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A local index theorem for non Kihler manifolds *

Jean-Michel Bismut
Département de Mathématique, Université Paris-Sud, F-91405 Orsay, France

Let M be a compact connected oriented spin Riemannian manifold of even
dimension. Then any Euclidean connection ¥V on TM lifts to the corresponding
Hermitian vector bundle of spinors F. The local index theorem of Patodi [P1],
Gilkey [Gil, 2], Atiyah-Bott-Patodi [ABP] asserts that if ¥~ is the Levi-Civita
connection of TM, and if D* is a Dirac operator acting on twisted spinors
associated with the connection FL, then as t | 0, the supertrace Tr,[P(x, x)] of the
heat kernel of exp(—tD?) converges to the Atiyah-Singer characteristic poly-
nomial [AS] naturally associated with the connection F~ and with the considered
connection on the twisting bundle.

The first purpose of this paper is to find sufficient (and almost necessary)
conditions for a local index theorem to hold when D is the Dirac operator
associated with a connection ¥ which does not necessarily coincide with F~. In fact
let T be the torsion of ¥, and let B be the three form which is the antisymmetri-
zation of the tensor X, ¥, Z—4(T(X, Y), Z>. In Theorem 1.11, we prove that if the
form B is closed, a local index theorem still holds. However, and rather
mischeviously, the corresponding Atiyah-Singer polynomial is calculated with a
connection which in general differs from ¥, except when ¥ =P~

If M is a complex manifold equipped with a Hermitian metric whose Kahler
form is w, we know by Atiyah-Bott-Patodi [ABP] that the Riemann-Roch-
Hirzebruch theorem can be derived from the Atiyah-Singer index theorem.
Also it is known since Patodi [P2] that the local index theorem for an
operator of the type 0+ 0* holds if w is closed, i.e. if (M, w) is Kéhler. In this case,
the local supertrace converges as ¢]0 to the local Riemann-Roch-Hirzebruch
polynomial Td(T M) ch(&) associated with the holomorphic Hermitian connec-
tions on TM, and on the twisting bundle &.

In Theorem 2.11, we prove that the Kédhler condition can be substantially
relaxed. In fact we show that if d0w=0, there is still a local Riemann-Roch-
Hirzebruch theorem. The local limit only involves forms of type (p, p), but it is no
longer given locally by a Riemann-Roch-Hirzebruch polynomial. In fact we

* This work was written while the author was visiting IHES during the academic year 1987-1988
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construct on the complexified tangent space TxpM ®zC another holomorphic
structure than the canonical one, which depends explicitly on the Kihler form w.
The limit index polynomial is evaluated by means of the curvature of the
holomorphic Hermitian connection on T M®zC. The condition ddw=0 is
well-known in Hermitian geometry. In particular, a result of Gauduchon [Ga]
asserts that any complex surface carries a Kédhler form having this property.

The paper is organized as follows. In Sect. 1, we establish a local index theorem
for Dirac operators when T M is equipped with a general Euclidean connection. In
Sect. 2, we specialize our results to the case where M is a complex manifold.

Applications of our results to Ray-Singer analytic torsion [RS] and Quillen
metrics [Q2] will be given in [B3].

The results contained in this paper were announced in [B2].

I. Torsion and the local index theorem

In this section, we prove a local index theorem for Dirac operators on a
Riemannian manifold M associated with connections on TM which have non zero
torsion.

This section is organized as follows. In a), we prove a Lichnerowicz formula for
a wide class of non trivial perturbations of Dirac operators associated with the
Levi-Civita connection of TM. In b), we prove an essential symmetry property of
the curvature of certain connections on TM with non zero torsion. In ¢), we prove
a local index theorem for a general class of Dirac operators. Finally in d), we apply
the results of ¢) to Dirac operators associated with connections on TM which have
non zero torsion. )

a) A Lichnerowicz formula for general Dirac operators

Let M be a compact connected Riemannian oriented spin manifold of dimension #.
Let F be the Hermitian vector of TM spinors. The Levi-Civita connection I on
TM lifts to a unitary connection on F, which we still note ¥~

Let ¢ be a complex vector bundle on M, which is equipped with a smooth
connection V%, whose curvature is noted (F¢)2. We here do not assume that ¥*
preserves a metric on £,

The vector bundle F®¢ is then equipped with the connection V*®1+1® V2,
which we still note V'~

Let ¢(TM) be the Clifford algebra of TM. If XeTM, let °X be the
corresponding element in ¢(TM). Remember that ¢(TM) and A(T*M) are
isomorphic as Z graded vector spaces. In fact, identifying TM and T*M by the
metric, if e,, ..., ¢, are orthogonal unit vectors in TM, this isomorphism maps
‘e,...ce,ec(TM) into e, A ... Ae e A(T*M).

