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1 Problems and results
1.1

In this paper, we are interested in arithmetico-algebraic properties of certain
classes of projective varieties, the prototype of which is the class of K3 surfaces
(i.e. simply-connected projective smooth surfaces Y such that H°(0Q%) is one-
dimensional and generated by a differential form @ which is non-degenerate at
every point).

For K3 surfaces, the problems we are about to examine may be stated as
follows:

1.1.1) The Shafarevich problem: are there only finitely many polarized K3
surfaces of fixed degree d over a number field X, with good reduction outside
a fixed finite set of primes {1, P2,..., 2 }?

1.1.2) Describe the motive of a K3 surface, and compute the motivic Galois
group.



206 Y. André

1.1.3) The Tate problem: let ¥ and ¥’ be K3 surfaces defined over a number
field K. Is any isomorphism of Gal(K/K )-modules Hiy(Yz, Q) — Hy( YKL, Q)
induced by a ®@,-linear combination of algebraic cycles on ¥ x Y’? Is the image
of Gal(X/K) in GL H;(Y%,Q;) as big as possible, i.e. an open Lie subgroup
of the mativic Galois group over @, (cf. [S94])?

1.2

We shall tackle these problems in the broader context of Ayperkdhler varieties
(where problems 1.1.1 and 1.1.3 have been explicitly posed by A. Todorov
[T90]). We recall that an even-dimensional, simply-connected, smooth pro-
jective variety Y is said to be hyperkihler (or else “irreducible symplectic”
[Be83a]) if H%(Q%) is one-dimensional and generated by a form w which is
non-degenerate at every point.

Let us set out, following A. Beauville (loc. cit. Sect. 6,7), some simple
constructions of hyperkahler varieties Y in any dimension 2r = 2:

i) for any K3 surface S, take ¥ = SU' the punctual Hilbert scheme which
parametrizes finite closed subschemes of S of length #; thus for r =1, ¥ = §;
ii) for any abelian surface 4, form in the same way AU+l and take Y = K,
:= the fibre above 0 of the “summation” morphism A"+ — 4; thus for r = 1,
Y is the Kummer surface of 4;
iii) any projective deformation ¥ of a hyperkahler variety of type S or K.
We shall call these varieties “of K3 type”. For instance, Beauville and R.
Donagi have shown that the variety of lines of the cubic fourfold is of K3 type
[BeD85]. Some modular varieties for stable vector bundles on a K3 surface are
also of K3 type [Mu84a]. In fact, it seems to be unknown whether there are
hyperkéhler varieties not of K3 type. We mention at last that vareties of K3
type carry a rich geometry of lagrangian subvarieties [V92].

13

By a polarized (resp. very polarized) variety of degree d over some field K, we
mean a variety endowed with a K-rational ample (resp. very ample) numerical
equivalence class of line bundles of degree d. We say that a polarized variety
has good reduction at some place of K if a smooth pelarized model exists

(cf. 9.1).

Theorem 1.3.1. Let @1, @2,..., 0. be primes of a number field K, and let r
and d be positive integers. Then there exist only finitely many isomorphy
classes of polarized K3 surfaces (resp. of very polarized hyperkdhler vari-
eties of dimension 2r with second Betti number > 3) of degree d, with good
reduction outside 9, 92,..., Pn

This gives a positive answer to 1.1.1. By using a result of C. Jordan in
reduction theory, one deduces (Sect. 9.7):
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Corollary 1.3.2. For any positive integer m, there are only finitely many
orbits for PGL (4,1 [Eln—;]) among all smooth quartics in the 3-dimensional

rojective space over Z !
projective sp Tl

l In a similar way, using the cohomological interplay between cubic fourfolds
and their varieties of lines, we prove (Sect. 9.6,9.7):

Corollary 1.3.3. For any positive integer m, there are only finitely many orbits

. 1
for PGL (6, VA [%]) among all smooth cubics in the 5-dimensional projective

1
spac Zl—1.
space over [3 ]

1.4

Let (Y,n) be a polarized variety defined over a subfield X of €, and let k be
a positive integer < dim Y. Identifying n¢ with an element of H2(Yg, Z)(1)/
torsion, we endow H?*(Yg, Z)(k)/torsion with the quadratic form (, ), defined
by {x, ¥)y = (=1Fx U y Unem¥~2 and we denote by P*(Y¢, Z)(k) the prim-
itive lattice, i.e. the orthogonal complement of the image of H¥*~(Y¢, Z)(k ~
1)U n¢ in H*(Yg, Z)(k)/torsion. This primitive lattice underlies a Hodge struc-
ture of weight 0 polarized by {,), [W58,D71a]; we denote by h}'? its Hodge
numbers,

Motivated by the hyperkéhler instance, we introduce the following ‘axioms’:

Ay: one has iy =hp7! = LAY >0, and P4 =01if |p—q| > 2;

By: there exists a smooth connected K-scheme S, a point s € S(K), and a
projective smooth morphism f: Y — S, such that:

Y= Z,\‘,

it) nc extends to a section of R:f3E.Z(1)torsion,
iii) the image of the mapping (Universal covering of S(C)) — (Moduli space
of Hodge structures on P*(Yg,Z)(k) polarized by (,),) contains an open
subset.!

We shall say that (Y,7) satisfies B} if moreover

iv) for each t € S(T), every element of Hodge type (0,0) in H*(Y,, Q)k)
is an algebraic class.

We observe that these axioms do not depend on the given complex embed-
ding of K?.

Polarized abelian surfaces, surfaces of general type with p; =1 and
A2 =1, K3 surfaces and hyperkahler varieties with b, > 3 satisfy 4,,B].

! One can show that the image of the monodromy homomorphism 7;(S(C),s) — O(P*(¥Y¢,
Z)(k)) then has finite index (cf. 3.3.3). These axioms are similar to those being considered
in [Ra72]

2 For Ay, we note that the Hodge numbers #}'? may be defined algebraically
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Cubic fourfolds satisfy 4, By (see 3.3 to 3.6). It turns out that most of our
arguments apply to any polarized variety which satisfy 4, B; for some £.

L5

Let us now tum to problem 1.1.2. The notion of motive which we consider
here is the ‘strong’ one defined in [A93]; however our results hold (a fortiori)
for motives defined in terms of absolute Hodge cycles (cf. [DM82]).

Let us record one of the equivalent definitions of a motivated cycle in
the sense of loc. cit., for a ground field X which is a subfield of C: a mo-
tivated cycle (in the strong sense) on a smooth projective K-variety X is an
element of H*(Xg, Q) which can be written pr,(a U (xx ® *5)f), where W is
an arbitrary (not necessarily connected) smooth projective X-variety, pr is the
projection X X W — X, o and § are algebraic cycles on X' x W, and * stands
for the Hodge star operator associated with the Kéhler metric attached to some
polarization defined over K.

All motivated cycles are absolute Hodge. All algebraic cycles are moti-
vated®. Remember that one of A. Grothendieck’s standard conjectures predicts
that * respects algebraic cycles, which would imply that, conversely, all mo-
tivated cycles are algebraic. It is proved in [A93] that in a precise sense, the
notion of motivated cycle is invariant under Aut(€/K), and that the category
of motives defined in terms of these is tannakian semisimple over Q. In par-
ticular, to any motive is attached a motivic Galois group, which is a reductive
Q-group (depending by inner twist on the complex embedding of K). We de-
note by #(/¢) the tannakian subcategory generated by abelian varieties and
0-dimensional varieties.

Theorem 1.5.1. Ler (Y,1) be a polarized variety which satisfies Ay, Bf. Then
the motive #*(Y)(k) attached to P*(Y¢,Q)k) is an object of My(AE).

In the special case of complex K3 surfaces, this was proved in [A93];*
let us also mention the work of K. Paranjape [Pa88] conceming K3 surfaces
which are desingularizations of the double cover of the plane branched along
six lines.

Using Y. Zarhin’s description [Za83] of the Hodge group of P%*( . ,Q)(k)
for polarized varieties satisfying A, we get:

Corollary 1.5.2. Let (Y,n) be defined over an algebraically closed sub-
field K of €, and satisfy Ax,B}. Let us denote by *(Y)k) the sub-
motive of A*(YX(k) whose Betti realization is the orthogonal complement
T%*(Ye, QXk) of the subspace of P*(Y¢, Q)(k) generated by algebraic classes.
Then E := End £24(Y )(k) is a CM field or a totally real, and the restriction
of () to T*(Yg, Q) k) is E-hermitian (resp. E-bilinear). The corresponding

? For instance if X has a X-point P, take W = SpecK, f= the class of P x W

4 For this special case, the weaker statement, in terms of absolute Hodge cycles, was claimed
in [DM82], where an argument by deformation of the original surface to a Kummer surface
is sketched; however, no existence proof is offered of such an algebraic deformation
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unitary (resp. special orthogonal) group, viewed as a Q-group, coincides with
the motivic Galois group of #*(Y)(k).

On the other hand, having proved in [A93] that any Hodge cycle on a
complex abelian variety is motivated, we get:

Corollary 1.53. On a product of complex hyperkihler varieties Y,
(with by > 3), cubic fourfolds and abelian varieties X;, any Hodge cycle
in (9H?(Y;)) ® (RH*(X;)) is motivated,

16

Given a polarized variety (¥,#) and a rational prime ¢, one defines a quadratic
form (,), on HZ"( Qe )k) by (x,y)y = (=1)xUyunt™’—2 and one
denotes by P, (YK, Q,)(k) the primitive lattice (which is the /-adic realiza-
tion of /zz"(Y )(k)), i.e. the orthogonal complement of the image of HZ (Y,
Q Xk —-1)un.

The following result, which generalizes {080, Ta88, Ta90], gives a partial
answer to question 1.1.3:

Theorem 1.6.1. Let (Y,n) be a polarized variety satisfying Ay,By over a
number field K. Then:

1) the Gal(K/K )-module P¥(Yz, Q,)(k) is semisimple,

2) every Gal(K/K )-invariant element in P¥(Ye, Q)(k) is induced by a
Q,-linear combination of algebraic cycles,

3) the image of Gal(K/K) in GL(P¥ (Y, Q)(k)) is an open Lie subgroup
of the l-adic motivic group attached to /zﬁ(Y )k),

4) let (Y',n') be a polarized K-variety satisfying Ap, By (for some h);
then any isomorphism of Gal(K/K )-modules P¥( Yz, Q,)k) = P2 Y2, Q¢ )(h)
is induced by a Qg-linear combination of motivated cycles on Y x Y'.

An interesting example of such an isomorphism is given by the so-called
Abel-Jacobi map of a cubic fourfold (3.4).

1.7

Not surprisingly, our proofs rely upon the use of the period mapping and the
Kuga-Satake construction (along the lines of [D72] or [PSS73]); in this way,
we reduce problems 1.1.1 and 1.1.3 to the analogous problems on abelian
varieties, solved by G. Faltings. However, since the Kuga-Satake abelian variety
is constructed by analytical means, it is crucial to verify the existence of a
model over some finite extension of the ground field (Sect. 5.5, 8):°

5 This result is closed in spirit those to of [D72], especially Proposition 6.5, aithough the
question of the existence of a model of the Kuga-Satake variety over a number field is not
taken up in [D72)], where the occuring abelian K-variety, with property 1.7.1ii), is simply
constructed as a specialization of the Kuga-Satake variety. Therefore, contrary to a seemingly
widespread opinion (see e.g. [080]), 1.7.1 dees not follow formally from [D72], even if we
fix a complex embedding of K
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Main Lemma 1.7.1. Let (Y,n) a polarized variety defined over a subfield K
of C, satisfying Ay, Bx. Then there is an abelian variety g1 A defined over some
finite extension K' of K such that

i) (gsA)g is the Kuga-Satake variety of (¥, ne),

il) there is a subalgebra C* of End(x+A) such that the Z;[Gal(K/K')]-algebra
End -+ Hi((xrA)g, Z;) is isomorphic to the even Clifford algebra of the prim-
itive quadratic module P2XX(Ye, Z;)(k) (with its natural Galois action).

For K3 surfaces, it turns out that x4 does not depend on the given complex
embedding of K; in other words, the construction of the Kuga-Satake abelian
variety of a K3 surface ‘does not depend on the topology of €’ (8.5).

We shall give two proofs of the main lemma, both of them based on
certain rigidity properties of Kuga-Satake families (5.4). The second proof,
more delicate, yields an explicit description of the extension K'/K in terms of
the Galois action on etale primitive cohomology in degree 2k (8.4.3); this is
used in the proof of Theorem 1.3.1. At last, we point out that many of the
proofs in the text are much simpler in case the 2k™ primitive Betti number is
odd (e.g. in the case of K3 surfaces).

2 Polarized hyperkiihler varieties and cubic fourfolds
21

Let us state again our definition: A hyperkdhler variety over a field K of
characteristic 0 is a simply-connected smooth projective K-variety ¥ of even
dimension 2r, with the property that there exists a section w of Q%, unique
up to muliplication by a constant, such that «" vanishes nowhere. For K = C,
this is equivalent to the existence of a Kéhler metric for which the holonomy
group is Sp(27).

It is known that H(Y,Q2) =0 if p is odd, and HO(Y,Q¥) = Ko? for
0 £ g £ r (see [Be83a] Sect. 3). From these basic properties, it follows that:

a) the canonical line bundle is trivial, generated by the section w’;

b) the Kodaira dimension is 0, so that no smooth deformation or specialization
of Y is ruled, i.e. birationally equivalent to a product P! x # (indeed, a ruled
variety has Kodaira dimension —o0, and the Kodaira dimension cannot decrease
by specialization — in any characteristic);

¢) Y has no infinitesimal automorphism, i.e. H%(Y,Ty) = 0 (by duality, and by
a), this means that the Hodge number #*'(Y) is 0, and indeed, 42! = pb% =
hl,o — hO,l — O);

d) for any prime ¢, HL(Y,Z,) = 0 and H3(Y,Z,) is torsionfree (where Y =
Y, K = some algebraic closure of K). This follows from the universal coef-
ficient exact sequence 0 — HA(Y,Z,)® Z/¢Z — HA\(Y,Z/¢Z) — + Tor (H (7,
Z:),Z/¢Z) — 0, and the fact that HAX(Y,Z/¢Z) = 0, because Y is simply-
connected. It follows that over K = € and for Betti cohomology, H'(¥,Z) = 0
and H*(Y,Z) is torsionfree.
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e) the numerical equivalence class group of line bundles on Y coincides with
the Picard group PicY. In particular, a polarization of Y is just a Gal(K/K)-
invariant isomorphism class 1 of an ample line bundle.

f) for any polarization #, one has H(Y,n) = 0 if i > 0 (this follows from a)
and the Kodaira vanishing theorem).

