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Introduction 

The purpose of this paper is to construct the moduli of a holomorphic vector 
bundle over a compact complex manifold when both the holomorphic struc- 
ture on the vector bundle and the holomorphic structure on the base manifold 
are deformed simultaneously. Let E be a holomorphic vector bundle over 
a compact complex manifold M, and let Eo, Mo be the underlying C oo 
structure. We call a simultaneous deformation of the holomorphic structures 
on E and M a joint deformation of(E, M), and the set of all such structures the 
joint moduli space of (E, M). More precisely, consider the set S~ = {(E, M): 
E is a holomorphic vector bundle over the complex manifold M, E is Coo 
isomorphic to Eo and M is diffeomorphic to Mo}/equivalence, where (E, M) is 
equivalent to (E', M')  if there is a Coo diffeomorphism f :  M ~ M' and a Coo 
isomorphism of vector bundles g: E ~ f * E ' ,  such that with respect to the 
holomorphic structures on M, M', E, and E', the map f and fl are holomor- 
phic. Then set 6: gives the joint moduli space of vector bundles E over M with 
a given C Oo data Eo and Mo. We state the main theorem: 

Theorem Suppose M has an ample anticanonical bundle and E is stable with 
respect to the ample anticanonical class, then joint moduli space 6: consisting of 
all such pairs has naturally a structure of a Hausdorff eomptex space. 

Specialising to curves of genus greater than one, we have the following 
corollary 

Corollary I f  M is a smooth Riemann surface of genus g > 1, then there exists 
a joint moduli of stable vector bundles over the moduli of Riemann surfaces of 
genus g, such that each fiber consists of the moduli of stable bundles modulo the 
action of the automorphism group of the base space. 
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By assigning to each pair (E, M) the base manifold M, 6 e maps into the 
moduli space of the compact complex manifold M such that each fiber 
consists of the moduli of holomorphic vector bundles over M. However, with 
the above equivalence relation, if f is a holomorphic automorphism of M, 
then (E, M) and ( f ' E ,  M) are equivalent. Thus the fiber consists of the moduli 
of the vector bundle E over M modulo the action of the autom orphism group 
of M. 

The proof of our theorem is analytic, and uses the technique in [Kol: We 
first construct a differential graded Lie algebra L*, which is a semi- 
direct product of the differential graded Lie algebras A*(M, TM) and 
A*(M, End(E)), and show that joint deformations correspond to solutions of 
the deformation equation in L*. We then apply Kuranishi's construction (see 
[Ku2] or [GM2]) to construct a local complete joint deformation space. If the 
manifold M has ample canonical class and E is stable with respect to the 
ample canonical class, then following the construction of Narasimhan and 
Simha ['INS], we can glue local deformation spaces together to obtain a joint 
moduli space. 

Finally we study the existence of holomorphic vector bundle structures 
under small deformations of the base manifold. We show that in certain cases 
the existence of holomorphic structures is equivalent to the condition that all 
the Chern classes are (n, n) classes. We have the following theorem: 

Theorem Let Mo be a small deformation of the complex structure of M. I f  M is 
a compact Kiihler surface with trivial canonical bundle and E is a simple vector 
bundle on M, then E admits a holomorphic structure on Mo if and only if c l (E) is 
a (1, 1) class in Mo. 

Thus there is a relationship between the existence of holomorphic structures 
and the period map. 

The paper is organized as follows. Section 1 studies the local theory of 
joint deformations. Section 2 gives the construction of the joint moduli. 
Section 3 studies the existence of holomorphic vector bundle structure under 
a small deformation of the base manifold. 

I Local theory of joint deformations 

U.O) Introduction 

The analytical construction of the joint deformation space uses the concept of 
differential graded Lie algebra and deformation equation. We first give 
the basic definitions, referring details to Nijenhuis-Richardson [NR] or 
Goldman-Millson [GM1]. 

Definition A graded Lie Algebra L* over C is a Z-graded C-vector space 

L = ( ~  L i 
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with a family of bilinear maps [,]: LtxLJ--*L ~+i satisfying the following 
identities 

(1) (graded skew-commutativity) [a, b] = - (  -1)ael(")aes(b)[b, a] 
(2) (Jacobi identity) ( -  1)a~(a)deg(C)[a, [b, c]] +(--1)  deg(b)dvg(a) I-b, [c, a]] + 

(--l)deg(c)deg(b)[C, [a, b]] = 0. 

A graded Lie Algebra L* is called a differential graded Lie algebra if it is 
provided with a C-linear map d: L* ~ L *+ i such that d satisfies 
(1) (derivation of degree 1) d[a, b] = [da, b] + (-1)d*g(a)Ea, db] 
(2) (differential) d o d = O. 

Definition Given a differential graded Lie algebra (L*, d), the deformation 
equation in L* is the following equation on L t 

da + 1/2[a, a] = 0.  

Using these concepts, the analytical construction of a deformation space 
usually has 3 steps: 

(1) Find a differential graded Lie algebra L* that relates to deformations. 
(2) Prove that the deformation equation in L* corresponds to the integra- 

bility condition for deformations. 
(3) Obtain a Hodge theory on the differential graded Lie algebra L*, 

which is usually infinite dimensional, and apply the Kuranishi construction to 
obtain an analytic space which is the complete deformation space of the object 
involved. 

From this point of view, joint deformations include the two cases below: 
(A) The deformation of complex structures on a given complex manifold. 

In this case, the differential graded Lie algebra is A~ TM), and the Lie 
algebra structure is induced from the Lie bracket of vector fields on M. 

(B) The deformation of holomorphic structures on a holomorphic vector 
bundle E over a complex manifold M. In this case, the differential graded Lie 
algebra is A~ End(E)), and the Lie algebra structure is induced from the 
Lie algebra structure on End(E). 

In order to construct joint deformations, where both the complex struc- 
ture on M and the holomorphic structure on E vary simultaneously, we need 
to find a differential graded Lie algebra that contains both (A) and (B). We first 
construct a semi-direct product L* of A~ TM) and A~ End(E)), 
and then prove that joint deformations correspond to the deformation equa- 
tion in L*. 