The Clifford algebra ¢(TM) is Z, graded, and the isomorphism of ¢(TM) with
A(T*M) preserves the Z, grading. The algebra ¢(TM)®End & is also Z, graded. If
B, B ec(TM)®End¢, set

[B,B]=BB —B'B
[B, B,]s = BB’ _( — 1)de88degB’BrB .
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Let A be a smooth section of 4% T*M)®End ¢ and let °4 be the image of 4 in
c¢(TM)®Endé. The vector bundle & =@ {0} is naturally Z, graded, the elements
of ¢ being even. Therefore V* + A4 is a superconnection on ¢ in the sense of Quillen
[Q1]. Note that we here use the formalism of Quillen in the case where ¢ is trivially
graded. Everything which follows extends to the case where £ is a non trivially Z,
graded vector bundle.

Then, in the sense of Quillen [Q1], (V°+ A)* is the curvature of the
superconnection ¥+ A. (F*+ A)? is a smooth section of A (T*M)QEnd¢.
Let {(F°+ 4)*) be the image of (V*+ A)? in ¢(TM)®End¢.

Let D" be the Dirac operator acting on the smooth sections of F®¢ naturally
associated with the connection VX, If e, ..., e, is an orthonormal base of TM, then

DE=Y e VL. (1.1)
1

Let K be the scalar curvature of M. Let X — B(X) be a smooth one formon TM
with value in ¢«(TM)®End¢. If (e, ..., e,) (x) is a locally defined smooth section of
the bundle of orthonormal frames in T M, we use the notation

Z(PL+Ble)*=Y. (VL +Ble <Z %4 ) — g Pie (1.2)
1 1 :
One verifies easily that the operator ¥ (¥, + B(e;))* does not depend on the local
trivialization (e, ..., e,) of the bundle of orthonormal frames, and so is globally
defined on M.
If X € TM, the interior multiplication operator iy as on A(T*M)®End¢.

Theorem 1.1. The following identities hold

(D" 44y = — Y (V ¢, + (e A + % +UE+ DY)+ (A + LG AN —(4?)
k(k+1)

A+ Z((i, ) —(4%)= <Z " (=1) * (0-k,- i, 4. (1.3)

i1<iz
k

Proof. In what follows, we omit the summation sign 2 and the sign € in ‘e,. Take
(e1(x), ..., e,(x)) as before. Then since °4 is odd in ((TM)®End¢

(DE+°4)? =(D"? + [e, “ ALV, + eV o ((A)+(A)*. (1.4)

By Lichnerowicz formula [L], we know that
K
(DY?= (VL) + T +(7%)?). (1.5)
Using (1.4) and (1.5), we find that

Les Al \?

1
orwea == (7= cap s ey

FePLA [ AL S ) (L9)
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or equivalently

(DL+A)2= . (Vé_ [ei:;A]s)z +(CA)2+ % [ei’ cA]sl
43 oo PECATH 5 +509). 1)

Letdx?, ..., dx" be the base of T*M dual to the base ey, ..., e,. One verifies easily
that since 4 is odd
[eis cA]s = - 2C(ieiA)

[e, PE(4)] = 2(dx V¢, 4) (1.8)
(Ve 4+ AP =P+ Y dx'VEA+ A%

The first line of (1.3) follows from (1.7), (1.8). Let I = {i}, ..., i,} be an ordered subset
of {1, ...,n}, and assume all the i;& I are distinct. Let |I| be the number of elements
in I. Set

[ [

— [4
er="‘e ‘e, ...

Take k<n, and let I and J be two ordered subsets of {k+1,...,n} such that
InJ=0. Then

ey xere, Key=(— 1)””(691 ...k)2 ‘er’ey.

kk+1)
Since ((e; )2 =(—1) 2 , we find that

k(k+1)
<k|I|+ 2

Veo e, (1.9)
k(k+1)

If k +{I| is odd, then k|I| is even and the signg}‘g{?) is(—=1) 2 .Ifk+|I|iseven,

(— 1) =(—1), and the sign in (1.9)is (—1) 2 . Since 4 is odd, using (1.9), we

find that

‘ey..ierer. wey=(—1)

k(k+1)
(A= ¥ =D * WM, ieikA)"'). (1.10)
Similarly since i, 4 is even, we get
k(k— 1)
(i AP= ¥ (=1 2 e, i, io,A)). 1.11)
k(k+1)
Observe that when k is changed into k+2,(—1) 2 changes sign. Therefore
k(k+1)

AP+ T (LAY =40+ % (=1 2 (A=K, o iy, AP (1.12)

<. <ig

The second line of (1.3) follows from (1.12). []

Remark 1.2.1f A only contains terms of degree 1, the second line in (1.3) is 0. In this
case, DY+ A is simply the Dirac operator on F®¢ associated with the connection
Vi®1+1®(F*+ 4) on the vector bundle F®E. The first line of (1.3) is then
equivalent to the standard Lichnerowicz formula.
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Let now B be a smooth section of A*(T*M). Of course, ‘B acts like ‘B®1 on
F®E. Let |B| be the norm of B in A3(T*M).

