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Let M be a compact connected oriented spin Riemannian manifold of even 
dimension. Then any Euclidean connection F on TM lifts to the corresponding 
Hermitian vector bundle of spinors F. The local index theorem of Patodi [P1],  
Gilkey [Gi 1, 2], Atiyah-Bott-Patodi [ABP] asserts that if V L is the Levi-Civita 
connection of TM, and if D L is a Dirac operator acting on twisted spinors 
associated with the connection F L, then as t + 0, the supertrace Trs [Pt(x, x)] of the 
heat kernel of e x p ( - t D  2) converges to the Atiyah-Singer characteristic poly- 
nomial [AS] naturally associated with the connection V L and with the considered 
connection on the twisting bundle. 

The first purpose of this paper is to find sufficient (and almost necessary) 
conditions for a local index theorem to hold when D is the Dirac operator 
associated with a connection V which does not necessarily coincide with V L. In fact 
let T be the torsion of V, and let B be the three form which is the antisymmetri- 
zation of the tensor X, y Z ~�88 ( T(X, Y), Z). In Theorem 1.11, we prove that if the 
form B is closed, a local index theorem still holds. However, and rather 
mischeviously, the corresponding Atiyah-Singer polynomial is calculated with a 
connection which in general differs from F, except when 17 = F L. 

If M is a complex manifold equipped with a Hermitian metric whose Kfihler 
form is co, we know by Atiyah-Bott-Patodi [-ABP] that the Riemann-Roch- 
Hirzebruch theorem can be derived from the Atiyah-Singer index theorem. 
Also it is known since Patodi [P2] that the local index theorem for an 
operator of the type O+ ~* holds if co is closed, i.e. if (M, ~o) is Kfihler. In this case, 
the local supertrace converges as t~0 to the local Riemann-Roch-Hirzebruch 
polynomial Td(TM)ch(~) associated with the holomorphic Hermitian connec- 
tions on TM, and on the twisting bundle 4. 

In Theorem 2.11, we prove that the K/ihler condition can be substantially 
relaxed. In fact we show that if ~-aco = 0, there is still a local Riemann-Roch- 
Hirzebruch theorem. The local limit only involves forms of type (p, p), but it is no 
longer given locally by a Riemann-Roch-Hirzebruch polynomial. In fact we 

* This work was written while the author was visiting IHES during the academic year 1987-1988 
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construct on the complexified tangent space T~M| another holomorphic 
structure than the canonical one, which depends explicitly on the K~ihler form co. 
The limit index polynomial is evaluated by means of the curvature of the 
holomorphic Hermitian connection on T~M| The condition ~ c 9 = 0  is 
well-known in Hermitian geometry. In pafficular, a result of Gauduchon [-Ga] 
asserts that any complex surface carries a Kfihler form having this property. 

The paper is organized as follows. In Sect. 1, we establish a local index theorem 
for Dirac operators when TM is equipped with a general Euclidean connection. In 
Sect. 2, we specialize our results to the case where M is a complex manifold. 

Applications of our results to Ray-Singer analytic torsion [RS] and Quillen 
metrics [-Q2] will be given in [B3]. 

The results contained in this paper were announced in [B 2]. 

I. Torsion and the local index theorem 

In this section, we prove a local index theorem for Dirac operators on a 
Riemannian manifold M associated with connections on TM which have non zero 
torsion. 

This section is organized as follows. In a), we prove a Lichnerowicz formula for 
a wide class of non trivial perturbations of Dirac operators associated with the 
Levi-Civita connection of TM. In b), we prove an essential symmetry property of 
the curvature of certain connections on TM with non zero torsion. In c), we prove 
a local index theorem for a general class of Dirac operators. Finally in d), we apply 
the results of t )  to Dirac operators associated with connections on TM which have 
non zero torsion. 

a) A Lichnerowicz formula for general Dirac operators 

Let M be a compact connected Riemannian oriented spin manifold of dimension n. 
Let F be the Hermitian vector of TM spinors. The Levi-Civita connection V L on 
TM lifts to a unitary connection on F, which we still note V L. 

Let ~ be a complex vector bundle on M, which is equipped with a smooth 
connection 17r whose curvature is noted (Vr z. We here do not assume that V ~ 
preserves a metric on 4. 

The vector bundle F |  ~ is then equipped with the connection VL| 1 + 1 | 17~, 
which we still note V L. 

Let e(TM) be the Clifford algebra of TM. If X ~ T M ,  let cX be the 
corresponding element in c(TM). Remember that c(TM) and A(T*M) are 
isomorphic as Z graded vector spaces. In fact, identifying TM and T*M by the 
metric, if el, ..., ek are orthogonal unit vectors in TM, this isomorphism maps 
Cel...Ce k ~ c(TM) into e I A.. .  ^ ek ~ A(T*M). 

The Clifford algebra c(TM) is Z z graded, and the isomorphism of c(TM) with 
A(T*M) preserves the Z2 grading. The algebra c(TM)| ~ is also Z2 graded. If 
B, B' ec(TM)| set 

[B, B'] = B S ' -  B'B 

[B, B']s = B B ' - ( -  l)degBdegn' B'B. 
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Let A be a smooth section of A~174 and let CA be the image of A in 
c(TMt| The vector bundle ~ = ~ { 0 )  is naturally Z 2 graded, the elements 
of ~ being even. Therefore V ~ + A is a superconnection on ~ in the sense of Quillen 
[Q 1]. Note that we here use the formalism of Quillen in the case where ~ is trivially 
graded. Everything which follows extends to the case where ~ is a non trivially Z 2 
graded vector bundle. 

