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1 Problems and results 

1.1 

In this paper, we are interested in arithmetico-algebraic properties o f  certain 
classes o f  projective varieties, the prototype o f  which is the class of  K3 surfaces 
(i.e. simply-connected projective smooth surfaces Y such that H~ is one- 
dimensional and generated by a differential form 09 which is non-degenerate at 
every point). 

For K3 surfaces, the problems we are about to examine may be stated as 
follows: 

1.1.1) The Shafarevich problem: are there only finitely many polarized K3 
surfaces o f  fixed degree d over a number field K, with good reduction outside 
a fixed finite set of  primes {~1, ~'~2,..., gan}? 

1.1.2) Describe the motive of  a K3 surface, and compute the motivic Galois 
group. 
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1.1.3) The Tare problem: let Y and yt be K3 surfaces defined over a number 
* * P field K. Is any isomorphism of Gal(K/K )-modules H~t( Y-E, ff~e ) ~ H~t( Y-~, Re) 

induced by a Re-linear combination of  algebraic cycles on Y x Y'? Is the image 
of GaI(K/K) in GLH~(Yy, R t )  as big as possible, i.e. an open Lie subgroup 
of  the motivic Galois group over Re (el. [$94])? 

1.2 

We shall tackle these problems in the broader context of hyperkiihler varieties 
(where problems 1.1.1 and 1.1.3 have been explicitly posed by A. Todorov 
[T90]). We recall that an even-dimensional, simply-connected, smooth pro- 
jective variety Y is said to be hyperk~ihler (or else "irreducible symplectic" 
[Be83a]) if H~ is one-dimensional and generated by a form co which is 
non-degenerate at every point. 

Let us set out, following A. Beauville (loc. cit. Sect. 6, 7), some simple 
constructions of hyperk~ihler varieties Y in any dimension 2r > 2: 

i) for any K3 surface S, take Y = S [~] the punctual Hilbert scheme which 
parametrizes finite closed subschemes of S of length r; thus for r = 1, Y = S; 

ii) for any abelian surface A, form in the same way A [r+al and take Y = Kr 
:= the fibre above 0 of the "summation" morphism A [r+l] ---4 A; thus for r = 1, 
Y is the Kummer surface of A; 

iii) any projective deformation Y of a hyperk~ihler variety of type S[r] or K~. 
We shall call these varieties "of K3 type". For instance, Beauville and R. 
Donagi have shown that the variety of lines of the cubic fourfold is of K3 type 
[BED85]. Some modular varieties for stable vector bundles on a K3 surface are 
also of K3 type [Mu84a]. In fact, it seems to be unknown whether there are 
hyperk~ler varieties not of K3 type. We mention at last that varieties of K3 
type carry a rich geometry of lagrangian subvarieties [V92]. 

1.3 

By a polarized (resp. very polarized) variety of degree d over some field K, we 
mean a variety endowed with a K-rational ample (resp. very ample) numerical 
eqtrivalenoe class of  line bundles of degree d. We say that a polarized variety 
has good reduction at some place of K if  a smooth polarized model exists 
(ef. 9.1). 

Theorem 1.3.1. Let  go1,~o2 . . . . .  go, be primes of  a number field K, and let r 
and d be positive integers. Then there exist only finitely many isomorphy 
classes of  polarized K3 surJaces (resp. of  very polarized hyperkiihler vari- 
eties o f  dimension 2r with second Betti number > 3) of degree d, with good 
reduction outside go l, $02 .... , ~ .  

This gives a positive answer to 1.1.1. By using a result of  C. Jordan in 
reduction theory, one deduces (Sect. 9.7): 
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Corollary 1.3.2. For any positive integer m, there are only finitely many 

orbits Jbr PGL (4, 7Z [ ~---~] ) among all smooth quartics in the 3-dimensional 
[ ' ~ ' 1  

projective space over Z[~mJ. 

In a similar way, using the cohomological interplay between cubic fourfolds 
ancl their varieties of lines, we prove (Sect. 9.6,9.7): 

Corollary 1.3.3. For any positive integer m, there are only.finitely many orbits 

Jbr PGL (6, TZ [ 3~ ] ) among all smooth cubics in the 5-dimensional projective 

space over 7Z. [~-~m ] �9 

1.4 

Let (I, r/) be a polarized variety defined over a subfield K of 112, and let k be 
a positive integer < dim Y. Identifying qc with an element of H2(Y~, 7/.)(1)/ 
torsion, we endow H2k(Y~z,Z)(k)/torsion with the quadratic form (,)7 defined 

. d i m Y - 2 k  by {x, y)~ = (-1)kx tO y U q~: , and we denote by p2k(y~:, Z)(k) the prim- 
itive lattice, i.e. the orthogonal complement of the image of Ha-2(Y~:, Z)(k - 
1 ) tO r/, in Hzk(Yc, 71)(k)/torsion. This primitive lattice underlies a Hodge struc- 
ture of weight 0 polarized by (,)~ [W58, D71a]; we denote by h p'q its Hodge 
numbers. 

Motivated by the hyperkiihler instance, we introduce the following 'axioms': 

Ak: one has ho 1'1 =h~  ' - I  = 1,h ~176 > 0, andh p'q = 0  i f l p - q l  > 2; 
Bk : there exists a smooth connected K-scheme S, a point s E S(K), and a 

projective smooth morphism f :  Y--* S, such that: 
i) Y=Y__,, 

ii) 1/~: extends to a section of R2f~,71(1 )/torsion, 
iii) the image of the mapping (Universal covering o]'S(c) ) ---+ ( Moduli space 
of Hodge structures on Pa(Yr polarized by (,)~) contains an open 
subset, l 

We shall say that (Y, r/) satisfies B~- if moreover 

iv) ./'or each t E S(C), every element of Hodge type (0,0) in H2k(Y~,Q)(k) 
is an algebraic class. 

We observe that these axioms do not depend on the given complex embed- 
ding of K 2. 

Polarized abelian surfaces, surfaces of general type with /~ = 1 and 
~ 2  = 1, K3 surfaces and hyperk~ihler varieties with b2 > 3 satisfy A I,B~. 

I One can show that the image of the monodromy homomorphism ~1(S(C),s) ---+ O(P2*(Yr 
Z)(k)) then has finite index (cf. 3.3.3). These axioms are similar to those being considered 
in [Ra72] 
2 For Ak, we note that the Hodge numbers h~" ~ may be defined algebraically 
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Cubic fourfolds satisfy A2,Bf (see 3.3 to 3.6). It turns out that most of our 
arguments apply to any polarized variety which satisfy Ak, B~- for some k. 

1.5 

Let us now turn to problem 1.1.2. The notion of  motive which we consider 
here is the 'strong' one defined in [A93]; however our results hold (afortiori) 
for motives defined in terms of absolute Hodge cycles (cf. [DM82]). 

Let us record one of the equivalent definitions of  a motivated cycle in 
the sense of  loc. cit., for a ground field K which is a subfield of C: a mo- 
tivated cycle (in the strong sense) on a smooth projective K-variety X is an 
element of  H * ( X c , ~ )  which can be written pr.(~ tA (*x | *w)[3), where W is 
an arbitrary (not necessarily connected) smooth projective/f-variety, pr is the 
projection X x W --* X, ~ and/~ are algebraic cycles on X x W, and �9 stands 
for the Hodge star operator associated with the Kiihler metric attached to some 
polarization defined over K. 

All motivated cycles are absolute Hodge. All algebraic cycles are moti- 
vated 3. Remember that one of  A. Grothendieek's standard conjectures predicts 
that * respects algebraic cycles, which would imply that, conversely, all mo- 
tivated cycles are algebraic. It is proved in [A93] that in a precise sense, the 
notion of motivated cycle is invariant under Aut(IE/K), and that the category 
of motives defined in terms of  these is tannakian semisimple over Q. In par- 
titular, to any motive is attached a motivic Galois group, which is a reductive 
II~-group (depending by inner twist on the complex embedding of K). We de- 
note by .~x(M~)  the tannakian subcategory generated by abelian varieties and 
0-dimensional varieties. 

Theorem 1.5.1. Let (Y,t/) be a polarized variety which satisfies Ak, B +. Then 
the motive ~2k(Y)(k) attached to p2k(yr t~)(k) is an object of J l r ( ~ ) .  

In the special case of complex K3 surfaces, this was proved in [A93]; 4 
let us also mention the work of K. Paranjape [Pa88] concerning K3 surfaces 
which are desingularizations of  the double cover of the plane branched along 
six lines. 

Using Y. Zarhin's description [Za83] of  the Hodge group of pZk( . ,  Q)(k)  
for polarized varieties satisfying Ak, we get: 

Corollary 1.5.2. Let (Y,q) be defined over an algebraically closed sub- 
field K of  tE, and satisfy A~,,B-~. Let us denote by g2k(y)(k) the sub- 
motive o f / ~ ( Y ) ( k )  whose Betti realization is the orthogonal complement 
T2k( Yr r ) of the subspace of p2k( Yr ~)(k ) generated by algebraic classes. 
Then E :-:- Endgz~(Y)(k) is a CM fietd or a totally real, and the restriction 
of" (,)n to Tz~(Yr k) is E-hermitian (resp. E-bilinear). The corresponding 

3 For instance i fX has a K-point .P~ take W = SpecK, •= the class of P x W 
4 For this special ease, the weaker ~ m e n K  in t~rms of absolute Hodge cycles, was claimed 
in [DM82], wher~ an argument by deformation of the original surface to a Kummer surface 
is sketel~d; howewr, no oxi~nee proof is offorod of such an algebraic deformation 
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unitary (resp. special orthogonal) group, viewed as a Q-group, coincides with 
the motivic Galois group of  fl~(Y)(k). 

On the other hand, having proved in [A93] that any Hodge cycle on a 
complex abelian variety is motivated, we get: 

Corollary 1.5.3. On a product of complex hyperkgihler varieties Yi 
(w~'th b2 > 3), cubic JburJolds and abelian varieties Xj, any Hodge cycle 
in (| | ( |  is motivated. 

1.6 

Given a polarized variety (Y,t/) and a rational prime t', one defines a quadratic 
2k form (,)n on H~t(Y~,ff~:)(k ) by (x ,y)n=(-1)kxt_JyUq aimY-2k, and one 

denotes by P2ekt(Y'K, ff~:)(k ) the primitive lattice (which is the l-adic realiza- 
tion of flZk(Y)(k)), i.e. the orthogonal complement of the image of Hff-2(YE, 
ll~e)(k -- 1) U t/. 

The following result, which generalizes [080, Ta88, Ta90], gives a partial 
answer to question 1.1.3: 

Theorem 1.6.1. Let (Y,q) be a polarized variety satisfying Ak,B~ over a 
number field K. Then: 

1) the Gal(K--/K)-module Pff( Y-s ff~: )(k ) is semisimple, 
2) every Gal(K--/K)-invariant element in Pff(Y-g,~:)(k ) is induced by a 

Q:-linear combination of  algebraic cycles, 
3) the image of  Gal(K/K) in GL(P~(Y~, ~r ) (k ) )  is an open Lie subgroup 

of the l-adic motivic group attached to fi2~(Y)(k), 
4) let (Y',q') be a polarized K-variety satis]j:in9 Ah,B~ (]br some h); 

then any isomorphism of  Gal(-K/K)-modules pZk - 2h r o, (r~, ~ : ) (k )  = Po~ (r~, ~ : ) (h )  
is induced by a ff~:-tinear combination of motivated cycles on Y x Y'. 

An interesting example of such an isomorphism is given by the so-called 
Abel-Jacobi map of a cubic fourfold (3.4). 

1.7 

Not surprisingly, our proofs rely upon the use of the period mapping and the 
Kuga-Satake construction (along the lines of [D72] or [PSS73]); in this way, 
we reduce problems 1.1.1 and 1.1.3 to the analogous problems on abelian 
varieties, solved by G. Faltings. However, since the Kuga-Satake abelian variety 
is constructed by analytical means, it is crucial to verify the existence of a 
model over some .finite extension of  the ground field (Sect. 5.5, 8): 5 

5 This result is closed in spirit those to of [D72], especially Proposition 6.5, although the 
question of the existence of a model of the Kuga-Satake variety over a number field is not 
taken up in [D72], where the occuring abelian K-variety, with property 1.7.1ii), is simply 
constructed as a specialization of the Kuga-Satake variety. Therefore, contrary to a seemingly 
widespread opinion (see e.g. [080]), !.7.1 does not follow formally from [D72], even if we 
fix a complex embedding of K 
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Main Lemma 1.7.1. Let (Y, q) a polarized variety defined over a subfieM K 
of  C, satisfying Ak, Bk. Then there is an abelian variety K,A defined over some 
finite extension K ~ of  K such that 
i) (mA)c is the Kuga-Satake variety of (Yc, qr 

ii) there is a subalgebra C + ofEnd(x,A) such that the Zl[Gal(K/K')]-al~lebra 
Endc+H~t((~c,A)-s is isomorphic to the even Clifford algebra of the prim- 
itive quadratic module P ~  ( Y~, Zl )( k ) (with its natural Galois action). 

For K3 surfaces, it turns out that x,A does not depend on the given complex 
embedding of K; in other words, the construction of the Kuga-Satake abelian 
variety of a K3 surface 'does not depend on the topology of C'  (8.5). 

We shall give two proofs of the main 1emma, both of them based on 
certain rigidity properties of Kuga-Satake families (5.4). The second proof, 
more delicate, yields an explicit description of the extension K'/K in terms of 
the Galois action on etale primitive cohomology in degree 2k (8.4.3); this is 
used in the proof of Theorem 1.3.1. At last, we point out that many of the 
proofs in the text are much simpler in case the 2k th primitive Betti number is 
odd (e.g. in the case of K3 surfaces). 

2 Polarized hyperk~ihler varieties and cubic fourfolds 

2.1 

Let us state again our definition: A hyperMihler variety over a field K of 
characteristic 0 is a simply-connected smooth projective K-variety Y of even 
dimension 2r, with the property that there exists a section co of f2~, unique 
up to muliplication by a constant, such that co r vanishes nowhere. For K = C, 
this is equivalent to the existence of a K/ihler metric for which the holonomy 
group is Sp(2r). 

It is known that H~ DrP)= 0 if p is odd, and H~ f22r q) =Kco q for 
0 _~ q _< r (see [Be83a] Sect. 3). From these basic properties, it follows that: 

a) the canonical line bundle is trivial, generated by the section cor; 

b) the Kodaira dimension is 0, so that no smooth deformation or specialization 
of Y is ruled, i.e. birationally equivalent to a product F 1 x W (indeed, a ruled 
variety has Kodaira dimension -oo,  and the Kodaira dimension cannot decrease 
by specialization - in any characteristic); 

c) Y has no infinitesimal automorphism, i.e. H~ Tr) = 0 (by duality, and by 
a), this means that the Hodge number h2r'l(Y) is 0, and indeed, h 2r,1 = h 1,2r = 
h l'0 = h 0'1 = 0); 

d) for any prime d, Hit(Y, z f  ) = 0 and H~(Y, Zt)  is torsionfree (where Y = 
Y~-, K = some algebraic closure of  K). This follows from the universal coef- 
ficient exact sequence 0 -* Hit(Y, Zf ) |  Z/dZ -* Hit(Y, Z/dZ) --, TOrl (H~(Y, 
Zt),Z/t'~g)--* 0, and the fact that H~(Y , z /dZ)=  0, because Y is simply- 
connected. It follows that over K = C and for Betti eohomology, H1(Y, 7.) = 0 
and H2(Y, Z) is torsionfree. 
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e) the numerical equivalence class group of line bundles on -Y coincides with 
the Picard group Pic Y. In particular, a polarization of Y is just a Gal(K/K)- 
invariant isomorphism class q of an ample line bundle. 

f) for any polarization/1, one has Hi('Y,/7) = 0 if  i > 0 (this follows from a) 
and the Kodaira vanishing theorem). 

