in Of 2 is 
denoted by 

OOf/ +_ = Of /  • m ~  . 

We say that a bounded domain G ~ 2  has Lipschitz boundary, if the following 
two properties are satisfied. 

a) About every xo ~ OG there is an open neighborhood U _---R 2 and i r { 1,2}, 
such that the set ~G~U has the representation 

x j =  g(xi), xi e U' ,  
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where j e {1,2} and j 4= i, where U' is the projection of U on {xj = 0}, and where 
g" U ' ~ ] I  is a Lipschitz continuous function. 

b) The set Uc~ G is either contained in the half cylinder {xj > g(xi)} or in the half 
cylinder {x~ < g(xi) }. 
We say that 8f2_(f) has Lipschitz boundary, if the function 4~ 1 . . . .  , ~u can be 
chosen such that for every i=  1, . . . ,p the domain 

D 2 - -  

is empty or has Lipschitz boundary. 
The norms for the functions with domain 80_ are defined as follows. For 

q" 812_ ~IR m and k < 2 let 
~u 

[]q[Ik.om---- ~ ~. ll(~iowi)DP(qo~i)llo.o~, (1.17) 
i=l I/~l <k 

(~176176 O,D~ Iqlk,or~ = ~ ~ , (1.18) 
i=1  Ifl l+lvl-<k 

IIIqlllk,o,~_-- Y Y o 1t3i) Ds Da' DV(q , 
i = l  I/~I+IVI+ Ivl__<k 0,D~ 

(1.19) 

if these expressions are finite. The last two norms are finite only if q and its 
derivatives vanish sufficiently rapidly at the boundary ~ O _ .  Note that there exist 
constants c~, c2 > 0, depending on f, with 

] l q  Hk, t3..Q _ ~ Cllqlk, df2_ ~-~ C2 []]qlllk,am �9 (1.20) 

Our main result is 

Theorem 1.1. Let the bounded, simply connected domain f2 be of class C ~~ Assume 
that f ~ H 2 (8f2, PQ satisfies (1.4) and is such that 8s = 8f2_ ( f )  is a manifold with 
Lipschitz boundary. 

Let (vo, Po)eH3(O) be a solution of (1.1~(1.3) satisfying curlvoeH3(f2 ) and 

_v o = inf Ivo(x)l > o. (2.21) 
x E O  

Moreover, assume that v o does not have closed stream lines and that the least upper 
bound L o of the length of all stream lines of Vo in f2 is finite. Finally, assume that 
there exist constants d> 0 , / '>  0 such that 

dist (~Y2_(f), x + tVo(X)) > & 

for all xedOO_( f )  and for all O<_t<_[, and 

dist (~Y2 + (f), x - tv o (x)) > dt 

for all x ~ Y 2 + ( f )  and for all O<_t<[.. 
Then there exist constants 

='2(Vo, o) > 0, 

g i =  gi(Lo, v_o, Ilvo ll 3,~, f, r O) > O , 

with the following properties: 
Let geHa(Sf2_ ,R  ), h e H 2 ( 8 0 _ , ] / )  and v o satisfy 

I(g, h, curlvo) -<_/(1 

i = l  . . . . .  3 

(1.22) 

(1.23) 

(1.24) 
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with 

h 
I(g,h, curlvo)= 7}2,~f~_+[]f VTg 2.~_ +ID2curlvolo'eo- 

1 

+ ~ II[Dmcurlvolll2-m, oo_ 
m = 0  

+If (n'curlv~ 2,c312- +][curlv~176 

Here D m curly o denotes the vector 

D m curlvo = (Da(curlvo)i),_ 1 2 s. 

(curlvo) s are the components of curly o, and 13=(/31, ]~2,/~3) is a multi-index. Then 
there exists a solution (v, p)~ H3(f2, ~,3 • R )  of (1.1)-(1.3) with 

n(x) . curly(x) = h(x) + n(x) . curlvo(X) (1.25) 

�89 Iv(x)l 2 + p(x) = g(x) + �89 (x)l 2 + po(x) (1.26) 

for all x ~ dr2_. 
v satisfies 

IIv-vol13,~9, (1.27) 

and (v,p) is the only solution of (1.1)-(1.3), (1.25), (1.26) from H3(O,~-~3 • 
satisfying this estimate. 

I f  (g~l~, h(l)) and (gr h(2)) are two sets of boundary data on ~f2_ ( f  ) both satisfying 
(1.24), and if (v(l~,p(1)), (v~2),p ~2~) are solutions of (1.1)-(1.3), (1.25), (1.26) to the 
boundary data (g(1), h(l)) and (g(2), h(2)), respectively, both satisfying (1.27), then 

Ilv(l)-v(2)lll,~ < g2(lh(1)-h(2)lo,o ~_ +lVr(g(~)-g(2))lo,eo_), (1.28) 

lip(a)-p(2)ll , , o~  l~3([h(1)-h~2~lo.oc~ - + [Vr(g")-g~2))[o.o~_ 

+ IIg")-g~2)llo,0~_). (1.29) 

We comment on some points in this theorem: 
The estimates (1.28) and (1.29) can be improved. It is possible to estimate the 

difference of the solutions in the H3-norm, but the calculations are technical. 
Condition (1.24) implies that h, Vrg and curl Vo must vanish sufficiently rapidely 

at the boundary ddf2_ (f). This condition can be compared to the compatibility 
conditions needed in initial-boundary value problems for hyperbolic equations. 

It is assumed that fEH2(t30),  but because of (1.3) the condition v0EH3(g2) 
implicitly requires more regularity of f. It is on the other hand assumed that 
g ~ n3(6qO_) and h ~ H2 (dr2_), which is more than the trace theorem would require. 
Namely, (1.25) shows that h is the normal component  of the trace of 
curl(v-Vo)~H2(f2),  and (1.26) shows that g is the trace of �89189 2 
--Po ~ H3(O). Therefore the trace theorem indicates that either it would suffice to 
assume g ~ H5/2 (Of2 _) and h ~ Hs/2 (dr2_), or else that the solution (v, p) is of higher 
regularity than H3(O ). We believe that it is possible to prove such results by a 
refined analysis, but  we do not investigate this question here. 

The conditions (1.22) and (1.23), which are stable with respect to perturbations 
Of Vo, are needed to show that not only the unperturbed flow v o but also every flow 
v which satisfies (1.3) and is close to Vo has the property that any stream line which 
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is tangential to the boundary at one point is completely contained in the boundary. 
From (1.3) it follows that v(x) is tangential to 0f2 for all x~OOf2_(f)uOOO+(f). 
Therefore (1.22) means that the flow is directed outward of aO_(f) at the 
boundary, and it is not possible that particles move tangentially along the 
boundary until they reach 0f2_ (f), where they would be transported into f2 by the 
flow�9 (1�9 has a similar meaning for the set Of 2+(f), where the flow leaves f2. 

As a simple example for f2 and Vo satisfying the hypotheses of the theorem 
consider the cylinder 

Z={x~ + x~ <a 2, - b<x3  <b }. 

Close this cylinder by two half balls 

S + = { x  2 -t- X2 2 " t - ( x  3 - -  b) 2 < a 2, x 3 _-> b} 

S_ = {x~ + x~ +(x3 +b)2 <a 2, x3 <=-b} 

and set f2=ZuS+uS_. For Vo take the constant flow Vo(X)= (0, 0,1). In this 
example 0f2_ (f) and Of 2 + (f) coincide with the spherical parts of the surfaces of S _ 
and S +. 

The assumption that f2 be simply connected is needed in Theorem 2.4 and 
therefore also in Theorem 1.1. 

There exists a larger literature dealing with the nonstationary version of the 
problem (1.1)-(1.3). The early investigations concern the case when the liquid is 
confined to f2. In the two-dimensional case existence global-in-time was proved by 
Wolibner 1-14] and H61der [3], whereas in the three-dimensional case existence 
local-in-time was proved by Kato [4], Ebin and Marsden [2], Bourguignon and 
Brezis [1], and Temam [11]. In the case when the liquid can pass through the 
boundary of f2 the nonstationary problem was treated in Kochin [7], Kazhikhov 
I-5], Kazhikhov and Ragulin [6], Yudovich [15], and Zajaczkowski [16-22]. Also 
in the nonstationary problem it is necessary to prescribe additional boundary 
conditions on the inflow part of the boundary. 

This short account on the existing literature is not complete. More references 
can be found in the cited literature. 

Theorem 1.1 is proved in the remainder of this paper. The proof is based on a 
contraction argument and on Banach's fixed point theorem. In Sect. 2 the main 
lines of the proof are given and results and estimates needed in the proof are stated 
in a sequence of lemmas and theorems. Some of these lemmas and theorems are 
proved in Sect. 2, the rest is proved in Sects. 3-5. 

We conclude this introduction by discussing some directions, into which the 
results of Theorem 1.1 might be extended. The estimates (2.27) indicate that the 
constant in (1.24) satisfies 

1 A 
K 1 ,,~ L~2, (1.30) 

for Lo~0 , where L o is the least upper bound for the length of the stream lines ofv o. 
This is because the constant h4 in (2.27) does not explicitly depend on Lr, and since 
the constants K2,/~3 in (2.27) remain bounded for L ~ 0 ,  as noted in Theorem 2.3. 
It would follow that we could construct solutions with nonvanishint~ vorticity for 
large values of g, h, and curly o, If the domain f2 is short . However, M, K 2, and K 3 
all depend on the shape of f2. The reason is that in the derivation of (2.13) and (2.14) 
in Sects. 4 and 5 at several places Sobolev's inequality and embedding theorems for 
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Sobolev spaces are used. To prove (1.30) would therefore require to show that the 
constants M, K2, K3 remain bounded for all sufficiently "short" domains t?. We do 
not study this question here. 

Along the same lines of thought one could try to proceed as in hyperbolic 
problems and continue the solution into a second short domain after it has been 
constructed in a first short domain. This procedure is not immediately possible, 
however, because (1.25) and (1.26) are initial conditions, but (1.3) is a boundary 
condition, which must be satisfied on the whole boundary. 

As a final remark we note that the fact that the flows Vo and v must be different 
from zero everywhere might indicate that a steady state flow is unstable at points 
where the velocity vanishes. 

2 Outline of the proof 

In this section we lay out the main lines of the proof of Theorem 1.1. The basic idea 
is to construct an operator B in a subspace V of H 3 (~2, IR 3) with the property that 
for a fixed point u of B the function v = Vo + u is the velocity field of a solution of 
(1.1)-(1.3), (1.25), (1.26). We start with the definition of V and B. 