Then, in the sense of Quillen [Q1],  (V~+A) 2 is the curvature of the 
superconnection Vr (Vr 2 is a smooth section of A . . . .  (T*M) |162 
Let ~((Vr 2) be the image of (Vr 2 in c(TM)QEnd~. 

Let D L be the Dirac operator acting on the smooth sections of F |  naturally 
associated with the connection V L. If e, . . . .  , e, is an or thonormal  base of TM, then 

DL= ~ey~L,. (1.1) 
1 

Let K be the scalar curvature of M. Let X-)B(X) be a smooth one form on TM 
with value in c(TM)QEnd~. I f (e l , . . . ,  e,) (x) is a locally defined smooth section of 
the bundle of or thonormal  frames in TM, we use the notation 

Z(VL, + B(ei)) 2= ~ (vLe, + B(ei))2- B ( ~  vLeiel) - L V~v~e ,. (1.2) 

One verifies easily that the operator ~(Ve, + B(el)) 2 does not depend on the local 
trivialization (e 1 . . . . .  %) of the bundle of or thonormal  frames, and so is globally 
defined on M. 

If X~ TM, the interior multiplication operator ix as on A(T*M)| 

Theorem 1.1. The following identities hold 

K (O L + CA)2 = L + c --E(V~, Oe,A)) + ~ +r A)2)+(~A) 2 + 2(c(i~,A)) 2-c(A 2) 2 

k(k + 1) 

(r E ( - 1 )  2 (l__k)C((i%...i~,kA)2). (1.3) 
i 1 < i 2  < , . .  < i k  

k>_2 

Proof In what follows, we omit the summation sign Z and the sign c in Ce i. Take 
(el(x) .... ,e,(x)) as before. Then since CA is odd in c(TM)| 

(D L + CA) 2 = (DL) 2 + [% CA]sVeL + e, Vf,(CA) + (CA)2. (1.4) 

By Lichnerowicz formula ILl,  we know that 

K 
(DL) 2 = - ( V ~ y  + ~-  + c((V~)2). (1.5) 

Using (1.4) and (1.5), we find that 

,= 
W L +~A) 2 = - V~, +(~A)~ + 4 [e .  ~A]~ 

Lc 1 K + eye,( A ) -  ~ [el, V~(CA)]s + ~- + c((Vr (1.6) 
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or equivalently 

I-e CAq \2 1 
(DL+A) 2 = -  V~-- L i ,  J~) +(~A)2+ 4[ei'~A]Z 

+ 2 [% V~,(ca)] + + c((~7r (1.7) 

Let dx~ ..... dx" be the base of T*M dual to the base ca,..., e,. One verifies easily 
that since A is odd 

[% CA]. = - 2~(i.,A) 

ei,  L c Vei  ( 3 ) 3  : T(dx~V~iA) (1.8)  

(V r + A) 2 = (Vr z + • dxiVCe,A + A 2 . 

The first line of(1.3) follows from (1.7), (1.8). Let I = {il . . . . .  ip} be an ordered subset 
of {1 ... . .  n}, and assume all the i f i  I are distinct. Let [1[ be the number of elements 
in I. Set 

CeI .---- Cei tcei2 . . .  Ceip . 

Take k < n, and let I and J be two ordered subsets of {k + 1 .. . . .  n} such that 
Ic~J= O. Then 

"ej... k~e{el... ~Ce~ = (-- 1)kt ll(r .. ' k)2 ~elCes. 
k(k + 1) 

Since (r 2 , we find that 

( k(k+ 2 - - )  1) 
%1 .. .k%,%l..Jes=( - 1) ~kvl+ 'erCej. (1.9) 

k(k+ 1) 

If k + [ll is odd, then kill is even and the sign in (1.9) is ( -  1) 2 . If k + ]1[ is even, 
k t k -  1) 

(--1) kl~l = ( -  1) k, and the sign in (1.9) is ( - 1 )  2 . Since A is odd, using (1.9), we 
find that 

k(k+ 1) 

('A) 2= E ( -  1) 2 ~((ie,,ie,2"'" i~,,A)2) �9 (1.10) 
i1< . . .  <ik 

Similarly since ie,A is even, we get 
k ( k -  1) 

(Cie~A)2= ~ (--1) 2 c((ie, ie, ...ie, ie~A)2). (1.11) 
i l < i 2 < . . .  <ik 

k(k+ 1) 

Observe that when k is changed into k + 2, ( -  1) 2 changes sign. Therefore 
k(k + t) 

(~A)2+Z(Cie, A)2=~(A2)+ Y' (--1) z (l_k)r ...i~, a)2). (1.12) 
k > l  

il < .T. < ik 

The second line of(1.3) follows from (1.12). [] 

Remark 1.2. IrA only contains terms of degree 1, the second line in (1.3) is 0. In this 
case, DL+ A is simply the Dirac operator on F |  associated with the connection 
|TL|174162 on the vector bundle F|  The first line of (1.3) is then 
equivalent to the standard Lichnerowicz formula. 
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Let now B be a smooth section of A3(T*M). Of course, CB acts like CB| 1 on 
F |  Let HBII be the norm of B in An(T'M). 