2.2

A family of hyperkihler varieties parametrized by an algebraic or analytic space
S is a proper flat morphism f: Y — S, the fibers of which are hyperkahler
varieties. A polarization of f is a section # of Picg Y (the relative Picard

etale sheaf) such that the fiber 1€ (Pic T, )G GYK(S) above any point s € S
is a polarization. When K = €, we shall identify n with its image under the

injective morphism I'(Pics ¥) — I'(R*f*Z(1)).
2.3

A coarse moduli space for polarized hyperkihler varieties (Y,#n) with fixed
Hilbert polynomial P(x) may be obtained as follows.

2.3.1. Lemma. Let (Y,71) be defined over K (a field of characteristic 0).
Then 3®FD) lies in the image of the morphism Pic Y — (Pic ¥ )Ga&/),

Proof. In view of the usual exact sequence Pic ¥ — (Pic Y)®&/K)  BrK, it
suffices to show that the image of 5 in the Brauer group of K is annihilated by
dim H(n) = P(1) (cf. 21f). The effective divisors on Y belonging to the class
# are in a natural way the K-valued points of a Severi-Brauer K-variety |5| of
dimension P(1) — 1; as is well-known, |¢| is the Grassmannian of rank-P(1)
right ideals in some simple central K -algebra 4 of degree P(1)?. Any maximal
commutative subfield X’ of 4 is a splitting field for |5|. Hence the image of
# in BrK lies in the kernel of BrK — BrX’; but the exponent of this kernel
divides [K' : K] = P(1) (for all this, see [Se68] X Sects. 5,6).

2.3.2. By a fundamental theorem of T. Matsusaka [Ma72], there is an integer ¢
depending only on P(x) such that for all polarized hyperkihler varieties (¥,1%)
with Hilbert polynomial P(x),#®? is the class of a very ample line bundle. We
set m=gq - P(1), and M = P(m) — 1. Then #®™ comes from a very ample
element of PicY.

2.3.3. Let us consider the smooth subvarieties Z C IP¥ such that (Z,[0(1)]) &
(Y,n®™) for some polarized hyperkihler variety (Y,#) with Hilbert polynomial
P(x) (over any field of characteristic 0). This is the same as the set of smooth
Z C IPM such that

i) x(0z(k)) = P(mk), all k,
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il) 0z(1) is divisible by m in Pic Z,
iii) #%3(Z) =1, and
iv) the canonical bundle of Z is trivial.

Such subvarieties Z are parametrized by a Zariski open subset H,, of the Hilbert
scheme Hilb” ™) (IP¥). We denote by Z — H,, the universal family.

2.3.4. The quotient space H,/PGL(M + 1) exists as an algebraic space, sep-
arated and of finite type over @, or any field of characteristic 0 (see e.g.
[MFo082] App. to Ch. 5, for a description of the local charts, using properties
b), ¢) and ) above). It is a coarse moduli space for polarized hyperkihler
varieties with Hilbert polynomial P(x).

2.3.5. Remark. Using Chow coordinates instead of Matsusaka’s theorem, one
shows that there exists a coarse moduli space, separated and of finite type over
K, for very polarized hyperkdihler varieties of degree d; indeed it is finite
disjoint union of spaces H/PGL(P(1)), for finitely many P(x) (note that by
point f) above, “very ample” is an open condition). Similarly, there is a coarse
moduli space, separated and of finite type over K, for polarized K3 surfaces
of degree d; indeed, it is a finite disjoint union of spaces H3/PGL(P(3)), for
finitely many P(x).

2.4 Cubic fourfolds and their Fano varieties

Let Y C P} be a smooth cubic hypersurface, endowed with the polarization
# = [0y(1)]. Let us denote by (F,n’') the polarized Fano variety of ¥: F is
the variety of lines in Y, and n’ the class of Op(1) in the Pliicker embedding
[BeD85]. For any point y of ¥, there is a pencil of lines passing through y.
It follows that the natural morphism Aut(Y,n) = AutY N PGL(6) — AutF is
injective; hence Awt(¥,n) is finite (cf. 2.1c)). We denote by Z the incidence
variety, and by p: Z — F, q: Z — Y, the canonical projections.

It turns out that F is a variety of K3 type, more precisely a projective
deformation of a fourfold S?, where S is a K3 surface of degree 14 in IP%.

Let S be the Zariski open subset of P55 which parametrizes smooth cu-
bics in IP5, and let S be the component of the open Hilbert scheme H,
which parametrizes (as above) the deformations of the corresponding Phicker-
embedded Fano varieties F C P¥.

The natural morphism S — S’ gives rise to a morphism of coarse moduli
algebraic spaces u: S/PGL(6) — S'/PGL(M +1).

3 The period mapping
3.1

From now onwards and until Sect. 6.5, the ground field is € (unless otherwise
specified: 3.4, 4.4 and 5.5).
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Let (7,7n) be a polarized variety and let k be a positive integer as in 1.4;
we record the quadratic form (, ), on H*(Y, Z)(k )/torsion, defined by (x, y}, =
(-1)fxUyuUgU...Upe H¥mY(y ZYdimY)XZ. Let P*Y,Z)k)=
P¥*(Y,n,Z)(k) denote the primitive lattice, i.e. the orthogonal complement of
the image of H¥*~2(Y,Z)(k — 1) U7 in H*~2(Y, Z)(k)/torsion. This lattice car-
ries a Hodge structure of weight 0, polarized by (,},. In the sequel, we assume
that the Hodge structure on P*(Y, Z)(k) is of type (—1,1) +(0,0) + (1,~1)
with A%~! = 1. Then the rank of P*(Y,Z)(k) is N + 2, where N = k%, and
the fact that (,), is a polarization means that it induces a non-degenerate
quadratic form on P%*(Y,Z)(k) ® R, positive on the (0,0)-component, nega-
tive on the (—1,1) + (1, —1)-component.

Examples. Our examples will be polarized abelian surfaces and hyperkihler
varieties (for &k = 1), cubic fourfolds (for £ = 2), and canonically polarized
surfaces of general type with p; =1 and #? =1 (for k =1, and denoting
by 2 the canonical line bundle); the Kodaira dimension is 0, 0, —oo, and 2
(maximal), respectively.

For abelian surfaces, one has N = 3; for K3 surfaces, N = 19; for a variety
of K3 type and of dimesion >2, one has N =20 (resp. N =4) if it is a
deformation of a SU1 (resp. K,), cf. Sect. 1 and [Be83a]; for cubic fourfolds, one
has N = 20, cf. [Ra72], while for canonically polarized surfaces with p, = 1
and 2 =1, N =18 and P%(Y,Z)X1) is unimodular [C80, T80].

3.2

Let Vz = (ZV¥*2,(,)) be a quadratic lattice of signature (N+,2—) and let
us write ¥V for Vz®®Q, Vg for ¥z ® R. The Hodge structures of type
(=1,1) +(0,0) + (1,—1) on ZN*?2 polarized by (,) are parametrized by Q% :=
O(N,2)/O(N) x SO(2), which is a disjoint union of two copies of the hermitian
symmetric domain attached to Spin Vg; the complex dimension of Q% is N.

A k-marked polarized variety (¥,n,¢) of type Vz is a polarized variety
(Y, ) together with an isomorphism of quadratic lattices &: (P*(Y,Z)(k),{,)y) =
Vz. One thus attaches to (Y,#,¢) a point 2(Y,n,¢) in 2%, called the period of
(Y,n,¢). Using an auxiliary k-marking, one can attach to any polarized variety
(Y,n) (“of type Vz") a well-defined point in QF/O(Vz) still called its period,
which depends holomorphically on (Y,5) [G71] 9.6.

3.3 The case of a polarized hyperkdhler variety (1,1)

Proposition 3.3.1. Let f: ¥ — & be a local universal projective deforma-
tion of (Y,n). By restricting & if necessary, one can assume that there is a
continuous marking on the P2-lattices of the fibres. Then the induced period
mapping & — Q% is a local isomorphism.

See [Be83a] Sect. 8, which relies on the smoothness of the Kuranishi family,
due to F. Bogomolov [B74].
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Corollary 3.3.2 (Todorov). The “open” Hilbert scheme H, is smooth.

Indeed, the local deformation space & attached by the proposition to
(Y,7®™) is smooth; the local deformation space for the embedded Y C PP¥
(via #®™) is open in a PGL(M + 1)-torsor over &, and locally isomorphic
to H, in the neighborhood of the modulus of (¥, #®™) [T90]. Hence H,, is
smooth (but not necessarily connected).

Corollary 3.3.3. The period mapping from any connected component S of
Hp(CT) to Q%/0(Vz) is a deminant analytic mapping. In particular, for any
s € S, the image of 7 (S(€),s) in O(Vz) given by the monodromy of the uni-
versal family Z\g — S has finite index in O(Vz); and, if N > O, it is Zariski-
dense in O(V') or SO(V).

The second assertion follows from the first according to the argument of
[G71] D1 (cf. also [D72a] 4.4.17); the third assertion follows from the second
according to [Bo69] 15.12.

This shows that hyperkahler varieties with b, > 3 satisfy properties 4; and
B, stated in 1.4. (note that 1 extends to a polarization of the Hilbert family
Zs — S (integrality of the Chern class)). Instead of a component S of H,, one
could take any algebraization of the formal universal projective deformation of
(Y,n). We notice that, by Lefschetz’ theorem, B, <> B; .

Proposition 3.3.4. Up to isomorphism, there are only finitely many com-
plex polarized hyperkihler varieties with given Hilbert polynomial (resp. very
polarized hyperkdihler varieties of dimension 2r and degree d, resp. polarized
K3 surfaces of degree d) with given period in Q*/O(Vz).

Proof. Since the local period mapping & — Q7 is a local isomorphism (3.3.1),
it is enough to show that every fiber of the period mapping 2: § — Q*/0(Vz)
has finitely many connected components. Let I’ be a torsionfree arithmetic
subgroup of SO(Vz), and let Sr be a scheme, finite etale over S, and sr € Sr
lying above s, such that the image of m;(Sr,sr) in O(Vz) factorizes through I
(such a scheme exists by the generalized Riemann existence theorem). We
have a commutative diagram

ss & oEr

sl l=

s 2 otio0n).
According to A. Borel [Bo72], # is automatically a morphism of schemes. On
the other hand, J is a surjective morphism of algebraic spaces. Therefore, for
any t € QF/0(Vz), #~!(t) is a closed algebraic subspace, being the projection
under & of a finite union of fibres Z-'(tr), tr € n~!(¢); hence 2~!(z) has
finitely many components.

3.4 The case of a cubic fourfold

We take up the notations 2.4 again (with K C €). The algebraic correspon-
dence p.g*, which is usually called the ‘Abel-Jacobi’ correspondence, induces
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an isomorphism in cohomology [BeD85]:

a: H*(Ye, Z)(2) — H*(F¢,Z)(1). Moreover, one has «(5?) = #’, and the
restriction of o: P*(¥Y¢,Z)(2) — P?(Fg,Z)(1) is a “quasi-isometry™: {(e(x),
a(y))y = 6(x, y),. On the other hand, it follows from [Ra72] that statement
3.3.1 also holds for cubic fourfolds. From this, one derives as in 3.3 that

i) cubic fourfolds satisfy 4, and B, (even B; in fact, because the Hodge
conjecture is known for them, cf. [Z77], or appendix 2 for a very short proof);

ii) the period mapping S¢/PGL(6) — Q*/O(Vz) has finite fibers;

iii) denoting by K the algebraic closure of K in C, there is a finite number
of PGL(6,K )-orbits among all non-singular cubic fourfolds over K with given
period in Q*/0(Vz).

Since S¢ — Q%/0(Vz) factorizes through the period mapping Si —
Qt/0(Vg),5 one also deduces that the morphism u: S/PGL(6) —
S’/PGL(M + 1) of 2.4 has finite fibers; this implies:

iv) there is a finite number of PGL(6,K )-orbits among all non-singular cubic
fourfolds over K whose Pliicker-polarized Fano variety is isomorphic to a given
polarized hyperkhler variety over K.

Remark. C. Voisin [V86] has proved a ‘Torelli theorem® for cubic fourfolds,
but we shall not need this result (from which one may derive that there is at
most one PGL(6,K)-orbit as in iv)).

3.5 The case of a canenically polarized surface of general type
with pg=1and #? =1

The canonical model of such a surface is a smooth complete intersection of two
sextics in the weighted projective space IP(1,2,2,3,3) [C80,T80]. We denote
here by S the (smooth) Zariski-open subset of Sym?PP'® which parametrizes
such complete intersections (with K ample). There is a coarse moduli space
M for such surfaces, which is a smooth rational variety of dimension 18 = N.
The period mapping S — Q*/0(Vz) factorizes through a dominant mapping
v: M — Qt/0(Vg).

From this, one derives that these canonically polarized surfaces satisfy
A; and B} . However, the analog of 3.3.1 is no longer true: some of the fibers
of v have dimension 2.

3.6 The case of a polarized abelian surface (Y, n)

The identification of P2(Y,®) with a direct summand of A H'(Y, Q) gives rise
to an exact sequence of Q-algebraic groups 0 — Z/2Z — Sp(H'(¥,Q),n) —
SO(V) — 0, and to an identification of 2% with the (complex) 3-dimensional

8 The change of (,), into 6{,), does not affect Q% nor O(¥z)
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Siegel upper half-space. One derives that polarized abelian surfaces satisfy
A; and B

4 The Kuga-Satake construction
4.1

This construction of abelian varieties applies to any polarized Hodge structure
of type (—1,1) +(0,0) + (1, —1) on ZV¥*2 (N = 0), polarized by the form (,)
of signature (N+,2—), see [KS67] and [D72]. We follow the conventions of
P. Deligne [D72].

Let G stand for the even Clifford group, i.e. the group of invertible elements
y in the even Clifford algebra CT(¥) such that y/y~! = V, so that there is
an obvious surjective homomorphism of linear algebraic groups over ®: G —
SO(V'), with kernel the homothety group; the induced homomorphism G(Q) —
SOV )(®) is still surjective.

