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Introduction 

Let C be a (smooth, projective, geometrically connected) curve defined over an 
arbitrary field K and let 7r i : C ~  Ci, 1 < i < N, be a collection of subcovers of C, all 
defined over K. The present paper was motivated by the following question: what 
general relations, if any, exist between the (numerical) invariants attached to the 
curves C, C1 .. . .  , CN? 

The basic numerical invariant of a curve C is, of course, its genus gc but in 
char(K) = p + 0 there are also other invariants, notably the Hasse-Witt invariant (or 
p-rank) ac. All these invariants, however, are subsumed in a universal invariant, 
h 1(C) = [Jc], the 1-motive of C/K, which by definition is the K-isogeny class of the 
Jacobian variety of C, and therefore we focus our attention here on this motivic 
invariant. 

The first evidence of such relations was furnished by Accola [Acl, Ac2] who 
provided some useful sufficient conditions which force relations among the gc,'S. In 
[Ka2] it was shown that Accola's relations also hold for the ac,'S, and this was 
further generalized by Frey and Rfick [FR]. However, Accola's relations are not 
the only general relations that exist among these invariants: it was pointed out in 
[Ka2] that Accola's hypotheses are a special case of certain idempotent relations in 
a suitable group ring Q[G] which in turn determine idempotent relations in the 
endomorphism algebra End~ = EndK(Jc)| 

The main stimulus for this paper stems from the suggestion of Accola (private 
communication) that such idempotent relations should also determine relations 
among the motivic invariants. In carrying out this suggestion, we made two further 
observations. The first is that this phenomenon is not only restricted to the 
idempotents e~, e End~ attached to morphisms of curves but is, in fact, true for 
any set of idempotents ei ~ End~ of an arbitrary abelian variety A; in this case 
one has to replace [-Jc,] by [ei(A)], the isogeny class of the "image" ei(A ) of A under 
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e~. The second observation is that, conversely, every relation among the motivic 
invariants actually comes from an idempotent relation, provided that the concept 
of an "idempotent relation" is slightly generalized. To this end, let us call two 
elements a, b ~ End~ character equivalent (notation: a,-~ b) if we have x(a) = z(b), 
for all ll~-rational characters Z e eh(End~ �9 We then have the following general 
result. 

Theorem A. Let e~,..., e., ~ ,  ..., e~, ~ End~ be (not necessarily distinct) idempo- 
tents. Then the idempotent relation 

51 "-[-"'" "[- 8, ~ ~1 "at-"'" "-[- ~m (1) 

holds in End~ and only if we have the isogeny relation 

zt(A) x . . .  x e , (A) 'd l (A)  x ... x d (A) .  (2) 

Actually, this theorem is an immediate consequence of a slightly more precise 
result (Theorem 1) proven below in Sect. 1. 

The usefulness of Theorem A rests ultimately on our ability to exhibit such 
idempotent relations (1) explicitly. In the case that all the coverings ~i are galois, 
i.e., Ci = C/Hr for some subgroup H i < G = Aut(C), a powerful method of producing 
such relations is to study relations among the idempotents 

1 

in the rational group ring •[G]. Indeed, it is easy to get a complete overview of all 
such idempotent relations; the Burnside ring B(G) offers a convenient framework 
for studying such relations (cf. Sect. 3). 

As was already remarked, the relations which Accola established for the gc,'S 
stem from such idempotent relations in Q[G], and we therefore obtain such 
"Accola relations" for the motivic invariants as well (cf. Sect. 3). A particularly 
simple yet useful special case of these is the following: 

Theorem B. Let G < Aut(C) be a (finite) subgroup such that G = H 1 w . . .  k.) H t ,  where 
the subgroups H i < G  satisfy Hic~Hj={1 } for i # j .  Then we have the isogeny 
relation 

j r -  1 v l , q  ~ l h  t c ^ " c m  "crHlx""  xJEn ,  (3) 

where g= IGI, hi--IH~I and, as usual, J" = d  x ... x J (n times). 

The groups G satisfying the hypothesis of Theorem B (with t >  1) are called 
"groups with a partition" and have been (more or less) completely classified (cf. 
Baer [Ba], Kegel [Ke] and Suzuki [Su]). These include the elementary abelian 
p-groups G = Z / p Z  x . . .  x 7Z./pZ, the projective linear groups PSI2(p" ), Frobenius 
groups, dihedral groups, etc. 