Let V be the space of all functions w �9 H3(~?,R 3) satisfying 

divw(x)--0, x ~ 2  (2.1) 

n(x) . w(x) = O, x �9 c~?. (2.2) 

V is a closed subspace of H3(Q,N. 3) and therefore also a Hilbert space with the 
scalar product (u, w)3,o. For  ? > 0  let V~ be the closed ball of all w e V with 
Ilwll3m<?. To define the operator B: V ~ V  let u�9 let W�9 3) with 
d i v W = 0  in ~, and let z: ~--.ff~ 3 be the solution of 

[(Vo + u). V]z = (z. V) (Vo + u ) -  (u. V) W + (W. V)u (2.3) 

zloa_ = q, (2.4) 

where the components of q : 0~2_ __.•3 are defined by the equations 

n(x). q(x) = h(x) (2.5) 

h 1 1 
qr(X) = ~ (Vo + U)r(X) + ~ (n" W ) u r ( X ) -  - f  n(x) x Vrg(X) (2.6) 

with x �9 Or?_ and with the functions f, g, and h from the conditions (1.3), (1.25), 
(1.26). The vector field W in (2.3) and (2.6) will later be replaced by curlvo. For  later 
use we note that if W=curlvo and if (2.5) is satisfied, then (2.3) is equivalent to 

[(Vo + u). V] (z + curl Vo) = [(z + curl Vo)" V] (Vo + u), (2.7) 

and (2.6) is equivalent to 

[(Vo+U)(X)X(rl+curlvo)(X)]r=Vr(g(x)+�89 +po(X)) (2.8) 

for x �9 0~_. The equivalence of (2.3) and (2.7) is seen if one expands (2.7) and uses 
that Vo satisfies (1.12), since (Vo, Po) is a solution of (1.1), (1.2). To see that (2.6) and 
(2.8) are equivalent multiply (2.6) by f and use (1.3), (2.2), (2.5) to obtain 

(n " tt)(Vo + U)r +(n " W ) u r - n ' ( V o  + U) t t r -n  " uWr- -n  x Vrg. 
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The left hand side of this equation is not changed if the tangential components are 
replaced by the vectors themselves. Therefore the last equation is equivalent to 

n x [(v o+u) x q ] + n  x [u x W ] = n x V r g  

o r  

[(Vo + u) x r/] r + [u x W]r = Vrg. (2.9) 

If one replaces W by curly o then this equation is equivalent to (2.8) since 

[Vo x curlvo]r= Vr(�89 2 + Po). 

This equation holds since (Vo, Po) solves (1.1) and therefore also (1.9). 
Note that (2.3) is an inhomogeneous linear system of ordinary differential 

equations for z along integral curves ofv o + u. Therefore (2.4) and (2.3) determine z 
on the subset of f2 covered by integral curves starting at 0f2_(f). Below it will be 
shown that this set is equal to f2, if 7 and therefore also 11 u II 3, a is chosen sufficiently 
small. In Sect. 3 we show that the solution satisfies d ivz=0.  In Sects. 4 and 5 we 
prove that z e HE(Q ). 

From these properties and from Theorem 2.4 we deduce that there exists a 
unique w e V with 

We define 

curl w = z. (2.10) 

B(u) = w. (2.11) 

This completes the definition of B : V~ ~ V. 
Note that B depends on the functions g, h, W, and Vo, hence B = B[g, h, W, Vo] , 

and from (2.3)-(2.6), (2.10) it follows that the mapping (g,h,W) 
F-~ B[g, h, W, Vo] (u) e V is linear. We set 

B[g, h, Vo] = B[g, h, curlvo, Vo]. 

We state now a sequence of lemmas and theorems which show that B is well 
defined and has a fixed point. They also establish the correspondence between 
fixed points of B and solutions of(1.1)-(1.3), (1.25), (1.26). Some of the assertions are 
proved in this section, the remaining proofs are postponed to the following 
sections. 

Lemma 2.1. Le+v o ~ H3(Q , ~3) satisfy the hypotheses of Theorem 1.1. Then there 
exist constants C > 0 and 70 > 0 with the following three properties 
(P1) The vector field V=Vo +U with ue  V?o satisfies 

v = inf Iv(x)[ __> _v o -- C l] u t13, ~ :> ~0 - -  ~ 0  > O .  
x~..Q 

(P2) No vector field VeVo + V~o has closed integral curves. For 0<7__<?o let L~ 
denote the least upper bound of the length of all integral curves of all the vector fields 
v ~ Vo + V~. Then L~ < ~ and 

lim L~ = L o . 
) ,~0 

(P3) I f  an integral curve of v ~ Vo + Vvo is tangential to the boundary Or2 at one 
point, then it is completely contained in the boundary. 
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This lemma is proved in Sect. 3. Remember that an integral curve co(t) is a 

of ~t c~(t)= v(co(t)). Since v E vo + V~o satisfies (1.3), the statements of this solution 

lemma together imply that every integral curve of v that passes over a point x e f2 
meets the boundary in exactly one point from 0f2_(f), the starting point of the 
integral curve, and in exactly one point from 0f2+(f), the endpoint of this integral 
curve. Therefore f2 is completely covered by integral curves of v starting at 0f2_ (f). 
It also follows that every integral curve that starts at 0f2_ has its endpoint in 0f2+ 
and does not meet the boundary in a third point. 

From now on ~o = yo(Vo) always means the constant from the preceding lemma. 
Also the following lemma is proved in Sect. 3. 

Lemma 2.2. For every u E V r with ~ < ~o and every W ~ H 3 (f2, ~R. a) with div W = 0 the 
unique solution z of  (2.3)-(2.6) exists in all of f2 and satisfies divz = 0. 

Of course, this solution depends on g, h, W, Vo, and u e V  r, hence 
z=z[g,h ,  W, vo, U ]. We set z[g,h, vo, u]=z[g,h ,  curlvo, Vo, U ]. 

Theorem 2.3. There exists a cons tan t /~= 2~(f2)>0, and to any y < ~o constants 
Ki = Ki(Lv V-o, II Vo I13,~, f Y, f2) > O, 1 = 1 ....  ,3, which remain bounded for L ~ O ,  such 
that for all u, w ~ V~ 

and, 

with 

[[z[g,h, W, vo, U]llo,a < Llr/2gl[Ihlo,~, +In" Wlo,ea_ 

+ IVrglo, ca- + It W tl 3, ~] (2.1 2) 

II zl-g, h, Vo, u] II 2, ~--< Llr/2K.2I(g, h, curl Vo) (2.1 3) 

IIz[g,h, vo, U]-z[g ,h ,  vo, w]llo.~<L1JZg3I(g,h, curlvo)llu-wlll .  ~ (2.14) 

liB[g, h, W, Vo] (u)[I 1,~ 

<291Ll/2gt[Ihlo, oa_ +In" WIo,e~_ +lVrglo,eo_ + It WII3,a] (2.15) 

ILB[g, h, Vo] (u)ll 3,~ < 191L~/2g2I(g, h, curl Vo) (2.16) 

II BI-g, h, Vo] ( u ) -  B[g, h, Vo] (w)IIx, ~--< MLa~/2/~3 I(g, h, curl Vo) II u -  w II1, 
(2.17) 

h + LVTg I(g,h, curlvo)= f -  2,0/2- f 2,0/2- +lD2curlv~176176 

1 

+ Y, IIIDmcurlvolll2-m,o~_ 
,,=o 

+ f (n . cu r lvo )  2,0~_ +llcurlv~ 

where D" curl vo denotes the vector 

D m curlvo = (D#(curl vo)j){~ ~,~, 3. 

(2.18) 

Here (curlvo)j are the components o f  curlvo, and fl=(fll,  f12, f13) is a multi-index. 
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The norms in the expression for I(g, h, curl Vo) are defined in (1.18), (1.19). It is 
clear that the estimates (2.15)-(2.17) are immediate consequences of (2.12)-(2.14), of 
(2.10), (2.11), and of the following theorem. It therefore remains to verify the 
estimates (2.12)-(2.14), the proof of which is given in Sects.4 and 5. 

Theorem 2.4. Let z ~ H 2 (O, ~ x  3) satisfy div z = 0 and let f2 ~ C ~ be a bounded, simply 
connected domain. Then there exists a unique function w ~ H3(~2 ,Fx 3) with 

curlw(x)=z(x) ,  x e f 2 ,  (2.19) 

div w(x) = O, x ~ f2, (2.20) 

n(x). w(x) = O, x ~ Of 2. (2.21) 

Moreover, there exists a constant 371, only depending on t2, such that 

t lwll3.~Mllzll2.a.  (2.22) 

A proof that the solution w exists and is unique can be found in [9], and (2.22) is 
proved in E12]. 

If f2 is not simply connected and has genus v, then the solvability of (2.19)-(2.21) 
is guaranteed only if z satisfies v additional conditions, cf. [9, 13]. This is why in 
Theorem 1.1 we need the assumption that O be simply connected. 

Corollary 2.5. For every 7 with 0 < 7 < 7o(Vo) the operator B[g, h, Vo] maps V~ into 
itself if 

I(g, h, curlvo) < ~-Li/2 K2" (2.23) 

The operator BEg, h, Vo] has a unique f ixed point in V~ if (2.23) is satisfied and if 

1 
I(g, h, curlvo) < ~L1/2/~ 3 . (2.24) 

I f  g tl), h (1) and g(2), ht2) are two sets of boundary data on t30_(f),  both satisfying 
(2.24), and if u t l ) , u t 2 ) e  V~ are f ixed points of BEg ix), h tx), Vo] and BEg(2),h(2),Vo], 

respectively, then 

Ilu{l)-u(2)lll'a< ] fflL1/2K. I ~'(1) h (1) curlvo) - -  y 3 ~,/5 ~ 

• (Jh")-h(E)Jo,~a_ + JVT(g(1)--g(2))[o,~a_). (2.25) 

Proof The inequalities (2.16) and (2.23) together imply that BEg, h, %] maps V~ 
into itself. To see that B has a fixed point if(2.23) and (2.24) are satisfied, note that V~ 
is a closed subset of Hi(O, R3). For, let {u,}~= 1 --s V~ converge to u ~ Hl(~2, R 3) in the 
norm of this space. Since [] u.t] 3,~ =< 7, this sequence is bounded in H 3 (0, ]R 3) and 
therefore has a subsequence which converges weakly in H3(~, ~x 3) to w. V~ is closed 
and convex, hence weakly closed, which implies w ~ V~. But this subsequence 
converges also weakly in H~(O, R 3) to w, since any continuous linear functional on 
H~(~2, R 3) is also continuous in the norm of H3(~, R3), if we restrict it to this space. 
Since limits with respect to the norm are also weak limits, it follows that u = w E V r 
This shows that V~ is a closed subset of H1(~2, R3). Since (2.17) and (2.24) imply that 
B: V~c=I-t~(~)-~H~(g2) is a contraction mapping, it follows from Banach's fixed 
point theorem that B has a unique fixed point in V r 
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To prove (2.25), note that (2.17) and (2.15) yield 

Ilu~t)-u~=)ll x,o = JlB[g ~x), h~l), Vo] (u~l)) - Big ~2), ht2), Vo] (u~2))II 1,s~ 

=< II BI-g ~l), h~l), Vo] (u~l~) - BI-g ~1~, h~l), Vo] (u~2)) II 1. ~ 

+ II Bl-g ~ 1), h~l), curl Vo, Vo] (u ~2~) - Bl-g ~2~, h ~2~, curl vo, Vo] (u C2~) t1~. 