Theorem 1.3. The following identity holds 

K 
(DL +CB)2= -- ~ (vLi-q-C(ie,n))2 + ~ +c((Vr 2 Ilnll z. (1.13) 

1 

Proof We use Theorem 1.1 with A=B. Observe that since B lies in A3(T*M), 
B 2 = 0. Therefore 

c((v r + B))2 = ~((Vr + C(dB)" 

Also for i <j ,  since ie,iejB ~ fl 1(T'M), (ie,iejB) 2 = 0. Finally 

�9 Z (ie,iejie,B) 2= IIBlff. 
i < j < k  

(1.13) follows. []  

b) A symmetry property of the curvature for connections with non zero torsion 

Let B be a real smooth section of Aa(TM). 

Definition 1.4. S s denotes the one form with values in antisymmetric elements of 
End(TM) which is such that if X, Y,Z~ TM 

<SB(X) Y,, Z> = 2B(X, Y, Z). (1.14) 

V B denotes the Euclidean connection on TM 

VB= VL+S ~. (1.15) 

T 8, R B denote the torsion and curvature tensors of the connection V s. 

Proposition 1.5. I f  X, Y,, Z ~ TM, then 

(Tt(X,  Y), Z )  = 4B(X, Y, Z). (1.16) 

Conversely, if V is an Euclidean connection on TM whose torsion is T, if the tensor 
X, Y , Z ~ ( T ( X ,  Y),Z> is antisymmetric, if B is the three form defined by 

( T(X, Y), Z> = 4B(X, Y,, Z) (1.17) 

then V = V s. 

Proof. By (1.14) 

(TB(X, y),Z>=<SB(X) Y,Z>-<SB(Y)X,Z>=4B(X, Y,Z). (1.18) 

If the connection V is taken as indicated, observe that the connections V and V B 
are both Euclidean, and have the same torsion T = T  •. They necessarily 
coincide. []  

We now prove an essential identity, which extends the well-known symmetry 
identity on the curvature tensor of the Levi-Civita connection. 
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Theorem 1.6. Let B be a real smooth section of A3(T*M). I f  B 
X,  Y,, Z, T~ TM,  then 

(RB(X, Y)Z,  T )  = (R-B(T, Z) Y,, X ) .  

J.-M. Bismut 

is closed, if 

(1.19) 

Proof. By (1.14), the tensor X,Y ,Z - - , (SB(X)Y ,Z )  is antisymmetric, and the 
corresponding three form is closed. 

Since V L is torsion free, the action of V L on the smooth sections of A(T*M) 
coincides with the exterior differentiation operator d. Let ~ denote antisym- 
metrization. Since the form B is closed, if X, Y, Z, T~ TM,  then 

( ( V L S B ) ( Y ) Z ~ )  -- ((vLsB) z ) ~ )  + ((V~SS)(T)X, Y )  - ((vLsB)(X) Y, Z )  = O. 

(1.20) 

Also since the tensor Y, Z, T ~  (S~(Y)Z,  T )  is antisymmetric, for any X ~ TM, the 
tensor Y,,Z, T- , ( (V~SB)(Y)Z ,  T )  is still antisymmetric. Therefore the identity 
(1.20) is valid without antisymmetrization. We then find that 

((V~SB)(Y)Z, T )  - ((r T )  = ((vLsB)(Z)X,  Y )  -- ((v~SB)(T)X, Y ) .  

Clearly 

R n = (VL) 2 + VLS ~ + S ~ A S B . 

(1.21) 

(1.22) 

From (1.21), since S-B= - S  B, we get 

( (VLS B) ( X,  Y) Z, T )  = ( VLS- n( T, Z) Y,, S ) . (1.23) 

Similarly, since the tensor X, Y , ,Z~(SB(X)Y ,Z) ,  is antisymmetric, we get 

((SB(X) SB(Y) -- SB(Y) SB(X)) Z, T )  

= -- (SB(T)Sn(Y)Z, X )  + (SB(T) SB(X)Z, Y )  

= (SS(Y)Z,  SB(T)X)  - (SB(X)Z, SB(T) Y )  

= _ (SB(Z) Y, SB(T)X)  + (S~(Z)X,  SB(T) Y )  

= ((SB(T) Sn(Z) - S*(Z) Sn(T)) Y, X ) .  (1.24) 

From (1.24), since S -B= - S  B, we find that 

((S B A S n) (X, Y)Z, T )  = ((S -B A S -B) (T, Z) Y, X ) .  (1.25) 

Using (1.21)-(1.25) and the fact that (1.19) holds for B=0,  we obtain (1.19) in full 
generality. [] 

c) A local index theorem for a modified Dirac operator 

We now assume that M is even dimensional, so that n = 21. The vector bundle F 
splits orthogonally into F = F + @ F _ ,  where F+, F_ are the vector bundles of 
positive and negative spinors. 

Let B be a real smooth section of A3(T*M). Then the operator DL+CB 
exchanges the sets of smooth sections of F + | ~ and F_ | ~. Let (DL+ CB)• be the 
restriction of DL+ B to smooth sections of F• | 4. 
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Then the operator (DL-} - ~B)+ is Fredholm and its index is given by 

Ind(D L + CB) + = dim Ker(D L + B) § - dim Ker(D L + B)*.  (1.26) 

Of course Ind(DL+CB)+ does not depend on B. 
Let dx be the Riemannian volume element on M. For  t>0 ,  let P~(x,y) be the 

C oo kernel associated with the operator e x p ( -  t(D L + ~B)2). If h is a smooth section 
of F | 3, then 

e x p ( -  t(D L + CB)2)h(x) = ~ P~(x, y)h(y)dy. (1.27) 
M 

For any x ~ M, P~(x, x)~ End(F|162 is even, i.e. preserves the Z 2 grading of 
(F |  ~)~. Let Tr, [Pff(x, x)] be the supertrace of P~(x, x) in the sense of Quillen [Q 1 ]. 
The McKean-Singer formula [MKS] asserts that for any t > 0  

Ind (D L -]- B) + = j Tr~ [P~(x, x)] dx. (1.28) 
M 

Note that (!.281 was established in [MKS] when D L + B is a self-adjoint operator. 
This is here the case if V r is unitary. In full generality, (1.28) was established in [B4, 
Theorem 1.2] by using the superconnection formalism of Quillen [Q 1]. 