The morphism A: (HC/]R G,,) — SO(Vr) which describes the Hodge de-
composition on €V*2 lifts uniquely to a morphism #: (HC/IR G,) — Gg, such
that the image of any element A in the diagonal group G,, acts as the multi-
plication by A. Then the norm (I'LE/]R G,) — G, coincides with N o /, where
N stands for the spinorial norm’ (the character of G given by N corresponds
to the Tate Hodge structure ®(—1)).

Let Lz be a free (left) C*(Vz)-module of rank one, and let us write L
for Ly @, Lg for Lz ® R. Then Lg is naturally a Gg-module (action by
left multiplication), and % gives rise to a polarizable Hodge structure of type
(0,1)+(1,0) on Lz.

This defines a complex abelian variety 4 = 4(Vz, h) of dimension 2V, called
the Kuga-Satake variety attached to (Vz, k), by the condition that H'(4,Z) =
Lz as a Hodge structure.

This construction applies in particular when # is the image by & of the
Hodge structure on P2¥(Y,Z)(k) attached to a k-marked polarized variety
(Y,n,¢) satisfying axiom Ag. In fact, up to isomorphism, 4 does not depend
on &; we write 4 = A(Y,n) or A(Y) to emphasize the geometric origin of (Vz, k)
(omitting £ from the notation for short).

Example 4.1.1. The Kuga-Satake abelian variety of a polarized abelian surface
is isogeneous to its fourth power [Mo85] 4.5.

Remark 4.1.2. Apart from hyperkdhler varieties, surfaces with p, =1 and
A% = 1, and cubic fourfolds, there is another specific case of interest where the
Kuga-Satake construction takes place, namely in the study of desingularizations
of Hilbert modular surfaces [082].

7 Denoting by * the main (anti)involution of the Clifford algebra, Na is a*a
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Variant 4.1.3. Of course, the construction also works if one replaces (Vz, k)
by (V3,h*):=(Vz,h)® the trivial polarized Hodge structure on Z (with
(1,1) = 1); we denote by L*, 4%, the objects corresponding to L, 4. This trivial
trick enables us to recover ¥z from C+(V§ ), when N is even (cf. Sects. 9, 10).

Since C(V*) = C(V)YR¥C(1), and C(1) = Q @ Qe, with e = 1, one has
CHVH)=C*)Q1aC~(F)®e= C(V) as left CH(V)-modules. If v is
any non-isotropic element of V,C*(V*) is a free left C*(V)-module with
basis 1,v.

Therefore the G-modules L? and L* are isomorphic, and the abelian varieties
A? and A* are isogeneous.

Remark 4.1.4. (not used in the sequel). One has a “periodicity isomorphism”
CH(V) ® Mis(®) = CH(P™"), which is an isomorphism both of left C+(¥)-
modules and of rings, and which comes as a composed isomorphism, as follows
([Ja80] Sect. 4.8, Th. 4.13, Lemma 5): let v be the orthogonal complement
of v in V, st the standard quadratic form on @”, and put g = —(v,v), then
CHV) ® C(Q% 4" - st) = C(vt,q(,)) ® C(Q%,¢° - sH=C(* & @, q((, )
@ st)) & CHP*Y)). Caution: the periodicity isomorphism is an isomorphism
of left G-modules, but not of SO(V )-modules.

Variant 4.1.5. It will also be useful to apply the Kuga-Satake construction
in the case when (Vz,k) is replaced by (V2,h), where V% is the orthogonal
complement of some algebraic classes in P?*(Y,Z)(k) (if any), with respect to
some positive integral multiple of (,), (note that imh C V£ ® R); we denote
by L?, 4%, the objects corresponding to L, 4. As in 4.1.3, one can see that 4 is
isogeneous to a power of 4°.

4.2

Let us denote by C* the opposite ring (Endc+y, Lz ) of the ring of C*(¥z)-
endomorphisms of Lz. There is an isomorphism C*+ 2 C*(Vg), well-defined
up to conjugation. Note that the right action of C* on Lz respects the Hodge
structure, so that 4 has complex multiplication by C*.

Examples. For K3 surfaces, this ring is an order in the matrix ring M,10(®),
see [KS67];® for higher dimensional varieties of type K3 or cubic four-
folds, it turns out that the center of C* is an order in an imaginary quad-
ratic field, while for canonically polarized surfaces with p, =1 and
A2 =1, the center of C* is an order in Q & @, see also [Sa66] Sect. 2,
Remark 3).

On the other hand, one has a canonical ring isomorphism C*(Vz) &
End, Lz, which is also an isomorphism of Hodge structures of type (—1,1) +
(0,0) +(1,—-1) if, in the left-hand side, the tensor construction C*( ) is
understood as a functor on polarized Hodge structures of weight 0. In the

¥ [KS67] uses the opposite of { } and H; instead of H', but the result is the same
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application to k-marked polarized varieties, we write this isomorphism as:
g CH(P*™(Y,Z)(k),(,)y)) = End-+ H'(4,Z). By Artin’s comparison theo-
rem, one derives a similar isomorphism " in etale cohomology (e.g. with
coefficients in Z" = [, Z,, or in AY = Z" @ Q).

4.3

A polarization of the Hodge structure on Lz (or of 4) may be obtained as
follows [Sa66] Sect. 2, Ex. 3: let us choose a generator of Lz, which amounts
to an identification C*(Vz) = Lz = C*; and let a be a non zero-divisor in C*
with @* = —a. Then the skew-symmetric form ¢@,: Sym?Lz — Z(—1) given by
©.(x, y) = tr(x*ya) defines a polarization of Lz if and only if the symmetric
form +/—1g4(x,A(v/=1)y) is definite positive (this condition on @, depends
on the component of Q% to which 4 belongs, but not on the location of 4
in Q%). One checks that £¢, does not change (as well as the equation a* =
—a) if one changes the generator of Lz by multiplying it by an element of
G(Q), because the spinorial norm of an element v of G(Q)NCH(Vz)* is
Ny = %1.

44

We pause to introduce some arithmetic groups. We set Gz := G(Q) N Ct(Vz)*.
The homomorphism G(Q) — SOV )(Q) maps Gz to a subgroup of SO(Vz);
indeed, for every y € Gz, conjugation by 7 is an automorphism of C(¥z) which
respects ¥, hence also Fz. Thus there is an exact sequence 0 — Z/2Z — Gz —
SO(Vz).

By a well-known lemma of Minkowski-Serre, the principal congruence
subgroup I, of level n > 2 in Gz (i.e. the subgroup of elements = 1 mod.n
in C*(Vz)) is torsionfree.” Note also that I, lies inside SpinV = KerN.
The image I’ of I, in SO(Vz) is a subgroup of the principal congruence
subgroup of level n in SO(Vz); according to [Bo69] 8.9, it is an arithmetic
subgroup, i.e. of finite index in the latter.’® On the other hand, one reads
on the last displayed exact sequence that the homomorphism I, — I'* is an
isomorphism (it will be convenient to identify these two groups). We also
introduce Fga := Vz ® Z", Ggr := G(A/)YNC*(Vza)*, K, := subgroup of
Gygn consisting in elements = 1mod.n in C*(Vgn), so that I, = G(Q)N K,.
We note that the image K2¢ of K, in SO(¥z~) is an open subgroup; indeed,
for every prime ¢ not dividing 2z and such that the quadratic space Vz ® IF,
is non-degenerate, the /-component of K2 is SO(Vz,), because the morphism

% In fact, the subgroup of elements of Gz(Z;) congruent to 1mod.n is already torsionfree
for any odd prime Z|n, and for £ = 2 if n is divisible by 4

10 As the referee points out, it does not contain congruence subgroups in general, because
the congruence subgroups in Spin define a topology for which the completion is an open
subgroup of Spin(¥,,), while the congruence subgroups in SO define a topology for which
the completion is the image of this subgroup in SO(¥,,), i.e. a quotient by an infinite abelian

group of exponent 2
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G — SO(V) extends to a smooth morphism of group scheme over Z,, surjec-
tive on IF-points (cf. [Ja80] 4.14).

The rest of this paragraph will not be used before Sect. 8. The reader
who is interested only in problems 1.1.2. or 1.1.3. may skip it.

4.5 Kuga-Satake packages

We axiomatize, in a way suitable for descent arguments, those structures
involved in the Kuga-Satake construction which make sense algebraically over
a field K of characteristic 0.

Let C* be a ring (with unit). Let ¥z+ be a free Z"-module of rank
N +2 z 2, endowed with a non-degenerate quadratic form (,) and with an
isometric action of Gal(K/K). For n > 2, let as before K, denote the subgroup
of the even Clifford group of V,; := Vza ® Af consisting in units in C*(¥VzA)
which are = Imod. n.

Definition 4.5.1. 4 Kuga-Satake package (or K-S. package) associated to
(Vzn, Ct n) over K is a 4-tuple (4, 11, {@4},0), where

A is an abelian variety over K,

U is an embedding of C* into Endg A,

{w.} is a non-empty collection of polarizations of A, indexed by suitable
elements a of CT,

U is a class in K,\Isom(C*(Vzn), Hi(Az, Z")) (for the right action of
K, on C*(Vzn)), fixed under Gal(K/K);
these data being subject to the following conditions:

a) the left C(Vga)-module structure on Helt(AE, Z™) induced by any repre-
sentative of © commutes with the right action of C™,

b) the opposite ring of W(C+) ® Z" coincides with Endc(y,, Hi(4z, ZM),

¢) an element a of C* is called *suitable’ if via some representative v of
U and some identification Z" = Z"(1), the formula @, (x,y) = tr(x* y u(a))
(x,y € Hi (4%, Z")) defines a polarization of A, which we denote by ¢,

Remarks 4.5.2. i) © gives rise to two more geometrically meaningful objects:
a Galois isomorphism ¢: C*(Vzr) ® Z/nZ = H}(Az, Z/nZ), and a Galois
isomorphism y": C*(Vgn) = Endoy Hy(Az, Z1).

if) The subring p(C*) of End 4 is uniquely determined by condition b), as
H(C) = End A N (Bndcsy, o Hidgs Z°)).

ifi) The polarization ¢, is uniquely determined by condition c); indeed,
polarizations defined by the same a but different representatives v or differ-
ent identifications Z» = Z"(1) must be equal except for a possible factor
in (N(K,) - Z"' )N @Q* = {#1}, which is +1 by the positivity condition
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involved in polarizations. Note that ¢, = ¢_, (just change the sign of the
identification Z” = Z"(1)).

iv) A K.-8. package over K induces one over any extension of K.

4.6

The Kuga-Satake construction described in 4.1, 4.2, 4.3, associates in a tran-
scendental way to any polarized variety (Y, #) satisfying condition 4; a Kuga-
Satake package over K = C, associated to (Vz ® Z",C*,n), depending on the
choice of a I,-otbit of generators of the free C*(Vz)-module Lz (with the
notations of 4.1). If Lz = C*(Vz) = C*, with the I},-orbit of the canonical
generator, we call the associated K.-S. package the canonical Kuga-Satake
package of (Y,n) (the level n being understood).

4.7

Definition 4.7.1. Two K-S. packages (A,p,{¢.},0) and (4,1, {9, },7')
associated to the same datum (Vgn,CT,n), are said to be isomorphic if there
is an isomorphism i: A — A, such that p=ig'i~', 0=i*o7.

Lemma 4.7.2. i) if the K-S. packages (4,p,{¢4},7) and (4", )/, {9}, },7")
associated to the same datum (Vza,C*,n) are isomorphic, then i*@| ._; = @a;

it) K -S.-packages have no non-trivial automorphism.

Proof. i) Follows from the argument given in Remark 4.5.2iii). Let i be an
automorphism of a K.-S. package. The formula ¥ = i* o U implies that i € K, N
(C*)* (considered, via some representative of T, as a subalgebra of C*(Vza)
acting on the right on itself). The formula x = ig/i~! then shows that i is a
unit in the center of C*, congruent to 1 mod.n. By i) it follows that i* @, = ¢,;
one concludes that i is a root of unity congruent to 1 mod. n, hence i = id (one
can also remark, more directly, that the center of K, N (CT)* is trivial).

5 The Kuga-Satake construction in a relative setting
51

Let S be a smooth connected complex algebraic variety with a distinguished
point s, let f: Y — S be a projective smooth morphism, and let n be a
section of R%2f™Z(1)/tors such that the fiber n, a polarization (we identify
the numerical equivalence class group of line bundles on ¥, with a sublat-
tice of HX(Y,,Z)(1)/tors). We denote by P* f*Z(k) the local system ortho-
gonal complement of the image of R¥*~2fZ(k — 1)U n in R* f2Z(k)/tors
with respect to the quadratic form (x,y), = (=1)xUyUgu..Uun We
assume that the variation of Hodge structures carried by P f®Z(k) is of
type (~1,1)+(0,0) +(1,~1) with A~b! =1, We let N = h% = 0. Let us
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fix a k-marking & of (¥,,# ). Then there is a unique isomorphism ¢
compatible with & between ¥z and the constant quadratic lattice obtained
from (P% f®Z(k),(,);) by pulling it back to the universal covering S of
(S, 5).

To fix ideas, we decide that the period mapping § — Q% maps to the
component %, not Q~. Using the morphism h described in 4.1, one endows
the constant local system Lz (a free left C*(¥Vz)-module of rank one) on Q% or
on § with a variation of polarizable Hodge structure of type (0, 1) + (1,0); this
defines an analytic family § of abelian varieties parametrized by the analytic
space S. We shall show that § descends — if not to § itself in general — at least
to « finite unramified covering of S.

52

By the generalized Riemann existence theorem, there exists an algebraic finite
connected unramified covering of S, say S, and a point s, of S, above s, such
that the monodromy homomorphism m1(Sy,ss) — O((P*(X,, Z)(k),{,)y ))
= O(Vgz) factorizes through the arithmetic group I, introduced in 4.4.3 (ﬁ‘ds
is a priori stronger than just requiring that the local system P%* f™Z/nZ
becomes constant on S,). There is then a well-defined analytic period map-
ping #: §¥ — Q*/I,, and the polarizable variation of Hodge structure on Q*
attached to Lz, with its right C*-module structure, is I-equivariant, hence
descends to Q2%/I,, where it defines an analytic family of abelian varieties
(with level n structure, and complex multiplication by C*). By the theorem of
Borel already quoted in 3.4, this is in fact an algebraic family. Pulling back on
Sy, this yields an abelian scheme g: A — S, (endowed with a level r structure
depending only the I,-coset of the marking), and § is nothing but the pull-back
of gto S.

