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1. Introduction 

In this paper we study small elementary contractions of four dimensional non- 
singular projective varieties defined over C. 

Let X be a non-singular projective variety. A surjective morphism f :  X ~ Y onto 
a normal projective variety Y is said to be an etementary contraction if (1) f has 
connected fibers, (2) the anti-canonical divisor - K x is f-ample, and (3) all the curves 
on X which are vertical with respect to f are numerically proportional (i.e., if C i (i = 
1, 2) are curves on X such that f (Ci)  are points, there exists a number r such that 
(D. C1) = r(D. C2) for all divisors D on X). (See [-KMM] for more general case.) f is 
called small, if it is birational and an isomorphism in codimension one (i.e., there 
exists an algebraic subset E of X of codimension > 2 such that f :  X -  E -~ 
Y -  f(E)). 

There are no small elementary contractions of three dimensional algebraic 
manifolds. Non-small elementary contractions of algebraic manifolds in dimension 
four were studied in [A; B1; B2] after [M] in dimension three. The main result of this 
paper is the following. 

(1.1) Theorem. Let X be a non-singular projective variety of dimension four defined 
over C, and let f :  X ~ Y be a small elementary contraction. Then the exceptional locus 
E of f is a disjoint union of  its irreducible components E i (i = 1 . . . . .  n) such that Ei ~- p2 
and Ne,/x ~ (9p2(- 1) ~2, where N denotes the normal bundle. 

We note that E may not be irreducible (see (2.6)). 
The flip of a small elementary contraction f :  X ~ Y is a birational morphism 

f ' :  X' ~ Y from a normal projective variety X' with only terminal singularities such 
that the canonical divisor K x, is f ' -ample as a Q-divisor (cf. [KMM]).  

(1.2) Corollary. Let f :  X ~ Y be as in (1.1). Then there exists a flip f ' : X ' ~  Y of f 
from a non-singular projective variety X'. 

In fact, if g: Z ~ X is the blow-up at the center E, then its exceptional locus is a 
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disjoint union o f ~  2 x P~'s with normal bundles isomorphic to (9p~( - 1) []  (9p,( - 1), 
and by contracting them to the other direction, we obtain a morphism 0': Z ~ X' to a 
compact complex manifold X' with an induced morphism f ' :  X' ~ Y. Since Kx, is f ' -  
ample by construction, X' is actually a projective manifold. 

The main part of this work was done while the author was visiting the Max- 
Planck-Institut fiir Mathematik at Bonn in winter of 1987. 

2. Proof of the main result 

Since there are no small elementary contractions of three dimensional non-singular 
projective varieties, f (E)  is a finite set of points in (1.1). Hence (1.1) is a direct 
consequence of the following (2.1). 

(2.1) Theorem. Let ( Y, P) be a germ of a normal isolated singularity o f  dimension four, 
and let f : X ~  Y be a desingularization. Assume that - K  x is f-ample and the 
exceptional locus E = f - ~ ( P )  has dimension at most two. Then E ~ - P  2 and 
NEIx -~ ~p2( -- 1) .2.  

Note that, after localizing at a singularity of Y, we lose the condition on the 
numerical proportionality of vertical curves. The proof of (2.1) consists of four steps 
from (2.2) to (2.5). 

(2.2) Let ~i:/~"* El (i = 1 . . . . .  n) be the normalizations of irreducible components E i 
of E. We shall prove that/~i = p2 and g~ (ge,(Kx) = 6p2( -  1) for all i. 

We fix i = 1. By [-MM, Theorem 5], E L is covered by rational curves. Let b be the 
minimum of the numbers - ( K x "  C) for all the rational curves C on E1 such that 
C r Ei for i ~ 1, and let C 1 be a curve which gives the minimum b. Let a: ~ ~ C 1 

X be the composition of the normalization and the closed embedding. We 
consider deformations of a following the argument of [I, (0.4)]. 

If we take x and x' to be non-singular points of E contained in El,  we have 
inequalities (7) and (8) of [loc. cit.]. Thus 2 codim Ea < 4 + 1 - b, hence dim E 1 = 2 
and b = 1. Let T, T~ and Y be as in [loc. cit.], and let S = Y x r T~. Then dim Tz = 1: 
Let Sand/~ be normalizations of S and T~, respectively. Then the projection re: S ~ D 
is a Pl-bundle. 