Let .~ be the Hirzebruch polynomial on (n, n) matrices. If C is an antisymmetric 

real matrix with diagonal blocks [ 0 xi] then / --X~ 0 J '  

A(C)= ~I x~/2 
t sh(xi/2)" (1.29) 

T h e o r e m  1.7. Assume that B ~A3(T*M) is closed. Then 
R -n (~7')2~l~max 

l i m T r s [ P ~ ( x , x ) ] d x = { A ( - - 2 ~ - T r ) T r [ e x p ( - ~ j j j  

and the convergence is uniform in M. 

(1.3o) 

Proof. Since dB = 0, by Theorem 1.3, we know that 

" K (Dr'WeB)2= - ~(VLe~+C(ie~B))2+ ~ +c((Vr 2 ]IBII 2 . (1.31) 
1 

Now using (1.14), we know that 

(ie,B) = �89 Y. ( ie,B) (e j, ek)dxJ dx k = �88 ( SB(ei) e j, ek) dx~dx k (1.32) 

and so 

(DL+CB)Z=_~(VLe,+~(Sn(ei)ej, )2 K _  2 ek)Cei~e k q---  I[nl12 +c((vr 
(1.33) 

Observe that the connection on F 

V L q" �88 �9 )e j, ek)Cefek (1.34) 

is exactly the lift to F of the Euclidean connection V ~. 
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We now indicate the principle of the proof of (1.30) along the lines of our 
previous work [B 1, Sect. 4]. Let g~t be the metric of M. Take Xo ~ M. For t > 0, let 

gM 
X~' be the Brownian notion in M associated with the metric - - .  Let E be the 

t 
corresponding expectation operator. 

For  s > 0, let z~ t be the parallel transport operator from (F|  ~)x~ into (F|  ~)xo 
with respect to the connection VB| + I |  r on F |  which we still note ~TB. 
Let Ut~ be the solution of the differential equation 

d U~ds = U's I - l z~ r c( ( Vr 1 
(1.35) 

t _ _  Uo-I(v| 

Using formula (1.33) and Ito's formula as in [B 1, Theorem 2.5], we know that ifh is 
a smooth section of F |  then 

(1.36) 
/ \ 

Let P,(xo, Yo)be the heat kernel on M associated with the operator exp ( t  A) 

{where A is the Laplace-Beltrami operator for the metric gU). Let Q~o,~o be the 
probability law on •([0,1]; M) of the Brownian bridge starting at Xo at time 0 and 

gM 
going back to x o at time 1 associated with the m e t r i c - - .  Q~o,~o is simply obtained 

t 
by disintegration of the probability law ofx t with respect to the map xt~x]. From 
[1.36), we find that 

(1.37) 

At this stage, we are formally in a situation formally similar to [B 1, Sect. 3]. Of 
course with respect to [B1] 

�9 K is replaced by K -  8 IIBll 2. However for t small, this has no influence on the 
asymptotics of Tr~[P~(x 0, xo)]. 

�9 The connection V L in [B 1] is replaced by V n. 
Let w~(0<s<l )  be a Brownian bridge in T~oM, with Wo-W~- ~=0, whose 

probability law is denoted P~. 
If X, Ye. TM, we identify RB(X, Y) with the two form Z, T--.,'(Z, RB(X, Y)T). 

Let exp ̂  be the exponential in A'~"~n(T*M). From [B 1, Theorem 3.10 and 3.18] 
where we simply replace V by V A, we get 

(1.38) 

dPl(W 1) ̂  Tr exp k, 2i~ J J J  uniformly on m .  
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By Theorem 1.6, we know that if Z, T~ TM 
1 1 

f. (Z, RB(dwl, w ' )T )=  { (R-n(Z, T)w',dwl).  
0 0 

By [B1, Theorem 3.171, we know that 

~ e x p ^ { 2 i ( R - B w l ,  d w l ) ) = j ( R 2 ~ -  ) . (1.39) 

(1.30) follows from (1.38) and (1.39). [] 

Remark 1.8. Of course (1.30) can also be obtained by any other method for the 
proof  of the local index theorem. In particular if one uses the method of Getzler 
[Ge-], there are two possible choices: 

�9 Either one trivializes the bundle of or thonormal  frames in TM using the 
connection V n instead of V L. 

�9 Or one directly rescales the operator  (1.31) according to [Ge],  but then an 
exponential transform is needed to overcome a singularity which appears because 
of S B. 