If we apply Theorem B to the Fermat curve C: x v + yV = 1 and G = Z / p Z  x Z / p Z  
(where p is an odd prime 4: char(K)), then we obtain the well-known decomposition 
(cf. e.g. Lang [La, p. 43ff]): 

Jc "~ Jc~ x . . .  x Jc~-2, (4) 
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where Ci denotes the (normalization of) the curve yP = xi(1 - x). It is interesting to 
note that the isogeny (4) is defined over the prime subfield Q of K, even though the 
automorphism group G is only defined over Q((p) (cf. Sect. 5). 

Similarly, if we consider the case that C is the modular curve C = X(p) of  level p 
(defined over K=@(~p)) and G=PSI2(p), then Theorem B yields the K-isogeny 
relation 

p--1 p--1 

j(p)2,~j~(p)2 x J~,(p) z x J~,p(p) 2 (5) 

which we haven't found in literature. Here, J(p)= Jxtp), JI(P)= Jxl(p) etc. have their 
usual meaning (cf. Sect. 5). 

Still another example is furnished by a suitable quotient C of the Drinfeld curve 
D: xy  q -  xqy = 1 defined over K = lFq. Here we apply Theorem B to G = PSlE(q) and 
hence obtain a decomposition analogous to (5). As a consequence we derive the 
curious fact that ifq is even (i.e., q = if), then the Jacobian of the Drinfeld curve is a 
( q -  1)-st power, 

Ja ~ Aq-  i, 

where A is some abelian variety (of dimension q/2). 
Another method of producing idempotent relations is presented in Sect. 4. This 

method is based on the fact that it is possible to characterize the validity of a strict 
idempotent relation 

E nie~, = 0 (6) 

by a purely numerical criterion. A useful special case of these results (cf. Theorem 7) 
is the following. 

Theorem C. Let H1, . . . ,  H t < Aut(C) be ( f in i te )  subgroups with H~. H i=  H i .  Hi, 
for all i, j, and let gij denote the genus of  the quotient curve C/(H i �9 Hi). Then, for 
n 1 . . . . .  nt~7Z, the conditions 

ninjgij = 0, (7) 

~njg i j=O , 1 < i < n ,  (8) 
J 

are each equivalent to (6) and hence both imply the isogeny relation 

ni l-I Jc/n, "~ l-I j~ / I j  (9) 
ni>O nj<O 

In particular, if gi j=0 for 2 < i < j < t  and if 

gc = gcm2 + . . .  + gC/Ht , (10) 

then we have (by  taking H 1 = { 1 } above): 

J c ~ J c m 2  x ... x Jcmt.  (11) 

Theorem C applies in particular to the Fermat curves above and hence gives 
another proof of the decomposition (4). Moreover, as is shown in Sect. 5, it also 
applies to the Humbert curves (of genus 5) to yield the decomposition 

Jc,,~Jcl x ... x Jc~ (12) 
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of Jc into a product of five elliptic curves. It is interesting to observe that this 
decomposition does not follow from Theorem B. 

This paper is organized as follows. In Sect. 1 we present (a sharpening of) 
Theorem A, which is then applied in Sect. 2 to idempotent relations arising from 
coverings of curves. In Sect. 3 we study idempotent relations in the group ring 
Q[G]  and derive some specific Jsogeny relations (e.g. Theorem B). In Sect. 4 we 
study strict idempotent relations in terms of certain numerical invariants and 
prove (a generalization of) Theorem C. Finally, in Sect. 5 we illustrate the above 
theorems with the help of the specific examples such as the Fermat curves, 
modular curves etc. which were mentioned above. 

We would like to express our appreciation to R. Accola whose initial suggestion was the 
original stimulus of this paper. We would also like to thank D. Hayes for drawing our attention to 
the Drinfeld curve which is discussed in Sect. 5. 

This research was supported in part by a grant from the Natural Sciences and Engineering 
Research Council of Canada (NSERC) held by the first author and by an NSF grant held by the 
second author. 

1. Factors of Abelian varieties 

Let A be an abelian variety defined over a field K. By Poincare's complete 
reducibility theorem (cf. [Mu, p. 173] or [-Mi, Proposition12.1]), A is 
K-isogeneous to a product 

A ~B:=B~t ' x ... x B~ r, (1) 

where the B i are K-simple abetian varieties (i.e., B~ has no proper abelian 
subvariety defined over K) which are pairwise non-K-isogeneous. 