Now we follow an argument in [Wis]. Let/~: S ~E~  be the morphism induced by 
p in [I, (0.4)], v: E] ~/~1 the minimal resolution, and let tr: S' ~ S  be a birational 
morphism from a non-singular projective surface S' such that/~ induces a morphism 
fl': S'--r E' t. Let ~' be a general fiber of zcoa and let C ' =  fl'(~'). Then 

- 2 = (Ks..~') > (~'*KE, ~.~') = (KE, ~" C'), 

since ~ ' ~  C' is a birational morphism. Suppose that E'I is not a minimal surface. 
Then by [M, (2.1)], we can write C' ~ B~ + B2 + B3 for exceptional curves of the first 
kind Bi (i = 1, 2) (Bt may be equal to B2) and a pseudo-effective 1-cycle B 3. But this 
contradicts the fact that - Kx is ample on El and (Kx'(#l  ov)(C')) = - 1. Therefore, 
E~ is isomorphic to either a minimal ruled surface or p2. In the former case, there is 
only one curve in the linear system I C'l through x, a contradiction. Hence E't ~ p2 
and/~1 --- p2. Since (Kx 'C1)= - 1, we have/~'(9~,(Kx) ~ d~p2(- 1). 
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(2.3) We shall show that ( g x ( - K x )  is generated by global sections. We use the 
argument of the base point free theorem (cf. [KI ] ,  also [ K M M ] )  like in [C] and 
[Wil]. We denote by Bsl - Kxl  the base locus of the linear system I - Kxl,  i.e., the 
support of the cokernel of the natural homomorphism f ' f .  ( gx ( -  K x ) ~  (gx(-- Kx). 
Supposing that Bs[ - Kx[ is non-empty, we shall derive a contradiction. The proof 
occupies from (2.3.1) to (2.3.4). 

(2.3.1) We shall prove that a general member D of - K x [  has at most terminal 
singularities (cf. [R], also [KMM]) .  

By resolving the base locus of I - K x l ,  we obtain a projective birational 
morphism ~0: X'  ---r X from a non-singular variety X'  and a divisor with only normal 

crossings G = ~ Gj which satisfy the following conditions: 
j = l  

(1) I re*DI = ID'l + ~rfij, where ID'l is base point free for the strict transform D' 
of D, and the rj are non-negative integers, 

(2) K x, = r x + ~ a j G j  for some non-negative integers a i, 
(3) - ~o*K x - ~ 6 j G :  is focp-ample for some 6jeQ with 0 < 6j << 1. 
Let us fix geQ with 0 < e << 1, and set 

c = min (a~ + 1 - efs)/r j. 
J 

By changing the 6j if necessary, we may assume that the minimum c is attained only 
at j = 1. We set 

A - B = y ~ ( -  cr~ + a j  - ~,~:)~j 

with B = G1. 
Now suppose that aj + 1 < 2r~ for some j. Then a Q-divisor 

C = def -- r -- Kx, + A -- B 

cD' - (2 -- c)q~*Kx - ~e6 jGj  

is foq~-ample for a suitably chosen e such that 2 - c > e .  By [KMM,  1.2.3], 
H I ( X  ', - r  + rA -1 -- B) = 0. Hence 

(2.3.1.1) H ~  ', - cp*K x + r- A T ) ~  H~ - r K x + rAT) is surjective. Since (9p2(1) 
is generated by global sections, and since rAT > 0, the right hand side of (2.3.1.1) 
does not vanish. But the left hand side is naturally isomorphic to H~ - Kx). Since 
r c B s [ -  Kxl ,  we get a contradiction. Thus aj + 1 > 2r i for all j. By the 
adjunction formula, we have 

K D, = t p * K  o + ~ ( a j  - r j ) ( G j ~ D ' ) .  

Since aj - rj > rj - 1 > 0 if rj > 2, D has only terminal singularities. 