Theorem 1.3. The following identity holds

1 K

(D" +°BY?=— Y (V&+(i.,B)* + T +9(V9))+@B)—-2|B|>.  (1.13)

1
Proof. We use Theorem 1.1 with 4= B. Observe that since B lies in A*(T*M),
B?=0. Therefore

(Vs +B)*=(V*)’ +dB).
Also for i<}, since i,i, Be A(T*M), (i,i.,B)* =0. Finally
Y (e, B =Bl

i<j<k

(1.13) follows. OO

b) A symmetry property of the curvature for connections with non zero torsion
Let B be a real smooth section of A3(TM).

Definition 1.4. S® denotes the one form with values in antisymmetric elements of
End(TM) which is such that if X, Y, Ze TM

(S3X)Y,Z>=2B(X.,Y,Z). {1.14)
78 denotes the Euclidean connection on TM
VB=pLtSB. (1.19)
TB, R® denote the torsion and curvature tensors of the connection V2.
Proposition 1.5. If X,Y,Ze TM, then
(TYX,Y),Z>=4B(X,Y,Z). (1.16)

Conversely, if V is an Euclidean connection on TM whose torsion is T, if the tensor
X,Y,Z-{(T(X,Y),Z) is antisymmetric, if B is the three form defined by

(T(X,Y),Z>=4B(X, Y, Z) (1.17)
then V=V5
Proof. By (1.14)
(THX,Y),Z>=(S}X)Y, Z)—<(S*Y)X,Z)=4B(X, Y, Z). (1.18)

If the connection V is taken as indicated, observe that the connections ¥ and V2
are both Euclidean, and have the same torsion T=T® They necessarily
coincide. [J

We now prove an essential identity, which extends the well-known symmetry
identity on the curvature tensor of the Levi-Civita connection.
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Theorem 1.6. Let B be a real smooth section of A*(T*M). If B is closed, if
X, Y,2,Te TM, then
(RAX,Y)Z, T)=<R"HLZD)Y,X). (1.19)

Proof. By (1.14), the tensor X,Y,Z—<S’*X)Y,Z) is antisymmetric, and the
corresponding three form is closed.

Since V™ is torsion free, the action of P* on the smooth sections of A(T*M)
coincides with the exterior differentiation operator 4. Let — —_ denote antisym-
metrization. Since the form B is closed, if X, Y,Z, Te TM, then

PSP Z, T —LVESHZ) T, X )+ V58T X, Y5 —((VESBH(X) Y, Z>=0.
(1.20)

Also since the tensor Y, Z, T—{S¥Y)Z, T) is antisymmetric, for any X e TM, the
tensor Y,Z, T-{(V4S®)(Y)Z, T) is still antisymmetric. Therefore the identity
{1.20) is valid without antisymmetrization. We then find that

(PESHYNZ, T —VySPHX)Z, TH)=L(ViS*) D)X, Y ) —(VESHD X, Y.

(1.21)
Clearly
RE=(FY? 4+ PLSP 4 SP A 5. (1.22)
From (1.21), since § " #= —S&, we get
(PSP (X, Y)Z, T> =<V S HT,Z)Y, X>. (1.23)

Similarly, since the tensor X, ¥, Z—<{S¥X)Y, Z), is antisymmetric, we get
(SEX)SHY) - SH(Y)SHX)Z, T
= —(SAT)SAY)Z, X> +{(SAT)S*X)Z,Y)
={(SHY)Z,S](T)X)-<S](X)Z,S5(T)Y)
= —(SAZ) Y, SAT) X > +<SH D)X, SHT) Y

={(S¥(T)S%Z)—-S¥2)S*(T) Y, X ). (1.24)
From (1.24), since S~ %= —S®, we find that
USEASHYX, VZ, T>=US EAS (T, 2)Y,X>. (1.25)

Using (1.21)~(1.25) and the fact that (1.19) holds for B=0, we obtain (1.19) in full
generality. [J

c) A local index theorem for a modified Dirac operator

We now assume that M is even dimensional, so that n=2Il. The vector bundle F
splits orthogonally into F=F  @F _, where F,, F_ arc the vector bundles of
positive and negative spinors.

Let B be a real smooth section of A3(T*M). Then the operator D*+°B
exchanges the sets of smooth sections of F, ®¢ and F_®¢. Let (DX +°B),. be the
testriction of DX+ B to smooth sections of F, ®¢&.



A local index theorem for non Kihler manifolds 687

Then the operator (D* +°B),, is Fredholm and its index is given by
Ind(D +°B), =dim Ker(D! + B), —dim Ker(D* + B)* . (1.26)

Of course Ind(D*+°B), does not depend on B.