(1.1) The differential graded Lie algebra L* 

Let M be a compact complex manifold, and E a holomorphic vector bundle 
on M. Let A ~ t(M, TM) be C~~ (0, 1) forms with value in the tangent bundle of 
M, and let A ~ I(E, End(E)) be C~~ 1) forms with value in the endomorphism 
bundle of E. In this section we will define a differential graded Lie algebra L*, 
which is a semi-direct product of A ~ 1 (M, End(E)) and A ~176 t (M, TM). 

Let h be a hermitian metric on E, D be the hermitian connection, and let 
be the curvature form olD. As usual D = D' + ~, and f ~ A l ' t ( M ,  End(E)). 
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Let L ~ =  {(a,O)la~A~ End(E)), O~A~ TM)} as a set and let 
OR:LP--.L p+I be defined by 0R(a, 0 )=  ( 0 a -  120, 00), where fl0 is induced 
from the interior product of a (1, 1) form and a vector field. Since 012 = 0, we 
have 0R ~ 0R = 0. Alternatively, the complex L* can be defined as follows: let 
{st} be a local holomorphic frame in an open trivializing neighborhood Ui, 
and let g~j be the transition function in Uic~ Uj. Then the collection 
{O~ 1 "aO~j} defines a 1-cocycle of the sheaf T*M@End(E) .  Let coi be the 
connection form in Us with respect to the local holomorphic frame s~, and 
consider {co/} as a 0-cochain with value in the sheaf T *M | End(E). Then on 
the overlap UinUj,  the connection forms satisfy cot=g~l.09i~+ 
gi~l.c,j.gij. Thus R = 0co~ defines a global (0, 1) form with value in 
T*M|  and this represent the cohomology of the l-cocycle 
{gi~l.cggu} in Dolbeault cohomology. If we skew-symmetrize R, then 
we obtain the curvature form 12. So we see from the definition of curva- 
ture and skew symmetry that RO=-g20.  Now the curvature class 
R EHI(M, T *M | End(E)) defines an extension cg of the tangent bundle of 
M by the endomorphism bundle of E 

(1) 0 ~ End(E)  ~ (~ -~ T M  ~ O, 

and on A*(M, ~g) there is a canonical differential operator 0. It is easily seen 
that the complex L* defined earlier is precisely the complex A*(M, cg). 

We now define a Lie bracket on L* by the rule that 

(2) E(~, 0), (a', 0')2 = ([~, 0t'] + Doo~' - ( - 1)P'Doct, [0, 0'2), 

where ~A~ End(E)), ~'~A~ End(E)), O~A~ TM), and 
0' ~ A~ TM). Before we define Doct for ~t ~ A ~ End(E)), 
0 ~ A~ TM), we recall a formula of Cartan: if a is a p-form, and X is 
a vector field, then 

(3) Lxa = ixda + dixa , 

where Lx is the Lie derivative with respect to the vector field X, and ix is the 
interior product with the vector field X. Now ix extends naturally to forms 
with value in a holomorphic vector bundle by ix(cP A e) = ixd? A e, where ~b is 
a differential form and e is a local section of the vector bundle. So we define 
Doa analogously for 0 a vector field and aeA~ End(E)) by 

(3') Doa = ioDa + Dioa . 

If 0 is a (0, q) form with values in holomorphic vector fields, then by writing 
0 = ~ A X locally, we define Doa by 

(4) De, ̂  xa  = qb A Dxa + ( -1)deg(~dO A ixa . 

Finally, before we prove that L* with the bracket defined above is a differen- 
tial graded Lie algebra, we recall that a derivation of degree p of a graded Lie 
algebra L* is a homogeneous linear map D: L* --, L* of degree p such that 
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D([a, b]) = IDa, b] + ( - 1)e'[a, Db], for a E L', b s L*. We denote by ~(L)  the 
space of derivations of L*. ~ (L)  becomes a graded algebra if we define 
[D, D'] = D o D' -- ( -  1)PqD 'o D, for D, D' derivation of degree p, q respective- 
ly. We now prove the following 

P r o p o s i t i o n  1.1 (L*, 0R, [ , ] )  is a differential graded Lie algebra. 

Proof. We first define a homomorphism ~,: A~ T M ) - ~ ( A ~  
End(E))) by d/(O)(s) = Dos, where O~ A~ TM),  sE A~ End(E)). We 
need to show that if 0 is a q-form with value in TM, then Do is a derivation of 
degree q, and that the map ~k is a homomorphism. If 0 is a vector field, the 
proof that Do is a degree 0 derivation is the same as the proof that Lie 
derivative is a derivation. If0 is a q-form, then the fact that Do is a q derivation 
follows from the formula (4). To show that @ is a homomorphism, we observe 
that from the definition of curvature, for v, w ~ A~ T M )  

(5) DvDw - DwDv - Dtv,~l = s w), 

where ~2 is the curvature form. Since ~ is chosen to be a (1, 1) form, I2(v, w) = 0 
for v, w ~ A~ TM). This extends to v, w ~ A ~ TM), and gives DvD~ - 
( - l)d'g(~)a'g(V)D~Dv = Dtv,wj, which shows that ~k is a homomorphism. Now 
the fact that (L*, [ , ] )  is a graded Lie algebra follows from the standard 
construction of semidirect product of two graded Lie algebras. We state the 
construction as the following proposition, whose proof can be found in 
N~jenhuis-Richardson [NR]  

P r o p o s i t i o n  1.2 I f  E and F are graded Lie algebras and f -~ Df is a homomor- 
phism o f F  into ~(E),  then the graded vector space E t ~ F  equipped with the 
product 

[(a, f ) ,  (b, 9)] = ([a, b] + Dyb - ( -  1)PqDga, [-f g]) 

for t e E  p, b ~ E  q, f ~F q, g e F  q, is a graded Lie algebra. It contains F as 
a subaloebra, and E as an ideal. 