The proof  of (1.30) is also possible by the methods of Berline-Vergne [BeV], 
with a few obvious modifications. 

d) Local index theorem for Dirac operators associated with connections 
with non zero torsion 

We now will use formula (1.30) in a special situation. Namely let 17 be any arbitrary 
Euclidean connection on TM. Let S be the tensor defined by the relation 

17 = 17L + S. (1.40) 

S is a one form with values in antisymmetric tensors on TM. Let T be the 
torsion of 17. Classically, if X, Y, Z e TM 

T(X, Y) = S(X) Y -  S(Y)X. 
(I .41) 

2 ( S(X) Y , Z ) - (  T(X, Y ) ,Z ) - - (  T(Z,X), Y)  + ( T(Y,Z),X)=O. 

The connection 17 lifts naturally into a unitary connection on the vector bundle F, 
which we still note V. If et, ...,en is an or thonormal  base of TM, then 

V. = V. L + E l ( S (  �9 )el, e j )Ce[es .  (1.42) 

Let 0 be the one form 

X e TM-*O(X)= X ~ TM.  

The first line in (1.41) is equivalent to 

r = S/x 0. (1.43) 

Let ( T  + 0) be the antisymmetrization of the tensor X, Y,, Z--* (T(X,  Y), Z). 

If dxl,..., dx" is the base of T*M dual to el , . . . ,  e,, then 

( T ~ O) = �89 ( T(ei, e j), ek ) dxi dxJ dx k . (1.44) 
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Of course 
( T  ,;x O) = (SO ~ 0).  

We still denote by V the Hermitian connection on F |  

J.-M. Bismut 

(1.45) 

V | 1 7 4  ~. 

Definition 1.9. D r denotes the Dirac operator acting on the set of smooth sections 
of F |  

n 1 t t  

E c(S(@ei) (1.46) D r  = Z CeiVe, + 2 1 
1 

Theorem 1.10. The operator D r is self-adjoint. Also the following identities hold 

DT=DL+ ~ ~(T, 7 0 ) ,  

1 r + ~- +~((Vr ~ ~(d(r 4 0 ) ) -  g H(TA O)tr 2. 
i 

(i .47) 
Proof. Let D' be the operator 

n 

D'= y%V~, (1.48) 
1 

if D'* is the formal adjoint of D', one verifies easily that 
n 

D'* = D' + 2 c(S(ei)ei) �9 (1.49) 

Therefore 

D r = �89 D'*) (1.50) 

and so D r is formally self-adjoint. 
Also by (1.42), (1.48), we know that 

D' = O L + �88 ~, (S(e j )e j ,  ek) > reiCefe k . (1.51) 

Clearly 

�88 (S(ei)ei, ej) ffei) 2 Cej + �88 ei)Ce[efei = - �89 ~(S(ei)ei). (1.52) 

From (1.50)-(1.52), we get 

D r = DL + 21 c~,-,t2, (S(ei)ei, ek) dxidxidxk} = DL + l c (  T 4 0).  (1.53) 

The first line in (1.47) is proved. The second line in (1.47) follows from 
Theorem 1.3. []  

For  t > 0, let Pt(x, y) be the smooth heat kernel associated with the operator 
exp(-tD~.). From Theorems 1.7 and 1.10, we deduce. 

Theorem 1.11. Assume that the three form B= �88 T 4 O) is closed. Then 

lira Tr E'.o, Xo l  o-- Tr/exp  H  . ' 4 /  
t to 

uniformly on M. 
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Remark 1.12. Assume that the tensor X, Y , Z ~ ( T ( X ,  Y) ,Z)  is antisymmetric. 
Then 

(T(X,  Y ) , Z ) =  �89 ~, O)(X, Y,Z)= 4 B(X, Y,Z). (1.55) 
B 

By Proposition 1.5, we find that V = V g. 
From Proposition 1.5, Theorem 1.11 and (1.55), we find that R -n is the 

curvature of the Euclidean connection on T M  with torsion - 3 T. 

Remark 1.13. Let G be a compact group equipped with a right and left invariant 
metric. For a e R, let "V be the connection on,TM such that if X, Y are left invariant 
vector fields 

aV x Y= a IX, Y] . (1.56) 

The torsion T of aV is given by 

"T(X, Y)= (2a -1 )  IX, Y]. (1.57) 

Also the tensor X, Y, Z--* ([X,  Y], Z )  is antisymmetric and the corresponding 
three form is closed. Therefore Theorem 1.11 can be used in this case. 

II. The local index theorem for non K/ihler manifolds 

In this section, we specialize the results of Sect. 1 to the case where M is a compact 
complex manifold equipped with a Hermitian metric, whose K/ihler form is 
denoted in. More precisely, we study in detail the local index theorem for Dirac 
operators of the type t? + 0". 

In a), we give a formula for ~-+~-* and (0-+~-*) 2 in terms of Clifford 
multiplication operators. In b), when ~t?e~ = 0, we construct an exotic holomorphic 
structure on the vector bundle TRM| which coincides with the natural one if 
(M, in) is K/ihler. In c), when ~-&o = 0, we obtain a local Riemann-Roch-Hirzebruch 
Theorem. 

a) A formula for 2(~+~*) z 

Let M is a compact connected complex manifold of complex dimension I. 
A T  *c~ I)M denotes the algebra of forms of type (0, p)(0_-< p_-< l). Let TM be the 
holomorphic tangent bundle on M, and let TRM be the corresponding real tangent 
bundle. 