Let Endx(A) denote the ring of K-rational endomorphisms of A and let 

d : =  End~ : =Endx(A) |  

be its associated Q-Algebra, which is known to be finite-dimentional (cf [Mi, 
Theorem 12.5]). Moreover, M is semi-simple, for (1) induces a ring isomorphism 

M ~ M,,(S1)G.. .  (~M~(S,) (2) 

where Si:= End~ is a skewfield. Thus, for each i, 1 < i<  r, there exists an 
irreducible F -modu le  V/with the property that V i is faithful on the subalgebra 
M,,(Si). Let ffi: M~Endo(Vi) denote the representation afforded by Vi and let 

zi(a) = tr(oi(a)) 

denote its character (which is defined since dim~M < ~).  
We now want to study K-quotients of A up to isogeny. It is easy to see that each 

such quotient (or factor) A' is of the form 

A', .~(A),  (3) 

for some idempotent e ~ M. (Here and below, e(A) denotes any representative of the 
isogeny class containing the abelian subvarieties (ne) (A) C A, where n ~ N is chosen 
such that ne ~ EndK(A) C M.) 
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It  turns out  that  the structure of  e(A) is completely  determined by the set of  
values {gi(e)}; more  precisely, we have: 

Theorem 1. Let  ~ e End~ be an idempotent. Then 

e(a),'~ B? '  x . . .  x BT" , (4) 

where the mi's are determined by the formula 

gi(e) = mi dime(S~), 1 < i < r .  (5) 

Proof  a) r = 1. 
Wi thou t  loss of  generali ty A = B". Let  ei e End(A) C ~ denote  the compos i t ion  

ei= ji o Pi, where 

Pi: B " ~ B ,  p~(bl . . . .  , b,) = bi 

denotes the project ion m a p  onto  the i th factor  and  

ji:B--*B", j i (b)=(0 . . . . .  0, b,0 . . . . .  0) 

denotes the inclusion m a p  into the i th component .  Clearly, 5~ . . . . .  5, are pairwise 
o r thogona l  idempotents  (i.e., 5~z =51, 5~. e j = 0  for i # j )  and 1 =5~ + ... +5, .  Since 
d ~- M,(S), where S is a skewfield, it follows tha t  each ei is a primit ive idempoten t  of  
d .  (Use e.g. Albert  I-A1, II, T h e o r e m  16 and  III ,  Theo rem 9].) 

N o w  let e e d be an arb i t ra ry  idempotent .  Then by [A1, IV, T h e o r e m  2], there 
exists ~ e d • such that  

~ 8 ~  - 1  = e  1 -~- . . .  -t'- 5 s ,  

for some s, 1 < s < n .  ( s=  rk(O is called the rank  of 5.) Clearly 

(51 + ... + es) (A) = B s . 

On the other  hand,  since ~ e d • is invertible, we have ~ -  I(A) ~ A, so ~(A),-~ ~ -  I(A) 
c~(B 9 ,-~ B ~. Thus  (4) holds with 

m = s = rk(5). (6) 

It  remains  to compute  Z(0. Since all e~'s are conjugate,  we have 

Z ( 0 = m z ( 5 0  = ~ X ( I ) =  nm--dime(V), 

where V denotes  the (irreducible) left ~d-module  affording Z. N o w  V ~- ~r i, Vi and 
~e~  G . . .  @ d s ,  = sr = M,(S), so 

d ime  V = l_n d ime  M,(S) = -1 n (n 2 dime(S)),  

and  we obta in  (5). 
b) r > l .  

Wi thou t  loss of generali ty A = A ~ x . . . •  Where A~=BT', l < i < r .  Let  
e~ ~ End(A) C ~r denote  the compos i t ion  e i = #i o ~q, where 

7zi:A 1 X ... X Ar--.+A i 
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denotes  the project ion onto  the i th factor  and  

#i: A : - , A  1 x . . .  x A r 

denotes  the inclusion m a p  into the i th componen t :  [u~(al)=(O . . . . .  O, a i, 0 . . . .  ,0). 
Clearly, el . . . . .  er are pairwise o r thogona l  (central) idempotents  and 
l = e l  + . . . + e  r 

For  any  0t ~ EndK(A), c~ i : = 7Z i o O~ o ]A i ~ EndK(Ai)  and  we have 

cz(A)~-oq(At) x . . .  x o:,(A,) 

(because # # i ( A i ) =  e:zei(A), and ~ = ea~et + . . .  + eree,), and so for a e d we have 

cz(A),-,oq(A 0 x . . .  x o~,(Ar). 