Let dx be the Riemannian volume element on M. For t>0, let P?(x, y) be the
C* kernel associated with the operator exp(— t(D* +°B)?). If h is a smooth section
of F®E, then

exp(—t(D*+ B)*)h(x)= [ P{(x,y)h(y)dy. (1.27)
M
For any xe M, P¥(x,x)e End(F ®¢), is even, i.e. preserves the Z, grading of

(F®¥),. Let Tr,[P2(x, x)] be the supertrace of P¥(x, x)in the sense of Quillen [Q1].
The McKean-Singer formula [MKS] asserts that for any >0

Ind(D*+B), = | Tr,[PZ(x,x)]dx. (1.28)

M
Note that (1.28) was established in [MKS] when D*+ B is a self-adjoint operator.
This is here the case if V¢ is unitary. In full generality, (1.28) was established in [B4,

Theorem 1.2] by using the superconnection formalism of Quillen [Q1].
Let A be the Hirzebruch polynomial on (n, n) matrices. If C is an antisymmetric

real matrix with diagonal blocks 0 % , then

—x; 0
- Loxy/2
A(C)= ]:[ )3 (1.29)

Theorem 1.7. Assume that Be A3(T*M) is closed. Then

. N R*B V{ 2 max
}111()1 Tr,[P3(x, x)]dx = {A ( o ) Tr [exp <~ (—il%ﬂ} (1.30)

and the convergence is uniform in M.

Proof. Since dB=0, by Theorem 1.3, we know that
n K

(D' +°B)* = — ;(V§i+“(iei3))2+ T +(V)?)—-21B|*. (1.31)

Now using (1.14), we know that
(i, B)=1%Y (i.,B) (e, e,)dx/dx* = 1 (S%(e)e; e, dxdx* (1.32)

and so
L ep\2 : L 1 B, c,C 2 K 2 ¢ &2

(DF+°BY = = 3 Vit g<Seep en)efen | +5 —21BIP +(79?).

(1.33)
Observe that the connection on F

VE+ ISP ey 0 (1.34)

is exactly the lift to F of the Euclidean connection V%
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We now indicate the principle of the proof of (1.30) along the lines of our

previous work [B1, Sect. 4]. Let g¥ be the metric of M. Take x,€ M. For t >0, let
M

x% be the Brownian notion in M associated with the metric -gt— Let E be the

corresponding expectation operator.

For 5>0, let 73° be the parallel transport operator from (F ®¢),, into (F®¢),,
with respect to the connection F2®1+1®V* on F®E, which we still note V2,
Let U be the solution of the differential equation

au; 1
& =U. [— 575 Vf)zg)]

(1.35)
Uo=1 (F®8xo*

Using formula (1.33) and Ito’s formula asin [B1, Theorem 2.5], we know thatif his
a smooth section of F®¢E, then

exp (lt—(?—l?)—z) hixg)=E [exp {— % i (5} —21B] 2) (x;)ds} U’lté”h(x'l)] )
]
(1.36)

. . t
Let p,(x,, yo) be the heat kernel on M associated with the operator exp <§ A>

(where 4 is the Laplace-Beltrami operator for the metric g™). Let Q% . be the
probability law on €([0, 1]; M) of the Brownian bridge starting at x, at time 0 and
gM

.
by disintegration of the probability law of x* with respect to the map x*— x}. From
(1.36), we find that

t —~t1 K
Pf(xm Xo) = PdXq, Xo) E@<0:x0 [CXP {“’z‘t ) (Z -2 ||B||2> (x;)ds} Utl"-'(l)’t:| .
2 o
(1.37)

going back to x, at time 1 associated with the metric Q.. x, is simply obtained

At this stage, we are formally in a situation formally similar to [B1, Sect. 3]. Of
course with respect to [B1]

« Kisreplaced by K —8 || B|%. However for ¢ small, this has no influence on the
asymptotics of Tr,[P5(x,, x,)].

« The connection ¥* in [B1] is replaced by V2.

Let w}(0<s<1) be a Brownian bridge in T, M, with wi=w}=0, whose
probability law is denoted P,.

If X, Ye TM, we identify RE(X, Y) with the two form Z, T-><Z,R¥X,Y)T).
Let exp” be the exponential in A=***(T*M). From [B1, Theorem 3.10 and 3.18]
where we simply replace V by V2, we get

i1
limn Tr, [P,(xg0 xoldxo = {5 exp’ {—-’— [ R¥dw!, w*)}
110 4 o

L _(V§)2 max .
dP,(w)ATr|exp i uniformly on M.

(1.38)
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By Theorem 1.6, we know that if Z, Te TM
1 1
f(Z,RB(dwl,w‘)T>= [<R™BZ, T)w', dw').
0 )
By [B1, Theorem 3.17], we know that
S -B,,1 1 +(R°E 39
jexp {Z;t—b[(R wh,dw >}=A<2n>. (1.39)

(1.30) follows from (1.38) and (1.39).

Remark 1.8. Of course {1.30) can also be obtained by any other method for the
proof of the local index theorem. In particular if one uses the method of Getzler
[Ge], there are two possible choices:

« Either one trivializes the bundle of orthonormal frames in TM using the
connection V2 instead of V™.