Now it remains to show that the differential OR is a derivation of degree 1. 
For this we compute each term separately: For a~A~ End(E)), 
b ~ A~ End(E)), f e  A~ TM), g ~ A~ M, TM), 

(6) 0R [(a, f) ,  (b, g)] = 0R([a, b] + DIb - ( - 1)P~Dga, [ f  g]) 

= O[a, b] + O(DIb ) - ( - 1)P~0(Dqa) + R-  [ f  O], 0 I f  g] ) .  

[0R(a, f) ,  (b, g)] = [(0a + R-  f Of), (b, 9)] 

= ( [ 0 a  + R.f,  b] + D~ib 

- ( -- 1) (p+ 1)qDg(Oa ,+ R - f ) ,  [Of, g ] ) .  

['(a, f ) ,  OR(b, g)] = [(a, f ) ,  (Ob + R- g, Og)] 

= ( [a ,  Ob + R.  g] + Dr + R. g) 

- -  (-- I)I'(q+')D(To a, I f  i~g]). 
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Now we assume the following identities: 

(7) ~(O:b) = Z)z:b + ( - 1)W:(~b) + [Rf, b] 

(8) ( -- I)'(D:(Rg)) -- ( -- I) c'+ ')qD,(Rf) = R. If, g]. 

Substituting (7) and (8) into (6), we obtained the desired formula: ~[(a, f), 
(b, g)] = [~(a, f), (b, g)] + (-1)P[(a, f), ~R(b, g)], showing that L* is a dif- 
ferential graded Lie Algebra. 

To prove formula (7) we observe that it is enough to prove it locally. Let 
{st} be a local holomorphic section of E, and let {wi} be the connection form. 
Let b be a IEnd(E) valued (0, q) form, and in the local frame {si} it is expressed 
as a matrix of (0, q) forms. Then we have 

(9) D b  = d b  + co A b - ( - 1)qb A co, 

and for f ~ A~ TM),  

Dyb = L i b  + co(f) A b - ( - 1)r~b A og(f) . (9 ') 

Thus 

Now use 

a(Dsb) = aLxb + co(f) A b -- ( - 1)Pab A co(f) 

= L~fb + ( -- I)~L: �9 ~b + aco(f} A b + ( - l)Pco(f)ab 

--(- l)Pe~b A co(f) --(-l)~+qb A ~co(f) 

= (- I)PD/~b + L~fb + ~co(f) A b -- ( - 1)"+'b A ~co(f). 

~(co(f)} = R f  + co(~f) , 

we have 

~(D/b) = (-- I)PDy~b + L~fb q- (Rf + co(~f)) A b -- ( -l)~+qb A (Rf + co(~f)) 

= D~fb + (--l)'D/~b + [Rf, b]. 

So (7) is proved. Formula (8) is proved similarly. [] 

(1.2) Deformation equation in L* and joint deformations 

In this section we study joint deformations and show that joint deformations 
correspond precisdy to the solutions of deformation equation in L*. First of 
all, we need to understand what happened to the Dolbeault complex when the 
complex structure on the manifold is deformed. Suppose the deformed com- 
plex structure is represented by 0, a (0, 1)-form with value in holomorphic 
vector fields, and let A ~ be the space of (0, l)-forms with respect to the 
complex structure 0. Subsequently, we use subscript 0 to represent forms, 
operators, or complexes with respect to the complex structure 0, and if 0 is 
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omitted, it is understood that it is with respect to the original complex 
structure. Each complex structure 0 determines a decomposition of 
AI(M, TM) into its (1, 0)-part and (0, l)-part. Let P0 ~ ~ be the projection onto 
the (0, 1)-part. When the complex structure on M is deformed, the space of 
(0, p)-forms and the ~ operator are both deformed. However we can transplant 
the ~s operator on A~ TM) to an operator on A~ TM) via the 
projection Po ~ ~. In other words, we can keep the complex the same, but vary 
the differential so as to pick up the variation of complex structures on M. In 
this way the vector bundle on Mo and M can be compared. 

We first review Kodaira-Spencer theory on the deformation of complex 
structures on M so as to establish some notations and conventions. Let 
0 ~ A ~ ~ (M, TM). Then 0 determines a homomorphism from T"M to T'M, 
where T"M is the antiholomorphic tangent bundle and T'M is the holomor- 
phic tangent bundle. If 0 is sufficiently close to 0, then we can assume that the 
homomorphism jig 0 does not have eigenvalue 1. Then the observation made 
by Kodaira-Spencer is that 0 determines a complex structure on M if 0 satis- 
fies the integrability condition 

ao + 112[o, o] = o .  

In fact, To'M consists of the vectors {v + O(v): v e T " M } .  Thus any C 0~ 
function f is holomorphic with respect to the complex structure 0 if and only if 
(~ + O)f= O. (Note the convention used here differs from [Ko] or [Ku] by 
a sign.) 

Our goal here is to consider A~ TM) as a subcomplex of 
A ~ (M, TM), and try to find an operator d~ making the diagram commutative: 

(10) 

aO,p(M ) df , AO,p + I(M) 

A~ , A~ '(M) , 

where Po is the projection, i.e., consider forms in A~ as in A~(M) and then 
take the (0, p)-part with respect to 0. We remark that Po is a C ~ bundle 
isomorphism between T" and T'o'. The Kodaira-Spencer result suggests that 
fo rp  = 0, ds = ~ + 0. More generally, we let 0 act on dpeA~ by writing 
locally 0 = ~, | X, with ~k ~A ~ I(M), X ~ A~ TM), and define 

(ll)  0r = ~k A L x r  

Then we have 

Proposition 1.3 I f  d~ is defined to be ~ + O, then the diagram (10) commutes. 