2.2 

A family of hyperkiihler varieties parametrized by an algebraic or analytic space 
S is a proper fiat morphism f :  Y ---* S, the fibers of which are hyperk~ihler 
varieties. A polarization of f is a section t/ of PicsY (the relative Picard 

etale sheaf) such that the fiber ~ E (PicTs) GaltF(s)/K(sl) above any point s E S 
is a polarization. When K = C, we shall identify _q with its image under the 

injective morphism F(Pics Y) ~ F(R2f~Z(I )). 

2.3 

A coarse moduli space for polarized hyperkiihler varieties (Y,1/) with fixed 
Hilbert polynomial P(x) may be obtained as follows. 

2.3.1. Lemma. Let (Y, II) be defined over K (a field of characteristic 0). 
Then 1/~e(1) ties in the image of the morphism Pic Y --+ (PitY) Cal(2/K). 

Proof In view of the usual exact sequence Pic Y -* (PicT) ~al(2/x) ~ BrK,  it 
suffices to show that the image of t / in the Brauer group of K is annihilated by 
dimH~ = P(1) (cf. 21t"). The effective divisors on Y belonging to the class 
~/are in a natural way the K-valued points of a Severi-Brauer K-variety ]r/] of 
dimension P ( 1 ) -  1; as is well-known, ]r/I is the Grassmarmian of rank-P(l) 
right ideals in some simple central K-algebra A of degree P(1 )2. Any maximal 
commutative subfield K' of A is a splitting field for lq]. Hence the image of 
r/ in BrK lies in the kernel of B rK  ~ BrKt; but the exponent of this kernel 
divides [K''K] = P(1)  (for all this, see [Se68] X Sects. 5,6). 

2.3.2. By a fundamental theorem of T. Matsusaka [Ma72], there is an integer q 
depending only on P(x) such that for all polarized hyperk~hler varieties (Y,t/) 
with Hilbert polynomial P(x), q| is the class of a very ample line bundle. We 
set m = q �9 P(1), and M = P(m) - 1. Then /7 | comes from a very ample 
element of Pie Y. 

2.3.3. Let us consider the smooth subvarieties Z c_ 1 ~  such that (Z, [0(1)]) =~ 
(y,q| for some polarized hyperkiihler variety (Y,q) with Hilbert polynomial 
P(x) (over any field of characteristic 0). This is the same as the set of smooth 
Z c__ IP g such that 

i) Z(tPz(k))= P(mk), all k, 
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ii) d~z(1) is divisible by m in Pic Z, 

iii) h~ 1, and 

iv) the canonical bundle of Z is trivial. 

Such subvarieties Z are parametrized by a Zariski open subset H,, of the Hilbert 
scheme Hilbe(~)(lP~). We denote by Z--~ Hm the universal family. 

2.3.4. The quotient space Hm/PGL(M + 1) exists as an algebraic space, sep- 
arated and of finite type over Q, or any field of characteristic 0 (see e.g. 
[MFo82] App. to Ch. 5, for a description of the local charts, using properties 
b), c) and f) above). It is a coarse moduli space ./'or polarized hyperkiihler 
varieties with Hilbert polynomial P(x). 

2.3.5. Remark. Using Chow coordinates instead of Matsusaka's theorem, one 
shows that there exists a coarse moduli space, separated and of finite type over 
K, for very polarized hyperkiihler varieties of degree d; indeed it is finite 
disjoint union of spaces HI/PGL(P(1)), for finitely many P(x) (note that by 
point f) above, "very ample" is an open condition). Similarly, there is a coarse 
moduli space, separated and of finite type over K, Jbr polarized K3 surfaces 
of  degree d; indeed, it is a finite disjoint union of spaces H3/PGL(P(3)), for 
finitely many P(x). 

2.4 Cubic fourJblds and their Fano varieties 

Let Y C F~ be a smooth cubic hypersurface, endowed with the polarization 
r /=  [Or(l)]. Let us denote by (F, tf)  the polarized Fano variety of Y: F is 
the variety of lines in Y, and ~/i the class of d~F(1) in the PliJcker embedding 
[BED85]. For any point y of Y, there is a pencil of lines passing through y. 
It follows that the natural morphism Am(Y, t/) = Aut Y fq PGL(6) ~ AutF is 
injeetive; hence Aut(Y,r/) is finite (of. 2.1c)). We denote by Z the incidence 
variety, and by p: Z ~ F, q: Z ~ Y, the canonical projections. 

It turns out that F is a variety of K3 type, more precisely a projective 
deformation of a fourfold S [zl, where S is a K3 surface of degree 14 in IP 8. 

Let S be the Zariski open subset of ]p55 which parametrizes smooth cu- 
bics in IP 5, and let S I be the component of the open Hilbert scheme Hi 
which parametrizes (as above) the deformations of the corresponding Plticker- 
embedded Fano varieties F _ ~'K ~. 

The natural morphism S ~ S t gives rise to a morphism of coarse moduli 
algebraic spaces/~: S/PGL(6) --* SP/PGL(M + 1). 

3 The period mapping 

3,1 

From now onwards and until Sect. 6.5, the ground field is C (unless otherwise 
specified: 3.4, 4.4 and 5.5). 
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Let (Y, ~/) be a polarized variety and let k be a positive integer as in 1.4; 
we record the quadratic form (,)n on H2k(Y, Z)(k)/torsion, defined by (x, y)q = 
( -  1 )kx U y U q U. . .  U q E H 2 dim Y(y, Z)(dim Y) ~ Z. Let pZk(y, 7Z)(k) = 
P2k(y, rl,7Z)(k ) denote the primitive lattice, i.e. the orthogonal complement of 
the image of H2k-E(Y, Z ) ( k -  1 )U ~/in H2k-E(Y, Z)(k)/torsion. This lattice car- 
ties a Hodge structure of weight 0, polarized by (,)~. In the sequel, we assume 
that the Hodge structure on PEk(y, 7z,)(k) is of type ( -1 ,  1 ) +  ( 0 , 0 ) +  ( l , - 1 )  
with h I,-I = 1. Then the rank of P2k(Y,Z)(k) is N + 2, where N = h ~176 and 
the fact that (,)~ is a polarization means that it induces a non-degenerate 
quadratic form on PEk(y, TZ)(k)| F,., positive on the (0,0)-component, nega- 
tive on the ( -  l, 1 ) + (1, - 1 )-component. 

Examples. Our examples will be polarized abelian surfaces and hyperkiihler 
varieties (for k = 1), cubic fourfolds (for k = 2), and canonically polarized 
surfaces of general type with pg = 1 and :U 2 = 1 (for k = 1, and denoting 
by ~ the canonical line bundle); the Kodaira dimension is 0, 0, -oo ,  and 2 
(maximal), respectively. 

For abelian surfaces, one has N = 3; for K3 surfaces, N = 19; for a variety 
of K3 type and of dimesion >2 ,  one has N = 2 0  (resp. N = 4 )  if it is a 
deformation of a S It] (resp. Kr), cf. Sect. 1 and [Be83a]; for cubic fourfolds, one 
has N = 20, cf. IRa72], while for canonically polarized surfaces with p.q = 1 
and ~ 2  = 1, N = 18 and Pz(Y,Z)(1) is unimodular [C80,T80]. 

3.2 

Let Vz-~ (Zu+2,( , ) )  be a quadratic lattice of signature ( N + , 2 - )  and let 
us write V for Vz | ~ ,  V~ for Vz | lR. The Hodge structures of type 
( -  1, 1 ) + (0, 0) + ( 1, - 1 ) on Z N+2 polarized by l, ) are parametrized by f2 + := 
O(N, 2)/O(N) x SO(2), which is a disjoint union of two copies of the hermitian 
symmetric domain attached to Spin VR; the complex dimension of f2 + is N. 

A k-marked polarized variety (Y,q,Q of type Vz is a polarized variety 
(Y, q) together with an isomorphism of quadratic lattices e: (P2k(Y,Z)(k), (,)~) ~- 
Vz. One thus attaches to (Y,q,e) a point ~(Y,q,e)  in I2 +, called the period of 
(Y, 1/,~:). Using an auxiliary k-marking, one can attach to any polarized variety 
(Y, 17) ("of type Vz") a well-defined point in f2• still called its period, 
which depends holomorphically on (Y,q) [G71] 9.6. 

3.3 The case of  a polarized hyperkiihler variety (Y, ~1) 

Proposition 3.3.1. Let f :  ~/ ~ 5 a be a local universal projective deforma- 
tion of  (Y,~l). By restricting oo ~ if  necessary, one can assume that there is a 
continuous marking on the p2-lattices of  the fibres. Then the induced period 
mapping 5r --, g2 + is a local isomorphism. 

See [Be83a] Sect. 8, which relies on the smoothness of the Kuranishi family, 
due to F. Bogomolov [B74]. 
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Corollary 3.3.2 (Todorov). The "'open" Hilbert scheme Hr~ is smooth. 

Indeed, the local deformation space 5 p attached by the proposition to 
(Y,t/| is smooth; the local deformation space for the embedded Y C IP M 
(via q| is open in a PGL(M + 1)-torsor over 6 a, and locally isomorphic 
to Hm in the neighborhood of  the modulus of (Y, t/| [T90]. Hence Hm is 
smooth (but not necessarily connected). 

Corollary 3.3.3. The period mapping from any connected component S of  
Hm(tE) to I2+/O(Vz) is a dominant analytic mapping. In particular, for any 
s E S, the imaoe of~zl(S((E),s) in O(Vz) given by the monodromy of the uni- 
versat Jamily Zis --+ S has finite index in O(Vz); and, if N > O, it is Zariski- 
dense in O(V) or SO(V). 

The second assertion follows from the first according to the argument of 
[G71] D1 (cf. also [D72a] 4.4.17); the third assertion follows from the second 
according to [Bo69] 15.12. 

This shows that hyperk~ihler varieties with b2 > 3 satisfy properties A1 and 
BI stated in 1.4. (note that ~ extends to a polarization of the Hilbert family 
_Z_ls ~ S (integrality of  the Chem class)). Instead of a component S of H,~, one 
could take any algebraization of the formal universal projective deformation of 
(Y,q). We notice that, by Lefschetz' theorem, BI ~* B~-. 

Proposition 3.3.4. Up to isomorphism, there are only finitely many com- 
plex polarized hyperkiihler varieties with given Hilbert polynomial (resp. very 
polarized hyperkiihler varieties of  dimension 2r and degree d, reap. polarized 
K3 surfaces o f  degree d) with oiven period in 12+/O(Vz). 

Proof Since the local period mapping Sf ~ f2 + is a local isomorphism (3.3.1), 
it is enough to show that every fiber of the period mapping # :  S ~ f2+/O(Vz) 
has finitely many connected components. Let F be a torsionfree arithmetic 
subgroup of SO(Vz), and let Sr be a scheme, finite etale over S, and sr E Sr 
lying above s, such that the image of zl(Sr, sr) in O(Vz) factorizes through F 
(such a scheme exists by the generalized Riemann existence theorem). We 
have a commutative diagram 

~r Sr ~ f2+/l" 

s ~ Q• 

According to A. Borel [Bo72], # r  is automatically a morphism of schemes. On 
the other hand, 6 is a surjective morphism of algebraic spaces. Therefore, for 
any t E O+/O(Vz), ~ - l ( t )  is a closed algebraic subspace, being the projection 
under 6 of a finite union of  fibres ~ r l ( t r ) ,  tr 6 n-l( t) ;  hence ~ - l ( t )  has 
finitely many components. 

3.4 The case o f  a cubic Jbur]bM 

We take up the notations 2.4 again (with K C (E). The algebraic correspon- 
dence p.q*, which is usually called the 'Abel-Jacobi' correspondence, induces 
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an isomorphism in cohomology [BED85]: 
oc: H4(yC, 2Z)(2) --+ H2(Fc, 7Z)(1). Moreover, one has ~(~fl) = q', and the 

restriction of ~: P4(Y~z,Z)(2)~ PZ(Fr is a "quasi-isometry": {~(x), 
~(y)),, = 6(x, y)q. On the other hand, it follows from [Ra72] that statement 
3.3.1 also holds for cubic fourfolds. From this, one derives as in 3.3 that 

~') cubic fourfolds satisfy A2 and B2 (even B + in fact, because the Hodge 
conjecture is known for them, cf. [Z77], or appendix 2 for a very short proof); 

ii) the period mapping Sc/PGL(6) --+ 12• has finite fibers; 

iii) denoting by K the algebraic closure of K in ~E, there is a finite number 
of PGL(6, K)-orbits among all non-singular cubic fourfolds over K" with given 
period in Q+/O(Vz). 

Since Sc-*I2+/O(Vz)  factorizes through the period mapping S~-+  
I2+/O(VT), 6 one also deduces that the morphism /~: S/PGL(6) 
S ' /PGL(M + 1) of 2.4 has finite fibers; this implies: 

iv) there is a finite number of PGL(6,-K)-orbits among all non-singular cubic 
fourfolds over K whose Plficker-polarized Fano variety is isomorphic to a given 
polarized hyperk~ihler variety over K. 

Remark. C. Voisin [V86] has proved a 'Torelli theorem' for cubic fourfolds, 
but we shall not need this result (from which one may derive that there is at 
most one PGL(6,K)-orbit as in iv)). 

3.5 The case of  a canonically polarized surface of  9enerat type 
with pg = 1 and ~ 2  : 1 

The canonical model of such a surface is a smooth complete intersection of two 
sextics in the weighted projective space IP(1, 2, 2, 3, 3) [C80, T80]. We denote 
here by S the (smooth) Zariski-open subset of Sym21p 18 which parametrizes 
such complete intersections (with K ample). There is a coarse moduli space 
M for such surfaces, which is a smooth rational variety of dimension 18 = N. 
The period mapping S ~ O+/O(Vz) factorizes through a dominant mapping 
v: M --~ O+/O(Vz). 

From this, one derives that these canonically polarized surfaces satisfy 
A1 and B +. However, the analog of 3.3.1 is no longer true: some of the fibers 
of v have dimension 2. 

3.6 The case of  a polarized abelian surJace (Y, ~) 

The identification of p2(y, Q) with a direct summand of A 2 Hi(Y, ~ )  gives rise 
to an exact sequence of  ~-algebraic groups 0 ~ Z/2Z--+ Sp(HI(Y,@),r/) 
SO(V) ~ O, and to an identification of I2 + with the (complex) 3-dimensional 

The change of (,)~ into 6{,). does not affect I2 • nor O(Vz) 
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Siegel upper half-space. One derives that polarized abelian surfaces satisfy 
AI and B~. 

4 The Kuga-Satake construction 

4.1 

This construction of abelian varieties applies to any polarized Hodge structure 
of type ( -  1, 1) + (0, 0) + (1, - 1) on Z N+2 (N > 0), polarized by the form (,) 
of signature (N+, 2 - ) ,  see [KS67] and [D72]. We follow the conventions of 
P. Deligne [D72]. 

Let G stand for the even Clifford group, i.e. the group of invertible elements 
y in the even Clifford algebra C+(V) such that yVy -1 = V, so that there is 
an obvious surjective homomorphism of linear algebraic groups over ~ :  G --o 
SO(V), with kernel the homothety group; the induced homomorphism G(Q) -o 
SO(V)(Q) is still surjective. 

The morphism h : (I-I~/R ~m) ~ SO(VR) which describes the Hodge de- 

composition on ~N+2 lifts uniquely to a morphism/~: (1-Ir ~m) ~ GR, such 
that the image of any element 2 in the diagonal group Gr, acts as the multi- 
plication by 2. Then the norm (I-[r ~m) ~ ~m coincides with IN o/~, where 
IN stands for the spinorial norm 7 (the character of G given by IN corresponds 
to the Tare Hodge structure ~ ( - 1 ) ) .  