» Or one directly rescales the operator (1.31) according to [Ge], but then an
exponential transform is needed to overcome a singularity which appears because
of S%.

The proof of (1.30) is also possible by the methods of Berline-Vergne [BeV],
with a few obvious modifications.

d) Local index theorem for Dirac operators associated with connections
with non zero torsion

We now will use formula (1.30) in a special situation. Namely let ¥ be any arbitrary
Euclidean connection on TM. Let S be the tensor defined by the relation

P=PLss. (1.40)

S is a one form with values in antisymmetric tensors on TM. Let T be the
torsion of V. Classically, if X,Y,Ze TM

T(X,Y)=S(X)Y—S(Y)X.
28X)Y,Z5—(T(X,Y),Z>—<T(Z,X), Y>+<T(Y, Z2), X>=0.

The connection ¥ lifts naturally into a unitary connection on the vector bundle F,
which we still note V. If e, ..., e, is an orthonormal base of TM, then

V.=VE+ T 1(8( e, e)€fe;. (1.42)

Let 6 be the one form

(1.41)

XeTM-0(X)=XeTM.
The first line in (1.41) is equivalent to
T=Sn8. (1.43)
Let {T 4 6> be the antisymmetrization of the tensor X, Y, Z-(T(X,Y), Z}.
If dx!,...,dx" is the base of T*M dual to ey, ..., e, then
(T 5 0y=3{T(e,e), e, >dx'dx'dx*. (1.44)
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Of course
(TpO>=(SOAB)Y. (1.45)
We still denote by V the Hermitian connection on FQE FR1+1QF5

Definition 1.9. D, denotes the Dirac operator acting on the set of smooth sections

of FRE& . {

Dy=Y‘eV, + 3 Y (S(eyey). (1.46)
1 1

Theorem 1.10. The operator Dy is self-adjoint. Also the following identities hold
1
Dy=D"+ 2 XT 0,

2
D= =5 (P4 0T 0] + 5+ (P T 0= LT A0

(1.47)
Proof. Let D’ be the operator
D'=YV, (1.48)
1
if D'* is the formal adjoint of D', one verifies easily that
D*=D"+%“(S(e;)e). (1.49)
Therefore '
Dp=%(D'+D"™) (1.50)
and so Dy is formally self-adjoint.
Also by (1.42), (1.48), we know that
D'=D"+5Y {S(eje;, e)>efefe,. (1.51)

Clearly
Y. <{S(e)e; ej>(cei)2 ‘e;+ 71&'<S(ei)ejs eefefe;=— 1Y S(ee). (1.52)
From (1.50)-1.52), we get
Dr=D"+1Y {S(e)e; e,>dx'dx/dx*)=D"+ ;T 5 6). (1.53)

The first line in (1.47) is proved. The second line in (1.47) follows from
Theorem 1.3. []

For t >0, let P(x, y) be the smooth heat kernel associated with the operator
exp(—tD%). From Theorems 1.7 and 1.10, we deduce.

Theorem 1.11. Assume that the three form B=%{T 5 0> is closed. Then

. R R—B _ Vé 2 max
ilg)l Tr,[P{x, X¢)]dxo= {A (777) Tr l:exp ( éin) )]} (1.54)

uniformly on M.
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Remark 1.12. Assume that the tensor X,Y,Z-><{T(X,Y),Z) is antisymmetric.
Then

(T(X,Y).Z)=3(T p60)(X,Y,2)=4B(X, ¥, Z). (1.59)

B
By Proposition 1.5, we find that F=¥3.
From Proposition 1.5, Theorem 1.11 and (1.55), we find that R~ % is the
curvature of the Euclidean connection on TM with torsion —3T.

Remark 1.13. Let G be a compact group equipped with a right and left invariant
metric. For ae R, let “V be the connection on.TM such that if X, Y are left invariant
vector fields

WY=a[X,Y]. (1.56)
The torsion T of °V is given by
‘TX,Y)=Qa-1)[X,Y]. (1.57)

Also the tensor X, Y, Z—{[ X, Y],Z) is antisymmetric and the corresponding
three form is closed. Therefore Theorem 1.11 can be used in this case.

II. The local index theorem for non Kihler manifolds

In this section, we specialize the results of Sect. 1 to the case where M is a compact
complex manifold equipped with a Hermitian metric, whose Kahler form is
denoted w. More precisely, we study in detail the local index theorem for Dirac
operators of the type 0+ d*.

In a), we give a formula for d+0* and (0+0*)? in terms of Clifford
multiplication operators. In b), when 0dw =0, we construct an exotic holomorphic
structure on the vector bundle TaM® C which coincides with the natural one if
(M, w)is Kihler. In ¢), when 60w = 0, we obtain a local Riemann-Roch-Hirzebruch
Theorem.

a) A formula for 2(0+ 0%)*

Let M is a compact connected complex manifold of complex dimension /.
AT*© VM denotes the algebra of forms of type (0,p)(0<p<]). Let TM be the
holomorphic tangent bundle on M, and let Ty M be the corresponding real tangent
bundle.