Proof Fix a point x in M, and let z ~ be local coordinates around x. We first 
verify for the case p = 0. So let f be a function on M, and write 0 locally as 
0 = ,Y, OJd~ ~ | O/Oz( Then locally (~ + O)f= ,~(Of/O~, J + 0}. Of/Ozi)di. ~. Now 
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let ~ be Pod~J. Then Po(~+ O)f  = E(~f/O3 j + 0~" Of/az~)c~ j. On the other 
hand, if we let v~ = 0 / 0 ~ +  O~cg/OzJ, then they span the antiholomorphic 

. c r i b ,  vectors in T 0 M. In order to determine q~i, we write d:/i = "~c~v j* + j , 
where cJ = d3~(vj). Now from the definition of vi, we see that cj 6j. So 
~ = v ~*. Since 0 is integrable, we have 

(12) [vi, vii = O . 

So there exists local coordinates in the complex structure 0, denoted by zo, 
such that at x, d ~  = v t* = ~b i. Hence O0f = ~Of/o~.io �9 dYJo. So at x, Oof = 
~vj . f  | v J* = r . ( ~ f / ~ J  + o~. ~ f /az ' )vJ*  = ~ . ( ~ f / a ~  + o~. ~j'/c~z~)c? j = 
P~(O + O)f  Since this is true at every x, the proposition for p = 0 is proved. If 
p > 0, let ~/, = 2~J}| d:/~, where I is a multi-index of length p. Then 
Po(O + 0)~/ = Pt(,Y,(O + O)h A d~J) = E(Pt(O + O)h) A v *~. Now we claim 
that O0v ~* = 0. Indeed, locally around x, {v~} spans antiholomorphic vectors 
in T"*M,  and so it is enough to show that dv~*(vj, v~) = 0. Now we know that 

(13) dv~*(vj, v~) = vj. vi*(v~) - v~. vi*(vj) - vi*(Evj, v~]), 

so dvi*(vj, v~)=O follows from (12) and (13). Thus Oo(Por 
Bo(Y,f: | v *~) = ZOof A v *~. So the case for p > 0 follows from the case 
p=0. [] 

Let E be a holomorphic vector bundle over M, and let D be a connection 
on E. The connection D depends only on the differentiable structure on E, and 
not on the holomorphic structure of E. We assume that D is integrable, i.e., 
D" = ~. By type decomposition we write D = Do' + Do." When 0 4= 0, DooDo" " 
is not necessarily zero. But if D'o'oD~ = 0, then D~' gives an holomorphic 
structure on E with respect to Mo. Proposition 1.3 extends to (0, p)-forms with 
value in End(E) if we let 0 act on A~ End(E)) by Do as defined in section 
(1.1). We state it as the following proposition: 

Proposition 1.4 I f  do is defined by ~ + Do, then the following diagram commutes 

(14) 

a~ End(E)) d:, A ~ End(E)) 

"1 "l 
A~ EndCE)) : A ~ End(E)) .  

Now every holomorphic structure on Eo is given by an D~' operator 
satisfying the integrability condition D'o' o D~' = 0. If we fix a connection D on 
E, then every such operator is given by a End(E) valued (0, 1) form ~0 such 
that (D~' + ~0) ~ (D~' + ~o) = 0. Working out the integrability condition on ao, 
we get 

(is) D ; o  9~o ' + D~o' ~o + 1/2E~o, ~o] = o . 

We first compute D~' o D~'. 
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Lemma 1.5 Let E be a holomorphic vector bundle over a complex manifold M, 
and let D be any connection on E. Assume D is hermitian. Let D'o' be the 
(0, 1)-part of the connection with respect to Mo, i.e., D~ = Pro~ 1) o D. Let R be the 
curvature class as defined in Sect. 1. Then D'o' oDb' = Po(RO). 

Proof. Multiply by the curvature form f2 gives a map f2: A*(M,E)  
A* § 2(M, E), and I2 = D o D. On different complex structures 0, Db' o Db' cor- 
responds to multiplication by Po(f2). Since D is a hermitian connection on 
a holomorphic vector bundle E, we know that f2 is a (1, 1) form. In local 
coordinates write t2 = Zf2j~,~dz ~ A d3 p. We use the same notation as Pro- 
position 1.3. We have Po(dz ~) = O~v ~*, and Po(df ~) = v ~*. Thus Po(fl)= 
z ^ v,* = p (Ro). [ ]  

Now we are ready to prove the theorem relating the differential graded Lie 
algebra L* constructed last section and the integrability condition on ~o. 

Theorem 1.6 Let E be a holomorphic vector bundle over a complex manifold M, 
and let D be any hermitian connection on E. Suppose 0 is any T M  valued 
(0, 1)-form representing a complex structure on M. Let a be an End(E) valued 
(0, 1)-form. Then D'o' + Poo~ represents a holomorphic structure on E over Mo if 
and only if (0, ct) satisfies the deformation equation in L *. 

Proof. We first show that Lie bracket on A~ End(E)) commutes with Po. 

Lemma 1.7 l f  a, a' eA~ End(E)), then Po[a, a'] = [Pea, Poa']. 

Proof. The bracket operation in A~ End(E)), being induced by matrix 
multiplication and exterior multiplication, is algebraic, i.e., does not involve 
differentiation. Likewise the projection Po is also algebraic. Thus it is enough 
to check the lemma pointwise, which is obvious. [] 

We return to the proof of the theorem. From formula (15), Lemma 1.5 and 
Lemma 1.7, D~' + P0~ represents a holomorphic structure on E over M0 if and 
only if 

(16) RO + (~ + Do)or + 1/2[ct, ~] = 0 and 

(17) ~0 + 1/210, 03 = 0 .  

Now the deformation equation in L* is 

(18) 0) + 0), 0)3 = 0 .  

Working out the equation using the definition of the differential graded Lie 
algebra L*, we see that (18) is equivalent to 

(19) ( ~  + RO, ~0) + 1/2([~t, ~t-I + 2Do~t, [0, 0]) = 0 .  