Let g be a Hermitian metric on TRM and let co be the corresponding K/ihler 
form. If J is the complex structure of TRM, then for X, Ye TRM 

co(X, r )=  (X, J Y ) .  (2.1) 

Then AT*t~ is a c(TRM) Clifford module. Namely if XsTt l '~  
Ye Tt~ if X*e  T *(~ *}M corresponds to X by the metric, set 

c(X)=]/~X* ^ ; c(Y)= -] /~i  r . (2.2) 

Then if Y, Y' e TRM, one verifies easily that 

c( Y)c( Y') + c( Y')c( Y) = - 2 ( Y, Y')  . (2.3) 
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To make our arguments simpler, we will assume that M is spin, or equivalently 
[H, Theorem 2.2] that the line bundle det(TrMM) has a square root 2, which is 
then a holomorphic line bundle. Note that this assumption is always verified 
locally, and this is the only fact we need. 

Then the metric on T r M M  induces a Hermitian metric on 2. Also by [-H, 
Theorem 2.2], if 

F = A(T  *~~ I)M)| (2.4) 

F is the Hermitian bundle of T M  spinors on M. Moreover 

F + = AeVen(T *~~ a)M) | 2* 

F _ = Anad(T* (o. I)M) | 2" (2.5) 

and the identification (2.5) also identifies the metrics. 
Let V L be the Levi-Civita connection on TRM, and let V TM be the holomorphic 

Hermitian connection on TM.  Similarly let V a, V x* be the holomorphic Hermitian 
connections on the line bundles 2, 2*. Of course V L = V TM if and only if (M, co) is 
Kfihler, i.e. if the form co is closed. In the sequel, we do not assume that co is closed. 

Therefore F is equipped with two natural connections: 
�9 one is the lift of V L to F and is still noted V L. 
�9 The other is the lift of V TM to F and is noted V F. Equivalently V F is also the 

holomorphic Hermitian connection on F. 
Of course V TM induces the natural antiholomorphic connection on 

A( T *~~ 1)M), which we still note V TM. Identifying A( T *l~ ~) M) with A( T ~ ~ by 
the metric, V TM induces the holomorphic Hermitian connection on A(T" '~  

Using (2.4) and the uniqueness ofholomorphic  Hermitian connections, we get 

V r =  V T M |  + l |  a* . (2.6) 

In this section, d M = O a 4 + ~  denotes the exterior differentiation operator 
acting on smooth sections of A(T*M).  

Let T be the torsion of the connection V TM. Remember that T maps T r ~ 
x T(I'~ (resp. T c~ ~)M x T ~~ I~M) into T(I"~ (resp. T ~~ 1)M) and vanishes on 
T ( I ' ~  • T~~ Set 

S = V T M -  V L . (2.7) 

Proposition 2.1. We have the identity o f  three forms on M 

( T ,~ O) = i( O ~ t -  c~) co. 

Proof. Clearly VrMco = 0. Also 

dM = vrM + i r .  

Therefore 

and so 

d M (D .~ i T CO 

(2.8) 

(2.9) 

(2.10) 

dMco= _ i<(T( , ,o )_  T(O, t)) 4 0>. (2.11) 
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Using the properties of T listed before, we get 

c~Mo) = - i ( T  ~1"~ A, O) 
(2.12) 

(2.8) follows. [] 

Let ~ be a holomorphic Hermitian vector bundle on M of complex dimension 
k. Let g ~ be the holomorphic Hermitian connection on ~, whose curvature is 
denoted (17r 

Let/7 be the Dolbeault operator acting on the set F of smooth sections of 
A(T *~~174162 F is naturally equipped with the L 2 Hermitian product 

t / , t / ' e F ~  j (qa, . r / ' ) .  (2.13) 
M 

Let ~* be the formal adjoint of ~-with respect to the Hermitian product (2.13). Note 
that 

A(T  *t~ ~}M)|174174 (2.14) 

~.| is naturally equipped with the connection Va| + 1 | 17r Therefore, we can 
define the Levi-Civita Dirac operator D L acting on F as in (1.1). 

If we instead equip TRM with the holomorphic Hermitian connection 17rM 
whose torsion is T, we can define the associated Dirac operator Dr as in 
Definition 1.9. 

Theorem 2.2. We have the following identities 

Dr=DL + �88 /b O) 
(2.15) 

V2(~-+ 0") = D L -- �88 ~(T/~ 0 ) .  

Proof. The first line of (2.15) is a special case of Theorem 1.10. 
Let wx, ...,w t be an orthonormal base of TtL~ and let #l  .. . . .  #e be the 

corresponding dual base of T *(~ 1)M. The operator ~-is given by 

l 

J =  5~ # ' ^  17~i' (2.16) 

We still note by 17rM the connection V rg  | 1 + 1 | V ~ on A( T *~~ ~ ) M) |  ~. Since 
V T M  has torsion T, by (2.9), we find that 

] /~ j= c(wi ) 17ry + ]/~ir,o, ~,. (2.17) 

Equivalently using (2.2), we get 

] / ~ =  e(w,) 17r~ _ �88 c(wi)c(wj)c(T(~,, ~j)). (2.18) 

Set n=21. Let e~ ... . .  e, be a real orthonormal base of TsM. Set 

n 

Y= Z S(ei)ei. (2.19) 
1 
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By taking adjoints in (2.18), one finds easily that 

v r ~ ,  ~- - T M  (0,1) 1 c(w,)V~,, +c(Y )+ac(T(wi, wj))c(~j)c(#3. 