For any point ¢ of §,, there is a well-defined I,-conjugacy class of
k-markings & of (¥, 1, ); any such & corresponds to a point 7 of S, Xg+/p, QF
above ¢, to which is associated a canonical isomorphism (Lz); & H'(4,,Z),
respecting the Hodge structure. Hence 4, is the Kuga-Satake variety of

(Zbl’l_” 8‘)'11

5.3

Note however that the local system on Q*/I;, induced by Lz (resp. C*(Vz))
is described by the action of I, by left multiplication (resp. conjugation).!
Therefore one can reasonably identify Lz and C*(Vz) only up to right
multiplication by elements of T, (on C*(Vz)). Let us fix such an identifi-
cation. It follows from 4.3 that the collection of polarizations {¢,} of the

'! With slight abuse of language, because we do not assume that 7 is a polarization, for ¢ +s
12 1n other words, for any complex point ¢ of Sn, the monodromy of g (resp. of the pull-
back on Sn of the morphism f) is given by P.: 7 (Sy,t) — I, (resp. P, followed by the
isomorphism I}, — I*)
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Hodge structures on Lz (parametrized by Q%) gives rise to a collection of
polarizations {Qd } of g. On the other hand, using auxiliary markings ¢ of
(X, } as above, one obtains for any point ¢ of S, a well-defined element
of N\Isom(C*(P*(Y,,Z)(k), <’)L ),H'(4,, Z)) (for the right action of I}, on
C*(Vz)); the corresponding element 7, in etale cohomology is the one entering
the definition of the canonical K.-S. package of (¥,,7,)".

The isomorphism of 4.2 admits a relative analog: denoting by f, the pull-
back of f on S,, one has a canonical isomorphism of sheaves of algebras

on S
Yi CHPH(ZK), ()y) = End o RGVZ,

(which induces a similar isomorphism f\ in etale cohomology).

54

Let us now assume that the monodromy of the morphism f in P* factorizes
through the arithmetic group I (so that S, = S), and is Zariski-dense in
SO(V). We note that because I, lies in Spin ¥, the monodromy of f is Zariski-
dense in SO(¥) if and only if the monodromy of g (in H') is Zariski-dense
in Spin V; this is the case if the monodromy of f is of finite index in I}, and
N > 0, e.g. in the situation occuring with axioms 4; and By (following the
argument of [G71] D1).

Under this assumption, we point out two rigidity properties of the Kuga-
Satake families.

Proposition 5.4.1. For any commutative flat Z-algebra R without zero-divisor,
V is the unique isomorphism of sheaves of R-algebras

CH(P* fR(E), (,)y)) 2 End o R'gVR .

See [D72] 5.7 and 3.5.
Proposition 5.4.2. For any abelian scheme g': A' — S, one has

Homg(4',4) = Homs(R'¢2Z,R' ¢ ) .

Proof. According to [D71a] 4.4.12, the conclusion holds if (and only if)
both of the following conditions are satisfied: a) Endg(4) = (Ends(R'¢%Z))°P,
b) there is no complex embedding p of the center Z of Ends(4) such that the
direct summand R!¢*Z ®z, € is of type (1,0).

Remember that for any complex point s of S, (R'¢™Z), is identified
with Lz (via a marking &). The monodromy of g is Zariski-dense in SpinV;
in particular I'($®,R'g*Z) =0, and (Ends(R'g*"Z))® = (Endspin vV )® N
(BEndLz)® = C*.

On the other hand, C* ® @ is a tensor product of quaternion @Q-algebras
and its center Z(C* ® @), which is at most quadratic over Q; keeping this in
mind, one may apply loc. cit. 4.4.11, which settles a).
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As for b), the case to be ruled out could occur only when Z ®@ Q &
Z(C*®Q) is an imaginary quadratic field. Let us write CH((P%* f2C(k)),) =
End W* @ End W, where W+ and W~ are the semi-spinorial representations
of Gg. Then, possibly after changing p into its conjugate, the direct summand
R¢™Q ®f » € of the Gg-representation R'g2*C = Lz ® € may be identified
with a sum of copies of W™ If it were of type (1,0), then W~ would be of
type (0, 1), and the bigraded space C*H((P* f2C(k)),) would be of type (0,0),
which is however not the case.

3.5 First proof of the main Lemma 1.7.1

Let (¥,n) be a polarized variety defined over some subfield X of €, which
satisfies axioms 4; and B;. We keep our usual notations Vg =(P*(Y¢, Z)(k),
(,%),.... In axiom By, we may replace § by a finite etale covering so that the
monodromy of f¢: Y¢ — Sc in P* is contained in I, = I'™; it is Zariski-
dense in SO(V), and one may consider the Kuga-Satake abelian scheme g:
A4 := A(XYg) — Sc, together with the identification u: C* = End4 as above.

The pair (g, 1) descends from C to the function field K’(T") of some smooth
connected algebraic variety 7' defined over a finite extension K’ of K in €
(which comes equipped with a Weil generic point 7 € 7(C)): one obtains
an abelian scheme A: B — S xx 7, and an isomorphism v: C* 22 End B such
that (% 5y, ¥(s.0)) = (A(¥¢), inclusion). Moreover, one argues as in [D72] 6.5.1
(using 5.4.1 above) that there is a unique isomorphism of local system of
rings:

*) CHPH(fFp W E(K), (, }y)) = End e R'BPE
this gives rise to an isomorphism of sheaves of Z"-algebras:
**) C*((P¥ fr-Z (k). )y)) = End s RyhuZ"

(we remark at this point that axiom B; ii) implies that » extends to a section
of R fr+Z"(1)/tors over S xg T, still denoted by n).

Let us now consider the pair (4,v') obtained from (%, v) by the base change
Tg — S xg T induced by s¢ € S(C).

Lemma 5.5.1. (#,v') is isoconstant.

This amounts to the finiteness of the image I of n;(7T(C), 1) in Aute+ H'(A., Z).
From the existence of (*), it follows that End-+R'A/y'Z is a constant local
system on T(C); thus I' is abelian. According to {D71a] 4.2.9, this implies
that I' is finite.

Replacing K’ by a finite extension if necessary, we may assume that T
admits a K'-rational point ¢. By the lemma, (A e,V ) = (A0, Vn) =
(A(Yg),inclusion). On the other hand, the fiber of (™) at (s,¢)
gives a Gal(K/K')-invariant isomorphism y": C*(PE(Yz, Z")(k),(,)y) =
End+ Helt(h(s,,}i, Z") (where K stands for the algebraic closure of X in €),
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which by base change becomes identified with the isomorphism
Y CH(PE(Ye, ZM)(k), {, )y) = Endy HA(A(Yc), Z™) introduced in 4.2. This
proves 1.7.1, by putting g4 = A, g,

6 Proof of Theorem 1.5.1

The reader who is interested only in the Shafarevich problem 1.1.1 may skip
sections 6.2.3 to 7.6.

This paragraph is a variation on the following general principle, which
already underlay {D72}: if a local system “of geometric origin® has a unigue
section (up to multiplication by a rational number), then this section should
be motivated at every point.

6.1

Lemma 6.1.1. Let S be a smooth connected complex algebraic variety, s € S
a point, and h: X — S a projective smooth morphism. Then for any ten-
sor construction of weight zero'® TH(X,,®Q) on H(X,,Q), the fixed part
(TH(X,, Q)" s motivated, ie is the realization of a submotive of
TAX,).

Proof. [A93}: replacing X by a suitabie disjoint sum of fibered powers
X xg-+- xgX and using Poincaré duality and Kiinneth decomposition, one re-
duces to the case TH(X,, Q) = H'(X,, Q) for some i = 0. Let X be a smooth
compactification of X, and let j; denote the inclusion X, — X. By [D71a]
4.1.1, H(X,, Q)"S* = j*H(X,Q); hence it is motivated, since the category
of motives (in the sense of 1.5) is abelian.

6.2

We consider a projective smooth morphism f: ¥ — S, a point 5 of S, and
a section 5 of R? f%Z(1)/tors satisfying the assumptions of 5.1 (from which
we keep the notation). We assume in addition that the monodromy of f in
P2 factorizes through I, and is Zariski-dense in SO(¥). This allows to con-
struct the Kuga-Satake abelian scheme g: 4 :== A(Y) — § and the isomorphism
Y CHP®(f*).Z(k)) = Endc+ R'g3"Z, with Y= y. The results of 5.4 are
available.

Proposition 6.2.1. y is motivated. In particular, Ct(#*(¥,)k)) =
Endcr #(4,).

Proof. Let us consider the tower of motives # = Hom(CT(A*(X,)k)),
Endcr AN(4,)) © Kom(Bygn (ALK, End £(4,)) C
Hom( Dy g 12 (ALK, End £'(4,)) (via  the  decomposition
H* (Y, Q)(k)=P*(X,, Qk)OH* XX, @)k ~ 1) Un).

B Je. a finite sum of spaces H°(X,,Q)®° ® (H°(X,, Q)" )®*(e) with ab = cd + 2¢
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Applying 6.11 to TH(Y, U4, @)=Hom(@,, <y, (H*(X,)(k), @)%,
End H'(4,,@Q)), one concludes that H(.#)"1? is the realization of a sub-
motive #, of .#. By 5.4.1,  is the unique element of H{(.#,) which
is an algebra isomorphism. Because C*(#*(Y,)(k)) and &ndc+ A(4,) are
QQ-algebras in the tannakian category of motives, and by looking also at the
top exterior power, the property of being an algebra isomorphism is preserved
under the motivic Galois group. Hence ¥ is fixed by the motivic Galois group,
1.e. is motivated.

Corollary 6.2.2. If N is even, det ﬁ”‘(L.)(k) = /\NH /sz(L)(k) is the unit
motive.

Proof. We use the filtration F; of C*(V') defined as the image of V®=% in
C*(V); this filtration is stable under O(V). We have Fyp(CT(V)=C*(V)
and  GrypyCH(V)=DetV, and there is a (non unique) lifting
B: DetV — C*(V) such that O(¥) fixes f(Det V). Because the motivic group
of #*(Y,)(k) is a subgroup of O(¥), the filtration corresponds to a filtration
by submotives F;CT( (Y, )(k)), and det £%*(¥,)(k) = B det (¥ (k), which
Y identifies with a submotive A" of &nd 4!(4,), on which the motivic group
acts through {£1}. Every element of H(A4") is then fixed under the Hodge
group, hence is induced by an element of End4, ® Q. Thus det #*(¥,)(k) &
A = Q(0), the unit motive.

Corollary 6.2.3. If N is odd, #*(¥,)(k)® det 42*(¥,)(k) is (isomorphic to)
a submotive of End o+ £(4,).

Here, Groy11)2Ct(V) 2 /\NJrl V22V @detV as O(V)-module, and there
is a (non unique) lifting f': V®detV — CT(¥V). Then o ' identifies
FAHY)(k) ® det 42*(X, )(k) with a submotive of nd s £'(4,).

Variant 6.2.4. Let V; be the orthogonal complement to some algebraic
classes in (P#(Y,,Z)(k),(,)s ). let ¥ be the submotive of £*(¥,)(k) with

realization ¥® = V2 ® @, and let us perform, as in 4.1.5, the correspond-
ing Kuga-Satake construction. Then the isomorphism i is motivated In
particular, CT(¥?) 2 End o1 4'(41).

Indeed, ¥/ is by definition a Hodge correspondence, and since the category
of polarized Hodge structures of weight zero is semisimple, there exists a
Hodge correspondence 7 inducing a commutative diagram:

CHH™?) - CHPH(L,Q)Xk))
vl Ly
End 4 H'(4%, Q) “ Endc+ HY(4,,Q) .
Note that the top arrow is the realization of the morphism of motives
CT(¥?) - CH(##(¥,)(k)) induced by the natural inclusion ¥ — £%*(¥,)(k).

According to [A93], any Hodge correspondence (in particular ) on abelian
varieties is motivated. It follows from that and 6.2.1 that /® is motivated.
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Remarks 6.2.5. i) The corollaries also hold in this ? situation (with the same
proof); we refer to them by 6.2.2° and 6.2.3% respectively.

ii) Proposition 6.2.1 and its corollaries apply as well to any fiber ¥,, even
though we do not assume that n, (which is an algebraic class after Lefschetz)
is a polarization.

iii) In 6.2.1 and 6.2.4, one may replace the quadratic form (x,x) by any positive
rational multiple which takes integral values.

iv) Because motivated cycles are shown in [A93] to be absolute Hodge-Tate
in the sense of A. Ogus [Og82], 6.2.1 gives a new proof of the main result of
[Og84].

v) Although the big monodromy assumption forces dim¥ = 3 in 6.2.1, the
instance dim 7? = 2 is allowed in 6.2.4 (and 6.2.2).

6.3

Still, some sign problems prevent us from deducing 1.5.1 from 6.2.1: we must
exclude —id from the motivic Galois group of det 42(Y,)(k) if N is odd,
and {—id, id) from the motivic Galois group of A*(¥,)(k)® Ead #'(4,) if N
is even.

In either case, we shall need the deformation lemma of [A93] 0.5 (which
is the basis of the proof of the fact that Hodge cycles on complex abelian
varieties are motivated):

Lemma 6.3.1. In the situation of Lemma 6.1.1, assume that the horizontal
continuation (= parallel transport) of an element & € (TH(X,, Q)" a1
some point t € S is motivated. Then ¢ is motivated.

Proof. As in 6.1.1, (TH(X,, Q)" = *THX,Q), (THX,, Q))& =
JjiTH(X,@Q). The horizontal continuation of ¢ at ¢ generates a copy of the
unit motive Q(0) in (TA(X,))™(S*). Then, since the category of motives is
semisimple, there is a corresponding copy (via j) of @Q(0) in TA4(X); its
image by j* is a copy of Q(0) in (T4(X,))"59), whose realization contains £.
Hence & is motivated.

6.4

Let (Y,n) be a polarized variety over €, satisfying properties A;, Bf of
Sect. 1.4, and let us write 4 for 4(Y,n).

Lemma 6.4.1. det £*(Y X(k) is the unit motive.