Separating the two components, we get (16) and (17) respectively. [] 
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Now in order to repeat the Kuranishi construction on L* to construct 
a complete joint  deformation space, it is necessary to do harmonic theory on 
L*, in particular, to prove that H 1 (L*) is finite dimensional. This is provided 
by the observation in the first section that L* is A~ ~) as a complex and 
so we can do the harmonic theory on L* in the same way as the harmonic 
theory on A ~ (M, rg). Let . 4 /be  the Kuranishi space constructed from the 
complex L*. We must understand what completeness property the space 
~t' has. 

To begin with, we observe that L ~ is a Lie algebra, being the semidirect 
product of A~ TM) and A~ End(E)). Let G be the Lie group with Lie 
algebra L ~ In fact, G is the group of C ~~ diffeomorphisms of the total space of 
E that is fibre preserving and is linear on each fiber. Such diffeomorphisms 
may not induce identity map on M. The group G acts on the solution of the 
deformation equation, and thus on the space of joint deformations. A one 
parameter subgroup of G acts on L 1 by 

I - exp(t ad 2) (d2) 
(20) exp(t2):~--,exp(tad2)(~) -t ad2 

in terms of power series [see GM1].  Roughly speaking, the Kuranishi space is 
the set of joint deformations modulo the action of G. More precisely, we have 
the following theorem, whose proof  is exactly the same as the completeness of 
the Kuranishi space. ( See [Ku2] or [GM2])  

Theorem 1.8 Let E be a hotomorphic vector bundle over a compact complex 
manifold M. Then there is a complex space J t  parametrizing joint deformations 
of (E, M), such that if (S, So) is another complex space parametrizino joint 
deformations of (E, M), with So = (E, M), then there is a neighborhood of So, 
denoted by S', and holomorphic maps f: S' ~ ~r and 9: S' ~ G, such that the 
family restricted to S' is equal to ( f*  JC)g, where f *  denotes the pull back family, 
and ( )g denote the action by G. 

Now let ./r be the Kuranishi space of complex structures on M. Then the 
forgetful map from L 1 to A~ TM) given by (a, 0 ) ~  0 induces a map ~: 
~ '  ~ .//'u. The fiber consists of vector bundles over a fixed complex structure 
0 on M. However, the fiber is not the moduli of vector bundles over 0, but the 
moduli of vector bundles over 0 modulo the pull back action of the automor- 
phisms of Me. This can be seen by looking at the tangent space to the fiber, 
which is identified with HI(M, End(E))/R A H~ TM), where R A: 
H~ T M ) ~ H I ( M ,  End(E)) is the coboundary map associated with the 
exact sequence 

0 ~ End(E) ---} ff --, TM --} O. 

It is not hard to see that R A H~ TM) gives the infinitesimal action of the 
pull back action of the holomorphic automorphisms of M on vector bundles 
over M at the point E. Ideally one would like to have as fibers the moduli of 
vector bundles over M. However, as we explained in the introduction that 
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automorphisms of M come into play in an essential way, so that it is difficult 
to have as fibers the moduli of vector bundles over Mo without the action of 
the automorphism group. 

2 The construction of global joint modnli 

(2.0) Introduction 

In the preceding section we studied complete local joint deformations, and in 
this section we patch these local deformation space together to form a joint 
moduli. In other words we seek conditions on complex manifolds such that 
the set 6e of holomorphic vector bundles E over a compact complex manifold 
M modulo equivalence has a structure of a complex space. Let Mo be a real 
analytic manifold and Eo be a C ~ vector bundle on Mo, and let M be 
a complex manifold diffeomorphic to Mo. Assume M has ample canonical 
class ~i and let E be a ~-stable holomorphic vector bundle on M, C ~ 
isomorphic to Eo. Let 6 a = {(M, E): M has ample canonical class �9 and E is 
a ~-stable holomorphic vector bundle on M} modulo equivalence. We prove 
in this section that 6 e has a structure of a Hausdorff complex space. The 
method we use follows Narasimhan-Simha[NS] in their construction of 
moduli space of manifolds with ample canonical class. The joint deformation 
spaces glue together because of the universal properties of the joint deforma- 
tion space in this case. 

We first review some of the results in Narasimhan-Simha. Let M be 
a compact complex manifold of dimension n, and let K be the canonical 
bundle of M. Assume K is ample, i.e., K m gives an embedding of M in some 
projective space for m ~> 0. Narasimhan-Simha proved the following separ- 
ation theorem on complex structures on M. 

Theorem 2.1 [NS] Suppose S and T are two complex spaces parametrizing 
complex structures of M. Let so, to be two base points of S and T such that 
M,o and M,o have ample canonical bundles. Let {s,} and { t,} be two sequences in 
S and T converging to so and to respectively. Assume there are holomorphic 
isomorphisms r Ms, ~ Mr.. Then r converges uniformly to a holomorphic 
isomorphism gp: Mso ~ Mt~. 

The proof of the theorem depends on the construction of a generalisation 
of the Bergman metric on M. Under this metric, holomorphic isomorphisms 
become isometries. Furthermore they proved that this metric depends con- 
tinuously on the parameter space of complex structures of M. Hence the 
sequence of holomorphic isomorphisms ~, are equicontinuous, from which 
a uniformly convergent subsequence can be extracted. By Monters theorem 
the limit isomorphism is holomorphic. The existence of such a metric also 
shows that the group of automorphisms of M is finite because it is compact 
and discrete. The discreteness is the result of ample canonical bundle, and 
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compactness follows from the fact that it is a closed subgroup of the group of 
isometries. 

Because Aut(M) is discrete, Narasimhan-Simha proved the following 
theorem relating the action of Aut(M) on the Kuranishi space of M. 

Theorem 2.2 [NS] Let K be the Kuranishi space of M with Kto = M. By 
restricting to smaller neighborhood of  to, we have that for t, t '~K,  Mt is 
isomorphic to M~. if and only if t, t' are in the same orbit of  Aut(M). 