Let Lz be a free (left) C+(Vz)-module of rank one, and let us write L 
for Lz | Q, LR for Lz | ~ .  Then LR is naturally a G~-module (action by 
left multiplication), and/~ gives rise to a polarizable Hodge structure of type 
(0, 1) + (1,0) on Lz. 

This defines a complex abelian variety A = A( Vz, h) of dimension 2 N, called 
the Kuga-Satake variety attached to (Vz, h), by the condition that Hi(A, Z)  = 
Lz as a Hodge structure. 

This construction applies in particular when h is the image by ~ of the 
Hodge structure on P2k(Y,Z)(k) attached to a k-marked polarized variety 
(Y,q,e) satisfying axiom Ae. In fact, up to isomorphism, A does not depend 
on e; we write A = A(Y, r/) or A(Y) to emphasize the geometric origin of (Vz, h) 
(omitting k from the notation for short). 

Example 4.1.1. The Kuga-Satake abelian variety of a polarized abelian surface 
is isogeneotrs to its fourth power [Mo85] 4.5. 

Remark 4.1.2. Apart from hyperk~ihler varieties, surfaces with Po = 1 and 
~ 2  = 1, and cubic fourfolds, there is another specific case of interest where the 
Kuga-Satake construction takes place, namely in the study of desingularizations 
of Hilbert modular surfaces [082]. 

7 Denoting by * the main (anti)involution of the Clifford algebra, ]Ha is a*a 
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Variant 4.1.3. Of course, the construction also works if one replaces (Vz, h) 
by (V~,h #) := (VT, h)~ the trivial polarized Hodge structure on 7. (with 
(1, 1} = 1); we denote by L#,A #, the objects corresponding to L,A. This trivial 
trick enables us to recover Vz from C+(V~), when N is even (cf. Sects. 9, 10). 

Since C(V #) ~ C( V)~gr C(1), and C(1) -~ tI~ ~ Re, with e 2 = 1, one has 
C+(V #) = C+(V)| 1 @C-(V) |  ~ C(V) as left C+(V)-modules. If v is 
any non-isotropic element of V,C+(V #) is a free left C+(V)-module with 
basis 1, v. 

Therefore the G-modules L 2 and L # are isomorphic, and the abelian varieties 
A 2 and A # are isogeneous. 

Remark 4.1.4. (not used in the sequel). One has a "periodicity isomorphism" 

C+(V) QMI6(~I~)~ C+(V(#S)), which is an isomorphism both of left C+(V)- 
modules and of rings, and which comes as a composed isomorphism, as follows 
([Ja80] Sect. 4.8, Th. 4.13, Lemma 5): let v • be the orthogonal complement 
of v in V, st the standard quadratic form on tI~ n, and put q = -(v,v), then 
C+(V) | C(~8,q 8 �9 st) ~ C(v•174 C(t~8,q 8 �9 s t )~C(v  -L @ ~8, q(( ,  ) 

| st)) ~ C+(V(#8)). Caution: the periodicity isomorphism is an isomorphism 
of left G-modules, but not of SO( V )-modules. 

Variant 4.1.5. It will also be useful to apply the Kuga-Satake construction 
in the case when (Vz, h) is replaced by (Vbz, h), where Vz b is the orthogonal 
complement of some algebraic classes in p2k(y, ~) (k)  (if  any), with respect to 
some positive integral multiple of (,)~ (note that im h c_ V~ | IR); we denote 
by Lb,A b, the objects corresponding to L,A. As in 4.1.3, one can see that A is 
isogeneous to a power of A b. 

4.2 

Let us denote by C + the opposite ring (Endc+(zz)Lz)~ of the ring of C+(Vz)- 
endomorphisms of Lz. There is an isomorphism C + ~ C+(Vz), well-defined 
up to conjugation. Note that the right action of C + on Lz respects the Hodge 
structure, so that A has complex multiplication by C +. 

Examples. For K3 surfaces, this ring is an order in the matrix ring M210(~), 
see [KS67]; s for higher dimensional varieties of type K3 or cubic four- 
folds, it turns out that the center of C + is an order in an imaginary quad- 
ratic field, while for canonically polarized surfaces with pg = 1 and 
.~ff2 = 1, the center of C + is an order in ~ @ ~,  see also [Sa66] Sect. 2, 
Remark 3). 

On the other hand, one has a canonical ring isomorphism C + (Vz) 
Endc+Lz, which is also an isomorphism of  Hodge structures of type ( -  1, 1) + 
(0, 0) + (1, - 1 )  if, in the left-hand side, the tensor construction C+( ) is 
understood as a functor on polarized Hodge structures of weight 0. In the 

8 [KS67] uses the opposite of ( } and H1 instead of H l, but the result is the same 
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application to k-marked polarized varieties, we write this isomorphism as: 
~: C+((P2k(Y,Z)(k),(,)n))"~Endc+Hl(A,Z). By Artin's comparison theo- 
rem, one derives a similar isomorphism ~k ̂  in etale cohomology (e.g. with 
coefficients in Z ̂  = 1-Ip Zp, or in A y = Z ^ | Q). 

4.3 

A polarization of the Hodge structure on Lz (or of A) may be obtained as 
follows [Sa66] Sect. 2, Ex. 3: let us choose a generator of Lz, which amounts 
to an identification C+(Vz) = Lz = C+; and let a be a non zero-divisor in C + 
with a* = - a .  Then the skew-symmetric form cpa : Sym2Lz --+ Z ( -  1) given by 
cp,~(x,y) = tr(x*ya) defines a polarization of Lz if and only if the symmetric 
form v/~a(x,h(~/"~f)y) is definite positive (this condition on ~a depends 
on the component of  f2 + to which h belongs, but not on the location of h 
in I2+). One checks that +q~a does not change (as well as the equation a* = 
- a )  if  one changes the generator of  Lz by multiplying it by an element of 
G(~) ,  because the spinorial norm of an element v of G ( ~ ) A  C+(Vz) * is 
Nv  = :t:1. 

4.4 

We pause to introduce some arithmetic groups. We set Gz := G(Q) N C+(Vz) *. 
The homomorphism G ( ~ )  ~ SO(V)(ff~) maps Gz to a subgroup of SO(Vz); 
indeed, for every 7 E Gz, conjugation by ~ is an automorphism of C(Vz) which 
respects V, hence also Vz. Thus there is an exact sequence 0 ~ Z/2Z --~ Gz 
SO(Vz). 

By a well-known lemma of Minkowski-Serre, the principal congruence 
subgroup Fn of level n > 2 in Gz (i.e. the subgroup of elements --- 1 mod. n 
in C+(Vz)) is torsionfree. 9 Note also that Fn lies inside Spin V = KerN.  
The image Fn ~ of F, in SO(Vz) is a subgroup of the principal congruence 
subgroup of  level n in SO(Vz); according to [Bo69] 8.9, it is an arithmetic 
subgroup, i.e. of finite index in the latter. 1~ On the other hand, one reads 
on the last displayed exact sequence that the homomorphism Fn ~ F~ ad is an 
isomorphism (it will be convenient to identify these two groups). We also 
introduce Vz^ := Vz |  ^, Gz^ := G(Af)Nc+(Vz^)*,Kn := subgroup of 
Gz^ consisting in elements = I mod.n in C+(Vz ̂  ), so that F,, = G ( ~ ) N  Kn. 
We note that the image K,~ d of Kn in SO(Vz^ ) is an open subgroup; indeed, 
for every prime d not dividing 2n and such that the quadratic space Vz | Fe 
is non-degenerate, the d-component of  K ~  is SO(Vze ), because the morphism 

9 In tact, the subgroup of elements of Gz(Zt) congruent to I mod. n is already torsionfree 
for any odd prime/In, and for ~/= 2 if n is divisible by 4 
10 As the referee points out, it does not contain congruence subgroups in general, because 
the congruence subgroups in Spin define a topology for which the completion is an open 
subgroup of Spin(FA/), while the congruence subgroups in SO define a topology for which 
the completion is the image of this subgroup in SO(FAI), i.e. a quotient by an infinite abelian 
group of exponent 2 
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G --~ SO(V)  extends to a smooth morphism of group scheme over Zr surjec- 
tire on Fe-points (cf. [Ja80] 4.14). 

The rest o f  this paragraph will not be used be.[bre Sect. 8. The reader 
who is interested only in problems 1.1.2. or 1.1.3. may skip it. 

4.5 Kuya-Satalce packayes 

We axiomatize, in a way suitable for descent arguments, those structures 
involved in the Kuga-Satake construction which make sense algebraically over 
a field K of characteristic 0. 

Let C + be a ring (with unit). Let Vz^ be a free Z^-module of rank 
N + 2 =>- 2, endowed with a non-degenerate quadratic form (,) and with an 
isometric action of GaI(K/K). For n > 2, let as before ]Kn denote the subgroup 
of the even Clifford group of VAU := Vz^ | A f consisting in units in C+(Vz^ ) 
which are = lmod.n. 

Definition 4.5.1. A Kuga-Satake package (or K.-S. packaye) associated to 
(V~t^,C+,n) over K is a 4-tuple (A,/I, {cpa},-6), where 

A is' an abelian variety over K, 
t~ is an embeddin9 of  C + into EndxA, 
{~oa} is a non-empty collection of  polarizations o f ^ ,  indexed by suitable 

elements a o f  C +, 
i5 is a class in ]K,\Isom(C+(VzA),Hdt(A-~,7/A)) (.['or the right action o f  

K,~ on C+(Vz^ )), f ixed under GaI(K/K); 
these data bein9 subject to the Jbllowin9 conditions: 

a) the left C+(Vz^ )-module structure on H~t(A ~, Z ̂ ) induced by any repre- 
sentative o.['-6 commutes with the right action of  C +, 

b) the opposite rin9 of" #(C +) | 7z ̂  coincides with Endc+cvz^ )Hdt(A~,Z^), 

c) an element a of  C + is called 'suitable' if  via some representative v o f  
-6 and some identilication 7Z. ̂ ~ Z^(1), the formula ~o~(x,y) = tr(x* y # ( a ) )  
(x,y E H~(AE, Z^  )) defines a polarization o f ^ ,  which we denote by cp~. 

Remarks 4.5.2. i) "6 gives rise to two more geometrically meaningful objects: 
a Galois isomorphism 0: C+(VzA)|  "~Hdt(A-~,Z/nZ), and a Galois 
isomorphism ~^:  C+(Vz A ) -~ Endc+H~(A~, Z A). 

ii) The subring #(C +) of EndA is uniquely determined by condition b), as 
tz(C + ) = E n d A  n (Endc+ (vz ̂  )HIt(A~, ~g  ̂))op. 

iii) The polarization ~Pa is uniquely determined by condition c); indeed, 
polarizations defined by the same a but different representatives o or differ- 
ent identifications Z A ---Z^(1) must be equal except for a possible factor 
in (~l(lKn)- Z ^ * ) N ~ *  = {+ l} ,  which is +1 by the positivity condition 



220 Y. Andr6 

involved in polarizations. Note that ~0a = tp_~ (just change the sign of the 
identification ~.^ ~ Z^(1)). 

iv) A K.-S. package over K induces one over any extension of K. 

4.6 

The Kuga-Satake construction described in 4.1, 4.2, 4.3, associates in a tran- 
scendental way to any polarized variety (Y,r/) satisfying condition Ak a Kuga- 
Satake package over K = ~, associated to (Vz | 7~^, C+,n), depending on the 
choice of a Fn-orbit of generators of the free C+( Vz )-module Lz (with the 
notations of 4.1). If Lz = C+(Vz)=  C +, with the Fn-orbit of the canonical 
generator, we call the associated K.-S. package the canonical Kuga-Satake 
packa.qe of (Y,q) (the level n being understood). 

4.7 

Definition 4.7.1. Two K.-S. packages (A,/~,{tpa},~) and (A',/~',(~ya,},~') 
associated to the same datum (Vz^, C +, n), are said to be isomorphic ~f there 
is an isomorphism i: A --+ A I, such that # = iltli -1, -6= i* 0"61 

Lemma 4.7.2. i) /f the K.-S. packaoes (A,#,{~oa},~) and (A',t~',{qg',,},'~') 
associated to the same datum (Vz^, C+,n) are isomorphic, t h e n  i*q)iai_ I = ~Oa, 

ii) K.-S.-packayes have no non-trivial automorphism. 

Proof  i) Follows from the argument given in Remark 4.5.2iii). Let i be an 
automorphism of a K.-S. package. The formula ~ = i* o ~ implies that i E ~(n N 
(C+) * (considered, via some representative of ~, as a subalgebra of C+(Vz^) 
acting on the right on itself). The formula # = it1'i - l  then shows that i is a 
unit in the center of C +, congruent to I rood. n. By i) it follows that i*~oa = (on; 
one concludes that i is a root of unity congruent to 1 mod. n, hence i = id (one 
can also remark, more directly, that the center of ~n C) (C+) * is trivial). 

5 The Kuga-Satake construction in a relative setting 

5.1 

Let S be a smooth connected complex algebraic variety with a distinguished 
point s, let f :  _.Y--> S be a projective smooth morphism, and let _~ be a 
section of R2f~Z(1) / tors  such that the fiber ~ a polarization (we identify 
the numerical equivalence class group of line bundles on Y_~ with a sublat- 
tice of H2(Y_.~,Z)(l)/tors). We denote by P2kf .~Z(k)  the local system ortho- 
goual complement of the image of R 2 k - 2 f ~ Z ( k -  1)U r/ ill R2kf.~Z(k)/tors 
with respect to the quadratic form (x, y)~_ = ( -  l)kx t3 y U r/U.. .  U _~. We 

assume that the variation of Hedge structures carried by P ~ f ~ Z ( k )  is of 
type ( - 1 , 1 ) + ( 0 , 0 ) + ( 1 , - 1 )  with h -t,I = 1 .  We let N = h  ~176 > 0. Let us 
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fix a k-marking es of (Y__~,~). Then there is a unique isomorphism _e 
compatible with ~.~ between Vz and the constant quadratic lattice obtained 
from 2k art (P f .  Z(k), (,)_~) by pulling it back to the universal covering S of 
(s",s). 

To fix ideas, we decide that the period mapping S ~ 12 • maps to the 
component O +, not I2-. Using the morphism h described in 4.1, one endows 
th~ constant local system Lz (a free left C+(Vz)-module of rank one) on f2 + or 
on S with a variation of polarizable Hodge structure of type (0, 1 ) + (1, 0); this 
defines an analytic family ~ of abelian varieties parametrized by the analytic 
space S. We shall show that ~ descends - if not to S itself in general - at least 
to a finite unramified coverin9 of  S. 

5.2 

By the generalized Riemann existence theorem, there exists an algebraic finite 
connected unramified covering of S, say Sn, and a point Sn of Sn above s, such 
that the monodromy homomorphism rCl(Sn, sn) --o O((p2k(y__~, 7Z)(k), (, t~))  
= O(Vz)factorizes throuyh the arithmetic group Fn introduced in 4.4.3 (this 
is a priori stronger than just requiring that the local system P2kf,~Z/nZ 
becomes constant on S~). There is then a well-defined analytic period map- 
ping ~ :  S~ ~ f2+/Fn, and the polarizable variation of Hodge structure on I2 + 
attached to Lz, with its right C+-module structure, is Fn-equivariant, hence 
descends to O+/Fn, where it defines an analytic family of abelian varieties 
(with level n structure, and complex multiplication by C+). By the theorem of 
Borel already quoted in 3.4, this is in fact an algebraic family. Pulling back on 
S,, this yields an abelian scheme g: A ~ Sn (endowed with a level n structure 
depending only the F,,-coset of the marking), and ~ is nothing but the pull-back 
of y to S. 