N o w  if cc = e is an idempoten t  of  J ,  then each ~i = e~ is an idempoten t  of  
End~ Thus,  by  a) we have ei(Ai),-, B 7', where 

Z}( g i) = m i dim~(Si), 

if X'i denotes  the unique irreducible charac te r  of  ~r = End~ �9 N o w  9i:  d i  ~ d ,  
given by  r  o a o n~, is an injective Q-a lgeb ra  h o m o m o r p h i s m  with image 
ei~Cei, and so X'i = Zi ~ ~oi. Since q~(ei)= eieei, we obta in  Z'~(~i)= ;~i(eieei)= Xi(e), and  the 
assert ion follows. 

Wi th  the aid of  Theo rem 1 it is n o w  easy to prove  Theo rem A of the 
introduct ion.  In order  to avoid nota t ional  confusion, let us repeat  (and generalize 
slightly) the definit ion of charac ter  equivalence presented in the in t roduct ion:  

Definition. Let  ~r be a finite dimensional  Q-a lgebra .  We call two elements  am, 
a 2 ~ d character  equivalent  (in ~1) and write a 1 ,-~a 2 (in ~r if we have z (a t )  = z ( a 2 ) ,  

Vzeeh(~r Here,  as usual,  eh(d)=eh(~r  denotes  the ring o f  virtual 
f f~-characters of M which, as an abel ian group,  is given by 

eh(a') = Zx~ ~ . . .  ~ Z x , ,  

if {X t, .--, Z,} denotes  the set of  ~ - cha rac t e r s  afforded by  a basic set of  irreducible 
left ~r  (each viewed as a @-vector  space). 

P r o o f  o f  T h e o r e m A .  By T h e o r e m  1 we have, for each i, 1 < i < n :  

n i t  ei(A) "-, B]"  x ... x B, , 

where n/~ = ~(ei)/dim~(S~), 1 < j < r. Thus  

e~(A) x . . .  x e,(A),-,B I '  x ... x / ~ : ,  (7) 
with 

s~ = ~. Z.,(ei)/dim~(Sj)= Z~(~ + . . .  + e,,)/dimct(Sj) , (8) 
i = 1  

and similarly, 

with 
al l (A)  x . . .  x e i ( A ) ~  Btx 1 x . . .  x B ~ ,  

t j=  Z,(ei +. . .  + , ' .)/din~(Sj).  

(9) 

(lo) 
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Comparing (7)-(10) yields the equivalences 

~j(A) x ... x e,(A),,~e'I(A) x ... x e',,(A) 

"~ Zj(e~ + ... +e,)=)O(e'l + ... + ~ ' ) ,  1 < j < n  

"~el + . . .  +e,,-~e] + . . .  +e"  (in End~ 

This concludes the proof of Theorem A. Fof future reference, it is useful to 
append the following remarks, most of which pertain to the notion of character 
equivalence. 

Remarks.  1) Let f : ~ r  be a ring homomorphism of finite dimensional 
Q-algebras and let a 1, a z ~ d .  Then: 

at "~az (in d ) = ~ f ( a O ~ f ( a 2 ) ( i n  ~) .  

2) If d is a finite dimensional semi-simple Q-algebra and ~ ,  e 2 e d  are 
idempotents, then 

e t ~ e  2 (in d).**,et=a~2a -1 ,  for some a e d  • 

This is implicit in the proof of Theorem 1 and follows from [-AI, IV, Theorem 2]. 
3) Let M be a finite dimensional semi-simple Q-algebra. As was suggested in 

the introduction, a relation of the form 

y'ni~i,,~O (in M) (n i eZ ,  e~=ei) (11) 

will be called an "idempotent relation" in d .  It is of some interest to know whether 
each such idempotent relation is a strict idempotent relation y, ni~ i = O; i.e., whether 
the implication 

nie i ~ 0 (in ~r ~ ~ nie i --- 0 (12) 

always holds in ~r Since each matrix algebra M,(SI) has for n > 1 (many!) distinct 
yet conjugate idempotents, it is clear that a necessary condition for the validity of 
(12) is that d be of  multiplicity one, i.e., 

~-----Sl x ... xS , ,  (13) 

where the S~ are (skew)fields. In fact, this condition is also sufficient, for in this case 

each idempotent e ~ e d  has the form ei= ~ rue j where t u = 0  or = 1 Vi, j and crj 
.i=1 

denotes the (unique) idempotent ae 0 of S~. Thus, if (11) holds, then applying Zj to 
~" r~ i yields ~ rit u = 0, 1 <=j <= r, which means Y~ ri~ i = 0. We therefore see that (12) 

i 
and (13) are equivalent; i.e., that every idempotent relation (11) is strict i f  and only i f  
d is o f  multiplicty one. 