Next we discuss some results on stable bundles that we need. Let E be 
a holomorphic vector bundle over M. We say that E is stable with respect to 
the ample divisor �9 if for every subsheaf F of E with 0 < rank(F) < rank(E), 

c I ( F ) . ~  "-1 c l ( E ) . ~  n-1 
< 

rank(F) rank(E) 

The expression cl(F).  ~n-X/rank(F) is denoted by /~(F). In what follows 
stability is always with respect to the anticanonical class. A consequence of the 
above definition is the following proposition. 

Proposition 2.3 Let E and F be stable vector bundles over M. Let f :  E ~ F be 
a sheafhomomorphism. If lz(E) = Iz(F), then f is an isomorphism unless f = O. 

It is also well known that the moduli of stable bundles is open in the moduli of 
vector bundles. So if E is stable over M, we may assume that a small joint 
deformation Eo is stable over Mo. 

Finally we recall that (E, M) is isomorphic to (E', M') if there is a C ~ 
diffeomorphism f :  M ~ M' and a C ~ isomorphism of vector bundles g :E --, 
f*E' ,  such that with respect to the holomorphic structures on M, M', E, and 
E', the map f and g are holomorphic. That is, we do not distinguish a vector 
bundle and its pull back by an automorphism of the base space. 

(2. I) A separation theorem for joint deformations 

From now on we always assume that M has ample canonical class, and E is 
stable with respect to the ample canonical divisor. We prove a separation 
theorem similar to Theorem 2.1. 

Theorem 2.4 Suppose S and T are two complex spaces parametrizing joint 
deformations of  E over M. Let So, to be two base points of S and T such that 
there are two sequences {sn) and {tn) in S and T converging to So and to 
respectively. Assume that there are holomorphic isomorphisms ~n: (Es., Ms=) 
(Et., Mr.)for all n. Then (Eso, Mso) and (Ezo, Mto) are isomorphic. 

Proof. The proof is a simple combination of Theorem 2.1 and the proof that 
the moduli of stable bundles is Hausdorff. We recall that if (Es., Ms,) and 
(Et., Mr,) are isomorphic, then there are holomorphic isomorphisms f~: 
Ms.-*Mt. ,  and g,: f *E t .  ~ Es.. By Theorem 2.1 there is a holomorphic 
isomorphism f :  Ms. ~ Mto of the complex manifolds. So it remains to show 
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that f*Eto and E~ are isomorphic. Following an argument of Okonek, this is 
a consequence of upper-semicontinuity of cohomology. The isomorphism 
# , : f 'E , ,  ~ E,. gives a nonzero element in H~ Hom(f*E,.,  Es,)). So we 
have 

dim H~ Hom(f*E,o, Eso)) > lim sup dim H~ Hom(f*Et,, E~.)) > 1. 

Let g be an nonzero element in H~ Hom(f*Eto, Eso)), then fl gives an 
isomorphism between f*Eto and Eso by Proposition 2.3. This completes the 
proof. [] 

(2.2) The universal properties of the joint deformation space 

Let Jr  be the joint deformation space for (E, M) constructed in Sect. 1. The 
local completeness property of the joint deformation space is that any family 
of joint deformations of (E, M) is locally induced from an analytic map into 
J L  The universal property of J / i s  that this map is unique. Kuranishi proved 
the following sufficient condition for universality: 

Theorem 2.5 I f  H~ *) = O, then .At is universal. 

Under the assumption that M has ample canonical class and E is stable, we 
have H~ *) = ~, because it is part of an exact sequence 

0 ---, n~ End(E)) ~ n~ *) ~ n~ TM) .  

From this it follows that Jr' is universal. 
Now let Aut(E, M) be the subgroup of Aut(M) that fixes E. We now need 

to consider the action of Aut(E, M) on ~'.  The following proposition is 
analogous to Theorem 2.2. 

Proposition 2,6 Let .1# be the joint deformation space of (E, M) with ..r 
(E, M). Let t, t' be two points of JL By restricting to a small neighborhood of to, 
(Et, Mr) is isomorphic to (Et,, Mr,) if and only if t, t' are in the same orbit of 
Aut(E, M). 

Proof. If (E,, M,) is isomorphic to (Et,, Mr,), then M, must be isomorphic to 
Mr,. Thus by applying Theorem 2.2 we see that by restricting to a smaller 
neighborhood of to, we may assume that there is a holomorphic automor- 
phism ~b in Aut(M) such that ~ gives an isomorphism of Mt and Mr,. Now 
since Aut(M) is finite, and the action of Aut(M) on J /  is continuous, by 
restricting ./[ to an even smaller neighborhood of to, we may assume that only 
Aut(E, M) maps J [  into itself. Hence ~ must be in Aut(E, M). The converse 
implication is clear. [] 

(2.3) The construction of joint moduli 

Fix an (E, M) in S~, and let Jr  be the joint deformation space of (E, M) such 
that the conclusion of Proposition 2.6 holds. Let ~b: .///Aut(E, M) ~ 6e be the 
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natural map, sending Et over Mt into its isomorphism class in 6:. The 
Proposition 2.6 says that this map ~b is injective. Thus it gives a local coordi- 
nate chart on 6 a because ~/r M) has an analytic space structure [Ca]. 
Suppose ~t'l and ~2  are two joint deformations around (El, MI) and (E2, M2) 
respectively, and let U = ~bl( . / / / ' t )n  ~2(Jr  If U is nonempty, we need to 
show that ~b71(U) is open for i = 1, 2, and that the transition map is 
holomorphic. 

Let p ~ J / l  and q~ Jr'2 such that (Ep, Mp) and (Eq, M~) are isomorphic. 
Then by the universal property of ~t't and ~(2, there exist neighborhoods W1 
and W2 of p and q such that Wt is biholomorphic to W2. By shrinking W~ if 
necessary, we may assume that they are Aut(E,  M~)-invariant for i =  1, 2. 
Since points in Wt define the same points in ~ if and only if they are in the 
same orbit under Aut(E~, M~), there is a bijective map 

dp2 ~ d? ? 1: WI/Aut(E1, MI)  ~ W2/Aut(E2, Mz) . 