Proof. Axiom B brings us back to situation 6.2 (replacing S by a finite etale
covering if necessary). If N is even, 6.4.1 follows from 6.2.2. Let us now
assume that N is odd. If P(Y,Z)(k) happens to contain some non-zero
algebraic class v, one may consider the orthogonal complement ¥} of v and
conclude, via 6.2.4,6.2.2, that det ¥ is the unit motive (see also 6.2.5v) for
the special case N = 1). Hence det #2(¥)(k) = det ¥ = Q(0).
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In the general case, one represents detP*f®Q(k) as a local subsys-
tem of (R*f2Q(k))®V+? (taking into account the m;(S, s)-invariance of the
primitive decomposition of H*(Y,@Q)(k)). Then by 6.3.1 and the previous
discussion, it suffices to find some point ¢ of § such that P%*(Y,Z)(k)
contains an algebraic class; or equivalently, by B; iv), such that dim(¥ N
HMA (Y, €Y (k) > 0.

By B; iii), the image of the period mapping contains an open neighborhood
of the period 2(Y,n) in 2¥/0O(Vz). One deduces that there is an open neigh-
borhood % of s (for the usual topology), and a locally constant k-marking ¢,
of P*(Y, Z)(k) on %, such that the period mapping induces a surjection from
% to an open neighborhood of the period 2(Y, . ,¢&) In 2% (or Q7), which
can be identified with an open subspace of the Grassmannian of (oriented)
N-planes in Vg. Therefore, there exist exceptional points in S, i.e. points ¢ such
that the real N-plane corresponding to P(Y;:1,.8) is defined over Q; in fact
the N-planes attached to such exceptional points are dense in the Grassmannian
of N-planes in V (see e.g. a discussion of exceptional points in [X85] IX).
For such an exceptional point 1, one has dim(V NH**(¥,,€)(k)) =N > 0.

Remark 6.4.2. In the case of a K3 surface ¥ = S, there are at least two alter-
native arguments avoiding 6.2.2%:

i) one can use S and the decomposition A2(S)(1) = £2(S)(1) @ Q(0) (cf.
[Be83a] Lemma 2), and conclude by 6.2.2 applied to SI;

i) once reduced as above to the case of an exceptional K3 surface S, one can
use the description of S given by Shioda-Inose [ShI77] as a quotient of the
product of two isogeneous CM elliptic curves, in order to show directly that

det £2(S)(1) = Q(0).
Proposition 6.4.3. £2(Y)(k) is isomorphic to a submotive of End A(A).

This proposition implies 1.5.1 when K = C.

Proof of 6.4.3. If N is odd, this follows from 6.4.1 and 6.2.3. Let us now
assume that N is even. Then, unlike C*(¥), C*(¥*) is a faithful representation
of SO(V) (viewed as a subgroup of SO(V*)). Moreover, as SO(V )-modules,
V is a factor of V¥*, itself a factor of C*(V*), which is a factor of End L*;
and since the G-modules L* and L? are isomorphic (4.1.3), End L* = (End L)*
as SO(V )-modules. But because V is simple, we obtain the existence of an
SO(V)-embedding p": ¥ — EndL = LY ® L (it may be reassuring to check
this in the tables: [OnV88] Table 5, Formulas 8,9).

On one hand, it follows from 5.2,5.3 that the image of the mono-
dromy homomorphism 7;(S, 5) — SO(V) x SO(V) C GL(P*(Y,Q)(k)) x
GL(End H'(4,®@)) is contained in the diagonal I}, C SO(¥"). On the other hand,
the image of the morphism A, : Hq:/m G,, — SO(FR) x SO(Vr) which de-
scribes the Hodge structure on P%*(Y,,RR)(k) x End H'(4,,R) is contained
in the diagonal SO(VR) for every ¢ € S. Hence f” gives rise to an embed-
ding of variations of Hodge structures f”: P¥*f™Q(k) — End(R'¢™Q(p)),
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and then to a morphism of variations of Hodge structures a: R¥*f*Q(k) —
End(R' g2 Q(p))-

By 6.3.1, it suffices to show that & is motivated at some point ¢ € §, e.g. an
exceptional point as in the proof of 6.4.1. This reduces ourselves to showing
that if P?*(Y,,Z)(k) contains some non-zero algebraic class v, then the Hodge
correspondence f: P*(Y,, Q)(k)) — End H'(4,, @) is motivated.

We mimic the argument of 6.2.4: consider the orthogonal complement V3
of v, the associated submotive ¥, and the associated Kuga-Satake variety 4°.
There is a Hodge correspondence n inducing a commutative diagram:

CTH)®Q(0) « PHL,Q)k)=H(Y?’)dQO)
vl Lg

End H'(4%, Q) & Q(0) = EndH'(4,,Q).

The top arrow is a motivated embedding, y* and n are motivated; hence
so is B

Corollary 6.4.4. y* is motivated. In particular, C*(#*(Y)k) & Q(0)) =
End v A1 (4Y).
Indeed C*(£%*(Y)(k) ® Q(0)) is an object of Mk (£) (6.4.3), and one

concludes that the Hodge correspondence * is motivated by using again the
fact that Hodge correspondences on complex abelian varieties are motivated.

Corollary 6.4.5. The motivic Galois group of (Y Yk) @ £'(4) ® £(4%) is
connected,

Indeed, 6.4.3 shows that it is isomorphic to the motivic group of
#1(4 x A*), which is connected: any representation on which the connected
component of 1 acts trivially is generated by Hodge cycles, necessarily moti-
vated by [A93], once again.

6.5

Let X be a subfield of C, let K denote the algebraic closure of K in €, and
let now (¥, n) be a polarized variety over K, satisfying properties 4, B .

Lemma 6.5.1. There exists a finite extension K' of K such that the Kuga-
Satake varieties A(Yg) and A*(Yg) admit models giA, g1 A* resp. over K/,
and such that the motivic Galois group of #*(Yg)(k)® End 4\ (x14) ®
End A1 A") is connected. Then the embeddings C* — End A(Yg), C** —
End 4*(Y¢) descend to K’, and y and y* automatically descend to isomor-
phisms of motives over K'.

Proof. The existence of g4 is guaranteed by 1.7.1, and the existence of a
model z-4* (after replacement of K’ by some finite extension) follows from
the fact that A(¥Y¢)* and A*(¥¢) are isogeneous (4.1.3). The motivic group of
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F2(Yo) (k) ® End £(A(Y)) ® End £ (4*(¥¢)) equals that of 4*(Yz)(k)®
End #'(x:145) ® End 4' (k1 A%), and is connected by 6.4.5. It follows that the
motivic group of 4% (Y )(k) @ &nd £ (x1A) ® End 4 (1 A*) is connected if
and only if for some (of for every) prime /, the Zariski-closure of the image of
Gal(K/K') in O(P%(Yg, Q/)k)) x GL(End H}(xAz, Q/)) is connected. This
becomes certainly the case after further replacement of K’ by a finite extension
(for details on such ‘standard’ properties of motives, we refer to [A93]).

At last, the embeddings C* — EndA(Yg), C** — End4*(Y¢) descend
automatically to some finite extension of K’, and i and i/* being motivated
over € (6.2.1,6.4.5), they also descend to some finite extension of K’. Since
the motivic Galois group of 4*(Yx/)(k) ® End £ (x1A) ® End £ (31 4*) is
connected, they all descend to K’ itself.

We now prove a result more precise than 1.5.1:

Theorem 6.5.2. Let (Y,n) be a polarized variety over a subfield K of C,
satisfying properties Ay, Bf. Let K' be a finite extension of K and x4 be
an abelian K'-variety as in 6.5.1; let us denote by Resgrx g/A the abelian
K-variety obtained by Weil’s restriction of scalars.

Then p*(Y)(k) is a factor of End 4'(Resgr g xrA).

Proof. From 6.4.3, we know that there is an embedding of motives over
K: 2 (Yg)k) — End 4" (x A% ); because the motivic group of A%(Y: )(k) @
End (g A) is connected, such an embedding automatically descends to an
embedding of motives over K': 4*(Ygr )(k) — End #'(x74). On the other
hand, remember that restriction of scalars for motives corresponds to induction
for the corresponding representations of motivic groups. The motive (over K)
#*(Y)(k) is a factor of Resgrx #2(Yg: )k), Resgrx End £'(x24) is a factor
of End #'(Resg/jx xrA), and Resgry £'(x+4) = £ (Resgrx xrA); whence the
result.

Remarks 6.5.3. 1) In this paragraph, one could have only assumed that Hodge
classes in P%(Yg, Q)(k) are motivated instead of algebraic. This does not really
matter here, since algebraicity is obtained without pain in all our examples.

ii) Because Hodge and motivated classes coincide on abelian varieties
defined over an algebraically closed subfield K =X of €, the Hodge and
motivic groups of &nd A'(x74) coincide; it follows from 6.5.1 that the
Hodge and motivic groups of 4*(Y)(k) coincide. Corollary 1.5.2 now follows
from Zarhin’s description of the Hodge group of P%*(Yg, Q)(k) [Za83].

7 Proof of Theorem 1.6.1
7.1

Part i) of 1.6.1 follows from 1.5.1 and Faltings’ semisimplicity theorem for
abelian varieties.
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As for the proof of the remaining parts, let us remark beforehand that we
may replace the number field X by a finite extension. In particular, we may
and shall assume that 6.5.1 is satisfied for (¥,#) and (¥’,") with K’ = K (for
k and h respectively, and for possibly different respective complex embeddings
of K). We thus have at hand K-abelian varieties xA, x4, x4, x4"" {which
we may assume to be polarized), and we may and shall assume in addition
that the motivic Galois group (say with respect to the /-adic realization) of
A xd) @ A (xA") D A (xA4*) D £'(xA") is connected.

We denote by V, the #-adic realization of 4£%*(Y)(k), endowed with the
quadratic form {,),, and by L, the /-adic realization of A(xA4). By 6.5.1, L,
is a Q/[Gal(K/K)] — C*-bimodule, and there is a motivated (hence Gal(K/K )-
equivariant) isomorphism C*(¥;) = End+ L,. Analogous notation for (Y’,7’)
will be understood.

We note that, by the latter connectedness assumption,'* the motivic Galois
group of #'(xkA) ® #'(xA’) is contained in the product of even Clifford groups
G(V;) x G(¥}), which contains a fortiori the image of Gal(K/K) in GL(L;) x
GL(L)).

7.2

Proof of 16.1. ii): By 6.5.2, there exists a motivated embedding V, C
EndL;. Any Gal(K/K )-invariant element ¢ in ¥, gives rise to an element of
EndGa,(E/K) L,. According to Faltings [FW86], EndGa](E ) Ly=(End g4 ® Q; )",
from which it follows that ¢ is a @Q,-linear combination of motivated classes
- in fact of algebraic classes, because of axiom B} .

7.3

In the sequel, we assume that N is odd. The even case is dealt with by the
same arguments, after applying throughout the # construction (replacing N by
N +1). Let us first prove a special case of 1.6.1iv):

Lemma 7.3.1. Any Gal(K/K)-equivariant isometry i: V; 2V} is a Qq-linear
combination of motivated correspondences.

The isometry i gives rise to a composed Gal(K/K)-equivariant algebra
isomorphism j: Endc+ L, & C*(V,) = C*(V;) = End .. L},. Moreover, conju-
gation by i identifies C* ® Q, with C*' ® Q.

On the other hand, the connectedness assumption embodied in 7.1 implies
that the image of Gal(X/K) in (O(F,) x O(V})) x (GL(End L;) x GL(End L} ))
is contained in the diagonal SO(V,) x SO(V;) (we note that G(V,) x G(¥})
acts on Endl, x EndL, through SO(V¢) x SO(Vy)). If W, resp. W/,
denotes the spinorial representation of G(V;®Q,), resp. G(V;®Q,),

4 Or simply because C*, C*' and polarizations ¢,, ¢ are defined over K: C* commutes
with any element y of the £-adic motivic group of x4, hence y is a unit in C*(¥,) acting on
the left on L,; it respects ¢, ie. is a symplectic similitude w.r.t. (x, ¥) — tr x* ya, whence
7"y € Qz, ie. y € G(Vr)
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we have SO-equivariant isomorphisms of Q,-algebras: C*(V; ® Q,) = End W,
CHV,®Q,) 2 End W', EndLl, ® Q, = Myn41y2(End ), EndL, RQ, =
Myw+1y2 (End W'). Therefore j induces a Galois isomorphism of Q,—algebras
J:EndL,® Q, ~EndL, ® Q, Such an isomorphism comes from an iso-
morphism of Q,-spaces VviL:® Qf 2L, ® Q,, unique up to homothety.

- On the other hand, using polarizations, J gives rise to a Galois isomorphism
(Ls ®6,f2 = (L, Q¢ @Q,)®%. One deduces that there is a Galois isomorphism
VL, ® Q, = Ly ® Q, by applying the following general result to the (con-
nected) Zariski-closure of the image of Gal(K/K) in GL(L,® Q,) x GL(L; ®
Q,):

Sublemma 7.3.2. Let G be a connected linear algebraic group over a field of
characteristic 0. Let W and W' be finite dimensional semi-simple representa-
tions of G, such that for some k > 0, W& = W' Then W ~ W',

Indeed, taking the quotient of G by its unipotent radical if necessary, we may
assume that G is reductive connected. Then W 2 W’ amounts to the equality
of characters ch W = ch W'. Since ch W® = (ch W ), the lemma follows from
the fact that ch W, as a Lauremt polynomial in the fundamental weights of
G with non-negative integer coefficients, is completely determined by its k™
power.

Now for any y in the Zariski-closure G, of the image of Gal(K/K) in
GL(L; ® Q,), we find that y~'(v'v)~" y(v'v) lies in the center of End L, ® @Q,,
i.e. is 2 homothety of L; ® @,. Being a commutator, it is of finite order, and be-
cause Gy, is connected, it is id. Hence v belongs to HomGaK-Ig/K)(Lg ®Q,, L, ®
Q) = Homg,z ) (Le, L)) ® Q, = Hom(x 4", k4) ® Q. It follows that J is a
@,-linear combination of motivated correspondences, and that j is a Q,-linear
combination of motivated correspondences (for brevity: @Q,-motivated). Be-
cause ¥ is motivated, it follows in turn that C* (i), Grvi1)y2 C*(i), and thus
i, are Q/-motivated (cf. 6.4.1,6.2.3).