Let g be a Hermitian metric on TxM and let @ be the corresponding Kéahler
form. If J is the complex structure of TgM, then for X, Ye TuM

(X, Y)=<X,JY>. 2.1)

Then AT*®YM is a c(TxM) Clifford module. Namely if XeT®9M,
Ye TO VM, if X*e T*% DM corresponds to X by the metric, set

cX)=)2X*n;  c(Y)=—)/2iy. (22)
Then if Y, Y'e Ty M, one verifies easily that
c(Y)e(Y)+c(Y)e(Y)= -2, Y">. (2.3)
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To make our arguments simpler, we will assume that M is spin, or equivalently
[H, Theorem 2.2] that the line bundle det(T™ M) has a square root 4, which is
then a holomorphic line bundle. Note that this assumption is always verified
locally, and this is the only fact we need.

Then the metric on T™M induces a Hermitian metric on 1. Also by [H,

Theorem 2.2], if
F=A(T*®VM)@1*. (2.4)
F is the Hermitian bundle of TM spinors on M. Moreover
F, = A9 Y(T*O-DAN®)*

F_ =A°dd(T*(°'”M)®,l* (2.5)

and the identification (2.5) also identifies the metrics.

Let V'™ be the Levi-Civita connection on TgM, and let V™ be the holomorphic
Hermitian connection on TM. Similarly let F#, P** be the holomorphic Hermitian
connections on the line bundles 4, 1*. Of course FX=V"™ if and only if (M, ) is
Kibhler, i.e. if the form w is closed. In the sequel, we do not assume that w is closed.

Therefore F is equipped with two natural connections:

« one is the lift of FX to F and is still noted V'~

« The other is the lift of Y™ to F and is noted V'*. Equivalently V¥ is also the
holomorphic Hermitian connection on F.

Of course V™ induces the natural antiholomorphic connection on
A(T*© VL), which we still note V™. Identifying A(T*© Y M) with A(T" M) by
the metric, P™ induces the holomorphic Hermitian connection on A(T* M),

Using (2.4) and the uniqueness of holomorphic Hermitian connections, we get

PF=PT™M®1+1Q7*. (2.6)

In this section, d¥ =0+ ™ denotes the exterior differentiation operator
acting on smooth sections of A(TFM).

Let T be the torsion of the connection V7. Remember that T maps T M
x TOOM (resp. T VM x TO VM) into T OM (resp. T© Y M) and vanishes on
TEOM x TO- UM, Set

S=pT™_ptL, @7

Proposition 2.1. We have the identity of three forms on M
(T A =i("—Mw. (2.8)
Proof. Clearly V™ x» =0. Also
dM=pT™ 4, (2.9)
Therefore
dMo=irw (2.10)
and so
Mo = —i{(THTO—-TOV)A 0. (2.11)
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Using the properties of T listed before, we get
M= —i(T"O A0
< ’ (2.12)
Mo=i{TOV A0,
(2.8) follows. [

Let £ be a holomorphic Hermitian vector bundle on M of complex dimension
k. Let V¢ be the holomorphic Hermitian connection on ¢, whose curvature is
denoted (V9)2.

Let & be the Dolbeault operator acting on the set I' of smooth sections of
A(T*®YAM®E. T is naturally equipped with the L? Hermitian product

n,n’el‘—»}&(n/,\ xn'y. (213)

Let 7* be the formal adjoint of & with respect to the Hermitian product (2.13). Note
that

AT IM)QE=FR®(A®L). (2.14)

A®¢ is naturally equipped with the connection V*®1 +1® . Therefore, we can
define the Levi-Civita Dirac operator D" acting on I” as in (1.1).

If we instead equip TxM with the holomorphic Hermitian connection V™™™
whose torsion is 7, we can define the associated Dirac operator Dy as in
Definition 1.9.

Theorem 2.2. We have the following identities
Dy=D:+1(T 4 0)
T * 2.15)
V/2(3+8%)=DL— 1T 4 6.

Proof. The first line of (2.15) is a special case of Theorem 1.10.
Let w,,...,w, be an orthonormal base of T™"9M and let w?,...,w" be the
corresponding dual base of T*©-YM. The operator d is given by
1
T=y W AVE. (2.16)
1

We still note by P ™ the connection V¥ @1 + 1@V on A(T**-VM)®¢. Since
PT™ has torsion T, by (2.9), we find that

120 =clw)V I +1/2ire. . (2.17)
Equivalently using (2.2), we get
1/28=c(w )P TM —c(w)e(w,)e(T(W, ). (2.18)
Set n=2I. Let e, ..., e, be a real orthonormal base of TyM. Set