WdAut(Ei,  Mi) is open since Wi is open, and ~b2 ~ ~b i- 1 is holomorphic because 
it is induced from a holomorphic isomorphism of WI onto W2. Moreover 
6 a is Hausdorff by virtue of the separation Theorem 2.4. So we have proved 

Theorem 2.7 The joint moduli space 6 a has naturally a structure era Hausdorff 
complex space. 

If we apply this construction to curves of genus greater than 1, then we obtain 
the joint moduli of stable bundles over the moduli of curves. 

Corollary 2.8 I f  M is a smooth Riemann surface of #enus g > 1, then there 
exists a joint moduli of  stable vector bundles over the moduli of Riemann surfaces 
of  genus g, such that each fiber consists of the moduli of stable bundles modulo 
the action of the automorphism group of  the base space. 

3 The existence of holomorphic structures under small deformation 

(3.1) The integrability condition and some consequences 

When the complex structure M is varied, the existence of holomorphic 
structures on E can be expressed as an integrability condition. For conveni- 
ence, we use a slightly different notation for the integrability condition here. 
We begin with the proposition proved in [Ko] 

Proposition 3.1 Let E be a C ~ complex vector bundle over a complex manifold. 
I f  D is a connection in E such that D" o D" = O, then there is a unique holo- 
morphic vector bundle structure in E such that D" = ~. Conversely, if E has 
a holomorphic structure, then there is a connection D such that D" = ~. 

Now let E be a holomorphic vector bundle over a compact complex manifold 
M, and let D be a connection on E such that D " =  ~. Then any other 
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connection in E can be expressed as D + a, for r End(E)). By Proposi- 
tion 3.1 E has a ho[omorphic structure with respect to 34o if and only if 

(1) (D + ~)~ o (D + ~)~ = 0 .  

Now (D + a)~ = Dff + ~ ,  and Dd oD~ = R0 ~ This equation can be written as 

0 = (O + ~)~ o(D + ~)~ 
0 I t  I I  f t  I f  I I  = D ~ o D ~ + D d  o t e + ~ o ~  A~o 

= R ~ + O ~  + 1 / 2 [ ~ ,  a~] 

We note that for el, i leAl(M, End(E)), [~, fl] = [fl, ~]. Thus we have 

Proposition 3.2 Let E be a holomorphic vector bundle over a compact complex 
manifold M. Let D be a connection such that D" = ~. Then E admits a holomor- 
phic structure over Mo if and only if 

(2) R ~ + D~ct~ + 1/2['~t~, ~t~] = 0 

has a solution for o~eA ~ t(Mo, End(E)). 

We now draw several simple consequences of Proposition 3.2: 
Suppose E is a rank r projectively flat vector bundle over a compact 

Kiihler manifold M, and let D be a projectively flat connection on E. Let 
R = D o D be its curvature form. Then R = cole for a complex 2-form co on M. 
Take trace in (2), and observe that ['a~, a~] has zero trace. Then we have 
rcooO. 2 = ~o~ for some ot~ eA ~ t (Mo, End(E)). Thus if cl (E) is a (1, 1) class with 
respect to 0, then too ~' z is exact in A ~ 2(Mo, End(E)). Thus (2) is solvable. So we 
have 

Proposition 3.3 Let E be a projectively fiat bundle over a compact Kiihler 
manifold M. Then E has a holomorphic structure with respect to Mo if and only if 
ct(E) is a (1, 1) class in H2(Mo, C). 

Corollary 3.4 I f  E is a line bundle over a compact Kiihler manifold M, then 
E has a holomorphic structure with respect to Mo if and only i fcl(E) is a (1, 1) 
class in H2(Mo, C). 

Proof. Every line bundle is projectively flat. []  

Suppose now that M is a compact Riemann surface, and that E is a stable 
rank r bundle. Then the integrability condition vanishes for dimensional 
reasons. Thus we have 

Proposition 3.5 Let E be a stable bundle over a compact Riemann surface. Then 
E always admits a holomorphic structure with respect to Mo. 

(3.2) Kiihler surfaces with trivial canonical bundle 

In this section we solve the integrability condition (2) for K//hler surfaces with 
trivial canonical bundle. This includes K3 surfaces and K//hler toil. Let M be 
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such a surface, and E a simple holomorphic bundle over M. Let h be 
a hermitian metric on E, and let D be its hermitian connection. Then on Mo, 
we have D = D~, + D~. Let o9o be a C ~ family of metrics on Mo, and we can 
define inner products on forms with values in End(E) in the usual manner. We 
let t~o, 6~, ~ be the corresponding adjoint operators, and we have 30 = ~[ + 
6~. Define the Laplacian operator Aft = 6~D~ + Dg6~. We now verify that the 
operators ,4 g are elliptic. 

Proposition 3.6 For each 0, ,4 '~ is a self-adjoint elliptic operator. 

Proof. Since these operators are local, it suffices to check on a local trivializ- 
ing neighborhood in Mo. Let U be such a neighborhood in M, and let {s~} be 
local frames on E. Then Dg = ~0 + m, where co is the connection form with 
respect to the frame {st}. Then the adjoint fig = ~* + co*, where co* is a 0th 
order operator consisting of taking interior products. Hence it is clear that the 
principal part of A~' is the same as that of I-q, the complex Laplace-Beltram 
operator. Thus it is elliptic. The self-adjointness follows from the same formal 
computation as the operator I-l. 

We now summarize results on elliptic operators in the theorem below 

Theorem 3.7 Let d ~ be the second order operator constructed above. Then 
1) The Kernel of A ~ is finite dimensional. 
2) Let Ho: A~ End(E)) ~ Ker ,4 g be the projection. Then there exists 

a unique linear map Go: A~ End(E))-~ A~ End(E)) of order 2, 
called the Green's operator such that Ker Go = Ker,4 ~, and 

a) Go,4g= ,4~oG, 
b) u = Hou + ,4~Gu for ueA~ End(E)). 
c) UGullk+2<cllull~,llQullk+z<__ctlull~, where Q=6goG,  for all 

ueA~ End(E)). 