<=lQiL~ K3I(g{t),h~,curlvo) Ilu"~-u~}tll,~ 
+ [iB[g(~)- g(2), htX)_ hi2), 0, Vo] (U(2)) H 1,t2 

< ]~LtJ 2/~3 I(g(a), hit), curlvo) I[ u ~ ~)- u t2) I[~.a 

+ ~LIJ ~ /~  [I h " ) -  ht2]o,0a + [VT(g t ' ) -  gt2))lo, ~ _ ] .  

Here we use the linearity of (g,h, W)~B[g ,h ,  W, vo](U). (2.25) follows from this 
estimate. 

Lemma2.6. ( i )Let  u6Vr with 0 < ? < ~ o .  Then u is a f ixed point of 
B=B[g,h ,  vo]: Vy~V if and only if V=Vo +U is the velocity field of a solution 
(v,p)6Hs(O, R a x  ~ )  of (1.1)-(1.3), (1.25), (1.26). 

(ii) I f  (v, p), (~, p)~ Ha(O, IR 3 x ~ )  are solutions of (1.1)-(1.3), (1.25), (1.26) with 
v = ~, then also p = p. 

Proof. Assume that u is a fixed point of B, and let V=Vo+U. Then d i v v = 0  and 

n ' vlo a =  n " v % ~  + n . ul~ a =  f , 

so (1.2) and (1.3) are satisfied. (2.10) and (2.11) imply 

curly = curly o + curlu = curly o + curlB(u) = curly o + z. 

Therefore (2.7), (2.4) yield 

(v" V) curly = [curly �9 V]v, curlvl0~_ = ~/+ curlv%~_ (2.26) 

This shows that the Vortieity Transport Theorem (1.12) and therefore also (1.10) is 
satisfied. We now show that p ~ Hs(O ) can be constructed satisfying (1.9) and (1.26). 
To construct this p, define first p by (1.26) on O~2_(f), and continue it to all of O by 
setting �89 equal to a constant along the integral curves of v. From the 
properties of the integral curves summarized after Lemma 2.1 it follows that p is 
defined in all of ~2 in this way. p is continuously differentiable. To see this, let 
x(y) ~ O0_(f)  be the starting point of the integral curve of v passing over y e t2. 
From Sobolev's embedding theorem it follows that the vector field v is 
continuously differentiable, because v~H3(t2 ). Since integral curves co(z) are 
solutions of the system 

d 
d-~ co(t) = v(co(~)) 

of ordinary differential equations, and since integral curves meet O0_ transvers- 
ally, it follows from the theory of ordinary differential equations that the mapping 
x(y) is continuously diffcrentiable. But then also 

p(y) = �89 z + p(x(y))- �89 2 

is continuously differentiable, since by definition p is continuously differentiable on 
Ot2_(f). 
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F r o m  (1.26), (2.8), and (2.26) it follows tha t  

z(x) " (v(x) • curl v(x)) = r(x) . V( l lv(x)l z + p(x)) 

for all x r  and  for every unit  vector  r(x) tangent ia l  to t?f2 at  x. Thus,  

�89 2 + p(x) = I z(y). V(�89 + p(y))dsy + C 
O9 

= ~ ~(y)" (v(y) x curl v(y))ds r + C 
CO 

for all x e O t 2 _ ( f ) ,  connected to a fixed point  Xo by  an arc co in t?f2_(f), r(y) is 
a unit  tangent  vector  to this arc. Since 

r(x).  (v(x) x curl v(x)) = 0 

if z(x) is a unit  vector  parallel  to v(x), it follows 

�89 + p ( x ) =  I (v(y) x curl v(y)) . z(y)ds r + C 
ca) 

for all xe f2  connected to xo by an arc co in f2, if co only  consists of arcs in Of 2_(f)  
and  of integral  curves of v. F r o m  (1.10) and  f rom Stokes '  t heorem we conclude that  

�89 = + p ( x ) =  I (v(y) x curly(y)) �9 r(y)ds v + C 
CO" 

for any  curve co' in O connect ing x o to x, hence 

V(�89 + p(x)) = v(x) x curly(x) 

for all x e f2, which is (1.9). Because v e H3 (f2, IRa), it also follows f rom this equa t ion  
and  f rom Hk(~2)H,,(f2) = H~(f2) for v = min { k,m, k + m - 2}, which is a well known 
consequence  of Sobolev 's  embedd ing  theo rem [8, p. 72] and of  H61der 's  inequality,  
tha t  Vp e H z  (~2, IR2), hence p e H 3 (O). Summing  up, (v, p) satisfies (1.26), (1.2), (1.3), 
and  (1.9), hence also (1.1). F r o m  (2.26) and (2.5) it follows tha t  

n(x) . curl v(x) = n(x) . tl(x ) + n(x) . curl Vo(X ) = h(x) + n(x) . curl v o (x) 

for all x e O f 2 _ ( f ) ,  which is (1.25). Thus  (v,p) is a solution. 
O n  the o ther  hand,  assume that  u e V~ and  that  v = vo + u is the velocity field of 

the solut ion (v, p). We  show that  u is a fixed point  of  Big,  h, Vo]. v satisfies (1.12), 
which can be wri t ten as 

[(v o + u). V] (curl u + curl vo) = [(curl u + curl vo). V] (v o + u). 

C o m p a r i n g  this with (2.7) we see tha t  curlu and  the funct ion z[g,  h, Vo, u] used in the 
definit ion of  Big, h, vo](U) satisfy the same differential equat ion.  F r o m  (1.9) and  
(1.26) we ob ta in  

[(Vo + u) (x) x (curl u + curlvo) (x)] T " ~ -  VT(g(x) + �89 2 + pO(X)) 

for all x e 0Q_( f ) .  Moreover ,  f rom (1.25) we ob ta in  

n(x) . curlu(x) = h(x) 
for all x �9 c3f2_(f). C o m p a r i n g  the last two equat ions  with (2.4), (2.5), (2.8), we see 
tha t  cur lu  also satisfies the same initial condi t ions  as zig,  h, Vo, u], hence z = curlu. 
By definit ion of  Bu e V in (2.10), (2.11) we ob ta in  for the funct ion B u -  u e H 3 (O, IR3) 

curl(Bu - u) = cur lBu - curl u = z - curlu = 0 ,  

div (Bu - u) = div Bu - div u = O, 

n . ( B u -  u ) l o a  = n . B u l o  a -  n . Ulo a = O .  
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By Theorem 2.4 there exists exactly one function satisfying these equations, hence 
B u -  u = 0, and u is a fixed point of B. This proves (i). 

To prove (ii), note that (1.1) implies p = p +  const, and (1.26) yields const = 0. 

Proof of Theorem 1.1. Let Yo = Y0(Vo) be the constant from Lemma 2.1 and choose 
for ~ any constant with 0 < 9< 70. With the constants 

Ki--gi(L~,vo, [lyon 3.~, f, ~, f2), i=2 ,  3 

from Theorem 2.3 a n d / ~  from Theorem 2.4 choose for /~l  > 0  any constant with 

R, < ML~K2,  R,  < IglL,r s. (2.27) 

From (1.24) it then follows that the assumptions (2.23) and (2.24) of Corollary 2.5 
are satisfied, whence B" V~ ~ V has a unique fixed point u ~ V~, and Lemma 2.6 
implies that a solution (v, p)E H3(O, F,. 3 • R)  of (1.1)-(1.3), (1.25), (1.26) exists with 
v = Vo + u, hence 

Ilv-vol[a,~= Ilull3,n<~, 

which is (1.27). If 07,/3)e H3(~2,F, .  3 • R )  is any solution of (1.1)-(1.3), (1.25), (1.26) 
satisfying (1.27), then Lemma 2.6(i) implies that u = ~ -  v0 e V~ is the unique fixed 
point of B, hence ~ = v, and therefore/~ = p, by Lemma 2.6(ii). This shows that (v, p) 
is the only solution satisfying (1.27). 

To prove (1.28), note that u m = v  t~)- Vo and g(2)= 0(2)__ U0 are fixed points of 
B[gt~176 i= 1,2. The inequality (1.24) and thus also the inequality 
(2.24) is satisfied for (gm, ht~)) and (gt2),ht2)). Therefore the assumptions of 
Corollary 2.5 are satisfied, and (2.25), (1.24) yield 

]lvtl)-vt2)lll,sT<=J~2([htl)-h(2)[o,oo_ + [VT(gO) - -  g(2))]0, Or~_), (2.28) 

where 
~lJr gl 

g 2 =  1 _ ~ L I r  t , 

and where g ~ = / ( ~ ( L ,  Vo, II Vo II 3 n, f, L O) is the constant from Theorem 2.3. Note  
that our choice of R i in (2.27)yields 1 - ~ L ' r  > o. This proves (1.28). 

To prove (1.29) we use (1.1) and (2.28) to obtain 

11VP (l) _ Vp(2)I[ o, o 

= 11(r V)v~2~_(v. )" V)v ~x)ll0.o 
--< II(v (z)" V)(r  v<')ll0,o + II [(r V]r 
=< IIv r r162 IlVvr t~)-v ")llo, 
< C~(llv(~)ll 3,~ + IIv(2~ll s,n)[Iv(2)-v(~)l[ x,~ 

< Cz II r  vmll x,n, (2.29) 

where 

and 

Ilv~Z)l[~(n)= sup IeZ)(x)l z, IlVv")llZL~o(m= sup ~ [D#vm(x)[ z, 
xer~ xeO I#1 = 1 

C2 = 2C1([1Vo II 3, n + 9).  
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We also used that 

llvr IlVv")tlL~(~)<fxilv")ll3,~, 
with the constant C~ only depending on f2. This is a consequence of Sobolev's 
inequality. To complete the proof we need the following lemma, which is proved at 
the end of the appendix. 

Lemma 2.7. There exists a constant/~4=/~4(Lr,_Vo, Ilvoll3.~,f,~)>0 with 

Ilqllo.o</~,(llqllo.~_ + IlVqlJo.~) 

for  all q ~ H l ( f 2  ). 

We apply this estimate to p ( ~ p ~ 2 )  and use (2.29) to obtain 

I lp~ +K4)f2llv~2)-vr - . (2.30) 

From (1.26) we obtain as in the derivation of (2.29) that 

IIP")-p(2)llo.~ ~_ 
r ,(1) 1 . ( 1 )  2 _ c.(2) A__.I ,,(2)1211 

= ~ - - 2  t, /5 T 2 v 0 , 0 ~ -  

=< [ [ g ( 1 ) - - g ( 2 ) [ l O , 0 a  - + l ( [ [ V ( 1 ) [ [ 3 , a +  H / ) ( 2 ) [ [ 3 , 0 ) H U ( 1 ) - - U ( 2 ) [ [ O , O I 2 _  

=< IIg")-g(2>Ho,~_ +(llvol]3,~ + ~)live1)- v<Z)llo,o~_ 
_-< IIg">-g(2~llo,o~_ +(llvoII 3,~+ ~)C3 IIv(X)- v(2)ll x,~. 

In the last step we used the trace theorem. Combination of the last estimate with 
(2.28) and (2.30) yields (1.29). 