4) If L is an extension field of K, then clearly s~/~ : = End~ 3 ~ : = End~ 
and so we have for a~, a 2 e ~ :  

al "-~az (in ~r ~a2 (in dr.). 

The converse, however, is false in general. For example, suppose A = E t x E2 where 
Ex, E2 are two elliptic curves defined over K which are not K-isogeneous but which 
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are L-isogeneous; such Eg's exist (for K = Q  and L=II~(i)); cf. e.g., Serre [Sel, 
p. IV.22]. If el, e2eEnd~ denote the idempotents belonging to E~, E 2 then 
clearly el ~ 2  (in ~r but el ~g2 (in ~L)" 

In particular, we see that "idempotent relations do not descend under base- 
field extensions", i.e., 

~ r i g i ' . ~ O  (in ~L), e i ~ d ~ r i e i - ~ O  (in ~r 

Note, however, that strict idempotent relations do descend. 

2. Idempotents via coverings of curves 

Given a covering (=  surjective morphism) 

n : C--*C' 

of curves, we have two induced homomorphisms between their respective 
Jacobian varieties: 

7z*:Jc,~J c, n , : J c ~ J  c, 

obtained by the pull-back resp. push-forward of divisor (classes) D' e Pica(C) = Jc" 
resp. D ~ Pic~ = Jo  Since 

n,n*(D')=deg(n)D', VD' ~ Pic~ (1) 

we see that 

1 
n* o n .  E End~ (2) 

~ -  deg(n) 

is an idempotent and that 

e~(Jc)"~ n*(Jc,) ~ Jc,. (3) 

Thus, by Theorem A we have 

Theorem 2. I f  n i :C~Ci ,  1 <i<n,  and n}: C~C},  1 < j<m,  are coverings, then 

E e~, ~ X e~; r I-[ Jc, ~ Iq Jc,j. (4) 
i i 

Since gc,=dirnJc, and dim(A 1 x A2)=dimA 1 +dimA2, we obtain: 

Corollary 1. ~ n~,, ,,~ 0 =~ Y, nigc, = O. 

Similarly, if char(K) = p :# 0, then the Hasse-Witt invariant ac, of C~ is given by 
ac,=dimop(T~(Jc,)| and hence we have 

Corollary 2. y~ nigh, ",~ 0 =:~ ~, nio'c, = 0. 

We therefore see that Theorem 3 of [-Ka2] (i.e., Corollaries 1 and 2 above) is a 
special case of Theorem 2. Similarly, Statement A 3 of Frey-Rfick [-FR] (which 
generalizes Corollary 2) is an immediate consequence of Theorem 2. 

To state this result, let char(K)= p :~ 0 and assume (for simplicity) that K is 
algebraically closed. IfA is an abelian variety over K, let A(p) denote the p-divisible 
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group (=Barsott i-Tate group) associated to A, and let D=D(A(p)) be its 
Dieudonn6 module with Frobenius endomorphism F :D~D. Then (D, F) is an 
F-crystal (cf. Berthelot [Be]) which gives rise to an F-isocrystal (DQ, FQ), where 
Q = Quot(W(K)) is the quotient field of the ring W(K) of Witt vectors over K. By 
the fundamental structure theorem of F-isocrystals (cf. [Be], Demazure [De]), 
(OQ, FQ) has a unique decomposition (as F-isocrystals) 

D(A)Q= @ (D(A)e)a (5) 
zeQ 

into isotypic components (D(A)Q)z which are a direct sum of the simple 
F-isocrystals "of slope 2", (cf. [Be, De]) and 

ma(A ) = dimQ(D(A)e)~ (6) 

is called the multiplicity of the slope 2. (Note that actually m~(A) = 0 for ;~ r [0, I]; cf. 
[Be].) Since A ~ B => D(A)Q _~ D(B)Q<=>ma(A) = mz(B), V2 ~ Q, (and since clearly 
mz(A x B) = ma(A) + mz(B), V2 ~ Q, because O(A • B)'~ D(A) • D(B)), we obtain 
from Theorem 2: 

Corollary 3. 11 nle m ,,~ 0 ~ ~' nim~,(Jc) --- 0, V~. ~ Q. 