Y= S(e)e.. 2.19)
1
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By taking adjoints in (2.18), one finds easily that
1/ 28% = c(W) VM + (YO D)+ Lc(T(wy, w D (¥ )c(#). (2.20)
From (2.18), (2.20), we get

T+ )= cwhP T+ cRI P+ (Y1)~ L o))l T(5, )

— % c(T(wywhe(we(w)). (2.21)
Now
o(T(w; Wj))c(wi)c(wj) =—2{T(w, Wj)’ W) C(Wj)
—c(W)e(T(w;, whe(W))= —2{T(w;, wy), W3 c(W))
+2{T(w, wj), W;o (W) +c(W))e(w) (T (wi, w))) . (2.22)
Using the properties of T listed before (2.7), and Eq. (1.41), we get
28wy w> = —<T(w, w), w;>. (2.23)
Also since T(w,, w;)=0, S(w)w,=S(w,)w;, and so
Y =2S(w)w;. (2.24)

From (2.22)+2.24), we find
o(T(wy, w)e(W)e(w ;) =c(w) (W) c(T(w;, w)) +4e(Y O V). (2.25)
Using (1.41), we also have
Fewde(w)e(T(w,, W)+ 3c(w)c(W))c(T(w;, w))
1{T(e, ), e, clec(e)cley)
Tp0>+33Y(T(ese) ecle)

— 1Ty 9>_"’_(Y—) (2.26)

i

— Nlu- A=

From (2.21)+2.26), we get

V2@ +5)=c(w) VI + () VI + c(zY )_1 ST A0 2.27)
or equivalently
Y2+ %) =Dr— %ﬂ(u 0>. (2.28)

From the first line in (2.15) and (2.28), we deduce the second line of (2.15). [

In the sequel, we use the same notations as in Theorems 1.3 and 1.10. Let K be
the scalar curvature of M. We now give a form of the Kodaira-Nakano identity
for the operator 2(C+ 0*)>.
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Theorem 2.3. The following identity holds

s(ram=—3 (v Vol o 709

1 4
K ¢ 1 T™)2
+ T + ((V§)2+ ETr[(V ) ]Ié)
— @ (MM w) — % (0™ —M)yw]|? . (2.29)

Proof. The curvature of the holomorphic Hermitian connection on £®4 is exactly
(P%)?+(V*)*I,. On the other hand

(P92 =3Tr[(PTM)*].
(2.29) is now a consequence of Proposition 2.1 and of Theorems 2.2 and 1.3. []
Remark 2.4. By Proposition 2.1, the condition
dM{T A0y=0 (2.30)
is equivalent to the condition
MoMp=0. (2.31)

Condition (2.31) is well known in the literature. In particular a result by
Gauduchon [Ga] asserts that on a complex surface, there exists a Hermitian
metric for which (2.31) is verified. In view of Theorem 1.7, condition (2.31) implies
the existence of a local index formula for the Euler characteristic of £ We will
exploit this fact at the end of this section.

b) An exotic holomorphic structure on TeM @ xC

Tn8
We now use the notations of Sect. 1. Let B be the real three form B= S«Z\—z
Equivalently by Proposition 2.1, we have
B= % M — M. (2.32)

By Theorem 2.2, we know that
[/2(6+5%)=D"". (2.33)
Proposition 2.5. The following identity holds for X, Y, Z e TyM
2SN Zy=—<TX,Y),Z)—<T(Y,2), X>—(T(Z,X).Y). (234
In particular
USTP=8)(XY,Z)=—(T(X,Y),Z>+<{T(X.2),Y)
{STE+ )XY Z)=—(T(Y,2),X>.

The connection V B preserves the complex structure of TyM.

(2.35)
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Proof. By (1.14)1.16) we know that
2USTHX) Y, Z>=—<TH0)(X,Y,2) (2.36)
which is equivalent to (2.34). Comparing with (1.41), we obtain (2.35). Clearly
p-B=pT™§-B_§. (2.37)

Using the properties of T and the first line in (2.35), we find that if
Y,ZeT'" %M, for any X € TyM

(STE-S)(X)Y,Z>=0. (2.38)

Equivalently (S~ —S)(X) is a complex endomorphism of TxM. Using (2.37), we
find that ¥ ~# preserves the complex structure of ToM. (]

Definition 2.6. If X e T® VM, Ye T* DM, let a(X) Ye T*1O) be defined by the
fact that if Ze T4 OM

(YY) (Z)=iMw(X, Y, Z). (2.39)
Let E be the holomorphic vector bundle
E=T"OM@T*-0M. (2.40)

We will write elements of End E in matrix form with respect to the spliting (2.40) of

E. For Xe T®VM, set
00
pX)= <a(X) 0). (2.41)

Equivalently f(X) coincides with «(X) on T"®M and vanishes on T** M.
Let V& be the & operator which defines the natural holomorphic structure
on E.

Theorem 2.7. If 0™0Mw =0, then V=" + B defines a holomorphic structure on E, i.e.
(VE" + B)* =O0.
Proof. Clearly p*>=0. So we must prove that FZ"=0.