To complete the proof of Theorem 1.1 it remains to prove Lemma2.1, 
Lemma 2.2, the first three estimates of Theorem 2.3, and Lemma 2.7. 

3 The integral curves 

In this section we prove Lemma 2.1 and Lemma 2.2. 

Proof  o f  Lemma 2.1. Sobolev's inequality implies for V - V o = U e  V~ and all x ~  

v=  inf Iv(x)] _->v o -  sup lu(x)[->_Vo - C  1 flull3,~, (3.1) 
x E ~  x e ~  

which proves (P1). 
To prove (P2) and (P3) we need some definitions and notations. For  x ~ O and 

u e V~ with 7 < 71 let t ~ og(t, x, u) e ~ be the integral curve of v with ~(0, x, u) = x. 
The function ~o is the solution of 

d 
d-t co(t, x, u) = v(~o(t, x, u)) (3.2) 

It is defined on a maximal closed interval containing 0. By assumption t ~ co(t, x, 0) 
is defined on an interval of length not larger than Lo/v_ o. 

The integral curves co can be extended to functions t ~ e3(t, x, u) defined for all 
t e R as follows: By Calder6n's extension theorem [8, p. 80] there exists a constant 
C z and to every vector field w ~ H 3 ( O , R  3) an extension to H3(R3,R3), also 
denoted by w, such that 

[Iwl[ 3,R3 "~ C2 [Iwll3,~- (3.3) 
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We apply this theorem to the vector fields v o and u~ V~ and consider these 
functions now to belong to H3 (R 3, R3). It is clear that with the extended function 
V=Vo+UeH3(P.~3,F-, 3) the solution oS(t,x,u) of (3.2) now exists for all t ~ R  and 
defines the extension sought. Of course, ~ is the restriction of e5 to the largest 
interval I that contains 0 and satisfies tb(t, x, u) e ~ for all t e I. By f(~o(., x, u)) we 
denote the arc length of co, which we take to be infinite if ~ is closed. 

To prove (P2) we first note that the mapping 

u~(o)(.,x,u))" v~,~ [0, ~] 

is upper semi-continuous at 0 E V, uniformly with respect to x r O. By this we mean 
that to all e > 0 there exists ? > 0 with 

t~(to( �9 , x, u)) < E(co( -, x, 0)) + e (3.4) 

for all (x, u) e O x V r 
The proof  follows by standard methods from the continuity of the mapping 

(x, u) ~ ~b(t, x, u) and uses the compactness of ~. We leave it to the reader. From 
(3.4) we obtain 

L~ = sup sup {(to( �9 x, u)) < sup ((co(-, x, 0)) + e = L o + e, 
x ~  uEVy x r  

hence lira sup L~ < Lo, and therefore lira L~ = Lo, since L~ > Lo. This proves (P2). 
~0 7~0 

To prove (P3) let the integral curve to(t) = to(t, y, u) be tangential to the boundary 
at the point Xo = cO(to)e 0f2. We must show that it is completely contained in the 
boundary. 

Let [tl ,  t2] be the largest interval containing to such that to(t) e 0(2 for t ~ [tl, t2]. 
This definition implies that the vector v(~o(t)) is tangential to 0Q for all t e It 1, t2], 
since 

d 
v(to(t)) = ~ to(t). 

The domain of definition of to is a bounded interval containing [t 1, t2]; we must 
show that the domain of definition is equal to [tl, t2]. With the extension e5 of o) 
defined above let 

inf Io3(0-yl,  d~(t) e 
D(t) = yee, 

- -  inf ]6)(t)--y], th(t)e~,3\O. 
y~0.O 

We show that there exist 6l, 52 > 0  with 

D(t) < 0  (3.5) 

for all t e ( -  61 + t ~, t 1] w [t z, t2 + 62), which means that the extended integral curve 
6) leaves ~ at tl and t2 and therefore proves that [tl,  t2] is the domain of definition 
of to. Consequently, to finish the proof of (P3) it suffices to verify (3.5). 

To prove this estimate we derive now a differential inequality for D(t). Note  that 
if 6)(0 is sufficiently close to 00  then there exists a unique x(t) e aO with 

D(t)= +_ inf Ith(t)-yl = +_loS(t)-x(t)l. (3.6) 
yeO~ 

Of course, x(t)E 892 is the solution of 

(tb(t)-- x(t))" zi(x(t)) = O, i = 1, 2, 
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where zz, z: : 8f2~]R 3 are linearly independent tangential vector fields oft30. From 
this equation and the implicit function theorem it follows that x is a continuously 
differentiable function of t, since co is continuously differentiable. Moreover, 

~" --[(b(t) - x(t)[ n(x(t)), ff)(t) ~ 
(b(t) x(t)  

l lib(t) - x(t)[ n(x(t)), (b(t) ~ IR3\O. 

Together with (3.6) this equation yields 

d D(t)=+_ d)(t)-x(t) ( d  d ) 
dt lob(t)-x(t)l ' & cb(t)- ~ x(t) 

= -n(x(t)) .  dt do(t)- ~ x(t) -- -n(x(t)) .  dt d~(t) 

= - n(x(t)), v(d)(t)) 

= -- n(x(t)). [v(e3(t))-- v(x(t))] - f ( x ( t ) ) ,  (3.7) 
d 

because ~ x ( t )  is tangential to the boundary. In the last step we used (1.3). 

To prove that (3.5) holds for t e[t2, t2+62] with a suitable 62, note that 
D(t2) = 0, so that (3.7) is valid in a suitable interval It2, t2 + 6'2). In this interval we 
thus obtain from (3.6) and (3.7) 

d 
dt D(t) < Iv((b(t)) - v(x(t))l- f (x(t)) 

< sup IVv(y)l I (h( t ) -x( t ) l - f (x( t ) )  
yER 3 

= a(t)D(t) - f(x(t)) 
with 

a(t)=(signD(t)) sup IVv(y)l. 
y~lq  3 

This is the differential inequality for D(t). Integration yields 

D(t) < ei:(~'a" D(t2)-  i e!a~"'a~ f(x(z)) d~ 
t2 

= -  i ei"(')d'f(x(z)) dr (3.8) 
t2 

for t z < t < t2 + 6'2, because D(t2) = 0. 
It is clear that (3.5) is a consequence of this inequality if there exists 6z with 

0 < 62 < 6~ such that 

f(x(t)) > 0 (3.9) 

for all t~[t2,t2+62).  
It thus remains to prove (3.9). Observe first that x(t2)r since 

x(t2) = ~o(t2) and since v(co(t2)) is tangential to Of 2, as we noted above, hence 

f(x(t2) ) = f(og(t2)) = n ( 0 9 ( t 2 ) )  �9 v(f ,o( t  2))  = 0 .  

Therefore it remains to distinguish the two cases X( tE)~O\Of2_( f  ) and 
X(t2)~ ~0~'-~_(f). In the first case (3.9)clearly holds, because t F-~x(t):R~df2 is a 
continuous function of t, and since 0f2\t3f2_ (f)  is an open subset of dr2 with f > 0 in 
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this set. To prove (3.9) in the second case, note that the fact that co,(t2) is tangential 
to the boundary at t2 implies 

d x(t2)= d d5 ~ ~(t~) = v(~o(tg). 

From the hypothesis (1.22) we thus obtain 

dist (~0_ (f), x(t)) > dist (Of2_ (f), co(t2) + (t - t2)v((n(t2))) 

-Ix(t)  - ~o(t2) - v(ro(t 2))(t - t2)[ 

=> dist (00_ (f), ~o(t2) + (t - t2)Vo(~O(t2))) 

- I ( t -  t2) [v(~o(t2))- Vo(~(t2))] I 

- Ix(t) - o)(t2) - v(co(t 2)) (t - t2)l 

=> ~( t -  t2)-lugo(t2))l I t -  t2 l -  C l t -  t212 > 0 

for all sufficiently small, positive t - t 2 and for all u e V~o, ifTo > 0 is chosen so small 
that 

[u(~(tg)l _-< c ,  Ilufl +.~_-< c,?0_-< i" 

Here we used Sobolev's inequality. For these t we thus have x(t)~ 0~2\0~2_(f), 
which implies (3.9) and thus proves (3.5) in the case t~ [t2, t2 +62). 

To prove (3.5) in the case t E ( - 6 ~ +  t l, t~] we use (3.7) to derive the estimate 

D(t)< e + JtXtz))az, - 6 ]  + t  l < t < t ~ ,  
t 

analogous to (3.8), and use the hypothesis (1.23) to conclude that f (x ( t ) )< 0 in an 
interval ( - 6 1 + q , t 1 ] .  We leave the obvious modifications to the reader. The 
proof of Lemma 2.1 is complete. 

Proof  of  Lemma 2.2. Since the integral curves of v are the characteristic curves of 
the first order partial differential equation (2.3), we can solve this partial differential 
equation as usual by integrating along the integral curves of v. As noted after 
Lemma 2.1, t] is covered by integral curves starting at 00_,  where the initial data 
for z are prescribed by (2.4)-(2.6). We recall the fact that every integral curve 
starting at 00_ ends at 0Q + and does not meet the boundary 0Q in a third point. 
Therefore the solution z of (2.3)-(2.6) is uniquely determined in all of O. 

From our assumptions Vo, u, WEH3(O ) we cannot conclude that z(x) has 
classical derivatives, but the estimate (2.13) proved in Sects. 4 and 5 shows that 
zeH2(Q). Here we assume that this is true and prove that d i v z = 0  under this 
assumption. Since Vo, u, W e H a (O)__c C1(O) we can differentiate (2.3) and obtain 

3 

(v-V)divz+ ~ (t~x,v'V)z i 
i = l  

= (z" V) div v -  (u" V) div W + (W. V) div u 
3 3 3 

+ Z (Ox, z .V)v , -  Y (0x, u.V)W,+ Z (ox, w.v)u , .  
i = 1  i = 1  i = 1  
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But divv = div W = divu = 0, 

3 3 

Y (O~,z.V)v,= Y 
i = 1  i , j =  l 

and 

whence 

(Ox, z j) (0~j vi) = 
3 

(0~,v' V)zi, 
j = l  

3 3 

E (~,u.V)W,= Z (a~,w.v)u,, 
i = 1  i = 1  

(v" V) divz = 0. 

This means that divz is constant along integral curves of v and therefore vanishes 
identically if (divz)10a_ =0, which we prove now. (1.11) and (2.3) yield 

curl(v x z)+ curl(u x W)=vdivz  
and (2.4), (2.9) imply 

n(x). [curl (v(x) x z(x) + u(x) x W(x))] = 0 

for x ~ 0s which can be seen for example by application of Stokes' theorem. 
Combination of these two equations and of (1.3) yields 

fix) div z(x) --- (n(x). v(x)) div z(x) = 0 

for all xeO0_ ,  whence divz(x)=0. 