3. Idempotent relations via Galois theory 

Fix a (finite) subgroup G < Aut(C). Each subgroup H < G defines a galois covering 

and an idempotent 

7zn: C~CH = C/H 

1 

in the rational group ring Q[G]. If 

0c:Q[G]--*End~ 

denotes the canonical map of Q-algebras induced by re(g)= g, for g m G, then we 
have the formula 

This follows from the well-known facts that deg(Trn)= [HI and that z*(nu),D 
= 11 h,D, for all D ~ Div(C). 

hEH 

In view of Theorem 2 (and Remark 1) we therefore see that every relation 
among the idempotents eneQ[G] induces an isogeny relation among the 
Jacobians Ju = Jcm of the quotient curves C/H. It is interesting to observe that 
each such idempotent relation can be equivalently expressed as a character 
relation; i.e., we have 

11ntten~O (in Q[G])<=>11n~l*=0 in ch(Q[G]) (2) 
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where, as usual, 1 ~ = Ind~(ln) denotes the induced character. To see this, note that 
by Frobenius Reciprocity we have 

Z(en) = (ZIH, l u)u = (Z, l*)a, (3) 

and hence (2) follows since (,)a is non-degenerate. Summing up, we have shown: 

Theorem 3. I f  H 1 ... . .  H,, H'I . . . . .  H' r are subgroups of G<Aut(C), then every 
idempotent/character relation 

Z nieu, ~ Z mfiu;.~ E nil*, = Z mjl*i (4) 

(with n i, r n ~ N  ) induces an isogeny relation 

~, " ,  • s ~ .  (5) , I ~ ,  x . . .  x J u ,  ~ J u l  x . . .  

Let us now determine how many independent idempotent/character relations 
actually exist in QI-G]. To this end, consider the Q-vector space 

A(G)= O ~ '  H 
H__<G 

which is freely generated by the subgroups H of G. We are interested in 
determining the dimension of the space of idempotent relations. 

IR(G) = {• nnH ~ A(G) : • nu~u" 0} = Ker(eh), 

where 
ch: A(G)~Q| 

is defined by ch(~nuH)=Y, nu1*. Since ch is surjective by Artin's Induction 
theorem, we obtain 

dirn~R(G) = dirn~t(G) - dim~(~@ eh(~[G])) 

= # (subgroups of G) - #(conjugacy classes of 
cyclic subgroups of G), (6) 

the latter equality following again from Artin's theorem (cf. [CR1, 39.5]). 
It is interesting to compare this formula to the one obtained by Rehm rRe] for 

the dimension of the space 

SIR(G) = {E null ~ A(G): E nu~u = O) 

of strict idempotent relations: 

dim~lR(G) = # (non-cyclic subgroups of G). (7) 

(In fact, he establishes an explicit basis for SIR(G) (= U(G)| in his notation); cf. 
[Re, 1.1] or Remark 5 below). Comparing (6) and (7) yields in view of Remark 3: 

~[G]  is of multiplicity 1 ~ G is a hamiltonian group. 

Recall that a hamiltonian group is a group G in which every subgroup is normal; 
these have been characterized by Dedekind (cf. [Hu, p. 308]). 

In the above formula (6), the obvious relations eu~g- ,ug  resulting from 
conjugacy contribute significantly to the count. Discarding these leads to 
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considering the image of IR(G) in the Burnside ring (cf. e.g., [CR3]): 

under the natural map 

B(G)~ = |  

cI : A( G)--, B( G) 

which maps each subgroup H < G to its conjugacy class cl(H) = {g- 1Hg : g ~ G). By 
(6) we therefore see that the number of"truly independent" idempotent relations is 

dim~cl(IR(G))= ~(conjugacy classes of non-cyclic subgroups of G). (8) 

It therefore follows from (6), (7), or (8) that non-trivial relations exist whenever 
G is non-cyclic. This can also be seen directly. If G is non.-c.yclic, then we can write 

with proper subgroups H i < G, 

IGle~= ~ ( - I )  ~+' 
r = l  

which is a non-trivial relation. 

G = H 1U... wHt (9) 

1 ~ i l  < ... < i r ~ !  

and an inclusion-exclusion count shows that 

(10) 

By Theorem 3 we therefore have: 

Theorem 4. I f  G=Hl w...w Ht, then we have the isogeny relation 
[t/2] 

l l H i t  c~...nH~2r s~  ~1 x 1-I 1-I ~',1 . . . . .  ",2r 
r = l  l<=il<...<i2r<=t 

[t/2] 

~ l-I I] fu  ....... u,2 § 
r = 0  l<=il<...<i2r+l<=t vHil~t~'' 'nHi2rr+l " 

(11) 