For any point t of  Sn, there is a well-defined Fn-conjugacy class of 
k-markings et of (Y_t,_qt); any such ~;~ corresponds to a point/" of Sn xa+/r, f2 + 
above t, to which is associated a canonical isomorphism (Lz)r -~ HI(A__t,Z), 
respecting the Hodge structure. Hence A_A_4t is the Kuga-Satake variety of 

(s ~t)." 

5.3 

Note however that the local system on f2+lFn induced by Lz (resp. C+(Vz)) 
is described by the action of Fn by left multiplication (resp. conjugation). 12 
Therefore one can reasonably identify Lz and C+(Vz) only up to right 
multiplication by elements of  Fn (on C+(Vz)). Let us fix such an identifi- 
cation. It follows from 4.3 that the collection of polarizations {tpa} of the 

II with slight abuse of language, because we do not assume that ~ is a polarization, for t4:s 
12 In other words, for any complex point t of Sn, the monodromy of 0 (resp. of the pull- 
back on Sn of the morphism f )  is given by 9~. : ~q(Sn,t) --~ Fn (resp. ~ .  followed by the 
isomorphism Fn -* F~ d) 
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Hodge structures on Lz (parametrized by f2 +) gives rise to a collection of 
polarizations {~_~} of 9. On the other hand, using auxiliary markings et of 
(Y~,~) as above, one obtains for any point t of Sn a well-defined element 

of F,\Isom(C+(Pu(Y__t,Z)(k), ( ,)~),HI(At,  Z))  (for the right action of Fn on 

C+(Vz)); the corresponding element ~t in etale cohomology is the one entering 
the definition of  the canonical K.-S. package of (Yt, r/t) 15. 

The isomorphism of 4.2 admits a relative analog: denoting by f,, the pull- 
back of f on Sn, one has a canonical isomorphism of  sheaves of  algebras 
on S~ 

~ : C+ ( (P2k(f nan).Z(k ), ( , )y_) ) ~- Endc+ R' ga.nTs , 

(which induces a similar isomorphism ~^ in etale cohomology). 

5.4 

Let us now assume that the monodromy o f  the morphism f m pZk factorizes 
through the arithmetic group F~ d (so that Sn = S), and is Zariski-dense in 
SO(V). We note that because Fn lies in Spin V, the monodromy o f f  is Zariski- 
dense in SO(V) if and only if the monodromy of 9 (in H 1 ) is Zariski-dense 
in Spin V; this is the case if the monodromy of f is of finite index in F, and 
N > 0, e.g. in the situation occuring with axioms Ak and Bk (following the 
argument of [G71] D1). 

Under this assumption, we point out two rigidity properties of the Kuga- 
Satake families. 

Proposition 5.4.1. For any commutative flat 7l-algebra R without zero-divisor, 
is the unique isomorphism o f  sheaves of  R-algebras 

c+((P~f~."R(k), (,),_)) ~ Endc+Rlg.~R. 

See [D72] 5.7 and 3.5. 

Proposition 5.4.2. For any abelian scheme g' : d' ~ S, one has 

Homs(Ai,A) ,v 1 an 1,an - _ = Homs(R 9. Z,R y .  Z) .  

Proof According to [D71a] 4.4.12, the conclusion holds if (and only if) 
both of the following conditions are satisfied: a) Ends(A) -~ (Ends(Rlo.~Z)) ~ 
b) there is no complex embedding p of the center Z of Ends(A) such that the 
direct summand i an R g. Z | IE is of type (1,0). 

Remember that for any complex point s of S, (Rtg.anz)r is identified 
with Lz (via a marking ~). The monodromy of g is Zariski-dense in Spin V; 
in particular F(S~,Rlg.~Z) = O, and (Ends(Rlg.~Z)) ~ ~ (Endspm vV) ~ n 
(End Lz)~ = C+. 

On the other hand, C + | Q is a tensor product of quatemion Q-algebras 
and its oenter ~ ' (C + | Q), which is at most quadratic over Q; keeping this in 
mind, one may apply loe. tit. 4.4.11, which settles a). 
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As for b), the case to be ruled out could occur only when Z | r 
Lr(C + | is an imaginary quadratic field. Let us write C+((P2kf.anC2(k))~) ~- 
End W + @ End W-,  where W + and W- are the semi-spinorial representations 
of G~z. Then, possibly after changing p into its conjugate, the direct summand 
R 1 ..an,r, | Y. ~ z,p (12 of the Gr Rlg~C ~- Lz | �9 may be identified 
with a sum of copies of W +. If it were of type (1,O), then W- would be of 
type (0, 1), and the bigraded space C+((P2kfa.nC(k))s) would be of type (0, 0), 
which is however not the case. 

5.5 First proof o f  the main Lemma 1.7.1 

Let (Y,q) be a polarized variety defined over some subfield K of C, which 
satisfies axioms Ak and Bk. We keep our usual notations Vz=(P2k(Yr 
(, }~),.--- In axiom Bk, we may replace S by a finite etale covering so that the 
monodromy of f ~ :  --Yr ~ Sr in p2k is contained in Fn = F~a; it is Zariski- 
dense in SO(V), and one may consider the Kuga-Satake abelian scheme g: 
A_ := A_(Yr --~ Sr together with the identification/~: C + ~ EndA_ as above. 

The pair (g,/z) descends from tE to the function field K'(T) of  some smooth 
connected algebraic variety T defined over a finite extension K r of K in tE 
(which comes equipped with a Weil generic point r E T(~)):  one obtains 
an abelian scheme h: B_--, S xx  T, and an isomorphism v: C + ~ EndB such 
that (h~,~), v(~. ,~) = (A(Yr inclusion). Moreover, one argues as in [D72] 6.5.1 
(using 5.4.1 above) that there is a unique isomorphism of local system of 
rings: 

( , )  + 2k . .  C ((P (f~).TZ(k),  (, }~)) ~ Endc+ Rlh~.Z ; 

this gives rise to an isomorphism of sheaves of Z^-algebras: 

(**) C+((PZak f r  * Z^(k),( ,  }~_)) ~ Endc+ Rlth, TZ ̂ 

(we remark at this point that axiom Bk ii) implies that t/extends to a section 
of R~tfr.TZ^(1)/tors over S x r  T, still denoted by _q). 

Let us now consider the pair (h t, v ~) obtained from (h, v) by the base change 
Tr ~ S x/~ T induced by sr E S(tI2). 

Lemma 5.5.1. (h', v r) is isoconstant. 

This amounts to the finiteness of the image F of  rq (T(tE), z) in Autc+ H l (h~, 7Z ). 
From the existence of  (*), it follows that Endc+Rlh~.Z is a constant local 
system on T(tI~); thus F is abelian. According to [D71a] 4.2.9, this implies 
that F is finite. 

Replacing K '  by a finite extension if necessary, we may assume that T 
admits a K'-rational point t. By the lemma, (ht~,t)r162 = (h(~,o,v(s,,)) = 
(A( Yc ), inclusion). On the other hand, the fiber of (**) at (s , t)  
gives a Gal(K/K')-invariant isomorphism ~,^ : C+(PZ~kt(Y-g, Z^Xk) ,  (,)~) 
Endc+ H~t(h(s,n-r,Z ̂ )  (where K stands for the algebraic closure of K in r  
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which by base change becomes identified with the isomorphism 
k^: C+(P~(Yr  (,1~) ~- Endc+ H~(A(Yr ~ ^ )  introduced in 4.2. This 

proves 1.7.1, by putting r,A = h(~,t). 

6 Proof of Theorem 1.5.1 

The reader who is interested only in the Shafarevich problem 1.1.1 may skip 
sections 6.2.3 to 7.6. 

This paragraph is a variation on the following general principle, which 
already underlay [D72]: if  a local system "of geometric origin" has a unique 
section (up to multiplication by a rational number), then this section should 
be motivated at every point. 

6.1 

Lemma 6.1.1. Let S be a smooth connected complex algebraic variety, s E S 
a point, and h: X ---* S a projective smooth morphism. Then ./'or any ten- 
sor construction of  weight zero 13 TH(X__~,I~) on H(X_.,,ff~), the .fixed part 
(~H(X.~,~)) n~r is motivated, i.e. is the realization of a submotive of 
~ ,~(~ ). 

Proo]: [A93]: replacing X_. by a suitable disjoint sum of fibered powers 
X__. Xs . . .  • 2"_ and using Poincar6 duality and Kiirmeth decomposition, one re- 
duces to the ease TH(X__~,Q) ---- Hi(X_~,~) for some i ~ 0. L e t X  be a smooth 
compactification of X, and let js denote the inclusion X_. s ~ X. By [D71a] 
4.1.1, Hi(X~, Q) ~l(s,s) - "* i -- . 

- ]s H (X, q~), hence it is motivated, since the category 
of motives (in the sense of 1.5) is abelian. 

6.2 

We consider a projective smooth morphism f :  __Y--+ S, a point s of S, and 
a section t/ of R2f.=Z(1)/tors satisfying the assumptions of 5.1 (from which 
we keep the notation). We assume in addition that the monodromy of f in 
p2k factorizes through Fn and is Zariski-dense in SO(V). This allows to con- 
struct the Kuga-Satake abelian scheme g: d := A_(Z) --4 S and the isomorphism 
~: C+(p2k( faa) ,Z(k) )~  Endc+Rlg,anZ, with ~ = 4. The results of 5.4 are 
available. 

Proposition 6.2.1. ~b is motivated. In particular, C+(/2k(Y_~)(k))= ~ 

r A~ (&)- 
Proof Let us consider the tower of motives ~ = ~W~,m(C+(~=(Y~)(k)), 
r ,r c_ ~.  ~,,~ (~2f~N+2(/~2k(r_., Xk)) ~2~ ,  ~',~,e,r C_ 
.,W, ~ (  ~2i:~r+2(AZt(Yc)(k)) ~ ,  r A l (A.~) ) (via the decomposition 
H a ( L ,  ~ X k )  = P = ( L ,  q~)(k )OH2k-2(Y---~, ff~X k - I ) U rl). 

t; I.e.' a finite sum of spaces Ha X~,Q) | @ (HC(~.s,Q)v)| with ab = cd + 2e 
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Applying 6.1.1 to ]rI-I-(Y_~ L3 As, Q)=Hom(l~2i~_N+2(I-I2k(Y__s)(k), Q)| 
EndHI(A~,Q)), one concludes that H(J/[) ~l(s,s} is the realization of a sub- 
motive .,a'0 of Jg. By 5.4.1, r is the unique element of H(Jr  which 
is an algebra isomorphism. Because C+(~2k(Y_~)(k)) and 8rid.c+ ~l(A_s) are 
Q-algebras in the tannakian category of motives, and by looking also at the 
top exterior power, the property of being an algebra isomorphism is preserved 
under the motivic Galois group. Hence ~k is fixed by the motivic Galois group, 
i.e. is motivated. 

Corollary 6.2.2. I f  N is even, det pZk(Y__~.)(k) := AN+2/,2k(Y__~.)(k) is the unit 
motive. 

Proof'. We use the filtration Fj of C+(V) defined as the image of V | in 
C+(V); this filtration is stable under O(V). We have FN/2+IC+(V) = C+(V) 
and GrN/2+LC+(V) ~Det  V, and there is a (non unique) lifting 
r :  Det V ~ C+(V) such that O(V) fixes fl(Det V). Because the motivic group 
of p2k(Y~)(k) is a subgroup of O(V), the filtration corresponds to a filtration 
by submotives F/C+(fl2k(~)(k)), and det/~2k(L)(k) ~ fl det ~2k(_E,Y,(k), which 

identifies with a submotive Jff of gnd~l (A, ) ,  on which the motivic group 
acts through {+l}.  Every element of H ( X )  is then fixed under the Hodge 
group, hence is induced by an element of EndA_ s | Q. Thus detfi2k(Y..y~)(k) _-_ 
~/" ~ Q(0), the unit motive. 

Corollary 6.2.3. I f  N is odd, p2k(Y_.~)(k) | det fi2k(Y,)(k) is (isomorphic to) 
a submotive of g~dc+ ~I(A.~). 

Here, Gr(N+I)/2C+(V) ~- A ~l+t V ~ v | det V as O(V)-module, and there 
is a (non unique) lifting if:  V |  ~ C+(V). Then ~poff identifies 
/~2k(Y~)(k) | det p2k(Y__~.)(k) with a submotive of g~d.c+ ~I(A_~). 

Variant 6.2.4. Let V b be the orthogonal complement to some algebraic 
classes in (Pzk(Y_~.,Z)(k), (,)~), let ~ b  be the submotive of p2k(~)(k)  with 

realization v b =  V~ |  and let us perform, as in 4.1.5, the correspond- 
ing Kuga-Satake construction. Then the isomorphism ~k b is motivated. In 
particular, C+(3 Vb) ~ 8mZ~c+b ~l(Ab). 

Indeed, fib is by definition a Hodge correspondence, and since the category 
of polarized Hodge structures of  weight zero is semisimple, there exists a 
Hodge correspondence n inducing a commutative diagram: 

C+(H('C~b)) --., C+(p2k(Y__,~,Q)(k)) 

Endc+~H~(Ab, Q) ,.- Endc+H~(A~,Q). 

Note that the top arrow is the realization of the morphism of motives 
C+(r '~b) ~ C+(fl2~(Y_~ )(k)) induced by the natural inclusion ~/r~ ~/~2~(_~)(k). 

According to [A93], any Hodge correspondence (in particular rQ on abelian 
varieties is motivated. It follows from that and 6.2.1 that ~b b is motivated. 
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Remarks 6.2.5. i) The corollaries also hold in this b situation (with the same 
proof); we refer to them by 6.2.2 b and 6.2.3 b respectively. 
ii) Proposition 6.2.1 and its corollaries apply as well to any fiber Y~, even 

though we do not assume that ~ (which is an algebraic class after Lefschetz) 
is a polarization. 
iii) In 6.2.1 and 6.2.4, one may replace the quadratic form Ix, x) by any positive 
rational multiple which takes integral values. 
iv) Because motivated cycles are shown in [A93] to be absolute Hodge-Tate 
in the sense of A. Ogus [Og82], 6.2.1 gives a new proof of the main result of 
[Og84]. 
v) Although the big monodromy assumption forces dimV > 3 in 6.2.1, the 

instance dim V b = 2 is allowed in 6.2.4 (and 6.2.2b). 

6.3 

Still, some sign problems prevent us from deducing 1.5.1 from 6.2.1: we must 
exclude - i d  from the motivic Galois group of det~2k(Y_~)(k) if N is odd, 
and ( - id ,  id) from the motivic Galois group of/~2k(y_~.)(k) ~ ~ d  ,~1(~) if N 
is even. 

In either case, we shall need the deformation lemma of [A93] 0.5 (which 
is the basis of the proof of the fact that Hodge cycles on complex abelian 
varieties are motivated): 

Lemma 6.3.1. In the situation of  Lemma 6.1.1, assume that the horizontal 
continuation (=  parallel transport) of  an element ~ E (TIt(X_~., ~))~s,s)  at 
some point t E S is motivated. Then ~ is motivated. 

Proof. As in 6.1.1, (TH(X__~,ff~))n~ts's)=j~TH(-Y,~), (~H(X__a,~)) ~s'~) = 
j~TH(X,Q).  The horizontal continuation of ~ at t generates a copy of the 
unit motive ~(0)  in (T~(Xt)) rq(S's). Then, since the category of motives is 
semisimple, there is a corresponding copy (via Jr*) of Q(0) in T,~(X); its 
image by j~ is a copy of ~(0)  in (1F~(X__~)) ~ts'~), whose realization contains ~. 
Hence ~ is motivated. 

6.4 

Let (Y,~/) be a polarized variety over r satisfying properties Ak, B~ of 
Sect. 1.4, and let us write A for A(Y, t/). 

Lemma 6.4.1. det ~2~(y)(k) is the unit motive. 