(2.3.2) Since - K x is f-ample,  we have HI(X ,  Gx) = 0 by [KMM,  1.2.3]. Let L = 
- KxlD. Then we obtain Bs[ - Kxl  = Bs ILl from the exact sequence 

0 ~ (gx ~ r -- Kx)  ~ ~gD(L) -* O. 

Let fD: D --*f(D) be the restriction of f ,  and let E~ I (resp. E~ ~) be the union of all 
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the one (resp. two) dihaensional irreducible components of the exceptional locus 
E D = EnD offo. We shall show that Bs ILl = E~ ). 

Let us take an arbitrary point x in E D - E~ ). Since K D = 0 by the adjunction 
formula, we have RifD.COo = 0 for i > 0. Hence irreducible components of E~ ) are 
non-singular rational curves by the formal function theorem. Then we can take an 
effective Cartier divisor M on D such that M n ED = {x} and such that L - M is fD- 
nef. By [KMM,  1.2.3], HI(D,L-  M)= O, and the homomorphism H~ 

H~ L) is surjective. Hence xCBs ILl. 

(2.3.3) Let H be a general member of an fD-very ample linear system. When we 
shrink Y if necessary, H splits into a disjoint union H = H1 + H2 such that H~ n E~ ) 
= Z~ for i = 1, 2. Then the linear system I Hz I gives a projective birational morphism 
f~) :  D ~ V which contracts E~ ) to isolated singular points of a variety V. 

Supposing that E~ ) ~= ~ ,  we let S be a connected component  of E~ ), let Va be a 
small neighborhood of v = f~)(S) in V, and let D1 = f~)-1(V1).  Let La = Lira, and 
let M~ be a general member of I L ~ I. Then by (2.3.2), M1 can be extended to a member 
of ILl. Hence Bs ILl l = S. 

(2.3.4) We shall show that BsILl l  does not contain the whole S, and derive a 
contradiction. 

Let M o be a member of [Ll l with high multiplicities along S. For example, we 
take Mo as the sum of a general member  of I L 11 plus a high multiple of the pull back 
o fa  hyperplane section of VI through v. As in (2.3.1), we take a projective birational 
morphism q~l:D]--*D 1 from a non-singular variety D'~ and a divisor with only 
normal crossings G = ~Gj .  Instead of (1) there, we assume 

(1') ~o*M 0 = ~rjGj, where some of the Gj are strict transforms of the irreducible 
components of Mo. 

Then the similarly defined number c is small enough to give 1 -  c > ~ for a 
suitable e, and hence we have the relative ampleness of a Q-divisor C. Since q~l (B) is 
not contained in BslLl l ,  we are done. 

(2.3.5) Since I - K x [  is base point free, we have h~ Kx)> 3 for all i. Hence 
Ei ~- pc. 

(2.4) Let usfix an arbitrary irreducible component  E~ of E. We shall prove that there 
are at most a finite number of jumping lines of the normal bundle N = N~,/x. If this is 
proved, then by IV, p. 248] and [OSS, 2.1.4. on p. 205], we have N - C0pe(a) @ Co~,z(b) 
with a + b = - 2, since (Kx'f) = - 1 for a line # on El. If(a, b) + ( - 1, - 1), then we 
have H~ N) ~ 0 and HI(E~, N) = 0. Hence E 1 deforms inside X, a contradiction. 
Thus (a, b ) =  ( -  1, - 1). 

Let ~'o be an arbitrary line on E 1 ~ p2 which is not contained in any other 
irreducible component  of E. We shall prove that t~o is not a jumping line of N. This 
observation was inspired by [F, (2.3)]. 

Since I - K x ]  is base point free, the homomorphism H~176 
- Kx) is surjective. Hence we can find a non-singular member  D o of J - Kxl such 
that Do c~E 1 = ~'o. We take D o general enough so that D o c~E is one dimensional. 
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By taking a general holomorphic curve in I--Kx[ through D o l l -  Kxl, we 
construct a fiat family n: 9 -~ A of members of I - Kxl parametrized by a small disc 
A = {t~C;ltl < e}; 9 is a divisor on X • A and Dt = 7r-x( t )~l-  gxl  for t~A. The 
morphism f induces a projective birational morphism f ' :  9 ~ ~e" onto a flat family 
# :  ~ '  ~ A  of members of I - Kr[ over A. 