A nice feature of the above formula is that it holds for an arbitrary covering (9). 
One of its disadvantages is, however, that since often many of the intersections 
Hi~n...nHir coincide, considerable cancellation takes place in (10), and this is 
somewhat awkward to keep track of. For  example, in the case that the covering (9) 
is actually a partition, i.e., HinH~= {1} for i+j, then (I0) reduces to 

t 

IGleG = Z In~lenr-(t-1)etl}, (12) 
r = l  

but it is easier to prove (12) directly than to deduce it from (10). (Note that 
Theorem B of the introduction follows immediately from (12) and Theorem 3.) 
Similarly, if the covering (9) consists of all (maximal) cyclic subgroups of G, then 
(10) reduces to the Brauer-Rehm relation (cf. [Re, 1.1]) 

IGI%= E anlHlen, (13) 
H e . ~ ( G )  

in which L~(G) denotes the set of cyclic subgroups of G, and 

an=a~= ~. # ( [ Z ' H ] ) ,  (14) 
ze ~'(a) 

Z>=H 
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where # denotes the M6bius function. Note that (13) implies the relation 

1 ~ = Y, an IHI 
n~ a'(m ]~- 1" 

which is a special case of Brauer's formula (concerning his explicit version of 
Artin's induction theorem); cf. [CR2, 15.4]. 

We thus have 

Theorem 5. I f  G ~ Aut(C), then we have the isogeny relation 

J~• I1 2;,~,,to-~ H j~t~.. (15)  
H ~.Sr(G) H 6 .~f (G) 
aH<O aH>O 

Remark 5. The relations of the type (13) are particularly interesting because if we 
let G run over all non-cyclic subgroups of a group ~q, then the relations (13) form a 
basis of the space SIR(q) of all strict idempotent relations (cf. [-Re, 1.1]). 

Another useful relation is 

Theorem 6. Let H 1 ..... Ht <-_ G < Aut(C) be subgroups such that: 
1) H ~ ' H j = H j ' H i ,  Vi, j. 
2) For every (complex) irreducible character z6ch((E[G]) there exists a 

subgroup H i C Ker(x). Then we have the isogeny relation 

[t/21 

J c  • 1~ I ~  JHi , ' . . . 'H ,2 r  
r = l  l ~ i l < . . . < i 2 r ~ t  

[t /2] 

~ I1 I7 J . . . . . . . .  . . . . .  . (16)  
F = 0  l<--il<..,<i2r+l<=t 

Proof As is shown in [Ka2],  the hypotheses imply the idempotent relation 

t 

E (--1) r+a ]1 en,1-....H,r- 1, (17) 
r= 1 1 <il  < ... <ir<t 

and so the result follows by Theorem 3. 

Remark 6. Note that Theorem B, 4, 5, and 6 are all deduced from strict idempotent 
relations. Thus, by Remark 4 the isogeny relations (0.3), (11), (15), and (16) are valid 
over any field for which the morphisms involved are all defined (even if the 
automorphisms groups G, Hi are not.) 

4. Strict idempotent relations 

As in Sect. 2, let ~ : C ~ C i ,  l<_i<_N, be a family of (not necessarily galois) 
coverings. Here we wish to study strict idempotent relations among the e,,, viz. 
relations of the form 

Y~ni~.,=O, (1) 

and derive a numerical criterion for such relations. 
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This is based on the fact that End~ is endowed with a positive definite 
quadratic form a which can be (more or less) explicitly calculated. To define a, we 
shall make use of the identification 

r :  c~(C) ~,End(Jc)  (2) 

of End(Jc) with the ring of  correspondences 

~(C) = Pic(C x C)/(pr* Pic(C) + pr* Pic(C)) 

(cf. [We] or [Kal]) .  For  divisors D I, D 2 eDiv(C • C), put 

a(D ~, O2) = dl(Da)d2(D2) + d~(D2)d2(D,)-(D,  . D2), 

where, as usual, (-) denotes the intersection number of two divisors and, for i=  1,2, 

d,(Di) = (D i �9 (A • C))/deg(A), 

d2(D,) = (D i �9 (C x A))/deg(A), 

for any divisor A ~ Div(C) with deg(A) 4: 0. Then Castelnuovo's Theorem states that 
tr is positive-definite: 

a(D,D)>0; a ( D , D ) = O ~ D ~ p r *  Pr(C)+pr* Pic(C) (3) 

(cf. e.g., [Kal ] )  and hence a induces via the identification fl a positive definite 
quadratic form on End~ also denoted by a. 