Proof Axiom Bk brings us back to situation 6.2 (replacing S by a finite etale 
covering i f  necessary). If  N is even, 6.4.1 follows from 6.2.2. Let us now 
assume that N is odd. If P2k(Y,Z)(k) happens to contain some non-zero 
algebraic class v, one may consider the orthogonal complement Vz b of v and 
conclude, via 6.2.4,6.2.2 b, that det ~trb is the unit motive (see also 6.2.5v) for 
the special case N = 1). Hence det ~ 2 t ( y ) ( k )  - det 3trb t~ ~ ( 0 ) .  
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In the general case, one represents detP2kf,~ff~(k) as a local subsys- 
tem of (R2kf~,n~(k))| (taking into account the ~tl(S, s)-invariance of the 
primitive decomposition of H2k(Y,Q)(k)). Then by 6.3.1 and the previous 
discussion, it suffices to find some point t of S such that P2k(Y__t, 7,)(k ) 
contains an algebraic class; or equivalently, by B~- iv), such that dim(VN 
Hk,~(Z,, r > o. 

By Bk iii), the image of the period mapping contains an open neighborhood 
of the period ~(Y,t/) in I2:t:/O(Vz). One deduces that there is an open neigh- 
borhood q/ of s (for the usual topology), and a locally constant k-marking _E t 
of P2k(Y t, 7Z)(k) on ag, such that the period mapping induces a surjection from 
q / t o  an open neighborhood of the period ~(Y_~,~,~) in 12 + (or 12-), which 
can be identified with an open subspace of  the Grassmannian of  (oriented) 
N-planes in VR. Therefore, there exist exceptional points in S, i.e. points t such 
that the real N-plane corresponding to ~(Y_t,_qt, e~) is defined over ~ ;  in fact 
the N-planes attached to such exceptional points are dense in the Grassmannian 
of N-planes in V (see e.g. a discussion of exceptional points in [X85] IX). 
For such an exceptional point t, one has dim(V NHk, k(Yt, C)(k)) = N > 0. 

Remark 6.4.2. In the case of  a K3 surface Y = S, there are at least two alter- 
native arguments avoiding 6.2.2b: 

i) one can use S [2] and the decomposition fiZ(SIZ])(1) -~ fi2(S)(1)@ ~(0)  (of. 
[Be83a] Lemma 2), and conclude by 6.2.2 applied to S[2]; 

ii) once reduced as above to the case of an exceptional K3 surface S, one can 
use the description of S given by Shioda-Inose [ShI77] as a quotient of the 
product of two isogeneous CM elliptic curves, in order to show directly that 
det/~2 (S)( 1 ) ~ ~ (0  ). 

Proposition 6.4.3. fi2k(y)(k) is isomorphic to a submotive of gna(,~l(A). 

This proposition implies 1.5.1 when K = r 

Proof of 6.4.3. If N is odd, this follows from 6.4.1 and 6.2.3. Let us now 
assume that N is even. Then, unlike C+(V), C+(V #) is a faithful representation 
of SO(V) (viewed as a subgroup of  SO(V#)). Moreover, as SO( V )-modules, 
V is a factor of V #, itself a factor of C+(V#), which is a factor of EndL#; 
and since the G-modules L # and L 2 are isomorphic (4.1.3), EndL # -~ (EndL) 4 
as SO( V )-modules. But because V is simple, we obtain the existence of an 
SO(V)-embedfflng fl": V ~ EndL = L  v |  (it may be reassuring to cheek 
this in the tables: [OnV88] Table 5, Formulas 8, 9). 

On one hand, it follows from 5.2,5.3 that the image of the mono- 
dromy homomorphism zq(S, s) ~ SO(V) x SO(V) C_ GL(p2k(Y,~)(k)) x 
GL(EndHI(A, Q))  is contained in the diagonal Fn c_ SO(V). On the other hand, 
the image of  the morphism ht: I'Ir which de- 

scribes the Hodge structure on PZk(Y__t, lR)(k ) x EndHt(A_t, lR) is contained 
in the diagonal SO(V~) for every t E S. Hence r "  gives rise to an embed- 
ding of  variations of  Hodge structures fir: pZkf~Q(k) ~ End(Rlo~(p)) ,  
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and then to a morphism of variations of Hedge structures _~: R2kf ,~(k)  --, 
End(R ~ O~,ff~(p))- 

By 6.3.1, it suffices to show that _~ is motivated at some point t E S, e.g. an 
exceptional point as in the proof of 6.4.1. This reduces ourselves to showing 
that if P2k(Y__t, Z)(k) contains some non-zero algebraic class v, then the Hodge 
correspondence fl~': P2k(Y_y_t, Q)(k)) --~ EndHl (~ ,  I~) is motivated. 

We mimic the argument of 6.2.4: consider the orthogonal complement V b 
of v, the associated submotive ~v "b, and the associated Kuga-Satake variety ,,/b. 
There is a Hedge correspondence n inducing a commutative diagram: 

C+(H('~b)) 0 (I~(0) +'-- p2k(y..Y_t, ~)(k) ~- H(~/'b) @ ~(0) 

r ~ .L ~_~' 

E n d H ' ( A b , ~ ) @ ~ ( 0 )  ---+ EndHl(At ,~) .  

The top arrow is a motivated embedding, ~b and rr are motivated; hence 
so is ~ ' .  

Corollary 6.4.4. ~k # is motivated. In particular, C+(/~21:(Y)(k)@ Q(0)) 
,~dc+ ,*i(A#). 

Indeed C+(#Zk(Y)(k)@ Q(0)) is an object of ~r (6.4.3), and one 
concludes that the Hodge correspondence qJ# is motivated by using again the 
fact that Hodge correspondences on complex abelian varieties are motivated. 

Corollary 6.4.5. The motivic Galois 9roup of #2k(Y)(k ) ~ ,~l(A) @ ~I(A#) is' 
connected. 

Indeed, 6.4.3 shows that it is isomorphic to the motivic group of 
~t(A x A#), which is connected: any representation on which the connected 
component of 1 acts trivially is generated by Hodge cycles, necessarily moti- 
vated by [A93], once again. 

6.5 

Let K be a subfield of IE, let K denote the algebraic closure of K in r and 
let now (Y, q) be a polarized variety over K, satisfying properties Ak, B~. 

Lemma 6.5.1. There exists a finite extension K' of K such that the Kuga- 
Satake varieties A(Yr and A#(Yr admit models x,A, K,A # resp. over K I, 
and such that the motivic Galois group of  #2~(Yx,)(k)@gnd ~l(K,A)@ 
g n d  ,~l(r,A# ) is connected Then the embeddings C + ~ EndA(Y~:), C +# 
EndA#(Yr descend to K 1, and ~k and ~# automatically descend to isomor- 
phi~rns of motives over K j. 

Proof. The existence of K,A is guaranteed by 1.7.1, and the existence of a 
model x,A # (after replacement of  K' by some finite extension) follows from 
the fact that A(Yr 2 and A#(Yr are isogeneous (4.1.3). The motivie group of 
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p2k(Yaz)(k) ~3 g~d  ~(A(Yr @ 8~d /~I(A#(Yec)) equals that of/~2k(Y-K)(k ) @ 
8~d  ~l(~,A-~) @ ~nd ~ # (x,A-~), and is connected by 6.4.5. It follows that the 

motivic group of ~ k ( Y  x, )(k) ~ gnd ~(x,A) @ g~d  ~(K,A #) is connected if 
and only if  for some (of for every) prime #, the Zarisld-closure of the image of 
GaI(~'/K') in O(PZ~kt(Y-~, ~ : ) ( k ) ) •  GL(EndHdt(~c,A-s is connected. This 
becomes certainly the case after further replacement of K' by a finite extension 
(t~or details on such 'standard' properties of motives, we refer to [A93]). 

At last, the embeddings C+--o EndA(Y~), C + # ~  EndA#(Ya:) descend 
automatically to some finite extension of K', and ~ and ~b # being motivated 
over ~ (6.2.1,6.4.5), they also descend to some finite extension of K'. Since 
the motivic Galois group of f i~(Y~c,)(k)~g~zg~(K,A)@g~d~(K,A #) is 
connected, they all descend to K ~ itself. 

We now prove a result more precise than 1.5.1: 

Theorem 6.5.2. Let (Y, tl) be a polarized variety over a subfieM K of C, 
satisJj:in9 properties Ak, B~. Let K' be a finite extension of K and K,A be 
an abelian K~-variety as in 6.5.1; let us denote by Resx,/K K,A the abelian 
K-variety obtained by Weil's restriction of scalars. 

Then ~2k ( y )(k) is a factor of gacd ~l (Resx,//r K,A ). 

Proof From 6.4.3, we know that there is an embedding of motives over 
: /~2k(y_~)(k) ~ ~ d  ,~l (K,Ag); because the motivic group of fi2k( Yx' )(k) 

g~dAI(~,A) is connected, such an embedding automatically descends to an 
embedding of motives over Kt: ~2k(YK,)(k)~ 8nd~a(x,A). On the other 
hand, remember that restriction of scalars for motives corresponds to induction 
for the corresponding representations of motivic groups. The motive (over K) 
~2k(Y)(k ) is a factor of Resx,/x ~2k(Ylr )(k ), Resx,/x 8~z[ ~t(x,A ) is a factor 
of ~ d  ~I(Resx,/K K,A), and ResK,/x ~l(x,A) = Al(Resx,/x x,A); whence the 
result. 

Remarks 6.5.3. i) In this paragraph, one could have only assumed that Hodge 
classes in p2k(yr Q)(k) are motivated instead of algebraic. This does not really 
matter here, since algebraicity is obtained without pain in all our examples. 

ii) Because Hodge and motivated classes coincide on abelian varieties 
defined over an algebraically closed subfield K = K of C, the Hodge and 
motivic groups of 8~dAl(x,A) coincide; it follows from 6.5.1 that the 
Hodge and motivic groups of/~2k(Y)(k) coincide. Corollary 1.5.2 now follows 
from Zarhin's description of the Hodge group of Pzk(Ye, Q)(k) [Za83]. 

7 Proof of Theorem 1.6.1 

7.1 

Part i) of 1.6.1 follows from 1.5.1 and Faltings' semisimplicity theorem for 
abelian varieties. 
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As for the proof of  the remaining parts, let us remark beforehand that we 
may replace the number field K by a finite extension. In particular, we may 
and shall assume that 6.5.1 is satisfied for (Y,~/) and (Yt, rf) with K p = K (for 
k and h respectively, and for possibly different respective complex embeddings 
of K). We thus have at hand K-abelian varieties KA, KA ~, KA #, KA t# (which 
we may assume to be polarized), and we may and shall assume in addition 
that the motivic Galois group (say with respect to the :-adic realization) of 
~l(xA) @ ,~t(xAt) ~ ~l(KA#) @ ~l(rA'#) is connected. 

We denote by Vt the :-adic realization of fi2k(Y)(k), endowed with the 
quadratic form (,)~, and by L: the :-adic realization of ,~l(xA). By 6.5.1, L: 
is a ~:[Gal(K--/K)] - C+-bimodule, and there is a motivated (hence Gal(K/K)- 
equivariant) isomorphism C+(V:) ~ Endc+ L:. Analogous notation for (y t , ) f )  
will be understood. 

We note that, by the latter connectedness assumption, 14 the motivic Galois 
group of ,~(xA)@ A1(~A~) is contained in the product of even Clifford groups 
G(Vt) • G( V~ ~), which contains afortiori the image of GaI(K/K) in GL(L:) x 
GL(L:). 

7.2 

Proof of" 1.6.1. ii): By 6.5.2, there exists a motivated embedding V: c 
End L:. Any Gal(K/K)-invariant element r in V: gives rise to an element of 
Endo~(~/x ) L:. / , According to Faltings [FW86], Endta)( Y x) L: = (End ~A @ ~:)~ 
from which it follows that r is a Qt-linear combination of motivated classes 
- in fact of  algebraic classes, because of axiom B~. 

7.3 

In the sequel, we assume that N is odd. The even case is dealt with by the 
same arguments, after applying throughout the # construction (replacing N by 
N + 1). Let us first prove a special case of 1.6.1iv): 

Lemma 7.3.1. Any Gal(K/K)-equivariant isometry i: V: ~- V~ is a ff~:-linear 
combination o f  motivated correspondences. 

The isometry i gives rise to a composed Gal(K/K)-equivariant algebra 
isomorphism j :  Endc+ L: C+(V:) ~- + ~ -~ C (V~) = Endc+, L~. Moreover, conju- 
gation by i identifies C + @ ~ :  with C +r @ ~e. 

On the other hand, the connectedness assumption embodied in 7.1 implies 
that the image of GaI(K/K) in (O(Ve) • O(V[)) • (GL(EndL:)• GL(EndL'e) ) 
is contained in the diagonal SO(V:) • SO(V[) (we note that G(V:) x G(V~,) 
acts on E.n.dLt x EndL~ through SO(V:) • SO(V_~)). If W, resp. _ W', 
denotes the spinorial representation of G( V: | ff~: ), resp. G(V~| 

14 Or simply because C +, C +' and polarizations ~ba, ~ aro defined over K:  C + commutes 
with any element ~, o f  the #-adic motivic group o f x A ,  hence 7 is a unit in C+(Vt) acting on 
the left on Lt, it respects ~>a, i.e. is a sympIecfic similitude w.r.t. (x, y) ---* tt x*ya, whence 
~*y e @t, i.e. 3' e G(Vt) 
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- -  m 

we have SO-equivariant isomorphisms of Q:-algebras: C+(V: | ff~t ) -~ End W, 
C+(V: | if2:) ~- En____d_d W r, EndL: @ Re ~ M2(N+I)/z(End W), EndL~ | ~ :  = 
Mz(N+I)/2 (End Wr). Therefore j induces a Galois isomorphism of ~:-algebras: 
J" EndL: | Q__.c ~ EndL~ @ Re. Such an isomorphism_ comes from an iso- 
morphism of Q:-spaces v: L: | Q: ~ L' r @ ff~:, unique up to homothety. 

On the other hand, using polarizations, J gives rise to a Galois isomorphism 
(L': | ~:)| ~ (L~ @ ~e )  | One deduces that there is a Galois isomorphism 
vr : Lre @ Q: "~ L = : | ~ : ,  by applying the following general result to the (con- 
nected) Zariski-closure of the image of Gal(K/K) in GL(L' r | ~ : )  • GL(L: @ 
~:): 

Sublemma 7.3.2. Let G be a connected linear algebraic group over a fieM oj" 
characteristic 0, Let W and W r be finite dimensional semi-simple representa- 
tions oJ" G, such that ./'or some k > O, W | ~ W ~| Then W ~= W ~. 

Indeed, taking the quotient of G by its unipotent radical if necessary, we may 
assume that G is reductive connected. Then W =~ W' amounts to the equality 
of characters ch W = ch W t. Since ch W ~k = (ch W) k, the lemma follows from 
the fact that ch W, as a Laurent polynomial in the fundamental weights of 
G with non-negative integer coefficients, is completely determined by its k th 
power. 

Now for any y in the Zariski-closure GL: of the image of Gal(K/K) in 
GL(Le @ ~<), we find that y-l(v~v)-J y(v'v) lies in the center of EndLt | ~e,  
i.e. is a homothety of L: | ff~:. Being a commutator, it is of finite order, and be- - ! 
cause GL: is connected, it is id. Hence v belongs to Hom~1(-f/K)(L: | ff~:, L: | 

q2: ) = HomG,I(-~/r)( L: , L'r ) | if2: ~= Hom(rA', r A ) @ Q:. It follows that J is a 

~:-linear combination of motivated correspondences, and that j is a Q:-linear 
combination of motivated correspondences (for brevity: ~:-motivated). Be- 
cause ~p is motivated, it follows in turn that C+(i), Gr(~+~)/z C+(i), and thus 
i, are ~:-motivated (cf. 6.4.1,6.2.3). 