7.4

Proof of 1.6.1iii). It follows from point ii) (7.2) that the transcendental part
T2 (¥, Q/)(k) of V, is just the orthogonal complement of (¥,)3&/) and
from point 1) that the Galois action on it is completely reducible. We denote by
£2(Y)(k) the submotive of 4% (Yg)(k) with Z-adic realization T% (Y, Q) k),
and we set E = End(¢*(Y)(k)) = End(¢*(Yg)(k)) (by the connectedness
assumption 7.1). Then £ ® Q, is the commutant of the /-adic motivic group
Grar,e of £2(Y)(k), and is contained in Endg, % /K)Tgt"(y,?, Q,)(k).

Lemma 7.4.1. E ® Q = Endg, ) T (Y, Qe )().

Proof Let T be a simple Gpo ,-submodule of TZ(Y,Q/)(k). We have to
show that T is snnple as a Galois module. Let T’ (resp. ") be a Got s~
submodule of T2(Ye, @Q/)(k) (resp. of T1) supplementary to T+ (resp. to
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T). Then T25(Y, Q) (k) = (T & T")Y* T”, and either T =0 or T is totally
isotropic. On the other hand, let 7; be any simple Q/[Gal(K/K)]-submodule
of 7. Let T (resp. Tj') be a Galois submodule of T & T’ (resp. of Ti')
supplementary to Ti- (resp. T71). Then T T/ = (11 ® T )@J‘T{’, and either
T¥ = 0 or Ty is totally isotropic. If 7}/ = T’ = 0, then (—idr,, idrll@(V,)Gal(E/K))
is a Galois isometry of V., hence Qg-motivated by 7.3.1. This shows that
T1 =T.

If T; is totally isotropic, then for any A€ @}, (4-idp,A™"- idys,
idr{'e(v, )GN(E/K)) is a Galois isometry of ¥V, hence Q,-motivated by 7.3.1.
One concludes again that 7, = T'.

Let us now finish the proof of iii). Because G ¢ is semisimple (cf. 1.5.2),
it suffices to show that it is the Zariski-closure Gy, of the image of Galois in
SO(V;) (actually, in SO(TZ"( ,Q/)k))). Remember that there is a Galois
embedding ¥, C End L,. Accordlng to Tate-Raynaud, L, is a Hodge-Tate rep-
resentation of Gal(K/K) (see [Fo82]), hence so is ¥;. The /-adic analogs of
Zarhin’s results, based on /-adic Hodge-Tate decompositions and on a theorem
of Kostant, and indicated by Zarhin himself in [Za83] 2.6.c, lead to the same
description for Gy, and Gpe,¢ as unitary groups.

7.5

Let us now finish the proof of 1.6.1iv). Let i be a Galois isomorphism ¥ = V',
not necessarily isometric. Because N is odd, and because
there are SO-isomorphisms C*(¥;) 2 A V,, CH(F/) = A" V/, one draws
from i a composed Galois isomorphism (not necessarily an algebra iso-
morphism) j: Endcs Ly = C*(¥) = C*(V;) = Endcvs L. With the notation
of 7.3, we have C* ® @Q, & Myw+1)2(®Q,), corresponding to an isotypical
decomposition L, ® Q, & w2 s G(¥V; ® Q,)-modules (hence as Galois
modules); idem for L). Therefore, using Spin-invariant bilinear forms on the
spinorial representations, one draws from j a Galois isomorphism W ®2 = ' .
As in 7.3, this implies that W = ¥’ as Galois modules, hence the ex1stence
of a Galois isomorphism v': L, ® @, = L, ® @, such that (C* @ Q,)® v/ =

V(CY ® Q,)"P Moreover, according to Faltings, V' is Q,—hnear combmatlon
of algebraic correspondences.

One deduces from v/ a Q,-monvated composed isomorphism of algebras:
] Endo LL®Q, = CHV/@Q) 2 CH(V: ® Q) =End;+ L ® @Q,. Now
Jj'o jQ’ yields a Galois automorphism of C*(¥; ® Q,), which is necessarily
@,-motivated by point iii). In conclusion, j, A®"i and thus i are
@Q,-motivated.

7.6

Corollary 7.6.1. Let (Y,n) be a polarized K-variety defined over a number
field K C C, satisfying properties Ay, Bf. Let x4 be a model of the Kuga-
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Satake abelian variety attached to the P¥* of (Y¢,ng) over some finite exten-
sion K'/K (cf. 1.7.1). Then the image of Gal(K/K') in GL(HA((xA)z, Qs))
is open in the {-adic motivic Galois group of A (x/4).

Proof. We may replace K’ by a finite extension, so that the Galois motivic
group of 4% (Yx: )(k) © #'(x14) is contained in G(¥;) embedded “diagonally”
in SO(V;) x GL(L;). A well-known result of Bogomolov tells that the image
of Gal(K/K') (which lies in G(¥;) in our case) contains an open subgroup of
the homotheties (which constitute the kernel of G(¥;) — SO(V;) in our case).
Hence 7.6.1 follows from 1.6.1iii).

8 Descent

This technical paragraph is logically independent from Sect. 5.5 to 7.6, except
Jor 6.2.2 which is used in 8.2.1. We give a second proof of Lemma 1.7.1, but in
a much more precise form: we study the effect of conjugation by an arbitrary
element ¢ of AutC on the Kuga-Satake package associated to a polarized
variety satisfying axioms Ay and By. The only results of Sects. 6, 7 used here
are 62.1 and 6.2.2.

8.1

We consider a projective smooth morphism f: ¥ — S, a point s of S, and a
section 1 of R%f*Z(1)/tors satisfying the assumptions of 5.1.

We consider the conjugate morphism f7: Y° — $°. Because the fiber n,
a polarization, there is a well-defined conjugate polarization (n) e € H*(Y%,
Z)(1)/tors (viewed as a subgroup of H2(Y%,Z")(1)/tors), which is invari-
ant under nllg(S" s7); hence (11 )" extends to a section 7 of R? £ Z(1)/tors.
On the other hand, the Hodge numbers kP attached to P?*(Y, M Z)k) and
PH( Y5, 1%, Z)(k) are the same, because of their alternative algebraic defini-
tion; therefore the signature of ¥, z:= (P*(Y%,n “,Z)(k),(,)y;,) is the sig-
nature of Vz, namely (N+,2-).

Replacing S by a finite etale covering if necessary, we may and shall assume
that the monodromy of f (resp. f°) in P%* factorizes through I}, (resp. through
the analogous arithmetic group Iy, relative to ¥, z. This allows to construct
the Kuga-Satake abelian schemes g: 4:= A(¥) — § and g,: 4(¥°) — S°, and
we take up the notation of 5.2,5.3 again. We identify the C*(Vg)-modules
Lz and C*(Vz), and the rings C* = C*(Vz) = Ends 4 (same conventions
with respect to V;z: Ls,z = Ct(¥,2), and C*(¥, z) = C} = Endgs A(Y°));
these identifications are compatible with the canonical ring isomorphisms
I//: C+(Vz) = Endc+ Lz, l//,,: C+(V,’,,z) = Endc+ L,,,z.

We wish to compare g with the 6~ !-conjugate of g,: ¢': 4" := A(Y’ ”)”_1 —
S, under the extra assumption that the monodromy of f is Zariski-dense in
SO(V).
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We write L’z:=H1( ), L' =L ®Q,L'ZA=L'1®ZA,...,C+=
Endg4’' (identified with a subring of End 4] or of (End Ly )*).
As an easy consequence of our monodromy assumptions, we record:

Lemma 8.1.1. End(R'g*"Z/nZ, R'¢*"Z/nZ) is a constant local system.

8.2

Somewhat abusively, we shall simply write op (resp. g)) for o-conjugation on
etale cohomology Vza — ¥, za (which is an isometry) (resp. Lyan — Ly z4).

Lemma 8.2.1. There is an isometry a: V=V, such that C*(a"'oy)€
CH(SO(¥y1))-

Proof. Because Vg and V; r have the same signature, and 7,y =V, s (via the
isometry oy ), the @-spaces V and V are isometric (Hasse-Minkowski). If N is
odd, C*(SO(¥, 1)) = C*(O(¥V,s)) and the lemma follows. Let us now assume
that N is even. By 6.2.2, any generator w of detV is motivated. Therefore
det(gy) - w lies in the rational subspace detV; of detV, ,,; this means that
for any (already found) isometry o: V & V,, the determinant of o~ lgy is an
overall sign &1, and after changing « by a symmetry if necessary, one obtains
that «~ 1oy € SO(V,s).

8.3

Let y be an element of G(A’) which lifts Ct*(a"'ay) € CH(SO(V,r)), ie.
yey~! = Ct(a~tay)c, for all c € CH(V,s). We define u, , , to be the composed
isomorphism

—

L + cim 'L:' /
"noty:LAf:LAf:C (VAI) ( Af) L = LAf'

Lemma 8.3.1. The zsomorphzsm u, . Endes Ly = Endc+, s induced by
Ug g, coincides with (Y)Y ozj/" L

Proof By definition of y, y* =y CH(a loy )Y~ ‘—W‘CJ’(oc) 1C*(ay)
oy ! as an automorphism of End¢+ L,s. One finds v, = (a Ded oyt o
CH@)oyM oy = (o] )Moy o CHop) oy = () Loyt
Lemma 8.3.2. Let t € T*'H'(4,, Q) = L% @ (LV)®' be any tensor invari-
ant under the even Clifford group G = G(V). Then TF'u, o, (t) lies in the
subspace THHY(4', Q) of THHL(4], A7),

Proof. Because ¢ is G-invariant, k = I, and T&'u, , ,(t) = o'"(']l"‘"C*(d))(t)
Because « is an isometry, (T5'C*(a))(t) is an element of %L, invariant
under G(V,); in particular, it is a Hodge cycle 4(Y{ ), hence a motivated
cycle; therefore of IHICH(a))(t) is a motivated cycle on 4;, and lies in
rational cohomology.
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Lemma 8.3.3. The isomorphism of A’ -algebras ut Ct® Al =2ct @A
induced by conjugation by us ., comes from an isomorphism C* Q@ Q =
C+I ® Q

This is a special case of 8.3.2, with (&, 1) = (1,1).

Lemma 8.3.4. u,,, is the fibre at s of an isomorphism Rlg.A” = RLg.A7.

Proof. We have to show that u, ., is invariant under the action of m(S,s).
By 8.3.1, this is at least the case for uf,‘fa,),, since (¢ )"_1 oy~ is the fiber
at s of an isomorphism (_nﬁ_:)"_l o_x/i’\_l of etale sheaves (5.3). The set of
isomorphisms u: Lys 2 L, , such that ut =l CT® A/ =Cct @A’ and
w =u, ,: EndesLys ¥ Endcer L, is stable under 7y(S,s); moreover, any
such u is deduced from u, ., composed with a unit in the center of C* ® Al
Therefore a suitable rational multiple of u, , , generates an abelian representa-
tion of 74(S,s) in End(Lgz,L%) ® Z". Then, by [D71a] 4.2.9, this representation
factorizes through a finite group; and since it is trivial mod. n (8.1.1), it is triv-
ial, L.e. u; 5, is fixed under m((S,s).

Proposition 8.3.5. There exists an S-isogeny 1,4: A' — A4, and an element
Aoy € (AT)*, such that (1%,)s = Aaay Yeo,ap-

If moreover u, ,, comes from an isomorphism Lzn = L%, then 1, , may
be chosen (uniquely up to sign) to be an isomorphism.

Proof. Let us first notice that changing y modifies u4,, only by a factor
in (Af)*, so that if 1,, exists, one can choose it independently of 7. Let
us identify C*® Q with C*' @ Q via ., and consider the space U of
C* ® Q-equivariant elements of Homg(4’, 4) ® Q. Because the monodromy of
[ is Zariski-dense in SO(V'), the canonical morphism U — Homc+®Q(R1 g2 Q,
R'g'™Q) is an isomorphism (cf. 5.4.2).

If N is odd, U is one-dimensional, and because u,,, is the fibre at s of
an element of U ® A’ (Lemma 8.3.1), the proposition follows immediately in
this case.

If N is even, U is two-dimensional, and one can at first only deduce that
there is an isogeny 1: 4’ — 4 and a unit z in the center of C* ®A" , such that
(1")s02 = Ug 4 4.

Let t € TH'H(4,,Q) = TH'L be any G-invariant tensor. It follows from
Lemma 8.3.2 that TF!(z) - t = (T (1*)5) ™! 0 T (45,4 4)) - ¢ € T5'L; more-
over, TH!(z) - ¢ is invariant under G, because the actions of z and G on L
commute.

Let us denote by Z the two-dimensional torus in GL(L) attached to the
center of C* ® Q. Because GNZ = @G, (the homothety group), Z/Gp acts
faithfully on some space of G-invariant tensors C T*/L. On the other hand,
the image Z of z in Z/Gu(A’) belongs to Z/Gu(A') N GL(TH'L) = Z/Gu(Q).
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By Hilbert 90, there is an element z' of Z(®) which lifts Z; we have: z/z7! €
(Af )*. Setting 15, := 2’1 and A4, := 2'z”", one then has the required equality
(l;,a)é' = lln,a,y Ug ey

The second assertion follows: it suffices to replace A, ,, (and 15, accord-
ingly) by a suitable rational multiple such that i, ,, € (Z")*.

8.4

Let K be a field embeddable into €; let X be a fixed algebraic closure of K.
A geometric object X being given over some subfield of K, we let X stand
for the corresponding object over K obtained by extension of scalars.

We are now ready to state our results on descent of Kuga-Satake packages
(cf. 4.4 from which we adopt the notation), which imply a stronger version of
1.7.1.

Lemma 8.4.1. Let (Y,n) be any polarized variety defined over K, satisfying
Ay and By, and set Vgn = (PH(Y,Z7Yk),{,},). Then there is a subgroup of
finite index of Gal(K/K) which is mapped to the subgroup K2 of O(Vznr)
under the natural Galois action. More precisely, for any finite extension K’
of K, the image of Gal(K/K') in O(Vgn) lies in K2 if and only if for each
prime divisor ¢ of 2n and each of the finitely many odd primes ¢ such that
(,)y degenerates mod/, the image of Gal(K/K') in O(Vgr ® Zy) lies in the
subgroup of rotations which are images of elements congruent to 1 mod.n of
the even Clifford group of Van @ Z;.