Remark3.8 The operator D~ does not satisfy D~oD~ =0 ,  unless 0 = 0. So 
there is no cohomological interpretation of Ker d~ as harmonic representa- 
tives of some cohomology class. Nevertheless, since d ~ is elliptic, we still have 
the finite dimensionality of Ker d ~, and the construction of Green's operator 
as above. However Go does not necessarily commute with D~ or with ~ ,  and 
H 0 ~  is not necessarily zero. 

We now consider d g as a C | family of elliptic operators on the C ~ family 
of vector bundles T 0~ We then have the following upper-semicon- 
tinuity theorem: 

Theorem 3.9 Dim Ker d '~ is upper-semicontinuous in O. 

We now apply these tools to the case that M is a K/ihler surface with trivial 
canonical bundle, and E is a simple holomorphic bundle. First, we have 
a trace map tr: A~ ~ A~ by taking trace of a matrix pointwise. 
This then extends to a map tr: A~ - ,  A~ We call an element 
~eA~ trace-free if tr(~) = 0. We have 
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Proposit ion 3.10 Under the above assumptions on M and E, let o~ be a trace-free 
element in Ao~ Then ~ = D'~fl for  some ~SeA ~ 1(End(E)). 

Proof. Let End~ be the bundle of trace-free endomorphisms of E. Then by 
Serre duality HZ(M,  End~ "~ H ~  End~ = 0. By upper-semicon- 
tinuity (Theorem 3.9), Ker A g = 0 for 0 small enough. So if ce is trace-free, 

o~ = Hoc + A o" Go~t = 0 + De(tSeGoct) . . . . . . . .  + t~o(DoGoot) = Do(JoGoo:) " 

since D~ Gog = 0 for dimensional reasons. So we just take fl to be c5~ Gog. [] 

Remark  The above proposition is not necessarily true if M is not a surface, 
since the term D~Gog may not be zero. 

We now return to equation (2): R ~ + D ~  + 1/2[0t~,a~] = 0 .  Since 
[ ~ ,  ~ ]  is trace-free, we have [~t~, ct~] = D~(6~Go[~'~, ~ ] ) .  Thus if (2) has 
a solution, then R ~  - D ~ ( ~  + 1/2cS~Go[ct'~, ~ ] ) .  So Ro ~ is D~-exact. 
Conversely, we prove 

Theorem3.1 Under the assumptions on M and E, i f  R ~  D'~d? for  some 
cbeA ~ t (End(E)), and i f  0 is small enough, then equation (2) can be solved for  
some ~'~eA~ 

Proof. We form a sequence ao, a t , .  �9 �9 as follows: 

ao = 0  

a t  ~ - - 4  

at = --c~ -- 1/2Qo[a~- 1, ai-  t] , 

where we put Qo = 6/~Go. We now show that ai is bounded in ]1 l[2- We prove 
by induction that ]1 ai - a t -  1112 < L ][ ~b II 2/i 2, if II q~ ][ 2 is small enough and 
L = ~k= t(1/k) 2" We have 

[t ai -- ai-1 Ih = 1/2 II Qo( [ ai-1,  a i -  l] - -  [ai -  2, ai-2])1[2 

= II eo(Eai- t - a ~ - 2 ,  a i - 2 ]  + 1 /2 [a t -  t -- ai-2,  a i -  1 - -  a i - 2 ] ) I h  

< coll[a~-i - ai-z, ai-z-I 

+ 1/2[ai-1 -- ag-z,  a i - t  -- a~-z] II1 by Theorem 3.7(c) 

<colla,-1-a,-~ll t(  ~ Ila~ - a~ - l l l l )  
k = l , . . . , i - 1  

<=collai-l--ai-2llg( 2 II ak-ak-l[I2) 
k = 1 , . . . , 1 - 1  

< co(L. II ~ lh" 1/(i - 1)2)(L. II ~ tl2 .L) 

< L.  II ~ II~" 1/i z . ( to.t) .  II~lh . iV ( i -  1) 2) 

L .  Il q~ llk.1/i2, if co. L 2 . II~llz '4 _-< 1 .  
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I t  is enough to show that  co. L 2. II 4,112,4 can be made arbitrarily small if 0 is 
small enough. First we observe that co is bounded for 0 small, and that ~b can 
be taken to be QoR ~ Now as 0 -+ 0, II g ~ 2 II 2 --' 0. Thus ca" L 2" II 4~ II 2" 4 < 1 
if 0 is small. 

Now Ilaillz < ~ k = l  Ilak - ak-a 112 ~_ L 2" 11~112, which is bounded. So by 
the principle of uniform boundedness in a Hilbert space, ak contains a weakly 
convergence subsequence, which converges to some ~. Thus (2) has a weak 
solution. Now by the standard boots t rap argument since Qo is a smoothing 
operator, a is C | The theorem is proved. []  

We now decompose the curvature tensor R0 ~ into its trace part  and 
trace-free part.  Since the trace-free part  is always Dg-exact, in order for R~ to 
be D~-exact, it is enough that  the trace part, i.e., the first Chern class of E, is 
D~-exact. Thus it is sufficient that  cl(E) is a (1, 1) class in Me. We have the 
following theorem 

Theorem 3.11 I f  M is a compact Kiihler surface with trivial canonical bundle 
and E is a simple vector bundle on M, then E admits a holomorphic structure on 
Me if and only if  cl(E) is a (1, 1) class in Me. 

Now if we remove the assumption on M and require that H2(End~ = 0, 
then the proof  goes through without any change. So we have 

Theorem 3.12 Suppose M is a compact Kiihler surface, and E a simple holomor- 
phic vector bundle on M, and suppose H2(EndO(E)) = O. Then E admits a holo- 
morphic structure on 3/Io if and only/fCl(E) ts a (1, 1) class in Me. 
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