7.4 

Proof of 1.6.1iii). It follows from point ii) (7.2) that the transcendental part 
T2k ( Y~ e t  ~- x, ff2:)(k) of V: is just the orthogonal complement of (Ve) ~al(~/x), and 
from point i) that the Galois action on it is completely reducible. We denote by 

2 k  2 k  2 k  l (Y ) (k ) the  submotive of fi (Y-f)(k) with :-adic realization Tit (Y-f, ff~:)(k), 
and we set E = End(g2k(y)(k))"~End(12k(Y-f)(k)) (by the connectedness 
assumption 7.1). Then E | ~ t  is the commutant of the :-adic motivic group 
Gmot.: of g2k(Y)(k), and is contained in 2k EndGal(-~/x)Tgt (Y~, ff~: )(k ). 

Lemma 7.4.1. E | ~ :  = End~al(~m)eT~t (Y~-, ~:)(k).  

Proof Let T be a simple Gmot,:-submodule of T2k(Y, Qe)(k). We have to 
show that T is simple as a Galois module. Let T I (resp. T") be a Gmot, t" 
submodule of Te~t(Y-~,~:)(k)(resp. of T • supplementary to T -t- (resp. to 
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T). Then To~t(Y,~:)(k)= (T ~ T t )~ •  ", and either T ' =  0 or T is totally 
isotropic. On the other hand, let T1 be any simple ff~:[Gal(K/K)]-submodule 
of T. Let T[ (resp. T~ r) be a Galois submodule of  T ~ T' (resp. of T ( )  
supplementary to T (  (resp. T~). Then T $ T ' =  (TI G Tl~)~• ', and either 
T( = 0 or/'1 is totally isotropic. If T 1' = T' = 0, then (-idr~, idr(~(v:)6~i(y/x)) 
is a Galois isometry of V:, hence ~:-motivated by 7.3.1. This shows that 
T~ = T. 

If T~ is totally isotropic, then for any 2 6 ~ , ( 2 . i d r ~ , 2 - ~ . i d r ~ ,  
idr[,~r is a Galois isometry of Vt, hence ~:-rnotivated by 7.3.1. 

One concludes again that T~ = T. 
Let us now finish the proof of iii). Because Gmot,: is semisimple (cf. 1.5.2), 

it suffices to show that it is the Zariski-closure Gve of the image of Galois in 
SO(V~) (actually, in SO(T~(Y~,II~:)(k))). Remember that there is a Galois 
embedding V~ C EndL:. According to Tate-Raynaud, L: is a Hodge-Tate rep- 
resentation of GaI(K-'/K) (see [Fo82]), hence so is V~. The :-adic analogs of 
Zarhin's results, based on :-adic Hodge-Tate decompositions and on a theorem 
of Kostant, and indicated by Zarhin himself in [Za83] 2.6.c, lead to the same 
description for Gp and Gmot,: as unitary groups. 

7.5 

Let us now finish the proof of 1.6.1iv). Let i be a Galois isomorphism Vt - V,/, 
not necessarily isometric. Because N is odd, and because 
there are SO-isomorphisms C+(~)  ~/~eve~ V~, C+(VJ) - A ewn vJ, one draws 
from i a composed Galois isomorphism (not necessarily an algebra iso- 
morphism) j :  Endc+ Le ~- C+(V~) ~- C+(V~) ~- Endc+, L~. With the notation 
of 7.3, we have C + @Re-~M2~u+l)n(ff~:), corresponding to an isotypical 

decomposition L: | ~ W 2~+1)/2 as G(V~ @ ~--'e)-modules (hence as Galois 
modules); idem for L~. Therefore, using Spin-invariant bilinear forms on the 

spinorial representations, one draws from j a Galois isomorphism W | ~- W p| 
As in 7.3, this implies that W ~ W r as Galois modules, hence the existence 
of  a Galois isomorphism v': L~ | ~'e ~ L: @ ~-~, such that (C + @ ~:)op v' = 
vr(C+r | ~ : ) ~ .  Moreover, according to Faltings, V is ~:-linear combination 
of  algebraic correspondences. 

One deduces from v I a ~:-motivated composed isomorphism of algebras: 
j': | c+(5'  | Endc+ Now 
j '  oj~ t yields a Galois automorphism of C+(I~ |  which is necessarily 

~ :mot iva ted  by point iii). In conclusion, j ,  /'X*ve"i and thus i are 
~e -motivated. 

7,6 

Corollary 7.6.1. Let (Y, q) be a polarized K-variety defined over a number 
field K C C, satisfying properties Ak, B~. Let ~,A be a model of the Kuga- 
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Satake abelian variety attached to the P~ of (Yr qr ) over some.finite exten- 
sion K'/K (cf .  1.7.1). Then the image of Gal(K/K') in GL(Hlet((x,A)EK, ff~t)) 
is open in the s motivic Galois group of AI(K,A ). 

Proof We may replace K'  by a finite extension, so that the Galois motivic 
group of/~2J:(YK,)(k ) @ A1(K,A) is contained in G(V~) embedded "diagonally" 
in SO(Ve) • GL(L~). A well-known result of Bogomolov tells that the image 
of Gal(K/K') (which lies in G(Ve) in our case) contains an open subgroup of 
the homotheties (which constitute the kernel of G(Ve) ~ SO(Vt) in our case). 
Hence 7.6.1 follows from 1.6.1iii). 

8 Descent 

This technical paragraph is logically independent from Sect. 5.5 to 7.6, except 
for 6.2.2 which is used in 8.2.1. We oive a second proof of Lemma 1.7.1, but in 
a much more precisejorm: we study the effect ofconjuoation by an arbitrary 
element a of  Aut ~E on the Kuga-Satake package associated to a polarized 
variety satisfying axioms Ak and Bk. The only results of Sects. 6, 7 used here 
are 6.2.1 and 6.2.2. 

8.1 

We consider a projective smooth morphism f :  __Y ~ S, a point s of S, and a 
section _~ of R2f.~Z(1)/tors satisfying the assumptions of 5.1. 

We consider the conjugate morphism f o  : yo  ~ S o. Because the fiber 

~ E H  (Y__~, a polarization, there is a well-defined conjugate polarization (~.) 2 o 
7Z)(1)/tors (viewed as a subgroup of 2 o 7Z  ̂H~t(Y_Y~,, )(1)/tors), which is invari- 
ant under rr~lg(s ~ s~); hence (~)o extends to a section _q~ of R2f~a"Tl(1 )/tors. 

On the other hand, the Hodge numbers h pq attached to P2k(Y..~,~,Z)(k) and 
e2ktv o . o ~.~,~,~,,Z)(k) are the same, because of their alternative algebraic defini- 

tion; therefore the signature of V~,z:= (P2k(Y_.~%,q_.s~,TZ.)(k),(,)~) is the sig- 
nature of Vz, namely ( N + , 2 - ) .  

Replacing S by a finite etale covering if necessary, we may and shall assume 
that the monodromy of f (resp. f o )  in pZk factorizes through Fn (resp. through 
the analogous arithmetic group F~r,, relative to V~,z. This allows to construct 
the Kuga-Satake abelian schemes g: A__:= A(Y) --o S and go : A(Y ~ -o S ~ and 
we take up the notation of 5.2, 5.3 again. We identify the C+(Vz)-modules 
Lz and C+(Vz), and the rings C + =  C+(Vz)= EndsA__ (same conventions 
with respect to V~,z:Lo, z = C+(V~,z), and C+(Vo, z ) =  C + = Ends~A(Y~ 
these identifications are compatible with the canonical ring isomorphisms 
~k: C+(Vz) = Endc+ Lz, ~bo: C+(V~,z) = Endc+ Lo, z. 

We wish to compare g with the ~r-a-conjugate of go : g': d '  := d(Y~ ~ --o 
S, under the extra assumption that the monodromy o f f  is Zariski-dense in 
SO(V). 
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We write L~ := H'(A.~(, ~,), L' = L~ | 1~, L~^ = L~ | 7Z^,..., C + = 
EndsA_' (identified with a subring of EndA.~ ~ or of (EndL~)~ 

As an easy consequence of our monodromy assumptions, we record: 

Lemma 8.1.1. End(R~ g~Z/nT/, R~ g~.~"7//n~) is a constant local system. 

8.2 

Somewhat abusively, we shall simply write av (resp. aL) for a-conjugation on 
etale cohomology Vz^ ---* V,,z^ (which is an isometry) (resp. L~^ ~ L,,z^). 

Lemma 8.2.1. There is an isometry ~: V~V~ such that C+(~-~av)~  
c+(so(v~:) ). 

Proof  Because V~ and V~,~ have the same signature, and Ix: "~ V~, M (via the 
isometry av), the (~-spaces V and V~ are isometric (Hasse-Minkowski). I f N  is 
odd, C+(SO(Vx:)) = C+(O(Va:)) and the lemma follows. Let us now assume 
that N is even. By 6.2.2, any generator w of det V is motivated. Therefore 
det(er)  �9 w lies in the rational subspace det V~ of det V~,~:; this means that 
for any (already found) isometry ~: V ~ Vr the determinant of 0~-~rr is an 
overall sign 4-1, and after changing c~ by a symmetry if necessary, one obtains 
that (Z--Io 'v  ~ SO(VAf ). 

8.3 

Let y be an element of G(A f )  which lifts C+(~-~e~ -) ~ C+(SO(VA:)), i.e. 
ycy -~ = C+(~-~ar)e, for all c ~ C+(VAf). We define u~,~,~ to be the composed 
isomorphism 

c+(. ) ,~[l 
,,,.,,,~: LA: ~--LA: =C+(V, : )  ~ C+(V,A:)=L~A: ~ L',:. 

Lemma 8.3.1. The isomorphism u~,=,y~a ." Endc+ LA/ ~ Endc+,L~/ induced by 

u~,~,~ coincides with (r ) ' : t  o ~ ^ - l .  

Proof  By definition of y, y~a = ~b^C+(o,-lcrr:)@^-1 = ~/,^C+(c~)-IC+(ar) 
o ~ ^ - l  as an automorphism of Endc+ LA/. One finds u aa = (a[  1)ado ~ o O', ~t, y 

c+(~) o ~,^-~ o ~,~ = ( a E ~ )  ~ o r o c + ( , ~ v )  o r  = (r o r 
Lemma 8.3.2. Let t E Tk'IH](As, ff~) = L | | (LV) 01 be any tensor invari- 
ant under the even Clifford group G = G(V), Then Tk, tu,,~y(t) lies in the 
subspace Tk'~H~(~, Q) of  Tk'tH~t(~, Af). 

Proof Because t is G-invariant, k = I, and ~,tu#,~,~(t) = a~l(T~lC+(~))(t) .  
Because ~ is an isometry, (Tk'lC+(00)(t) is an element of Tk, tL~ invariant 
under G(Va); in particular, it is a Hodge cycle A(Y~), hence a motivated 
cycle; therefore a~l (~ , tC+(~) ) ( t )  is a motivated cycle on A_~ ~, and lies in 
rational cohomology. 
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Lemma 8 .3 .3 .  The isomorphism of' Af.aloebras Uer,~,yint : C + | A f ,'~= C+t @ A f 

induced by conjugation by uo,~,r comes Jrom an isomorphism C + |  
C +' | ~. 

This is a special case of  8.3,2, with (k, l) = (1, 1). 

L e m m a  8.3.4. u,,=,r is the fibre at s o f  an isomorphism R~tY.A f "~/?1 a' A f = " ' e t a * ' "  " 

Proof We have to show that u~,~,r is invariant under the action of  zq(S,s). 

By 8.3.1, this is at least the case for u ~d since (~b~) r o f f^ - i  is the fiber 

at s of  an isomorphism (r o ~ ^ _  l of  etale sheaves (5.3). The set of  

isomorphisms u: LA/ =~" LAy s u c h  tha t  u int ~__ Ua ,int~,?.. C + | A f ~- C +t | A f a n d  

u ~ = uo,~,~d : Endc+LAy ~ Endc+, LAy, is stable under rq(S,s);  moreover, any 

such u is deduced from u,,,,~ composed with a unit in the center o f  C + | A f.  
Therefore a suitable rational multiple of  u~,~,v generates an abelian representa- 
tion of  rq(S,s) in E n d ( L z , L ~ ) |  ~ ^ .  Then, by [D71a] 4.2.9, this representation 
factorizes through a finite group; and since it is trivial rood. n (8.1.1), it is triv- 
ial, i.e. u~,,,r is fixed under nl(S,s). 

Proposition 8.3.5. There exists an S-isoyeny ~,~ : A_' --o A, and an element 
)].~r,~,y E ( A f )  *, such that (z*,~)s = 2~,~, r u~,a,~. 

I f  moreover u~,~,r comes from an isomorphism Lz^ ~= L'z^, then t~,~ may 
be chosen (uniquely up to sign) to be an isomorphism. 

Proof Let us first notice that changing 7 modifies u,,a,~ only by a factor 

in ( A f )  *, so that i f  t~,~ exists, one can choose it independently of  ~:. Let 
us identify C+| Q with C + ' |  II~ via u~,~, r , im and consider the space U of  

C + | Q-equivariant elements of  Homs(A I, A) | Q. Because the monodromy of  
f is Zariski-dense in SO(V),  the canonical morphism U --o Homc+| 
R l g ~ Q )  is an isomorphism (cf. 5.4.2). 

I f  N is odd, U is one-dimensional, and because u~,a,~ is the fibre at s of  

an element of  U | A f (Lemma 8.3.1), the proposition follows immediately in 
this case. 

I f  N is even, U is two-dimensional, and one can at first only deduce that 
there is an isogeny t : A ~ --~ A_ and a unit z in the center of  C + | A f ,  such that 
(~*)s o z  = u~,~,r. 

Let t E Tk'tHl(A__~.,ff~) = Tk'~L be any G-invariant tensor. It follows from 
Lemma 8.3.2 that ~k,t(z) �9 t = ((Tk, l(t*)s) -1 oTk'l(u~,,,a)) �9 t E Tk'lL; more- 
over, "lFk, t(z) �9 t is invariant under G, because the actions of  z and G on L 
commute. 

Let us denote by Z the two-dimensional torus in GL(L) attached to the 
center of  C + |  Q. Because G f3 Z = ~m (the homothety group), Z/~r~ acts 
faithfully on some space of  G-invariant tensors C Tk'tL. On the other hand, 
the image ~ o f z  in Z/ff~m(A f )  belongs to Z/~m(A f )  N GL(T~"tL) = Z/~m(ff~). 
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By Hilbert 90, there is an element z r of Z (~ )  which lifts 2; we have: z~z -1 E 
(Af)  *. Setting za,~ := z'z and 2~.~,r := z~z -1, one then has the required equality 
(z*,~)~ = .~.,~,~ u~,~,~. 

The second assertion follows: it suffices to replace ;~,,,r (and t,,, accord- 
ingly) by a suitable rational multiple such that 2~,~,r E (ZA).. 

8.4 

Let K be a field embeddable into 112; let K be a fixed algebraic closure of K. 
A geometric object X being given over some subfield of K, we let X stand 
for the corresponding object over K obtained by extension of scalars. 

We are now ready to state our results on descent of Kuga-Satake packages 
(cf. 4.4 from which we adopt the notation), which imply a stronger version of  
1.7.1. 