4 Estimates for the solutions of the Vorticity Transport Theorem 

This section and the following are devoted to the proof  of the estimates 
(2.12)-(2.14) in Theorem 2.3. The proof  is given in a sequence of lemmas. The 
results proved in these lemmas are collected at the end of Sect. 5 to prove 
Theorem 2.3. To see the purpose of every lemma proved in this and the next section 
the reader is therefore advised to first look at the proof  of Theorem 2.3 at the end of 
Sect. 5. 

As in the preceding section, for ue  V~ and y~O~_( f )  let t~oXt ,  y,u) be the 
integral curve of v = Vo + u with co(0, y, u) = y. By s ~-* ~o(s, y, u) we denote the arc 
length parametrization of this integral curve. This means that o)(s, y, u) is the 
solution of 

d 1 
ds (o(s,y,u)= ]v(oXs, y,u)) I vffo(s,y,u)), o2(O,y,u)=yec~_(f) .  

For  convenience, if u is understood, then we write for the arc length 

f(y) = f(6o(., y, u)), 

and we drop the index y and write 

L =  Lv = sup sup Effo(.,y, u)). 
u E V  v y ~ O ( l -  

For  x e ~ let y = y(x) ~ 0Q_(f )  and s = s(x) ~ [0, E(y)] be the points with x = ~o(s, y, u). 
(s(x), y(x)) are the "integral curve coordinates" of x. If q is a function with domain 
contained in O, then we write for brevity 

q(s, y) = q(oo(s, y, u)) , 
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and if y is understood, q(s) = q(s, y). For a function q = (q 1, ..., q,,) : F ____ ~ 2  ....~_ m we 
denote by Vq(x) the matrix of first derivatives of q, and for k > 0 let 

[qlk(X)=[qlk(S'Y)= ( 1 iPl=k ~ 'DPqi(x)12) '/2' 
. W  

Finally, for u s  V~ and WeH3(f2) let 

E(x) = E(u, W, x) = (W(x)  " V)u(x) - (u(x) . V) W(x)  , (4.1) 

which belongs to H2((2 ) since Hk(f2)Hm(f2 ) C__ Hvf2 for v = min {k, m, k + m - 2}. 
We investigate now the solution z of (2.3)-(2.6) and derive estimates for the 

Lz-norms of this solution and its first and second derivatives. As mentioned in the 
proof  of Lemma 2.2, we cannot conclude from the assumptions that z has classical 
derivatives. But by formal differentiation of (2.3)-(2.6) we derive in this and the 
following section a-priori estimates for the first and second derivatives of z, and 
one can use these estimates to show by standard considerations that z has weak 
Lz-derivatives up to second order. But since these considerations are technical, we 
omit them here. 

Lemma 4.1. The solution z o f  (2.3}-(2.6) satisfies 

iz(s)[ = Iz(s, y)[ < e; Iv(,)l [z(0)l + o l V ~  dr �9 

Proof. From (2.3) we obtain 

d z(s)= d d 1 
ds ds z(co(s)) = Vz(s) �9 ~ o)(s) = ~ (v(s)" V)z(s) 

1 
- [(z(s) �9 V)v(s) + E(s)]. 

(v(s)( 

This implies 

d d 1 2z(s). d 
ds Iz(s)l = ~ (Iz(s)12) l / z -  21z(s)l ds z(s) 

___ ~ z ( s )  = ~ [(z(s).V)v(s)+e(s)] 

1 
< - -  (Iz(s)l Ivl,(s) + IE(s)l) �9 
--Iv(s)l 

Integration of this differential inequality yields (4.2). 

(4.2) 

(4.3) 

Lemma 4.2. The solution z o f  (2.3)-(2.6) satisfies 

Izlx(s)=[zlx(s,y) 

.flvh(~)_ I - -<e~) i -~ '  Izl~(O) + i lUll(z) dz 
- o ~  

for almost all (s, y). 

(4.4) 
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Proof 
O 

We use the notation qli = ~ q and obtain by formal differentiation of (2.3) 

whence (v. V)Zli + (vii" V)z = (Zli. V)v + (z. V)Vll + Eli, (4.5) 

dsZ~'=~l(vV)z~'= tlvl . v )  ) t, J r -  \lvl .V z+ ~ .V vl~+ ]~- 

for i--1,2, 3. We apply the triangle inequality and obtain 

ZE 
L\lvl t, lvl 

z E,.i~2~ ,i2 
+ ( ~ ' V )  v:ii+ -f(-j  j 

~ {i,l~_l [(Zii ,V ) q2~1/2 -'l- I ~ [r .V)q2~1/2 
L\I~I ~'J I c,,,=, z,j j~ = L\I~I 

{i,~_ - [ (~ "V) z 42] 1/2 ~ ~ (E/,} i~2~ 1/2 

{ '{ ,4 <Iv/ i , ~ : ,  N i ,<= ,  

{ 1 1 Z Izl21v:l~l~} 112 + IEI1 
+ i~  ,,,:, i~i 

1 
: Iv~ (Izl~lvl, + Izl,tvl, +lzl Ivh +IEI0. 

As in (4.3) we obtain from this inequality 
d [ ( d ~ 2 ] l / 2 1  
ds lZ[l <= ~ ~s Z:,,] j < (21zll lvh + lzl lvh + lEI,). 
- -  i , g =  1 ~ 

Integration of this differential inequality yields 

~'2 i,,I, a, .:. I,,I,- (Ivh('O IEil(Z)~ 
IZil(s)<e; I,,I Izl~(0)+ i e~ I"~-"~ Iz('01+ & 

o \ ~  I~(~)1 ) 
~_lvh. [ 

_<eo ~, Izl~(O)+ i Ivh(z) 
- o Iv('OI 

0 O ~  ' 
where we applied Lemma 4.1 to estimate }z(~)]. From this estimate we immediately 
obtain (4.4). 

Lemma 4.3. The solution z of (2.3)-(2.6) satisfies 
Izh(s) = Izl2(s, y) 

( ) <e %~ '%T"< Izh(O)+ i Igh i lEI1 Ivh ~ i -  &+  Izl~(0)+ d~ 3 i & 
= o o ~  o i ~  

,El d z ) [ 3  ( i  I[@ dz) z i I i@ & ] }  (4.6) + (,z,o,,+ +o 
for almost all (s, y). 
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q we obtain by formal differentiation of(4.5) 

(v. V)% + (vii. V)z, + (v,. V)zlj + ( % .  V)z 

= (Zii" V)DIj -t- (Z iij" V)u -gv (z. V)t)[i j -[-- (Zlj. V)uli --]- E lit, 

d 
ds zeliJ = (1~1" v)z~l  , 

lvl klvl zt~.- \lvl ztli 

+ \ lvl velj+ \lvt veli- \lvl 

-~- VgliJ-'~ ~1 Etli j" 

d zetij ~ ~ [1%1 Ivrl~ + lvljl Iz~lila § Iv,I Izt Ljh 

+ Iz,[ Ivmlt + Izljl Iv~lill + Iv,jl Izdx + (zl I%ej h + IE.,j I]. 

The triangle inequality yields 

ds- z̀ I < i ('ZIij' 'Vdi l)2J ~- i ('V]jl 'Zdli' l) 2j 
r id J = -~[ Gi,j=l d,i,j=' 

1 
= - -  [ I z h  Ivh + Ivlllzlz + Ivh Izlz + Izlllvlz 

Ivl 
+ Izh Ivlz + lob Izh + Izl Ivl3 + IElz]. 

d ( [ d 2N 
g,i,j= 1 

1 
< - -  [3lvlx Izlz + 3lvlz Izlx + Ivh Izl + IEI2]. 
= Ivl 

Integration yields 
*.lvh . j - - a t  

Izh(s)<=e o1~1 Izh(O) 

+ e �9 Iol 3 Izlx+ [ z l +  dr.  
0 

so, as in (4.3), 
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We use Lemma 4.1 and Lemma 4.2 and obtain 
3 .~lvh . { , - - a s  ]V]2 

Izl2(s)<=e o Ivl Izl2(0)+ i 3 
o Ivl 

]El dtT) i ~u~ dtT--].- i [E[1 dffl d'~ 
o 

+ i iz(o)i+ i n d. d,+ i 
0 0 0 ~  " 

(4.6) follows from this inequality. 
We now use the following notation: Let # __> 1 and let, k be a nonnegative integer. 

If F is an open subset of f2 or of 00, and if q : [ ' - - ~ x  m, then we write 

[qlm'u'r= [ ~r ([qlm(X))U d2] 1/u' (4.7) 

where 2 is the Lebesgue measure of t2 or where d2 is the surface element of 0s For 
brevity, we set [qlm, r = [qlm, 2,V" 

Lemma 4.4. Let ~, v, f be defined as in Corollary A.2 in the appendix. Then there 
exist constants C, K > O, only depending on f2, such that the solution z of (2.3)-(2.6) 
satisfies 

<exp{ 3KLv_ - l HvN3,~ } Iz[e.o~_ + _v~ LIE[E,~ 

+ 3v_ -3/~(cgS ~)'411vN 3,~(fl/41z[~, 4.0~_ + v_ - ~(L3 ~C)I/4 NEII 2,~) 

+ v_ - a/2 KLgl/E(lvl3,~ + 3v- t LCl/2 e 
_ IIv[13,~) (llzl12,o~_ +_v- xgllEII2,~)] �9 

The norm [[. 112,~. is defined in (1.15). 

Proof. We estimate the norms of the terms on the right hand side of (4.6). First, 
note that (A.3) in the appendix implies 

s ~lvl3(z,y(.)) - 1/2 L ]vl3 < Llv[3,o. (4.8) 
~ - i ) T  a t  z v o,~ = 

Next, Cauchy-Schwarz inequality yields 

(r,y)dr < i dr i ]vlEdz < L i lv]2dr. ~0 0 V_--20 
With (A.3) we thus obtain 

(z,y(.))dz < L211 Ivl~ Ilo,~ 
o,~ k~V 

(OC'~l/2L2 v 2 (4.9) 
-< - t y )  ~,"' 

since HI(O ) c= L~(f2) and 

(~ ]q(x)]U dx) '/~ < (~[]q[[ , ,a 
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for all # with ~ < 1 1 - < ~ and ~ = ~(#, t2), cf. [8, p. 69]. Cauchy-Schwarz' inequality 
# 

and (A.4), (4.9) imply 

]llzl~(O'Y(" )) ~i' lvl~[ (r'y(" ))dz o,~ 

< II(Izlx(0,y(" z ,2 IC!'  )2ll'/z ))) I I o  ( r ,  y(. ))dz 
0,fJ 

LS/4 ~/4 
_ - -  C1/4fl/4 < v3/= Izll.4,o~_ Ilvll3,~, (4.10) 

because II 2 1/2 Izlallo,o~ =lZll,4,oo_. Similarly, 

- ~ -  (~. y(" ))d~ o ~ (r. y(- ))dr o., 

<__ 
, , o . ,  o ~ , o . o  

<__ \v_s j LZlIEU2.nUvlI3.~. (4.11) 

where we applied (4.9) in the last step and estimated the term containing IEI1 just as 
in (4.9). Further, (A.4) yields 

Il lzl2(O, y(. ))[lo,o= ( f L)  '/Z lzlz,o~_ (4.12) 

and (A.3) implies 

- ~  (z, y( . ))d~ <= < LtEI2 u. (4.13) 
o.,, U Ivl Uo,o -- ~ ' 

We also need the estimates 
Iz(O, y)l < Kllzll2,o~_ , (4.14) 

i IEI (z,y)dz<K L IIEllz,~, (4.15) - 

i [vlx (~, y)dz < i ~ K ]]vl[ 3,adz ~ A K [IvU 3,a, (4.16) 
o tvl o_ _v 

which are direct consequences of Sobolev's inequality. We use (4.8)--(4.16) to 
estimate the L2-norm of the terms on the right hand side of (4.6) and obtain the 
statement of Lemma 4.4. 