From (2.18), (2.20), we get 

Now 
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(2.20) 

V~(8+ J*)= c(wi)V~y+ c(w3 V~ M + c(Y(~ ,))_ I c(wl)c(wj)c(T(~i ' v~j)) 

1 
4 c(T(w~, wj))c(O~)c(~j). (2.21) 

c( T(wi, wj))c(~i)c(v~j) = - 2 ( T(wi, wi), wi) c(ff j) 

-c(#i)c(T(w i, w))c(#j)= - 2 ( T(wi, w), wi)c(~j) 

+ 2 (T(w,, w j), #j)  c(#,)+ c(~,)c(~j)c(T(w,, w)). 12.22) 

Using the properties of T listed before (2.7), and Eq. (1.41), we get 

2 (S(wi)V% w j) = - (T(wi, wfl, wi) .  (2.23) 

Also since T(wl, ~31)=0, S(wi)~i=S(#i)w~, and so 

Y= 2S(w,)~,. (2.24) 

From (2.22)-(2.24), we find 

c(T(wi, wj))c(v~i)c(~j) = c(~i)c(~j)c(T(wi, w j)) + 4c(Y (~ 1)). (2.25) 

Using (1.41), we also have 

�88 i, &j)) + �88 w j)) 

= �88 ( T(ei, e j), ek ) c(ei) c(e i) C(ek) 

= �89 T 6, O) + �89 ( T(e i, e j), ei) c(ej) 

1 C(T r O) - c(Y) (2.26) 
2 2 

From (2.21)-(2.26), we get 

rM - rM c(Y) l C(T,~O ) - c(w3 V~, + c(w3 Vw. + 2 2 (2.27) 

or equivalently 

~/2(~-+ ~-*) = D r - -  ~- (T4~ 0) .  (2.28) 

From the first line in (2.15) and (2.28), we deduce the second line of (2.15). []  

In the sequel, we use the same notations as in Theorems 1.3 and 1.10. Let K be 
the scalar curvature of M. We now give a form of the Kodaira-Nakano identity 
for the operator 2(~+ ~-,)2. 
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Theorem 2.3. The following identity holds 

2 ( ~ - +  ~ - , ) 2  = - '~T VLe' 4 ~(ie~(SM- ~'t)c~ 

+ ~- + (Vr ~ Tr[(VTM):]Ir 

c(~0M~O ) _  ~ ][(~ra_ ~)~o]] 2. (2.29) 
2 

Proof. The curvature of the holomorphic Hermitian connection on ~| is exactly 
(Vr 2 +(V'Z)2Ir On the other hand 

(VZ) 2 = �89 [(vTM)Z]. 

(2.29) is now a consequence of Proposition 2.1 and of Theorems 2.2 and 1.3. [] 

Remark 2.4. By Proposition 2.1, the condition 

d M ( T 4 0) = 0 (2.30) 

is equivalent to the condition 

~tOM~o =0 .  (2.31) 

Condition (2.31) is well known in the literature�9 In particular a result by 
Gauduchon [Ga] asserts that on a complex surface, there exists a Hermitian 
metric for which (2.31) is verified. In view of Theorem 1.7, condition (2.31) implies 
the existence of a local index formula for the Euler characteristic of 4. We will 
exploit this fact at the end of this section. 

b) An exotic holomor phic structure on TR M | ~tI2 

We now use the notations of Sect. 1. Let B be the real three form B= ( T 4  0) 
Equivalently by Proposition 2.1, we have 4 

B= 4 (8M-- ~-M)m" (2.32) 

By Theorem 2.2, we know that 

I/~(~-+ ~-*) = D -B . (2.33) 

Proposition 2.5. The following identity holds for X, Y, Z ~ TRM 

2 ( S -  B(X) Y, Z )  = - ( T ( X ,  Y), Z )  -- ( T (  Y, Z), X )  - (T (Z ,  X), Y ) .  (2.34) 

In particular 

((S -B _ S) (X) Y,, Z )  = - ( T (X, Y), Z ) + ( T(X,  Z), Y) 
(2.35) 

((S- n + S) (X) Y, Z )  = - ( T(Y, Z), X ) .  

The connection V -e  preserves the complex structure of TRM. 
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Proof By (1.14}-(1.16) we know that 

2 <S- B(X) Y, Z> = - ( T 4x 0) (X, Y, Z) (2.36) 

which is equivalent to (2.34). Comparing with (1.41), we obtain (2.35). Clearly 

V- B = vTM + S-B _ S. (2.37) 

Using the properties of T and the first line in (2.35), we find that if 
Y, Z ~ T ~'' ~ for any X ~ TRM 

((S - B -  S)(X) Y, Z> = 0 .  (2.38) 

Equivalently (S - B -  S)(X) is a complex endomorphism of TsM. Using (2.37), we 
find that [7-e preserves the complex structure of TRM. [] 

Definition 2.6. If X e T t~ 1)M, Ye T tl" ~ let ct(X) Ye T *{'' ~ be defined by the 
fact that if Z e T ('' ~ 

(~(X) Y) (Z) = iOMo(X, Y, Z).  (2.39) 

Let E be the holomorphic vector bundle 

E = T (L ~ T *(1' ~ (2.40) 

We will write elements of End E in matrix form with respect to the spliting (2.40) of 
E. For  X e T (~ ')M, set 

Equivalently fl(X) coincides with e(X) on T("~ and vanishes on T*(L~ 
Let V ~'" be the ~-operator which defines the natural holomorphic structure 

on E. 

Theorem 2.7. I f  ~ u o g = O ,  then V E'' + fl defines a holomorphic structure on E, i.e. 
(~z'+/~)2 =0.  

Proof. Clearly f12= 0. So we must prove that VE"fl = O. 