Let ~' be the sum of the irreducible components ofD o c~ E other than E o, and let H 
be a general member of an f ' -very  ample linear system on 9 .  If we take A small 
enough, H splits into a disjoint union H = H 1 + H 2 such that H1 ~ f o  = ~ and 
Hzc~E '=  ~ .  The linear system IHll gives a projective birational morphism 
f :  9---, ~ onto a normal variety ~ with a projection a: V ~ A. Then t/~ has only 
terminal singularities, and hence is Cohen-Macauley. Therefore, all the fibers 
lit = a -  ~(t) are normal. For each t, the morphism f ,  = f lu,  is the contraction of 
a curve Et = Dtc~E~ to the unique isolated singular point of V t. Since R~ft,(go, = O, 
there are three possibilities for the splitting type (a(r b(E,)) of N at ft: (1, - 3), 
( 0 , -  2) or  ( -  1, - 1). 

Let ~e-o be a small neighborhood of the singular locus of ~r and let 
~ o = ~ - l ( y / - o ) .  We set V~176 and D ~ 1 7 6  Then by [R, (1.1) and 
(1.14)], we may think of C0 as the total space of a two parameter  family of 
rational double points of surfaces 2:~~ Itl <5, Dsl<~} such that 
a = pr t '2 ,  and f gives a family of partial resolutions of fibers of 2. 

Let L be a divisor on 9 ~ such that (L.t~o)<0. We shall show that 
dim R l f , .  Coo(L ) is locally constant. By [P, Theorem 3], there exists another family 
f + : 9 +  __, ~ 0  of partial resolutions of fibers of 2 such that the strict transform L + of 
L on 9 + is f +-ample. Then R 1 c+ (9 J t .  Dr+(L+) = 0 for all t, where D~ + = ( f + ) - l ( V  ~ 
and f,+ =f+lo+. Since f~.(gDg(L+)=Cgvo(L ~ for the strict transform L ~ of 
L on ~ o ,  all the sections of Cvo(L ~ are locally liftable to those of 

o 0 
(9,~o(L~ But we also have fo,(gDo(L)=(gvo(E ), and hence dimRlft,(gno(L) is 
locally constant. 

In the case where (L, E0)= - 1 ,  we have Rlft,(~Do(L)~ 0 if and only if (a(ft), 
b(Et) ) = (1, - 3). In case (L, Eo) = - 2, dimRtft,(goo(L) = 1 (resp. > 2) if (a(Et), 
b(ft) ) = ( -  1, - 1) (resp. = (0, - 2)). This shows that (a(ft), b(Et)) is locally constant 
on t, and hence ~0 is not a jumping line of N. 

(2.5) We shall show that E is irreducible. This completes the proof of (2.1). First, 
suppose that there are two irreducible components E~ and E z of E such that 
dim(E~ c~E2)= 1. Since Ne,/x is negative, there exists a proper bimeromorphic 
morphism X ~ X  o to a complex space X o which contracts Et. But Et n E  2 is not 
contractible on E 2, a contradiction. Thus E~ c~ Ej consists of finite number of points 
for distinct irreducible components E~ and E~ of E. Let D be a general member of 
I - K x l .  Since Y is Cohen-Macauley, f ( D ) ~ l -  Krl  is Gorenstein, and hence is 
normal (cf. [K2, 8.7]). Thus D n E is connected, and E is irreducible. 

(2.6) Example. Let V be a non-singular projective variety of dimension four such 
that K v is ample, and let C (resp. S) be a one (resp. two) dimensional non-singular 
subvariety of Iv'. Assume that C and S intersect transversally at points P~ (i = 1 . . . .  , n). 
Let ~: V' ~ V be the blow-up with center C, and let 15: X --, V' be the blow-up with 
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center S', the strict transform of S by ~. Then the strict transforms E i (i = 1, . . . ,  n) of 
-~(Pi) by fl are isomorphic to p2 with E~,/x -~ 0p2(- 1) ~2, and the contraction of 

them is a small elementary contraction with reducible exceptional locus. 
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