Proof. The first assertion follows the second, and the “only if” part of the
second assertion is trivial. Let us concentrate on the “if” part. We contend
that the image of Gal(X/K) in O(Vzn) lies inside SO(Vz~) if for some 7, its
/-adic component lies inside SO(Vzn ® Z,); since this holds for instance for
¢ = 2, by assumption, and since the /-adic component of K is SO(Vzn ® Z;)
if Vg @ F, is a non-degenerate quadratic space and / does not divide 2n
(see 4.5), this will achieve our goal.

Let Z1, £, be rational primes, and let us assume that the image of Gal(X/K’)
in O(Vgr ® Z,,) lies inside SO(Van @ Z,,). We may substitute to K’ the
function field of a finitely generated smooth Z-algebra R (with /,/; in-
vertible in R), and assume that Y extends to a projective smooth scheme
over R. We denote abusively by Y, its fiber at a maximal ideal » of
R (with finite residue field w(»)), and we let x be a closed point ly-
ing above s in a connected component Spec(R ® @Q)° of Spec(R® Q). For
i=kk—1 and ¢ = £y, {5, the Galois action on H"(Y Z,Xi) factorizes
through n“'g(SpecR x). Because the determinant of the “geometric part” of
the monodromy (action of 7%(Spec(R ® Q)°, x)) on det HX(Y, Z,)(i) is inde-
pendent of ¢, due to its interpretation in integral cohomology, we derive that
for £ = ¢, £2, the Galois action on det HZ(Y,Z,)i) = det HZ(Y x(on)s L2 )(E)
factorizes through Gal(k(s)/x(sm)). It follows from [D74] that the determi-
nant of the Frobenius element at m on H2(Y c(m), Z,Xi) is the same for
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¢ = ¢, and ¢/ = /5. Hence Frobenius acts trivially on det P2(Y (), Zp k)=
det H2K(Y K(,,,), Z; )k) ® (det HZk 2(Y,C(‘,,,), Zs, )k — 1))V, because it acts triv-
ially on det P, ( Yim)» Zg )k) = det Vgn ® Zy, by assumption.

Remark 8.4.2. 1f in addition (Y, 4) satisfies B{ and if one is willing to use 1.5.1
at this stage, one can avoid [D74] thanks to the following remark: det 42 (Y )(k)
is'a rank one motive in (L) of weight 0, hence it is an Artin motive (cf.
[DM82]), and one can read whether the image of Gal(K/K) in O(Vgn) lies
inside SO(¥z~) on any /-adic component.

Theorem 8.4.3. Ler (Y,n) be a polarized variety defined over K, satisfying A
and By, and set Vgn = (P% (Y Z"Y(k),(,)n). Let us assume that, for n =13
or n =4, the image of Gal(K/K) in O(Vgn) lies in K. Then:

i) for any embedding t: K — C, the canonical Kuga-Satake package of
(Yg, ne) descends to K, ie. there exists a Kuga-Satake package (A4, =
A(Y,1n), ite, {Dra}, D) over K associated to the datum (Vgn, CT = CH(PH*
(Yo, ZY(k), n) whose t-extension is isomorphic to the canonical Kuga-Satake
package of (Ye,ne);

ii) Gal(K/K) acts trivially on HA(4,, Z/nZ)(k)), i.. the n-torsion points of
A, are rational over K;
iit) for any two embeddmgs 1, 1" K — @, there is a K-isogeny i,;: Ay — A,
such that i.(C} ® Q)zﬂ, =CFfQQand il, oy =yhoil,.

Example 8.4.4. In applications, it may be natural to take n =4 for quar-
tic surfaces, and n = 3 for cubic fourfolds. Let for instance Y be the Fer-
mat quartic surface z§ +zf + z3 + 2z} = 0. For n =4, it is likely that one can
take K = Q(e*™?). Using the fact that the (—1, 1)+ (1, —1) component of
PX(Ye,Z)Y(1)® R is defined over Z, and that the restriction of (,) to this
lattice is equivalent to —8(x? + y?), one can show that 4, is isogeneous to
the product of 2!° copies of the elliptic curve with affine equation #? = 1 — v*
(a rational image of the Fermat quartic curve); C* is an order in M,10(@),
whereas the full endomorphism ring of 4. is an order in My s(Q(+/~1)).

8.4.5. Proof of the theorem

Step 1. We make the preliminary remark that if ¥z is any quadratic lattice
such that ¥z ® Z" = Vga, then K2 N O(Vz ® Q) = I,. Indeed, any p € K2 N
O(Vz ® Q) = K¥NSO(Vz ® Q) is the image under G,; — SO(Va') of an
element of x of IK, and of an element y of G(Q); then x = gAy, for some
g€ Q*, A€ Z", and it turns out to be the image of +qy € K, N G(Q),
because n =3 or 4.

Step 2. Let us consider a family f: Y — § as in axiom By, with Y =Y.
Replacing § by a finite etale covermg if necessary, we may assume that the
monodromy homomorphism =) g(S 5) — O(Vga) factorizes through K. In-
deed, let us consider the subgroup of =, g(.S’ s) defined as the inverse image of
K*¢ under the monodromy homomorphism nllg(S s) — O(Vzn). By the same
argument as in 8.4.1, this is an open subgroup, which defines a (connected)
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finite étale covering of S. Moreover, it is easy to see that s lifts to a K-rational
point of this covering. In addition, the image of 7:'%(S, 5) — SO(Vza) is then
Zariski-dense in SO.

Step 3. Let us fix an embedding 7 of K into €. Then after extension of
the scalars to €, we see that are in the situation 8.1 (using Step 1). We
use again the notation Vg = P*(Y,¢,Z)(k), Vgrn = P¥(Y,Z")(k) is identi-
fied with Vz ® Z" = P¥(Y,¢, Z")(k),.... For any automorphism ¢ of €
which fixes K, the canonical isomorphism (Y, ng) = (¥, n¢) induces an iso-
metry o: Vg = V, z. Because o~ ! is nothing but the image of 6~' acting on
P(Y, Z")(k), which is by assumption an element of K%, there exists y € K,
with 924 = C*(a~'0); any two such elements y differ by a unit in Z* congruent
to 1 mod. n. Proposition 8.3.5 applies, and since n = 3 or 4, shows existence
(and unicity) of an isomorphism 1,: A_(_Y_%)"—‘ — A(Y ) of abelian schemes
over Sg, such that (1}); = dug,y,, for some A€ (Z™)Y* which is congruent to
I mod. n.

Step 4. The (Y¢,ne) = (Y§, 1) induces an isomorphism of complex abelian

varieties y: A(Yg) — A(Y¢), given in etale cohomology by the composed
C+(az"l)

isomorphism y*: Lygn = CT(V,zn) = CY(Vga) =Lga. On the other

hand, the isomorphism of complex abelian varieties ((i,)5)%: A(Yg) — A(¥c)’

is given in etale cohomology by the composed isomorphism

((2))°: Lga = ,‘t(A(Yc)”,Z")r; Lzn

+ LIy @
=CT(Vgr)=CT(Vgn) = C(Vozn) = Logn .

Let us now consider j, := ((15)s)" © x: A(Y¢) — 4(¥g)®, given on Hj by
-1

J LGN Lgn = CH(Vgn) 2 CH(Vgn) = Lgn

Thus, if p denotes the canonical embedding C* — End A(Y¢), ji™ o u coin-
cides with u° as an embedding C* — End 4(Y¢)°, since Ay commutes with C*.
Let now « stand for Ay € K, but viewed as an element of C* ® Z", acting
on the right on Lza. Then by definition of y, we can write j5 = voxo(v?)},

where » stands for the identification Ct(Fga) = Lz, and v” denotes the com-
+

CT (s
posed isomorphism C*(¥za) .ﬂf : C*(Vgn) = Lan < L. In particular, v and
j* 0 0” define the same class D in K, \Isom(C*(Vzn), Hi{(A(Yc), ZM)).

One concludes that j; establishes an isomorphism between the canoni-
cal K.-S. package of (Yc,fic), i.e. (A(Yc) i {@a},), and the K.-S. pack-
age (4(Y¢)®, 1°,{¢5},0%) over € associated to the same datum (Vza,C*,n)
(4.7.1). Because K.-S. packages have no non-trivial automorphism (4.7.2), one
can then descend the canonical K.-S. package of (¥g,nc) to K. Moreover, the
K.-S. package over K so obtained depends only (up to isomorphism) upon the
restriction of 7 to K. This proves i).
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Step 5. Proof of ii): embodied in the K.-S. package (4; = A.(Y,n), p,
{¢:4},0;) is a Gal(K/K)-equivariant isomorphism ©¥: CT(Vzn) Q@ Z/nZ =
HL(4,,Z/nZ) (4.4.2), and the Galois action on the left-hand side is trivial
by assumption.

Step 6. Proof of iii): Let ¢ be an automorphism of € such that 7/ =go1.
Proposition 8.3.5 applies and shows that there is an isogeny i,¢: Ayg — 4
satisfying the requirements over €. However, this isogeny is certainly defined
over some finite extension of K. In order to conclude that it is defined over
K itself, it suffices to show the Zariski-closure of the image of Gal(K/K)
in GLHA(4, x Ay,Z;), for /in, is connected. But this foliows in a well-
known way from the fact that the n-torsion points of A, x Ay are defined
over K.

Corollary 8.4.6. For uny polarized variety (Y,4) over € satisfying A, By, and
any automorphism o of C, A(Y?,n") is isogeneous to A(Y,n)°.

8.5

Proposition 8.5.1. If Y is a K3 surface, then for any two embeddings
1,71 K — €, the isogeny i : Ay — A, of 84.3. iii) may be chosen to be
an isemorphism.

Proof. Tt is well-known that the H? of K3 surfaces belong to a single isomor-
phism class of quadratic lattices (this follows from the classification of even
unimodular lattices); in particular, H*(Yg, Z) and H?(Y{, Z) are isometric.
In fact, there exists an isometry between them which sends Qy N H?(Yg, Z)
to Qu° NH*(YE, Z) (see [LP81] for an elementary proof). Therefore ¥z
and V, z are isometric, hence there is a ring isomorphism j: C* = C*'.
On the other hand, 4 and A’ are isogeneous by 8.3.5. Using the Skolem-
Noether theorem, one sees that there is an isogeny 1: A’ — 4 such that
j = 1" By Proposition 5.4.1 (applied to each /-adic component) the iso-
morphism of sheaves of algebras *: Endc+RY9.A” = EndcsRLgLA7 is the
unique one hence, by 8.3.1, * = (Yo" Yo _¢£"‘1 and comes from an iso-
morphism Endc+R.g.Z" = Endg+RLg,Z". Because i is an isogeny, one
concludes that 1* maps Endc+R'g*™Z to Endc+/R'g/™Z; therefore, with the
identifications C* = C*' and Endc+R'¢g™Z = Endc+/ R'g/™Z (via ™ and
resp.), 1¥Lg appears as a principal C* — C*- bimodule. On the other hand,
with the same identifications, L}, appears as a principal C;, — Cya-bimodule.
Since the center of C* is Z here, the fundamental theorem on Picard groups of
orders [R75] 37.28 tells that the canonical morphism Pic C* — [], PicC; , s
an isomorphism. Hence L} is a principal C* — C*-bimodule. It follows that,
up to multiplying 1 by a factor in Q*, 1¥Lz = Ly, hence 1, is an isomorphism.
It satisfies our requirements over €. Because the n-torsion points of 4; X Ay
are defined over X, i, must be defined over K.
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Remark 8.5.2. If (Y,n) is a polarized K3 surface over K, let us define the
extension K’/K by the condition that Gal(K/K’) is the inverse image of K24 un-
der Gal(K/K") — O(P%(Y, Z")(1)). Then K'/K is finite (8.4.1), and by 8 4.3-
8.5.1, there exists an abelian K’-variety g4 such that the main Lemma 1.7.1
holds for every complex embedding of K’'. We may call x4 the canonical
Kuga-Satake variety of (¥,n).

Corollary 8.5.3. Let (Y,n) be a polarized K3 surface over some subfield K,
of €, the field of moduli of the Kuga-Satake variety is Ky itself, ie. for any
S Aut(C/KO)’ A(YC’ ”C) = A(YC’ ﬂC)a—'

9 Proof of Theorem 1.3.1
9.1

We first make precise our definition of good reduction for polarized varieties.
Let R, be a discrete valuation ring with fraction field X and maximal ideal
. We assume charK = 0, and fix an algebraic closure X of K (resp. ¥ of
Ry/9Rp). According to Matsusaka, a K-rational numerical equivalence class on
Y = Y ® K may be identified with a Gal(K/K )-invariant element of the Neron-
Severi group NSY modulo torsion. We say that a polarized K-variety (¥,7)
has good reduction at p if Y extends to a smooth proper scheme %, over R,
such that under the specialization map associated to %,,: NSY — NS(%,, x %),
the image of 5 remains ample.

In the hyperkdhler case, it then follows from Theorem 2 of [MaM64], and
2.1b) above, that (%,,n,) is unique up to isomorphism. We shall slightly
generalize 1.3.1:

Theorem 9.1.1. Let R be a finitely generated commutative flat Z-algebra
withour zero-divisor, and let K be the fraction field of R. Let r and d be
positive integers, and P(x) be a numerical polynomial.

Then there are only finitely many isomorphy classes of polarized
hyperkdhler varieties (Y,n) with Hilbert polynomial P(x) and b, > 3 (vesp.
of very polarized hyperkdhler varieties of dimension 2r, degree d and by > 3,
resp. of polarized K3 surfaces of degree d), with good reduction at every
prime ideal © of R of height one.

9.2

First reduction step. Let us fix n =3 or 4. By localization, we may and
shall assume that R is a regular ring, and that n is invertible in R (the most in-
teresting case is of course when R is a ring of S-integers in some number field).

We fix an embedding v of K into €. Let us observe that the P? of
the complexification of the polarized varieties which occur in the theorem
form only finitely many isomorphism classes of quadratic lattices; this fol-
lows from the “limited family” argument of 2.3. Therefore, we may impose
that (P*(Yg, ZX(1),(,)y) = Va, a fixed quadratic lattice of signature (N+, 2-),
with N > 0; and we may also fix this isomorphism up to an element of I;,. We
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also impose that the polarized Hodge structure on ¥z corresponds to a point
of the component Q%/T,, of the moduli space.