Let z!,...,z' be a holomorphic coordinate system on M. It induces a
corresponding local holomorphic trivialization of T M and of T**YM. Then
if ¥, Z are holomorphic sections of T M, by (2.39), X e TO VM - (B(X) Y)(2) is
the (0, 1) form

XeTOUMsitMo(X, Y, Z).
If X, X' eT© VM, it is then clear that
(V5" B) (X, X')(Y)(Z2)=iMd" (X, X', Y, Z). (2.42)
Since M9 w =0, we find that F¥"'=0. [J

From now on we assume that
MMuy=0. (2.43)
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When E is equipped with the holomorphic structure V%" +p, we will write
(E, VX" + B). The metric on T M induces a metric on T* 9M, We equip E with
the Hermitian metric which coincides with the given metrics on T"”M and
T*-OM and is such that the spliting (2.40) of E is orthogonal.

Definition 2.8. V*# denotes the unique holomorphic Hermitian connection on the
holomorphic vector bundle (E, V" + f).
The vector bundle TeM = TyM ® C splits into

TM=T"OM@TO VM. (2.44)

There is a natural conjugations map T¢M -» ToM which interchanges T®:YM and
TOYM. TeM is also naturally equipped with a Hermitian metric, such that the
splitting (2.44) is orthogonal.

Also the metric identifies the vector bundles T VM and T** "M and so
defines a holomorphic structure on T> M. We then have the identification

M :
M —E, (2.45)

where — indicates that the identification depends on w.
®

So TgM now carries two holomorphic structures, which both depend on ®:
o The first is inherited from the natural holomorphic structure VE" of E.
« The second, which we note FTeM-#” corresponds to %-#” via the identification
(2.45).

Let VTeM-# be the holomorphic Hermitian connection on (TpM, V'e™-6") Of
course V7eM-# correspond to VE via the identification (2.45).

A connection on TeM is said to be real if it is the complexification of a
connection on Ty M.

Theorem 2.9. The connection VIeM- is real. Moreover the have the identity

preM-b—yp5, (2.46)
Proof. Remember that
PB=pL_S B=pT™ __(S+S5B), (247
By Proposition 2.5, we find that if X, Y, Ze TetM
—(S+STHX) Y Z>=(T(Y,2),X}. (2.48)
If XeT" VM, Ye T® VM, we deduce from (2.48) that
(S+S7B)(X)Y=0. (2.49)

If XeTYM, Ye TV PM, by (2.48), we find that (S+S75)(X) Ye T DM,
More precisely if Ze T M, from Proposition 2.1, we get

(T(Y,Z),X>=i("w) (Y, Z, X). (2.50)
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We deduce from (2.39), (2.48), (2.50) that if Xe T M, YeT"9M, when
identifying E to TeM

—S+SHX) Y =a(X)Y. 2.51)
From (2.49), (2.51), we find that if X e T®© VM, then
PRy M8, (2.52)

A similar argument shows that if X € TP M, (2.52) still holds. The Theorem is
proved. []

Remark 2.10. By Proposition 2.5, we know that V% preserves the complex
structure of TgM. In particular the curvature R~ # is a two form taking values in
complex automorphisms of T, M.

Since Mw =0, by Theorem 1.6, we find that R is a two form of complex
type (1,1). Using [AHS, Theorem 5.1], we can then deduce that there is a
holomorphic structure on TeM such that P® is the associated holomorphic
Hermitian connection. Theorem 2.9 has made explicit this new holomorphic
structure on ToM.

¢) A local Riemann-Roch-Hirzebruch Theorem for non Kdhler manifolds

For t>0, let Q(x,y) be the C® kernel on M associated with the operator
exp(—t{J+ 0*)%). Then if y(&) is the Euler characteristic of £, the Mc-Kean Singer
formula fMKS] asserts that

x(&) = {Tr[Qx,x)]dx.

Remember that V™™ is the standard holomorphic Hermitian connection on
T™™ M whose curvature is noted (V7¥)2. Therefore 1 Tr[(¥T™)?] is the curvature
of the holomorphic Hermitian connection on the line bundle 4.

Theorem 2.11. Assume that FMoMw =0. Then

. N RB 1 (VTM)Z _(V§)2 ma
}1_1:(; Tr[Q,(x, x)]dx = {A (ﬂ) exp <—— im Tr [ 3 :D Tr [exp < i )]}

(2.53)

uniformly on M.
Proof. Theorem 2.11 is an obvious consequence of Theorems 1.7 and 2.2. [

Remark 2.12. Note that the Todd polynomial does not appears as such in (2.53). Of
course if o is closed, — so that B=0 — then

N RB 1 (VTM)Z B (VTM)Z
A(E)GXP<_2TnTr|: 3 J) —Td(——iin—) (2.54)

In general, equality (2.54) only holds in cohomology.
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