L e m m a  4.5, There exist constants C, C a, K > O, only depending on f2, such that the 
solution z of (2.3)-(2.6) satisfies 

Izlx,o<<-exp{2gzv_-X[Ivll3,o} Izh,oo_+ \~,]  LlEIx,a 

+llvl13.~ v_-3/Z(ZSOCf)l/'Cxllzllx.o~_+ \v_sj Z211EIIl.o �9 
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Proof To prove this lemma we estimate the L2-norms of the terms on the right 
hand side of (4.4). Just as in (4.10) we obtain 

"~lv12, " ))dz o,a<v_-3/2(LsfCf)U4iZlo,4.on_llvll3,o z(0, y(.)) o /~-~r'  y~. 

<v_-3/2(LSvCf)I/4CIIIz[II.oo_ Ilvll3,~, (4.17) 

where in the second step we used that 

H ,(~K2_ ) ~ L.(dK2_ ) 

and 

(o~_ Iq(Y)l"dS') 1/" ~ C, [Iq I1 ,,0~_ 

for all # > 2. This result is an easy consequence of the definition of the norms 
I1' Ila,eo_, I" 1o,,.8o_ in (1.17), (4.7), of our assumption that 0f2_(f) has Lipschitz 
boundary, and of the corresponding result for plane domains with Lipschitz 
boundary proved in [8, p. 72]. As in (4.11) we get 

" )  [E[ ~") ))dr o,, {fC~a/2 ! i~(z,y(.))dv ! i_~_t.~,y(.Ivh, <\v~_ j L211EII,,~IIvlt3,~. (4.18) 

Finally, as in (4.12) and (4.8) we obtain 

II Izl~(0,y( ))11o,~< L Izll,o~_ (4.19) 

[Is(') IEI' (T,))dT /v x~,/2 ! - ~ -  Y(' 0,0 = < \~] LIEI,,.. (4.20) II 
We use (4.17)-(4.20) and (4.16) to estimate the L2-norms of the terms on the right 
hand side of (4.4) and obtain the statement of the lemma. 

Lemma 4.6. There exists a constant K >0, only depending on 12, such that the 
solution of (2.3)-(2.6) satisfies 

[Izllo,~<exp{gZv_-Xllvll3,~} Ilzllo,or~_ + \v_3] ZllEIIo,o �9 

Proof As in (4.12) and (4.8) we obtain 

IIz(0,y(.))llo,~< L Itzllo,oo_ 

(z,y(.))dz < LllEIIom. = 

We use these inequalities and (4.16) to estimate the Lz-norms of the terms on the 
right hand side of (4.2) and obtain the statement. 

Lemma 4.4, 4.5, and 4.6 show that Ilzllo,~, Izh,~, and Iz12,~ can be controlled by 
norms of E and by norms of the values of z and its derivatives on 00_(f) .  To 
complete the proof of(2.12) and (2.13) we therefore need estimates for the boundary 
values of the derivatives of z. These estimates are derived in the next section. 



518 H.D. Alber 

The estimates stated in the following two lemmas are necessary to prove (2.14). 
Fo r  i =  1,2 let u")e Vy, vti)=Vo + u  "~, and with the notat ion introduced before 
Theorem 2.3 let z ") = z[g, h, Vo, u ~~ be the solutions of (2.3)-(2.6). In the following 
we use the "integral curve coordinates" belonging to the vector field v tl) and write 

q(s, y) = q(co(s, y, u 11))). 

Moreover,  we use the notat ion [z] = z t2) -  z "~, [u] = Iv] = u t2)-  u tl). 

Lemma 4.7. The solutions ztl),z ~2~ satisfy 

~,lv~l~lx. ( s 1 
I[z] (s)l = I[z] (s, Y)I < e '~ Iv'"---q-a* ]I[Z] (0)1 + ! iv~l ((Iz~2'11 + Icurlvol 0 IEu]l 

+ (Iz~2)l + Icurlvol)I[u]l ,)dz~. (4.21) 
J 

Proof. F r o m  (2.3) we obtain 

(v tl~- V) [z] = (v ~21. V)z ~2~- (Iv]. V)z ~2)- (v"~. V)z "1 
= (z t2). V)v 12) - (z tl)- V)v tl) + (curlvo. V) [u] 

- ( [ u ] .  V) curl Vo - ([u] .  V)z 15) 

= ([z]. V)v"~ + (z ~2~. V) [u] - f l u ] .  V)z ~2~ 
+ (curlvo. V) [u] - ( [ u ] .  V) curlvo. 

Thus, 

V) [z]l ~slrZ]l--< dEz]  = iv~ l , i  , v  
! ( . (1) ,  

=< ~ ~ v"' dEz]l + II-u]l,lz~Z~l + IEu]l Iz'2'l, 
IV I (  

+ Icurlvol I[u]l~ + Icurlvol~l[u]l}. 

Integrat ion of this differential inequali ty yields (4.21). 

Lemma 4.8. There exist constants C2, C3, K > 0, only depending on t], such that 

II zig, h, Vo, u t2)] - zig, h, Vo, u t x)] II o, o 

<=exp{v_-'LKllvHs,n} J C2LLv_-U) ) ( IhLon_+ln'curlvol: ,on_)  

-I- 2(p (1))-  3/2(~1))112LC3(112(2) [I 2, f~ q- [I curl Vo II 2, n)} II u~Z~ - u~l)II1, n .  

% 

Proof. Note  that  (2.4)-(2.6) imply 

1 
[z]o n_ = ~ (h + n . curlvo) [ulon_ ] r .  
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We use this equation to estimate the L2-norms of the terms on the right hand 
side of (4.21). (A.4) in Corollary A.2 in the appendix yields 

_ / f )'/~ II[z](o, y(.))llo,,~ _-__ ~Lv~ ~ It[z] IIo,0~_ 

/ If ln.curlvo 
<C2tLv_-~ ) (Ihl=,0n_+ln'curlvoh,o,~_)ll[u]llL., (4.22) 

with the norms defined in (1.18). Here we used two times Sobolev's inequality, 

which yields [[ [u] I1 o, o~- < C~ II [u] I1~, r~ 

and 

1 . h + 

< cC~([hh,oo_ +In" curlvol2,0a_). 

From (A.3) we conclude that 

$([,') 1 
,o ,, 

< \v_q~] L (Iz(2)ll +icurlv~ o,~ 

< (v_ (~)) - 3/2(dt))t/ZLC3 I[ ([z(2~11 + Icurl vo[x)[[1, a [[ [u] 111. 

<(v_(1))-3/2(dl))W2LC3(tlz(2)[I2,o+ Hcurlvotlz,a)II[u]lll,a, (4.23) 

where we used that Hk(f2)H,,,(I2)c H~(I2) and 

[[qlq2[[v,a~C3[[ql Hk,f~[{q2 Jim, a,  (4.24) 

for v=min{k ,m ,k+m-2} ,  which we used with k = m = l ,  v=0.  As mentioned 
earlier, (4.24) follows from Sobolev's inequality [8, p. 72] and from H61der's 
inequality. 

In the next estimate we use (4.24) with k = 2 ,  m=0,  and v = 0  and obtain 

sti) I~L([ z ( 2 ) ~  Iv~ +lcurlvol)'[u]l'dZllo. ~ 

<(v_(t))-az2(d~))t/2LM(lz(Z)l + Icurl vol)IEu]l~ IIo.o 
<(v_(l))-3/2(~J))l/2LCs(llz(2)l12,~+ I[curlvol[2,o)I[u]ll,o. (4.25) 

We use (4.22), (4.23), (4.25), and (4.16) to estimate the L2-norms of the terms on the 
right hand side of (4.21) and obtain the statement. 

5 Boundary estimates 

In this section we derive estimates for tiZ[Jo,o~_, Iz[1,0~_ , and Iz(2,~_ and combine 
them with the results of Sect. 4 to prove Theorem 2.3. The estimates follow easily 
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from the preparatory results proved in the next two lemmas, which concern 
products and tangential derivatives of functions defined on Of 2_. The norms are 
defined in (1.17)-(1.19). 

Lemma 5.1. There exis t  constants C 1 . . . . .  C6>0,  only depending on 8 0 _ ( f ) ,  with 

llqxq2 II o,o~_ < C ,  IIql II Loo_ IIq2 II ,.co , (5.1) 

l[qlq2llr,,ar~_ < C21[ql [[rn,~fk 11q21[2,0t~_ , (5.2) 

~ C3]qdm aa_ Ilq2 II 2,ar~- 
Iq tq2[,.,arL < ~C4lqll21a~_ 

(5.3) 
Hq2({rn, af~_ ' 

~Cdllqdl l , ,  0a_ IIq2q12.~o_ 
IIIqlq2lll,.,at~ < t ,'C6111q~1112"0~- 

(5.4) 
~lq21L..,0._ for  m - 0 ,  1,2. 

P r o o f  We use the notation of (1.17) and (1.18). For  i=  1 ..... ~ choose functions 
~'ie C~(Dz)  with ~'i>0 and with ~'i(y)= 1 for y e supp(~ o ~i). Then there exist 
constants C, C', C" with 

t[~OP(qo~pi)llr,,o~<2 y~ tlDr~'~D;(qo~p,)llo, o~<ZCllq[llal+m, oo_, (5.5) 
Ir +~'l<rn+l#l 

II~ ( f ~ i )  Dr(q ~ IPi) m, o2e ~ C'lqllol + lfl +rn'~ ' (5.6) 

[to~'iDO(f~i) DP'(f~i)D'(qolpi  ) . ~C"],[ql[llfll+lO,l+lfl+,n, oc~_ (5.7) rn ,19 ~ 
for all q, for which the right hand side of these inequalities is finite, and for all multi- 
indices fl, fl', 7 and non-negative integers m with 1/31 + m < 2 in (5.5), I/~l + I~1 + m__< 2 
in (5.6) and Ifll + IP'I + 171 + m < 2 in (5.7), respectively. We leave the proof to the 
reader. 