9.3

Second reduction step. Since Y has good reduction at all primes of
height one, it follows from the theorem on the purity of the branch
locus that the representation of Gal(K/K) on P%(Y, Z")(1) factorizes through
n?g(Spec R). According to Hermite-Minkowski (and the topological finite
generation of the geometric fundamental group of R/Z) there exist only
finitely many continuous homomorphisms from n’:]g(Spec R) to the finite group
ei2n or diseq yn(OPE(T, Ze)(1)) N (YKy~"),), where y runs over O(Vzn).

In order to prove Theorem 9.1.1, we may'® and shall replace R by its finite
unramified extension determined by the intersection of the kernels of all these
homomorphisms.

In virtue of 8.4.1, we may and shall assume, in addition to the previous
constraints upon (¥,7), that ©%(Spec R) acts on P%(Y, Z*)(1) through K24,
so that there is a K-model 4. of the Kuga-Satake variety of (¥Y¢, 5¢), such
that all the n-torsion points of 4, are rational over K (8.4.3). Furthermore,
if we fix a non-zero-divisor a € C* := C*(¥z) which satisfies ¢* = —a and
such that the skew-symmetric form @,(x, y) = tr (x*ya) defines a polarization
of any weight-one Hodge structure on C*(Vz) & Lz parametrized by Q% (see
4.1), the polarization of 4 = A, ® € given by ¢, descends to a polarization of
A.. Its degree D depends on the choice of @, but not on 4.

Lemma 9.3.1. If (Y,n) has good reduction at some prime g of R of height
one, so does A,.

Proof. (cf. [D72]) Let £ be an odd prime distinct from the residual characteris-
tic of . Using the Gal(K/K )-isomorphism " embodied in the K.-S. package,
and the good reduction hypothesis, we see that the inertia I, at ¢ acts trivially
on End+ HY(4:,Z;). This implies that J, acts on HA(4,,Z,) through the cen-
ter of C*(Vz,). On the other hand, since the n-torsion points of 4, are rational
over K, the theory of semistable reduction tells that the inertia is unipotent. It
follows that it is trivial, which means, by the Néron-Ogg-Shafarevich criterion,
that 4; has good reduction at g.

Remark 9.3.2. In this lemma, the good reduction hypothesis appears only in
the guise that [, acts trivially on Vg,.

9.4

We see that the K-models of the Kuga-Satake varieties attached to the (very)
polarized hyperkihler varieties (Y,n) under consideration form a set of

5 By Galois descent, because Aut(Y,7) is finite



242 Y. André

isomorphism classes of polarized abelian varieties over K of dimension 2b2—3
and degree D, with level n-structure, and with good reduction at every prime
ideal g of R of height one.

By Faltings’ theorem, this set is finite. Let us notice that the moduli space
of polarized complex abelian varieties over K of dimension 2%273 and degree
D, with symplectic level n-structure, is a finite sum of quotients of a Siegel
half-space S* by the principal congruence subgroup A, of level n in a sym-
plectic group, and that the natural mapping Q*/I,, — S*/A, induced by the
Kuga-Satake construction (the polarization ¢, being understood) is injective;
it follows that the isomorphism class of the polarized Kuga-Satake variety
with level n-structure determines the period of (Y¢,nc) in Qt/I,. Therefore,
in virtue of 3.3.2, the complexification of the polarized hyperkiihler varieties
(Y, 1) under consideration form a finite set of isomorphism classes; thus, in
addition to the constraints that we have imposed before, we may fix the
isomorphism class of (Yg,nc, marking mod. I,).

9.5

For K3 surfaces, and more generally for varieties of K3 type which are defor-
mations of S'l’s (see 1.2), it happens that the natural homomorphism
x: AutYe — (Aut H%(Y¢, Z)(1))P is injective [Be83b] Sect. 5. It follows that
the triple (Yc,ne, marking mod.I},) has no non-trivial automorphism, hence
determines the isomorphism class of (Y, 7).

However « is no longer injective in general. Let us for instance consider a
variety Y¢ of type K, (see loc. cit.); then the group of (r + 1)-torsion points
of the auxiliary abelian surface 4 used in the construction of Yg, acting on
AV+1) and thus on Yg by translation, lies in the kernel of .

We shall overcome this difficulty by using good reduction anew.

Lemma 9.5.1. There are only finitely many isomorphism classes of polarized
hyperkihler K-varieties (Y,n) with good reduction at every prime g of R of
height one such that, over K, (¥,7) lies in a given isomorphism class.

Proof. Let ﬁp denote the integral closure of R, in K, and let (#,,n,) denote
the smooth proper R,-model of (Y,n). We put %= Aut(¥,n),
%, = Aut(%,,,1,), for one of the (¥,n) occurring in the lemma. Then the
set of isomorphism classes referred to in the lemma can be identified with the
subset of H'(K/K,9) of elements lying in the image of H'(R,,/R,,%,) for
every .

After localizing R once again, one may assume that for every p, HY(%, ®
Rp/#Rp), Ta, &(Rp/0rp)) = 0; it follows that the Lie algebra of the fibres of
%, is trivial, and we derive on one hand that %,, is quasi-finite, unramified,
and flat over R, (because the fibers are reduced and non empty, and R,
is one-dimensional regular). On the other hand, it is proper by a theorem
of Matsusaka-Mumford [MaMé64] (which can be applied here because the
reduction of %, mod. g is not ruled, cf. 2.1b). Using a well-known result
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“of Grothendieck, one concludes that Y, is etale finite over R,,, for every g,
and so is every %,-torsor.

Now, elements of H'(K/K,%) lying in the image of H'(R,/Rp,%,)
may also be interpreted as generic fibres T of %,-torsors T,,, up to iso-
morphism. By the Grothendieck-Galois correspondence, the algebra of T is
described by an action of Gal(K/K) on H°(Aut(7,7%)); if T is the generic fi-
bte of a 4,,-torsor (necessarily etale) for every g, this action factorizes through
7'5(SpecR), and the Hermite-Minkowski argument of 9.3 applies to show
finiteness.

This proves the lemma, and completes the proof of Theorem 9.1.1.

9.6 Cubic fourfolds

Theorem 9.6.1. Let R be a finitely generated commutative flat Z-algebra
without zero-divisor, and let K be the fraction field of R. Then there are only
finitely many orbits for PGL(6,K) among all smooth cubic hypersurfaces
in Py which have good reduction outside every prime ideal g of R of
height one.

Here are two ways of proof: One way consists in deducing 9.6.1 from
9.1.1 via the Abel-Jacobi map, making use of Remark 9.3.2. The other way
is to mimic the arguments 9.1 to 9.4 in the case of cubic fourfolds. Both
ways result in the finiteness of the set of triples (7,7, Gal(X/K )-isometry
en: PL(Y,Z/nZ)(1) = Vzr ® Z/nZ) under consideration.

Let 1 be an automorphism of such a triple. Then, because Aut(Y,7) is finite
(2.4), the image of 1 in AutH*(Yg,Z)(2) is id, being id mod. n.

Writing Aut(Y,%) — (Aut H*(Y¢, Z)(2))*®® as a composition of injective
morphisms

Aut(7,7) — AutF — (AutH*(F¢, Z)1))® — (Aut H*(Yg, Z)(2))P

(see 2.4, [Be83b] Sect. 5, 3.4 resp.), one concludes that 1 = id. Therefore, up to
K-isomorphism, there is a unique (Y, %) which induces a given triple (7,7, &,).
This proves 9.6.1.

9.7

Proof of Corollaries 1.3.2,1.3.3. Let us first recall that the discriminant
of a n-ary form ¢ of degree d changes under a linear substitution ¢ €

GL(n,@Q) according to the rule disc ¢o = (deto)?@-1""" disc¢. In par-

ticular, if both disc¢ and disc¢o are units in Z ‘—11; , then so is deto.

Let det=D (Z L—i—l’—n-] ) denote the projection in PGL(n,Q) of the preim-

age of Z [ZH in GL(n,Q) with respect to the determinant map. Then
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o (2[2]') frstnermrct (nz [L]) fese (nz [ 1])=

1 * 1 *x\ Nt
z [Zﬂn_} / (Z [3’;] ) is a finite group. Hence it is equivalent to say that

there are only finitely many PSL | n, Z -orbits among all hypersurfaces

$
dm
of degree d in IP;[ L) which are smooth over Z dlm and belong to a sin-
gle PGL(n, @)-orbit, or that the n-ary forms of degree d with coefficients in
/A [»l-}, which are SL(n, ®@)-conjugate to a given one with discriminant in

dm
Z «1— , can be divided into a finite number of SL { n,Z L -orbits. But
dm dm

for d = 3,n = 3, the last statement is a classical result in reduction theory.!®

On the other hand, Theorem 9.1.1 (resp. 9.6.1) implies that there are only
finitely many orbits for PGL(4,Q) (resp. PGL(6,Q)) among all smooth quar-
tics (resp. cubics) over @ which have good reduction outside the prime divisors
of 2m (resp. 3m). One concludes that for n = d = 4 (resp. n= 6, d= 3), there

are only finitely many orbits for PGL (n,Z [L

dm}) among all smooth hyper-

surfaces of degree d in Zl 3& ]

Remark. Tt seems to be an interesting problem to determine in general for
which pairs (n,d) this property holds.

Appendix 1
Spinorial Shimura varieties

In this logically independent appendix, we give a short discussion of moduli
spaces for Kuga-Satake abelian varieties.

The notations being as in 4.1, let (1,,...,4,) be a sequence of mixed tensors
such that G is the algebraic subgroup of GL(L) which fixes the #’s.

The Shimura variety attached to (G, Q%) is a complex proalgebraic vari-
ety Sh(G, Q%) with complex points Sh(G, Q%X T) = G(Q)\2* x G(A) (see
[D71b,D78] for a general reference, and [S266] for a study of the spmonal
case). Forx € 9%, g ¢ G(A”), we denote by [x, g] the correspondmg point in
Sh(G, Q% )(). There is an obvious continuous action of G(A’) on the right:
[x,glg" = [x,99').

It tums out that Sh(G, Q%) is a fine moduli scheme for triples (4, (6 ),y)
up to “isogeny”, where: 4 is a complex abelian variety, the 8,’s, i = 0,...,m,
are Hodge cycles, subject to the following condition: there exists an 1so-
morphism §: H'(4,Q) = L mapping each 6; to # (in the appropriate tensor

18 Over Z, this is a well-known result of Jordan [J]; see also [Bo69) 6.5, and [Bo63] 8.10
for the general case
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constructions) such that & ohodle Q*, where h stands for the morphism
HC/RG,,, — GL(H'(4,R)) which gives the Hodge structure; and y is an iso-
morphism H}(4,A”) = L,, mapping each 6; to 1.

To the triple (4,(6;),7), one associates the ‘modulus’ [50%05",5“0))“'].

It is understood that (4, (8;),y) and {4’,(8!),y") are isogenous if there exists
an isogeny 1: 4 — A’ such that Y/ =y o1* (this implies that 1*(8!) = (6;)).

The choice of a Z"-lattice in L, fixes the universal abelian scheme inside
its isogeny class. If the lattice is of the form Lz ® Z”, then the endomorphism
ring of the universal abelian scheme may be identified with C*.

The quotient Sh(G, 2%)/KK, is the fine moduli space for marked Kuga-
Satake varieties with level n-structure. The set of connected components of
Shy, (G, Q%) is in a canonical way a principal homogeneous space under the
finite class group @,\(A7)*/N(K,); this follows for instance from [D71b]
3.3. Each of these components is the quotient of Q% of 2~ by an arithmetic
group in G.

It is well-known that Sh(G, 2%) admits a canonical model over the reflex
field E(G,Q*), on which G(Af ) acts continuously.

Lemma. If rank V > 4, then E(G, Q%)= Q.

Proof. By definition, E(G, Q%) is the field of definition of the conjugacy class
of the morphism r: G, — SO(V & €) such that r(1) - v?? = A? - v#? when v™
has Hodge structure of type (p,q) defines a Hodge structure of type (—1,1)
+ (0,0) + (1,—1) on Vz, polarized by {,). Let 7 be a maximal torus in
SO(V ® €), endowed with a system of simple roots. Then according to [D72]
4.6, r is conjugate to the homomorphism G, — T which corresponds to the
root labeled by the first left vertex in the Dynkin diagram

(B,) @—O0—0—--- --- o=2=0 or (D) e—O0—O0---- --

Except in the case of triality (Ds), this vertex is obviously fixed under AutC,
and one has E(G, Q%) = Q. In the D, case, one should remark in addition that
the marked vertex corresponds to the standard orthogonal representation, which
is defined over ®@ by assumption.

The universal abelian scheme on Sh(G, Q%) descends to an abelian scheme
on the canonical model ¢Sh(G, Q%), and passes to the quotient by K,.

Appendix 2
A short proof of the Hodge conjecture for cubic fourfolds

The notations are as in 2.4: Y is a complex cubic fourfold, (F,#') its po-
larized Fano variety, and «: H*(Y,Q)2) — H*(F,Q)(1) the Abel-Jacobi iso-
morphism. Let x be an element of Hodge type (0,0) in H%(Y,Q)2). Then
after Lefschetz, «(x) is an algebraic class. On the other hand, the map
L*: H¥(F,Q)(1) — HS(F,Q)3) given by the cup-product with #? is an iso-
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morphism (hard Lefschetz’ theorem); thus f:=‘aoL?oa is an automor-
phism of H*(¥,®)(2) (induced by an algebraic correspondence). Lefschetz’
trace formula gives, for any m, tryagy, Q)(2)ﬂm = (B™, Mya)y2, Where my4 stands
for the fourth Kiinneth projector of Y. Since the cochomology of Y is alge-
braic except in degree 4, 7,4 is induced by an algebraic correspondence, and
(B™, mys)y2 € @; hence the characteristic polynomial of f§ has rational coeffi-
cients. By Cayley-Hamilton, this implies that !, as well as f, is induced by
an algebraic correspondence. Therefore x = =1 o ‘a(a(x) U#'2) is an algebraic
class. Q.E.D.

Remark. Because L comes from an isomorphism H(F,Z[$1)(1) —
H 6(17,1[%])(3) [BeD85] 6ii, the proof shows more precisely that any element
of Hodge type (0,0) in H*(Y,Z[}]1)(2) is a Z[}]-linear combination of funda-
mental classes of surfaces on Y.
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