Let z t . . . .  ,z z be a holomorphic coordinate system on M. It induces a 
corresponding local holomorphic trivialization of T " '  ~ and of T *~ ~ Then 
if Y, Z are holomorphic sections of r ~1' ~ by (2.39), X ~ T ~~ ')M--*(fl(X) Y) (Z) is 
the (0, 1) form 

X ~ T (~ 1}M~i~t to(X,  Y, Z).  

If X, X '~  T (~ ')M, it is then clear that 

(Ve"fl) (X, X ' ) (Y)  (Z)= iff~OMog(X, X', Y,, Z). (2.42) 

Since ff'~aMe~ = 0, we find that  Ve"fl = O. [] 

From now on we assume that 

ffMt~U(o = 0. (2.43) 
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When E is equipped with the holomorphic structure V e'' +fl, we will write 
(E, V ~'' + fl). The metric on T tL ~ induces a metric on T *t~' ~ We equip E with 
the Hermitian metric which coincides with the given metrics on Ttt '~ and 
T*t~'~ and is such that the spliting (2.40) of E is orthogonal. 

Definition 2.8. V ~' ~ denotes the unique holomorphic Hermitian connection on the 
holomorphic vector bundle (E, VE"+ fl). 

The vector bundle TcM= TRM|  splits into 

T~M = T t~'~ G T t~ ~)M. (2.44) 

There is a natural conjugations map T r  ToM which interchanges T (1' ~ and 
T (~ UM. TcM is also naturally equipped with a Hermitian metric, such that the 
splitting (2.44) is orthogonal. 

Also the metric identifies the vector bundles T (~ I)M and T*tL~ and so 
defines a holomorphic structure on T ~~ t)M. We then have the identification 

TqzM - -  E,  (2.45) 
r 

w h e r e -  indicates that the identification depends on ~o. 
co 

So ToM now carries two holomorphic structures, which both depend on co: 
�9 The first is inherited from the natural holomorphic structure V e'' of E. 
�9 The second, which we note V r~M'~'', corresponds to V E'~'' via the identification 
(2.45). 

Let V reM'~ be the holomorphic Hermitian connection on (T~M, VreM'~"). Of 
course [7Teu,r correspond to F E via the identification (2.45). 

A connection on ToM is said to be real if it is the complexification of a 
connection on TRM. 

T h e o r e m  2.9. The connection V rr is real. Moreover the have the identity 

V r~M'~ = V B . (2.46) 

Proof Remember that 

VB= V L -  S -B= V TM-(S + S-a).  (2.47) 

By Proposition 2.5, we find that if X, Y,, Z e  ToM 

- ((S + S-B) (X) Y, Z )  = ( T( Y,, Z), X ) .  (2.48) 

I f X e  Tt~ Ye  Tt~ we deduce from (2.48) that 

(S + S-")(X)  Y=0 .  (2.49) 

If X e T ~~ 1)M, Ye T ~1' ~ by (2.48), we find that (S + S -a) (X) Ye  T ~~ I*M. 
More precisely if Z e T~L~ from Proposition 2.1, we get 

( T(Y, Z), X )  = i(Oue~) (Y, Z, X). (2.50) 
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We deduce from (2.39), (2.48), (2.50) that if X~ T~~ Y~ T(~'~ when 
identifying E to TeM 

- ( s  + s - ~) ( x )  v = ~ ( x )  r .  (2 .51)  

From (2.49), (2.51), we find that if X~ T ~~ ~)M, then 

V~= V T" M,p (2.52) 

A similar argument shows that if X ~ T ~~ Z)M, (2.52) still holds. The Theorem is 
proved. [] 

Remark 2.10. By Proposition 2.5, we know that V -B preserves the complex 
structure of TRM. In particular the curvature R -n is a two form taking values in 
complex automorphisms of TRM. 

Since 0~0Mco = 0, by Theorem 1.6, we find that R ~ is a two form of complex 
type (13). Using [AHS, Theorem 5.1], we can then deduce that there is a 
holomorphic structure on Tr such that V B is the associated holomorphic 
Hermitian connection. Theorem 2.9 has made explicit this new holomorphic 
structure on TcM. 

c) A local Riemann-Roch-Hirzebruch Theorem for non Kiihler manifolds 
For t>O, let Qt(x,y) be the C | kernel on M associated with the operator 
e x p ( - t ( ~ +  j,)2). Then if Z(r is the Euler characteristic of (, the Mc-Kean Singer 
formula [MKS] asserts that 

X(~) = I Trs[Qt(x, x)] dx. 
Remember that V T M  is the standard holomorphic Hermitian connection on 

Tr~M whose curvature is noted (vTM) 2. Therefore �89 is the curvature 
of the holomorphic Hermitian connection on the line bundle ).. 

Theorem 2.11. Assume that ~w0Mco=0. Then 

{ (R B)~ ( ~1 _ _f(vTM)2q'~r'r Lexp ~ 2 ~ - - n  JJff--(Vr m~ lira Tr,[Q,(x,x)]dx= ,4 exp - T r [ ~ - - - l )  

(2.53) 

uniformly on M. 
Proof Theorem 2.11 is an obvious consequence of Theorems 1.7 and 2.2. [] 

Remark 2.12. Note that the Todd polynomial does not appears as such in (2.53). Of 
course if o) is closed, - so that B =  0 - then 

exp 2 ~  -J" (2.54) 

In general, equality (2.54) only holds in cohomology. 
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