Lemma 8.4.1. Let (Y, q) be any polarized variety defined over K, satisfying 
Ak and Bk, and set Vz^ = (P2kt (-Y, TZ.^)(k), (, t~). Then there is a subgroup of 
finite index o f  Gal('ff./K) which is mapped to the subyroup D( ad of  O(Vz^) 
under the natural Galois action. More precisely, for any finite extension K' 
of  K, the image of Gal(-K/K') in O(Vz^) lies in n(~, d if and only if /br each 
prime divisor E of 2n and each of  the finitely many odd primes f such that 
(,)~ deyenerates modE, the image of  Gal(K./K ~) in O(Vz^ |  lies in the 
subgroup of rotations which are images of elements congruent to 1 mod. n of  
the even Clifford group of Vz^ | 7Zr 

ProoJ~ The first assertion follows the second, and the "only if" part of the 
second assertion is trivial. Let us concentrate on the "if" part. We contend 
that the image of Gal(K/K) in O(Vz^) lies inside SO(Vz^) if for some E, its 
E-adic component lies inside SO(Vz^ | Zt); since this holds for instance for 
f = 2, by assumption, and since the E-adic component of ~(n ad is SO(Vz^ | Zt )  
if  Vz^ | F t  is a non-degenerate quadratic space and E does not divide 2n 
(see 4.5), this will achieve our goal. 

Let El, E2 be rational primes, and let us assume that the image of GaI(K/K') 
in O(Vz^ | lies inside SO(Vz^ |162 We may substitute to K'  the 
function field of  a finitely generated smooth Z-algebra R (with fiE2 in- 
vertible in R), and assume that Y extends to a projective smooth scheme 
over R. We denote abusively by Y,,, its fiber at a maximal ideal r of 
R (with finite residue field rc(~n)), and we let x be a closed poi__.nt ly- 
hag above ~ in a connected component Spec(R | ~)0 of Spec(R | ~) .  For 

2 i ~  i = k, k - 1  and . f =  fl ,  E2, the Galois action on H~t(Y, Zt)(i) factorizes 
through lr~g(SpeeR, x), Because the determinant of the "geometric part" of 
the monodromy (action of 7r~lg(Spec(R | ~)0, x)) on detH21('Y, Ze)(i) is inde- 
pendent of E, due to its interpretation in integral cohomology, we derive that 
for E = El, s the Galois action on detH2i(y, z e X i ) ~  detH~i(Y~(,,,),Zt)(i) 
factorizes through Gal(fc(~n)/x(~)). It follows from [D74] that the determi- 
nant of the Frob~nius element at ~ on H2i(-Y~(,),Tl.t)(i) is the same for 
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g = El and ,( = E 2. Hence Frobenius acts trivially on detP~(-Y~(~,), 7.~2)(k) 
det H~k(Y~(,~), ZL~)(k) |  (det H~k-2(Y~(~,), Ze2)(k - 1)) v, because it acts triv- 
ially on detP~Ztk(Y~(,,), ~Ze~ )(k) ~- det Vz^ | Zl l  by assumption. 

Remark 8.4.2. If  in addition (Y, t/) satisfies B~ and if one is willing to use 1.5.1 
at this stage, one can avoid [D74] thanks to the following remark: det ~2k(y) (k)  
is~ a rank one motive in ~/K(~r of  weight O, hence it is an Artin motive (cf. 
[DM82]), and one can read whether the image of  GaI(K/K) in O(Vz^ ) lies 
inside SO(V z^ ) on any f-adic component. 

Theorem 8.4.3. Let (Y,~I) be a polcu'ized variety defined over K, satisfyin 9 A~ 
and Bk, and set Vz^ = (P2tk(Y,Z^)(k),( , )~) .  Let us assume that, for n = 3 
or n = 4, the image of GaI(K--/K) in O(Vz^ ) lies m K]d. Then: 

i) Jbr any embeddin9 r: K ---+ ~, the canonical Kuga-Satake package of' 
(Yc, rta:) descends to K, i.e. there exists a Kuga-Satake package (A~ = 
Ar(Y,q), ~ ,  {qS~,~}, ~ )  over K associated to the datum (Vz^, C + = C+(P 2k 
( Yc, 7Z. )( k ), n ) whose ~-extension is isomorphic to the canonical Kuga-Satake 
paekaoe of ( Y~:, ~/c); 
ii) GaI(K--/K) acts trivially on HIt(-A~, Z/nZ)(k)) ,  i.e. the n-torsion points of  

A~ are rational over K; 
iii) for any two embeddinys ~, zr : K ~ ff~, there is a K-isoyeny ir~, : Az, ~ A~ 
such that i~,(C~ + | ff~)i~ l, = C + | ~ and t~, o ~ = ~O A, o t~e. 

Example 8.4.4. In applications, it may be natural to take n = 4 for quar- 
tic surfaces, and n = 3 for cubic fourfolds. Let for instance Y be the Fer- 
mat quartic surface z 4 + z 4 + z 4 + z34 = 0. For n = 4, it is likely that one can 
take K = ~(e  ~i~/8). Using the fact that the ( -  1, 1 ) + (1, - 1) component of  
P Z ( Y ~ , ~ ) ( I ) |  is defined over 7/ and that the restriction of ( , )  to this 
lattice is equivalent to - 8 ( x  ~ + yZ), one can show that A~ is isogeneous to 
the product of  219 copies of  the elliptic curve with affine equation u ~ = 1 - v ~ 
(a rational image of  the Fermat quartic curve); C + is an order in Mz~o(r 
whereas the full endomorphism ring of  A~ is an order in M2~9(~(Vt-L-]')). 

8.4.5. Proof of  the theorem 

Step 1. We make the preliminary remark that i f  Vz is any quadratic lattice 
such that Vz | ~ ^  "~ Va,^, then ~d = ]K n 1"30(Vz | I~) = In. Indeed, any p ~ ]K ad [) 
O( Vz | ff~ ) = K~, ~ tq SO( Vz | ~ ) is the image under G M ~ SO( Va T) of  an 
element of  rc of  Kn and o f  an element y of  G ( ~ ) ;  then ~ = q27, for some 
q ~ ~* ,  2 ~ ~^* ,  and it turns out to be the image of  :t:qy e Kn ~ G ( ~ ) ,  
because n = 3 or 4. 

Step 2. Let us consider a family f :  __Y ~ S as in axiom Bk, with Y~ = Y. 
Replacing S by a finite etale covering if necessary, we may assume that the 
monodromy homomorphism zc~lg(s, s ) ~  O(Vz^) factorizes through K,~. In- 
deed, let us consider the subgroup of zr~g(S, s) defined as the inverse image of  
K~ d under the monodromy homomorphism ~lg(& s) ~ O(Vz^ ). By the same 
argument as in 8.4.1, this is an open subgroup, which defines a (connected) 
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finite gtale covering of S. Moreover, it is easy to see that s lifts to a K-rational 
point of this covering. In addition, the image of rt~g(S, s ) ~  SO(VzA ) is then 
Zariski-dense in SO. 

Step 3. Let us fix an embedding ~ of K into C. Then after extension of 
the scalars to I/~, we see that are in the situation g.l (using Step 1). We 
use again the notation Vz = PZk(~r Vz^ = P~tk(Y, ZA)(k) is identi- 
fied with Vz | Z ̂ =  p~k(y~c.,7l^)(k),.... For any automorphism a of 
which fixes K, the canonical isomorphism ( r r/e) = (Yr r/e) induces an iso- 
merry a: Vat = V~,z. Because ~-zo" is nothing but the image of o -~ acting on 
P ~ r Y  7Z^)(k), which is by assumption an element of Xff,  there exists ~ E Kn 
with ?~d = C+(~-~a); any two such elements ~ differ by a unit in ~^ congruent 
to 1 mod. n. Proposition 8.3.5 applies, and since n = 3 or 4, shows existence 

(and unicity) of an isomorphism t~" A(Y~) ~-~ ~ d(Yr of abelian schemes 
over Sc, such that (~)~ = 2u,,~,r~ Jot some 2 ~ (~^)* which is congruent to 
1 rood. n. 

Step 4. The (Yc, r/c) ~- r y y - ~  ~ induces an isomorphism of complex abelian c, qc) 
varieties Z: A(Yc)---~A(Y~.), given in etale cohomology by the composed 

c+(~ -l)  
isomorphism Z*: L~z^ =C+(V~z^)  ~ C+(Vz^)=Lz ^. On the other 
hand, the isomorphism of complex abelian varieties ((~)s)~: A(Y~)--+ A(Yr ~ 
is given in etale cohomology by the composed isomorphism 

0.--1 

((z*)s)~ L~^ :=,q~t(A(r~)~,Z ^) ~ Lz^ 

C+(=) 
= C+(Vz^) ~ C+(Vz^) ~ C+(V~,z^) =L~,z^ �9 

Let us now consider j= := ((t=)~) = o Z: A(Yr ~ A(Yc) ~, given on H t by 

0.--1 

"*. z.~^ -~ Lz^ = c+(Vz^)  ~r c+ (v z^ )  = Lz^ f r o ' '  ~ " 

Thus, if  # denotes the canonical embedding C+---* EndA(Y~:), ~,a/into Ĵ  coin- 
cides with #= as an embedding C+--~ EndA(Yr =, since ,L 7 commutes with C +. 

Let now x stand for 27 E Kn, but viewed as an element of C + | 7Z ̂ , acting 
on the fight on Lz^. Then by definition of 7, we can write j~* = o o ~: o (0~) -1, 
where o stands for the identification C+(Vz ̂  ) = Lz^, and o a denotes the com- 

c+(~r) 
posed isomorphism C+(Yat^ ) ~ C+(Vz^ ) = Lz^ ~ L~^. In particular, v and 
j* o o ~ define the same class ~ in Kn\Isom(C+(Vz=), H~t(A(Yr 7.^)). 

One concludes that j= establishes an isomorphism between the canoni- 
cal K.-S. package of  (Yr162 i.e. (A(Ye),Iz,{q~a},'O), and the K.-S. pack- 
age (A(Yr ~, I ~ ,  {~ba~),~) over 112 associated to the same datum (Vz^ , C+,n) 
(4.7.1). Because K.-S. packages have no non-trivial automorphism (4.7.2), one 
can then descend the canonical K.-S. package of (Yc, r?r to K. Moreover, the 
K.-S. package over K so obtained depends only (up to isomorphism) upon the 
restriction of  r to K. This proves i). 
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Step 5. Proof of ii): embodied in the K.-S. package (A~ =A~(Y,t/),/z~, 
{~b~,~),~) is a Gal(K--/K)-equivariant isomorphism 0: C+(Vz^)| ~- 
Hdt(-A~,TZ./n~) (4.4.2), and the Galois action on the left-hand side is trivial 
by assumption. 

Step 6. Proof of iii): Let a be an automorphism of �9 such that ~ ' =  a o z. 
Proposition 8.3.5 applies and shows that there is an isogeny i~ec : Ace ---' ,4~r 
satisfying the requirements over IE. However, this isogeny is certainly defined 
over some finite extension of K. In order to conclude that it is defined over 
K itself, it suffices to show the Zariski-closure of the image of GaI(K/K) 
in GLH~t('A~ x ~e,2g~), for Eln, is connected. But this follows in a well- 
known way from the fact that the n-torsion points of Az x A~, are defined 
over K. 

Corollary 8.4.6. For any polarized variety ( Y, q) over IE satisfying Ak,Bk, and 
any automorphism tr of  IE, A(Y ~, rl ~) is isogeneous to A(Y, ~)~. 

8.5 

Proposition 8.5.1. I f  Y is a K3 surface, then /'or any two embeddings 
~, z' : K --~ ~, the isogeny i~r, : A~, ~ A~ of 8.4.3. iii) may be chosen to be 
an isomorphism. 

ProoJ~ It is well-known that the H 2 of K3 surfaces belong to a single isomor- 
phism class of quadratic lattices (this follows from the classification of even 
unimodular lattices); in particular, H2(yr Z)  and H2ry. ~ Z)  are isometric. k C, 
In fact, there exists an isometry between them which sends r  7Z.) 
to Qt/~ N H2(Y~, Z)  (see [LP81] for an elementary proof). Therefore Vz 
and Va, z are isometric, hence there is a ring isomorphism j :  C + ~ C +t. 
On the other hand, A and A t are isogeneous by 8.3.5. Using the Skolem- 
Noether theorem, one sees that there is an isogeny t: A'---* A such that 
j = I int. By Proposition 5.4.1 (applied to each E-adic component) the iso- 
morphism of sheaves of algebras lad: Endc+Rltg.A f ,,,= Endc+,Retg.AI t f is the 

unique one hence, by 8.3.1, tad= (_~a^) ~-I o_O ̂ - l  and comes from an iso- 

morphism Endc+Rltg.Z ̂ ' "  1 r ^ = Endc+,Retg.Z . Because i is an isogeny, one 
concludes that z aa maps Endc+RIg~Z to Endc+,R~gr.anTZ.; therefore, with the 
identifications C + ~ C +t and Endc+Rlg.~TZ. -~ Endc+,Rlg~. anTI (via 1 int and 1 aa 
resp.), z*Lz appears as a principal C + -  C +- bimodule. On the other hand, 
with the same identifications, L~t^ appears as a principal C~,^ - C~^-bimodule. 
Since the center of  C + is Z here, the fundamental theorem on Picard groups of 
orders [R75] 37.28 tells that the canonical morphism Pic C + ~ 1-It Pie C~t is 
an isomorphism. Hence L~ is a principal C + - C+-bimodule. It follows that, 
up to multiplying ~ by a factor in Q*, l~'Lz = L~t, hence Is is an isomorphism. 
It satisfies our requirements over r Because the n-torsion points of A~ x A~, 
are defined over K, is must be defined over K. 
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Remark 8.5.2. If (Y, t/) is a polarized K3 surface over K, let us define the 
extension K'/K by the condition that Gal(K/K ~) is the inverse image of K~ d un- 
der GaI(K'/K') ~ O(P~t(Y , Z^)(1)).  Then K'/K is finite (8.4.1), and by 8.4.3- 
8.5.1, there exists an abelian K~-variety r,A such that the main Lemma 1.7.1 
holds for every complex embedding of K'. We may call x,A the canonical 
Kuga-Satake variety of (Y, t/). 

Corollary 8.5.3. Let (Y, ~l) be a polarized K3 surface over some subfieM Ko 
of  ~., ihe field of  moduli of  the Kuga-Satake variety is Ko itsel/~ i.e. ]'or any 
tr C Aut(r A(Yr rl~. ) ~ A(Yr ~1r ~. 

9 Proof of Theorem 1.3.1 

9.1 

We first make precise our definition of good reduction for polarized varieties. 
Let R~ be a discrete valuation ring with fraction field K and maximal ideal 
gJ. We assume charK = 0, and fix an algebraic closure K of K (resp. ~ of 
R_..~/~R~, ).__According to Matsusaka, a K-rational_ numerical equivalence class on 
Y = Y | K may be identified with a Gal(K/K)-invariant element of the Neron- 
Severi group NS Y modulo torsion. We say that a polarized K-variety (Y, r/) 
has oood reduction at g~ i f  Y extends to a smooth proper scheme affv over R~, 
such that under the specialization map associated to ~r : NS Y ~ NS(~/~, • ~), 
the image of  t/ remains ample. 

In the hyperk~ihler case, it then follows from Theorem 2 of [MaM64], and 
2.1b) above, that (~,~/~,)  is unique up to isomorphism. We shall slightly 
generalize 1.3.1: 

Theorem 9.1.1. Let R be a finitely yenerated commutative flat ~.-algebra 
without zero-divisor, and let K be the fraction fieM of R. Let r and d be 
positive integers, and P(x) be a numerical polynomial. 

Then there are only finitely many isomorphy classes of  polarized 
hyperkah&r varieties (Y, tl) with Hilbert polynomial P(x) and b2 > 3 (resp. 
of  very polarized hyperkiihler varieties of  dimension 2r, degree d and b2 > 3, 
resp. o f  polarized K3 surfaces of  degree d), with good reduction at every 
prime ideal ~o of  R of height one. 

9.2 

First reduction step. Let us fix n = 3 or 4. By localization, we may and 
shall assume that R is a regular ring, and that n is invertible in R (the most in- 
teresting case is of course when R is a ring o f  S-integers in some number fieM). 