The estimate (4.24) also holds if f2 is replaced by the two-dimensional domain 
D~ with Lipschitz boundary. (4.24) and (5.5) thus yield 

II (oq o ~&)OP(q I ~ lPi)O~(qz ~ ~Pi)II o, o~ < II (~'i)2OtJ(q a ~ ~Pi)O~(q2 ~ ~Pi)11 o, o~ 

< ~ll~'~Oa(qx ~ wi)ll~,o~lt~'iOV(q2 ~ Wi)l[k,O~ ~ 4 ~ C 2  [Iqx lllal + j, or~_ Ilq2 lllrl +k, OO- 

for all fl, 7,J, k with I/~1 +j-<_ 2, Ivl + k___ 2, andj  + k = 2. (5.1) follows from this estimate 
and from (1.17) with the choice fl = ~ = 0, j = k = 1, and (5.2) follows with the choice 
j = I% k = 2 - I %  

Similarly, (5.5), (5.6), and (4.24) yield for lfll + I/3'1 + Ivl < 2 
/ - - \  

II \ J  Wi/ IIo,o~ 

<- I(~ ( f ~ i )  DO'(ql ~ lpi)D'(qz ~ lPi)llO,D~ 

I ~,O ~ 1 Oe(qxo~p,) II~'~O~(qE~ I~l o~ 
<__ 

II kyo~0~/ ll2-1p+#'l,o~ ' 

52CC'P~lqdlt~+~, +~l,O~_ Ilqllz,or~_ 
< ~2CC'~[qdz,ot~_ ]lq2 II Ip+a' +~l.ea- " 
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(5.3) follows from these estimates and f rom (1.18). Exact ly in the same way we 
obta in  (5.4) if we use (5.7) instead of  (5.6). 

Lemma 5.2. There exist constants C7 ..... C 9, only depending on dO_(f), with 

I(vr" V)qlo, ~o- < C71ql2, ~o- II Vr Itl, 0o- ,  (5.8) 

I(UT" V)q[,.~o_ < Cslql,, + 1,co_ [IVTl[2,0o_, (5.9) 

IIl(vr �9 V)qlll,,,oo_ < C91llqll[,. + 1,~o_ Ii vrll2.~o_ (5.10) 

for m = 0 , 1  and for every vector field v r tangential to O0_(f). 

Proof. Let ~i:O3----~UiC=~. 3 and 02i:D2--*0[2 with 02i(r162 be the 
diffeomorphisms in t roduced in Sect. 1. F o r  y ~ df2n U, we then have 

(v r �9 V)q(y) = (v r �9 V) [(qo 02,)~ 02i- 1] (y) = (v,. V) [(qo 02,)~ qb~- 1] (y) 

= ,,=l~[~(qO o02,)]o02:~l(y)Am(Y).vr(y ) 

8 1 0 1 8 1" cb-i 4 -1  with A,,(x)=Vq,,-2(x)= ~cbT.m,ff~xei,7.,,,~x. eDT. m), where i.1 . . . . .  i.3 are 

the componen t s  of  ~i - l .  Thus,  if f l=(fl l ,f l2),  ~=(71,72) are multi-indices with 
I f l l+ ly[< l ,  and i f j + k = 2 ,  then 

1 ~ . o 
(o~io02i)D ( ~ i ) D  {[(v T V)q] 02i} O,D~ 

1 E E D (q 02,) o 

,.=11t~'+ w'l__<t~l 

x D~'[(A,, �9 Vr) o ~i] o.o~ 

< .,=1 I~'+~<= Dtr ~-~'mm (q~ D"[(Am'vr)~ 

<-~ ~ ~ ( f ~ i )  -~ ,  q~ -- m=l l#'+r'l=<lrl ~'iDa Da, 0 ( 

' r' (5.11) • II~,D [(A,," vr) o 02i] Ilk, o~. 

In the last step we used (4.24). If k + I~'1 =< 2, and if 

M = sup {IDr"(A,. o o2,) (Ot: ~ e supp ~'i; m = 1,2; I~"1 _-_ 2} 

then we obta in  from (5.5) tha t  

II=iD [(Am" vr) o 02i] IIk,o~ 

<4 E IIO~'~O~'(am~176 
Ivl_-<k 

I,.,+ v ' +  v" l_<k + I~,'1 

' ~ o ,<24MCIIvTI[~+ ~o �9 <4(6M)  ~] liD ~iD "(Vr 021)11o, 0~= If'l. - (5.12) 
Ivl=<k Iv+v"l<_k+lr'l 

F r o m  (5.6) we obta in  

1 , 0  
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To prove (5.8) we set fl = 7 = 0 and j = k = 1. Combination of (5.11)-(5.13) yields 

I(o~i~ [(VT'V)q]~ lPi I O,D<<_48MCC'~Iq[2,oo_ [IVTt' x,oa_. 

(5.8) follows from this estimate and from (1.18). To prove (5.9) we set j =  I~'1 and 
k = 2 - W [  in (5.11)-(5.13) and obtain 

(~i (~i~ ~,)D~ ( f ~ i )  D'{[(vr " V)q] o voi} lo,o ~ 

< 240MCC'~IqlIaI + I~1 + 1,0t~_ fl VTll 2,o~_. 

(5.9) follows from this inequality and from (1.18). The proof of (5.10) is analogous to 
the proof of (5.9), using (5.7) instead of (5.6). 

Lemma 5.3. There exist constants K 1 .. . .  , K3, only depending on dO_(f), such that 
the solution z = zig, h, W, Vo, u] of (2.3)-(2.6) satisfies 

Ilzl[,.,0t2_ < glU[Ihllm, oo_ + IlVrLl2,oo_lhlm,oo_ 
+ Ilurll2,0a_ln" WIm, O0_ + IVrglm,0~_], m=0,  1, 2 (5.14) 

142, oa_ < K2[Ih12,0~- + I[ VTII 2,00_ Illhlll2, 0~- 

+ ILurll2,a~_llln" WIII2,00_ + IIIVrglll2,0~_], (5.15) 

Illzlll2'a~-<K3[lllhlll2'aa-+llvrIl2'~ h 2,a~_ 

+llurll2,oa_tl nW 2,0~ ;Vrg 2,0o ]' ( 5 . 1 6 )  

where v = v o + u, and n = n(x) is the exterior unit normal to Of 2. 

Proof. From (2.4)-(2.6) we obtain 

h f ( n .  f n x  Vrg. Zloea - = hn + f v r + W)UT-- 1 

(5.14)-(5.16) are immediate consequences of this equation and of (5.2)-(5.4), since 

f q =,oa_ <clqlm,o~-' I f  qLao_ <--clllqll',,,aa- �9 

In the following we denote by O.z = (n. V)z the normal derivative of z at Of 2. For 

q(x) = (q l(x), q2(x), q3(x)) ~ p 3  

let Dkq denote the vector 

Dkq = (Dl~ qi)i = 1 ,2 ,  3 .  
l#l_~k 
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Lemma 5.4. There exist constants K, ,  K 5, only depending on O~2_(f), such that the 
solution z=z[g, h, v o, u] of (2.3)-(2.6) satisfies 

tlO.zlll,o~_ < g4 I llD2vllo,oa_lzh,oo_ + IlOlullo,~_ 

x ~, [D"curlvo[2_=,oe - , (5.17) 

IOnZ~I,OC~ <= K~ I llD2vlJo, o~2 I]tzlll2,oft_ + ItDZullo,os~_ 

• ~ IIIO'curlvollh-~.,ea_]. (5.18) 

Proof From (1.3) we obtain 

(v. V)z = [(vT +(n- v)n). V]z = (Vr" V)z +fO.z. 
(2.3) thus implies 

~3.z=-- (VT'V)z+ f ( z . V ) v -  f(u.V)curlv o+ (curly o.V)u. 

Therefore (5.9) and (5.3) yield 

II O,z I1~. o~_ --< I(vr" V)zh. eo_ + I(Vv)zh. ~_  
+ I(V curl Vo)Uh. o~_ + I(Vu) curl Voh ' ~_ 

< C~llvrlh,~a_lzh.o~_ + C.~llVvtl,,~_lzl2.~_ 

+ C3 Ilull2,~_lv curlvolx,o~_ + C411Vull t,o~ Icurlvoh,oa_. 

(5.17) follows from this inequality. (5.18) is obtained in the same way using (5.10) 
and (5.4) instead of (5.9) and (5.3). 

Lemma 5.5. There exists a constant K6, only depending on 0Q_(f), such that 

ll02zllo,oo_ <K6IllD%llo,oa_(l~.zh,~o_ +lzh.o~ ) 

+ [ID2ull~176 ,,=o ~ [D"curlv~176 (5.19) 

Proof. Observe first that (1.3) and (4,5) imply with n(x)=(nl,  n2, n3) 
3 3 

fO2,z=f(n . V) • nizli= E nif(n" V)zli 
i = I  i = 1  

3 3 3 

= E ni[(v, n)n. V]zti= E hi(V" V)Zli- E ni(VT" V)zli 
/ = I t  i = 1  i = t  

3 

= Y~ ni[-(ol~- V)z + (zli. V)v + (z. V)vti + Eli- (Vr" V)ziJ, 
i = l  
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hence 
~2z~- f (Onv 'V)z ' -b  f(~nz'V)v--bi~=lHi f(z 'V)Vli-b f ~ n E  

____ 3 1 
1 (Vr" V)0,z+ Y~ =zdv r. V)ni. 
f i=lJ  

Thus, with (5.1), (5.3), (5.9), 

ll02.zllo,on_< f(O,v.V)z o,o,~_+ f(vv)~ o,or,_ 
3 | 

f O.E o, on_ + E I(Vvl3zlo, on- + + I(vr" V)0.zlo, on_ 
i=1 

3 
+ E Izli(vr'V)ndo,oo_ 

i=1  

~___ f ( O n / ) ' V ) z  q-Cl['VV"l,Oi~_ f ~n Z 
O,012_ 1,0O- 

+ i=1 ~ C4[[Vl)[i[[~176176 f ~nE o,or~_ 

+ C8lO.zh,omllvrll2,on_ 
3 

+C3 E (Izldo,on_ d[(vr " V)ni lJ z,om ) . 
i=1 

From (5.1) and (5.8) we conclude that 

f (O.v. V)z o,on_= f {(n.O.v)O,z +[(O.v)r. V]z} o,on 

< C1 Iln" O.vlt 1,Of2- f OnZ 1,O.O- "t-I[(O.V)r" V]zlo,on_ 

< CiCIlO.vll 1,on_lO.zh,on_ + C7 II(O.v)rll 1,omlzh.om 
< KvllD%llo,on_(lO.zh,om +lzh,om). 

Moreover, (4.1) and (5.1), (5.2) imply 

l O.E < f O.[(curlvo.V)u ] ~176 + f O"[(u'v)curlvo] 
f 0,0~- ~ O,OI2_ 

<Ca 1~ t?. curlvo tlVUlll,OO_ 
- J Ill,nO 

-~-C 2 fcur lvo  2,0~_llO.Vullo,o~_ 

+C2 ft?.Vcurlvo o,o~ Ilufl2,o~- 

+Clllt?.Utll,O~_ fVcur lvo  1,oe_ 

2 
< KallD2ullo,om 2 ID" curlvoh-,.,om , 

ra=0 

Combination of (5.20)-(5.22) yields (5.19). 