We fix an embedding z of  K into C. Let us observe that the p2 of 
the eomplexification of the polarized varieties which occur in the theorem 
form only finitely many isomorphism classes of quadratic lattices; this fol- 
lows from the "limited family" argument of 2.3. Therefore, we may impose 
that (P~(Yc, ZX1), ( ,)~) --~ VZ, a fixed quadratic lattice of signature (N+, 2 - ) ,  
with N > 0; and we may also fix this isomorphism up to an element of Fn. We 
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also impose that the polarized Hodge structure on Vz corresponds to a point 
of  the component g2+/F~ of the moduli space. 

9.3 

Second reduction step. Since Y has good reduction at all primes of 
height one, it follows from the theorem on the purity of the branch 
locus that the representation of  Gal(K-'/K) on Pit(Y, Z ^ )(1) factorizes through 
~t~g(SpecR). According to Hermite-Minkowski (and the topological finite 
generation of the geometric fundamental group of R/Z) there exist only 
finitely many continuous homomorphisms from rr i g(SpecR) to the finite group 

2 -- (YKn Y )l), where y runs over I-Ir Zr)(1))  A ad -1 O(Vz^). 

In order to prove Theorem 9.1.1, we may 15 and shall replace R by its finite 
umamified extension determined by the intersection of  the kernels of all these 
homomorphisms. 

In virtue of 8.4.1, we may and shall assume, in addition to the previous 
constraints upon (Y,1/), that 7zllg(specR) acts on P2t('Y , Z^ )(1) through •ad, 
SO that there is a K-model A~ of the Kuga-Satake variety of (Yc, ~/r such 
that all the n-torsion points of  As are rational over K (8.4.3). Furthermore, 
if we fix a non-zero-divisor a E C + := C+(Vz) which satisfies a* = - a  and 
such that the skew-symmetric form qJa(x, y ) =  tr(x*ya) defines a polarization 
of any weight-one Hodge structure on C + ( V z ) " L  = z parametrized by g2 + (see 
4.1 ), the polarization of A = As | IE given by % descends to a polarization of 
As. Its degree D depends on the choice of a, but not on A. 

Lemma 9.3.1. I f  (Y,i/) has oood reduction at some prime go of R of height 
one, so does A~. 

ProoJi (cf. [D72]) Let E be an odd prime distinct from the residual characteris- 
tic of go. Using the Gal(~'/K)-isomorphism ~^ embodied in the K.-S. package, 
and the good reduction hypothesis, we see that the inertia lp at go acts trivially 
on Endc+ Hlt(A~, Ze). This implies that 1~ acts on H~t(A~, Zr)  through the cen- 
ter of C+(Vze). On the other hand, since the n-torsion points of A~ are rational 
over K, the theory of semistable reduction tells that the inertia is unipotent. It 
follows that it is trivial, which means, by the Nrron-Ogg-Shafarevich criterion, 
that A~ has good reduction at go. 

Remark 9.3.2. In this lemma, the good reduction hypothesis appears only in 
the guise that I~ acts trivially on Vze. 

9.4 

We see that the K-models of the Kuga-Satake varieties attached to the (very) 
polarized hyperk/ihler varieties (Y,r/) under consideration form a set of  

is By Galois descent, because Aut(Y,~) is finite 
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isomorphism classes of polarized abelian varieties over K of  dimension 2 b2-3 
and degree D, with level n-structure, and with good reduction at every prime 
ideal go of R of  height one. 

By Faltings" theorem, this set is finite. Let us notice that the moduli space 
of  polarized complex abelian varieties over K of  dimension 2 b2-3 and degree 
D, with symplectic level n-structure, is a finite sum of quotients of  a Siegel 
half-space S + by the principal congruence subgroup A,  of level n in a sym- 
plectic group, and that the natural mapping f2+/F, ~ S+/A~ reduced by the 
Kuga-Satake construction (the polarization ~p~ being understood) is injective; 
it follows that the isomorphism class of  the polarized Kuoa-Satake variety 
with level n-structure determines the period of  (Yc,~te) in f2+/F,. ThereJbre, 
in virtue of  3.3.2, the complexification of  the polarized hyperkiihler varieties 
(Y, ~1) under consideration form a finite set of  isomorphism classes," thus, in 
addition to the constraints that we have imposed bejbre, we may fix the 
isomorphism class o f  ( Yc, rio, marking mod. Fn). 

9.5 

For K3 surfaces, and more generally for varieties of K3 type which are defor- 
mations of Str]'s (see 1.2), it happens that the natural homomorphism 
Ic: AutYr ~ (AutH2(yc, z)(1))  ~ is injective [Be83b] Sect. 5. It follows that 
the triple (Y c, ~/c, marking mod. Fn) has no non-trivial automorphism, hence 
determines the isomorphism class of (Y,~/). 

However ic is no longer injective in general. Let us for instance consider a 
variety Yc of type Kr (see loc. cit.); then the group of (r + 1)-torsion points 
of the auxiliary abelian surface A used in the construction of Yc, acting on 
A lr+ll and thus on Yc by translation, lies in the kernel of x. 

We shall overcome this difficulty by using good reduction anew. 

1.emma 9.5.1. There are only finitely many isomorphism classes of  polarized 
hyperkiihler K-varieties (Y, tl) with good reduction at erery prime go of  R of  
height one such that, over -K, (Y, ~) lies in a given isomorphism class. 

Proof Let R~, denote the integral closure of R~, in K, and let (q/~, ~/~) denote 
the smooth proper Rv-model of (Y,~I). We put (r = Aut(Y,~/), 
(~, = Aut(~p,t/~), for one of the (Y,~/) occurring in the lemma. Then the 
set of isomorphism classes referred to in the lemma can be identified with the 
subset of H1('K/K, fg) of elements lying in the image of HI(-Ro/Ro,(r for 
every go. 

After localizing R once again, one may assume that for every go, H~ | 
(R~,/goRo), T~o| 0; it follows that the Lie algebra of the fibres of 
ff~, is trivial, and we derive on one hand that (~, is quasi-finite, unramified, 
and fiat over R~, (because the fibers are reduced and non empty, and R o 
is on,dimensional regular). On the other hand, it is proper by a theorem 
of  Matsusaka-Mumford IMAM64] (which can be applied here because the 
reduction of ~/~o mod. go is not ruled, cf. 2.1b). Using a well-known result 
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of Grothendieck, one concludes that f#~, is etale finite over R~, for every go, 
and so is every fg~,-torsor. 

Now, elements of HI(-K/K,f#) lying in the image of HI(-Ro/Rr 
may also be interpreted as generic fibres T of (a~-torsors Tp, up to iso- 
morphism. By the Grothendieck-Galois correspondence, the algebra of T is 
described by an action of GaI(K--/K) on H~ if T is the generic fi- 
bre of a c~o-torsor (necessarily etale) for every go, this action factorizes through 
~r~lg(SpecR), and the Hermite-Minkowski argument of 9.3 applies to show 
finiteness. 

This proves the lemma, and completes the proof of Theorem 9.1.1. 

9.6 Cubic Jburfolds 

Theorem 9.6.1. Let R be a finitely generated commutative .flat Z-algebra 
without zero-divisor, and let K be the fraction field of  R. Then there are only 
finitely many orbits for PGL(6,K) among all smooth cubic hypersurfaces 
in IP~ which have 9ood reduction outside every prime ideal go of  R of  
height one. 

Here are two ways of proof: One way consists in deducing 9.6.1 from 
9.1.1 via the Abel-Jacobi map, making use of Remark 9.3.2. The other way 
is to mimic the arguments 9.1 to 9.4 in the case of cubic fourfolds. Both 
ways result in the finiteness of the set of triples (Y,~,Gal(K/K)-isometry 
~n : PeZt( ~, 2~/nTZ)(1)~ Vz^ | 7./nTZ) under consideration. 

Let t be an automorphism of such a triple. Then, because Aut(Y,~) is finite 
(2.4), the image of z in AutH4(yr is id, being id mod. n. 

Writing Aut (Y, 7) ~ (Aut H4(y~:, Z)(2))~ as a composition of injective 
morphisms 

Aut (Y,~) ---* AutF --* (AutH2(Fr ~ --) (AutH4(ye, z)(2)) ~ 

(see 2.4, [Be83b] Sect. 5, 3.4 resp.), one concludes that t = id. Therefore, up to 
K-isomorphism, there is a unique (Y, r/) which induces a given triple (7, ~, sn). 
This proves 9.6.1. 

9.7 

Proof of  Corollaries 1.3.2, 1.3.3. Let us first recall that the discriminant 
of a n-ary form q5 of degree d changes under a linear substitution cr E 
GL(n,Q) according to the rule disc qSa=(det~r) a(a-l)n-I discqS. In par- 

I ' ~ ' 1  

ticular, if both disc4)and disc4~a are units in Z/d--~l/, then so is det#. 

([']') Let det (-1) Z ~ denote the projection in PGI.~n,Q) of the preim- 

age of Z in GL(n,Q) with respect to the determinant map. Then 
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det(- ') ( Z  [mm]* ) /PSL(n,~)'~PGL(n, Z IJ~]  ) / P S L ( n , E [ ~ - ~ ] ) ~  

r__, I ' :  7. 7. IdmJ .] is a finite group. Hence it is equivalent to say that 

there are only finitely many PSL (n,Z [J-~ l )-orbits arnong all hypersurfaces 

of degree d in z[~]  which are smooth over Z and belong to a sin- 

gle PGL(n, ~)-orbit, or that the n-ary forms of degree d with coefficients in 

Z [i--m], Which are SL(n,Q)-conjugate to a given one with discriminant in 

111- Z ~mm , can be divided into a finite number of SL n, Z -orbits. But 

for d > 3,n >= 3, the last statement is a classical result in reduction theory. 16 
On the other hand, Theorem 9.1.1 (resp. 9.6.1 ) implies that there are only 

finitely many orbits for PGL(4,ff~) (resp. PGL(6,~)) among all smooth quar- 
tics (resp. cubics) over ~ which have good reduction outside the prime divisors 
of 2m (resp. 3m). One concludes that for n = d = 4 (resp. n= 6, d =  3), there 

are only finitely many orbits for PGL(n,Z [~---ml ) among all smooth hyper- 

~_-1 surfaces of degree d in z[~]" 

Remark. It seems to be an interesting problem to determine in general for 
which pairs (n, d) this property holds. 

Appendix 1 

Spinorial Shimura varieties 
In this logically independent appendix, we give a short discussion of moduli 
spaces for Kuga-Satake abelian varieties. 

The notations being as in 4.1, let 01 .. . .  , t,~) be a sequence of mixed tensors 
such that G is the algebraic subgroup of GL(L) which fixes the ti's. 

The Shimura variety attached to (G,12 +) is a complex proalgebraic vari- 
ety Sh(G, f2 •  with complex points Sh(G, Y2• = G(Q)\I2 • x G(A f )  (see 
[D71b, D78] for a general reference, and [Sa66] for a study of the spinorial 
case). For x E f2 +, g E G(Af ), we denote by Ix, g] the corresponding point in 
Sh(G, 12• There is an obvious continuous action of  G(A f )  on the right: 
Ix, g]g '  = Ix, gg'] .  

It turns out that Sh(G, f2 •  is a fine moduli scheme for triples (A,(Oi),y) 
up to "isogeny", where: A is a complex abelian variety, the Oi's, i = 0,..., m, 
are Hodge cycles, subject to the following condition: there exists an iso- 
morphism 6: HI(A, ~)c~ L mapping each Oi to ti (in the appropriate tensor 

16 Over Z, this is a well-known result of  Jordan [J]; see also [Bo69] 6.5, and [8063] 8.10 
for the general case 
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constructions) such that 6 o h o 6  -1 ~ [2 • where h stands for the morphism 
1-Ic/R~m --~ GL(H1(A,~)) which gives the Hodge structure; and 7 is an iso- 

morphism H~t(A,A f )  ~- LAI mapping each Oi to ti. 

To the triple (A,(4), 7), one associates the 'modulus' [5 o h o 6- i, 6/~/o y-  l]. 
It is understood that (A, (Oi), y) and (A r, (0~), 7 t) are isogenous if  there exists 

an isogeny t: A ~ A' such that y' = y o z* (this implies that t*(O~) = (Oi)). 
The choice of a 7/^-lattice in LAY fixes the universal abelian scheme inside 

its isogeny class. If the lattice is of the form Lz | Z ̂ , then the endomorphism 
ring of the universal abelian scheme may be identified with C +. 

The quotient Sh(G, f2+)/IK, is the fine moduli space for marked Kuga- 
Satake varieties with level n-structure. The set of connected components of 
Sh~<,(G, I2 +) is in a canonical way a principal homogeneous space under the 
finite class group Q+\(Af)*/N(Kn);  this follows for instance from [D71b] 
3.3. Each of these components is the quotient of f2 + of 12- by an arithmetic 
group in G. 

It is well-known that Sh(G,12 +) admits a canonical model over the reflex 
field E(G, 12+), on which G(A f )  acts continuously. 

Lemma. I f  rank V >  4, then E( G, O ~ ) = ~. 

Proof By definition, E(G,O +) is the field of definition of the conjugacy class 
of the morphism r: IB,~ ---, SO( V | tE) such that r(2) .  v pq = 2 p . v pq when v pq 
has Hodge structure of type (p,q) defines a Hodge structure of type (-1 ,1)  
+ (0,0) + (1 , -1)  on Vz, polarized by (,).  Let T be a maximal torus in 
SO(V | IE), endowed with a system of simple roots. Then according to [D72] 
4.6, r is conjugate to the homomorphism Gm --~ T which corresponds to the 
root labeled by the first left vertex in the Dynkin diagram 

(B,) ~ . . . . . .  ~ or (D,) ~ . . . . .  - - ~  

Except in the case of triality (Da), this vertex is obviously fixed under Aut 112, 
and one has E(G, 12 +-) = Q. In the/)4 case, one should remark in addition that 
the marked vertex corresponds to the standard orthogonal representation, which 
is defined over ~ by assumption. 

The universal abelian scheme on Sh(G, I2 +) descends to an abelian scheme 
on the canonical model ~Sh(G, f24"), and passes to the quotient by K, .  

Appendix 2 

A short proof o f  the Hodge conjectureJbr cubicfourJblds 

The notations are as in 2.4: Y is a complex cubic fourfold, (F,t/') its po- 
larized Fano variety, and 0~: H4(y, 11~)(2)--, H2(F, II~)(l)the Abel-Jacobi iso- 
morphism. Let x be an element of Hodge type (0,0) in Ha(y,r Then 
after Lefschetz, ~(x) is an algebraic class. On the other hand, the map 
L2: H2(F, II~)(1)-* Ht(F,  II~X 3) given by the cup-product with t/r2 is an iso- 
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morphism (hard Lefschetz '  theorem); thus fl : =  t ~ o L 2 o  ~ is an automor- 
phism of  H 4 ( y , ~ ) ( 2 )  (induced by an algebraic correspondence). Lefschetz '  
trace formula gives, for any m, tr~t4tr,~)(2)fl m = (tim, rtr4)r2, where xr4 stands 
for the fourth Kiinneth projector of  Y. Since the cohomology o f  Y is alge- 
braic except in degree 4, 7z~,4 is induced by an algebraic correspondence, and 
(tim, rrr4)r 2 E r hence the characteristic polynomial  of  fl has rational coeffi- 
cients. By Cayley-Hamilton,  this implies that f l - l ,  as well as fl, is induced by  
an algebraic correspondence. Therefore x = f l - i  o t~t(~(x)t_J ~f2) is an algebraic 
class. Q.E.D. 

Remark. Because L 2 comes from an isomorphism H2(F,Z[~])(1)--~ 
H t ( F , Z [ I ] ) ( 3 )  [BeD85] 6ii, the proof  shows more precisely that any element 

o f  Hedge  type (0,0) in H4(y,  Z[~] ) (2 )  is a Z[~]- l inear  combination o f  funda- 
mental classes of  surfaces on Y. 
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