(5.20) 

(5.21) 

(5.22) 
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Proof of Theorem 2.3. As noted after Theorem 2.3, it suffices to prove (2.12)-(2.14). 
Note  first that (4.1) and (4.24) yield for j = 0 ,  ...,2 that 

[Eb, o < IlElb,~ < II(Vu)WIIj,~ + II(VW)ull~,~ 

<= C(IlVulI2,olI WIO, o + Itull2,ollVWIIj, o) 

< C'tlull3,~ll WIIz,~ < f'~ll Wll3,~, (5.23) 

since u ~ V~. 
(2.12) is an immediate consequence of this estimate, of(5.14), and of Lemma 4.6, 

if we use in addition that the trace theorem implies 

IIUTt]2,0~ <Callull2,~a_ <Cl]lU]12,o~<C2llull3,o<C2~, 
II Vrll2,Oa_ < C, Ilvl12,0~< C211vll 3,0, 

that 

Ilvl[ 3,~ = [Ivo-4-u113,o ~ I[v0]la,~§ 

since u ~ V r, that Sobolev's inequality yields f <  C I[ v ql 3,~, and that _v > _Vo- C7 > 0, 
by Lemma 2.1. We also need (1.20). 

To prove (2.13), observe that Lemma 4.4, 4.5, 4.6 and the inequality (5.23) yield 

tlzl12,~=(llzll~,o+lz120+ 2 1/2< , , Izh,o) =llzllo o+lzh  o+ lzh ,o  

< LIr/2K(Lr, _Vo, 11Vo n 3, a, f, 7) 

• Elzl2,e~_ +lzh,4,~a_ +lzll,o~ + Ilzll2,o~ + Hcurlvoll3,~]. (5.24) 
We use that 

Izll,o~_ + Iz12,o~_ _-<211DZzllo,o~_ _-< C(llzll2,o~_ + I[Onzll 1,~_ + IlO,%llo, o~_) �9 (5.25) 

Moreover, as in the proof of Lemma 4.5 we have 

II ~ 114 7 1/4 
<-Cz _ - - z j  - ,,j=xllax, IIl,oo_J _-<c llVzll,,oo 

=< C~(ll ~,zl{ 1,0o_ + IIztl 2 ,~-) .  (5.26) 

Combination of (5.24)-(5.26) and of (5.14)-(5.19) yields (2.13), if we again use the 
trace theorem, which implies 

[]DZut]o,o~_ < ]lD2ullo,o~ < fllul]3,~ < Cy, 

IlO2vlto,o~_ < I[D2vllo,oa<fllvlt3,a<f(llVoll3,a+y). 

We also use (1.20) to estimate ILqll2,oo_ and Iqh,ao_ by IIIqll12,~_, and we use that 
(5.4) yields 

l q  
[['q"[2'~176 f ( f q )  2,oo_<CsllfH2"~176 -f 2,012_" 

Finally, (2.14) is obtained if we use (2.13) to estimate the term 11z(2)112, o in the 
inequality stated in Lemma 4.8. The proof of Theorem 2.3 and therefore the proof 
of Theorem 1.1 is complete. 
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Appendix  

Here  we prove some results needed in Sect�9 4 to integrate with respect to the 
integral curve coordinates,  and we prove L e m m a  2.7�9 Let w I:D 2 ~ (iO be one of the 
local coordinate  systems of  (iO int roduced in Sect. 1. Fo r  brevity we write 

co(t, 3) = co(t, ~(4),  u), co(s, 3) = co(s, ~i(4), u) 

if 4 = (4 t, 42) e Di2 = ~v/- 1((if2_ (f)). Clearly, (t, 4) and (s, 4) are local coordinates  of f2. 
We  use these cooridnates  for integration in f2, and therefore need the following 
result for the Jacobi  determinants  

Jr(t, g)" - aet" " [(i(col,__co2, co3)'~ 

J(s, 3)=  det ((i(col' co2, co3)~ = J"(t(s), 3 ) ~ .  
\ ~(s,~,,49 ] 

L e m m a  A.1. For all (t, 3) we have 

J(t, 4 )=  div v(co(t, Q)J(t, 4). (A.1) 
(It 

For all (s, 3) we have 

f (4)  [0r 3) x ~r 3)1 (A�9 IJ(s, 4) l=  Iv(s, 3)1 

where f is the prescribed function in the boundary condition (1.3), and where we use 
the notation 

f(4) = f(co(0, 4)), v(s, 3) = v(co(s, 4)). 

Proof. The p roof  of (A.1) is s tandard,  cf. [10, p. 131]. 
�9 ~ 

To prove (A.2), note that  (A.1) and d i v v = 0  imply ~ J ( t ,  4)=0 ,  hence 

IJ(t, 3)1 = 13(0, 4)1 = ldet(v(co(0, 4), 8r co(0, 4), 8r 4)))1 

= Iv �9 (0e,co x 0r = In" vl 1de,co x ~r 

= --f(4)lar 4) x 0r163 3)1. 

Here  we used (1.3)�9 But 

IJ(s, 4)1 = 1 IJ"(t(s), 41, 42)1 = f(4)  13r x (ir �9 
Iv(co(s, G, G))I 

& 

This proves (A.2). 

Corollary A.2. I f  q e LI(E2; R ") then 

ecy~ . , If(Y)l 
~q(x)dx=o~ - ! q ( s , y ) ~ d s d S r "  
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If q �9 L2(Q , n~-m), then 

~i)q(z,y('))dz o,<(~)'/2LHq['o.o, 

where _v= inf Iv(x)l, ~=sup Iv(x)l. 
x~O xef2 

I f  q �9 L 2 ( a Q _ ( f ) ,  ~m) ,  t hen  

Hq(O, y( . )) l} o. o =< L [[q][o.oo-, 

where f =  sup {f(x){. 
xeO0- 

(A.3) 

(A.4) 

Proof. The first assertion follows immediately from the integral t ransform theorem 
and from (A.2), since 

dS = 10r 3) x 8r ~)1. 

To prove (A.3), note that  the first assertion implies 

dx= ~ q(z, y)dz dsdSy 
0 00- 0 0 

:(y) s 
< ~ S s~lq(v,Y)[ 2dr If(Y)[ dsdS 
= o r e  o o Iv(s,y){ Y 

F:(y) ~ Fay) l < I ] Y Iq(T,y)12d':I{ I ~ d s  If(y)ldSr J 0O-k o Jk o 

L 2 :~r) , x 2 If(Y) 17 
= ~ - qllo,o. < --vm_I o qtz, y) ~ fdzdS,= _v L2 H 2 

Also the inequality (A.4) follows f rom the first assertion, since 

e~r) If(Y)l , ,,, 
I Iq(0, y(x))12dx = I Iq(0, y){ 2 ~ asaay 

OO- 0 

- ds I Iq(O,y)ledS,< gllq{12o.o~_. 
U 0 00- 

The p roo f  is complete. 

Proof of Lemma 2.7. For  every q �9 C1(0) we obtain f rom (A.3) and  (A.4) 

Ilqllo,~ =1 si)~ q(z, y( . ))dz + q(O, y( . )) 0,~ 

< @)l /2Ll~qlo ,  o+ ( f  L)X/2 llql'o,o~_ 

< LllVqllo.o+ L }lql{o.o~_ �9 

This est imate is extended to q �9 H, (O)  as usual.  



528 H.D.  Alber 

References 

1. Bourguignon, J., Brezis, H.: Remarks on the Euler equation. J. Funct. Anal. 15, 341 363 (1974) 
2. Ebin, D., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible 

fluid. Ann. Math. 92, 102-163 (1970) 
3. H61der, E.: l~ber die unbeschr~inkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer 

unbegrenzten inkompressiblen Fliissigkeit. Math. Z. 37, 727-738 (1933) 
4. Kato, T.: Non-stationary flows of viscous and ideal fluids in R a. J. Funct. Anal. 9, 296-305 

(1972) 
5. Kazhikhov, A.V.: Note on the formulation of the problem of flow through a bounded region 

using equations of perfect fluid. Prikl. Mat. Mekh. 44, 947-950 (1980); English translation in: 
J. Appl. Math. Mech. 44, 672-674 (1980) 

6. Kazhikhov, A.V., Ragulin, V.V.: Nonstationary leakage problem for an ideal fluid in a 
bounded domain (in Russian). Dokl. Akad. Nauk SSSR 250, 1344~1347 (1980) 

7. Kochin, N.E.: About the existence theorem for hydrodynamics (in Russian). Prikl. Mat. 
Mekh. 20, 153-172 (1956) 

8. Ne~as, J.: Les M6thods directes en th6orie des 6quations elliptiques. Paris: Masson 1967 
9. Picard, R.: On the low frequency asymptotics in electromagnetic theory. J. Reine Angew. 

Math. 354, 5(~73 (1985) 
10. Serrin, J.: Mathematical principles of classical fluid mechanics. In: Fliigge, S. (ed.) Handbuch 

der Physik, Band VIII/1 Str6mungsmechanik 1. Berlin: Springer 1959 
11. Temam, R.: On the Euler equations of incompressible perfect fluids. J. Funct. Anal. 20, 32~43 

(1975) 
12. Weber, C.: Regularity theorems for Maxwell's equations. Math. Methods Appl. Sci. 3, 

523-536 (1981) 
13. Werner, P.: Randwertprobleme fiir die zeitunabh/ingigen Maxwellschen Gleichungen mit 

variablen Koeffizienten. Arch. Ration. Mech. Anal. 18, 167-195 (1965) 
14. Wolibner, W.: Un th6or6me sur rexistence du mouvement plan d'un fluide parfait, homog6ne 

incompressible, pendant un temps infiniment long. Math. Z. 37, 698-726 (1933) 
15. Yudovich, V.I.: Twodimensional nonstationary leakage problem for an ideal incompressible 

fluid in a given domain (in Russian). Mat. Sb. 64, 56~588 (1964) 
16. Zajaczkowski, W.M.: Local solvability of a nonstationary leakage problem for an ideal 

incompressible fluid 1 (in Russian). Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 92, 
39-56 (1980) 

17. Zajaczkowski, W.M.: Local solvability of a nonstationary leakage problem for an ideal 
incompressible fluid, 3. Math. Methods Appl. Sci. 4, 1 14 (1982) 

18. Zajaczkowski, W.M.: Local solvability of a nonstationary leakage problem for an ideal 
incompressible fluid, 2. Pac. J. Math. 113(1), 229 255 (1984) 

19. Zajaczkowski, W.M.: Solvability of an initial boundary value problem for the Euler equations 
in twodimensional domain with corners. Math. Methods Appl. Sci. 6, 1-22 (1984) 

20. Zajaczkowski, W.M.: Ideal incompressible fluid motion in domains with edges I. Bull. Pol. 
Acad. Sci., Techn. Sci. 33, 183-194 (1985) 

21. Zajaczkowski, W.M.: Ideal incompressible fluid motion in domains with edges 2. Bull. Pol. 
Acad. Sci., Math. 33, 332-338 (1985) 

22. Zajaczkowski, W.M.: Some leakage problems for ideal incompressible fluid motion in 
domains with edges. Banach Cent. Publ. 19, 383 397 (1987) 