We remark that tr is compatible with the multiplication in End~ in the sense 
that 

a(Do Da, D2)-- a(D,, D'o D2), (4) 

a(D 1 o D, D2) --- a(D1, D 2 o D'), (5) 

where ' denotes the Rosati involution (i.e., D'=z*D,  where z : C •  
denotes the morphism which exchanges the factors); cf. [-We, p. 38]. Note that by 
[We] we could have alternately defined tr as the trace 

o-(D 1, D2) = tr(Qr o D~))), 

where or denotes the •-adic representation (E oe char(K)), 
but this (more complicated) definition does not allow us to readily compute a. 

Let us now put 

g~j = g(Tri, ~rj) = la(e~,, e~). (6) 

From (2) and (3) we therefore obtain the following two criteria for a strict 
idempotent relation (1): 

nienl = 0.r162 .~. ninjgij = 0 
I ,J  

.=, ~ nig~j = O, 1 < i < N .  (7) 
J 

In particular, we see that a non-trivial relation (1) exists if and only if det(gij)= 0. 
Of course, the criteria (7) are of use only if we can compute the matrix (gO in 

terms of the geometry of the rc~'s. This is indeed possible, as will now be explained. 
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To begin with, we observe that the diagonal terms are just the genera of the 
curves Ci; i.e., 

g ,= g c , .  (8) 

This follows easily (cf. [Ka3]) from the projection and adjunction formulae since 

1 
e~, = deg(Tz,) fl(F*), (9) 

where, as in [Ka3], F*=(rt i x ~i)*(Ac). 
It is somewhat more difficult to obtain explicit expressions for the off-diagonal 

terms gij. One such expression was obtained in [Ka3] and involves, aside from the 
genera gi = gc, and the degrees deg(Tti), also the arithmetic genus Pij = Pa(Cij) of the 
(possibly singular) curve Cij=Im(Tzij)C Ci x Cj which is the image scheme on 
C i x Cj of the morphisrn 

7r~j=zc i x zcjO fc  : C ~C~ x Cj, 

where 5c: C--,C x C denotes the diagonal morphism. Explicitly, we have by 
Theorem I' of I-Ka3]: 

gij = [ (d i j -  1) (d ji - 1) + dijg i + d jig 2 -  pj/(difl2i) , (10) 

where d~j=deg(rti)/deg(nij ) (=  [zr*K(Ci)Tr*K(Cj):rc*K(Ci)], if K(Ci) denotes the 
function field of Ci). 

A special case of (10) is the following formula, which may also be proved 
directly: 

la(eZd, e.,)= gc,. (1 1) 

It is interesting to observe that the matrix (g~j), besides being symmetric and 
positive semi-definite, is also non-negative: 

g~j>O, 1 <i ,  j < N ;  (12) 

this follows immediately from (10) and Castelnuovo's inequality (cf. [Ka3]). 
Alternatively, one can also deduce (12) from the fact that the idempotents e~, are 
symmetric with respect to the Rosati involution (i.e., e'~, = e~,), for we obtain then by 
(4) and (5): 

a(~,, %)  = a(~, o %, ~, o %) ~ O. (13) 

Moreover, it follows from (13) that 

g, j=0~,o%=0 (in End~ (14) 

i.e., that g~j = 0 if and only if the idempotents e~, and e~j are orthogonal. 
In the case that the lr~ are galois, i.e., 7zf=TrH,:C~C~=C/H~, for suitable 

subgroups Hi < G < Aut(C), another, possibly more explicit, formula may be given 
for the gifs. This involves the (global) Artin character a~ = ~, ap which is the sum 

P E C  

of the local Artin characters ae and hence may be computed readily by ramification 
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theory (cf. Serre [So2]). To be precise, we have the formula 

_ 1  g~j = 1 + g c -  1 

This follows easily by combining the formula 

aafh)). (15) 
heHiHt 

h* l  

1 

[which is essentially a restatement of (3.1)] with (8) (for nl = id) and with the well- 
known formula (of. [-We; So2]): 

aG(g-Xh)=(Fn" Fo)=2-a(Fh, Fo), if g,h~G,g#:h.  (17) 

Here, as usual, F h denotes the graph of the (auto)morphism h : C ~ C .  
It is useful to observe that in the case that H~. H i is a subgroup of G, i.e., if 

H i -Hj=HJ .H~,  then ~ aG(h ) is the degree of the different of 
h * l  

~ZH~.Uj: C ~ C / ( H  i �9 Hi) (el. [Se2, p. 104]) and so by the Riemann-Hurwitz formula, 
the formula (15) reduces to: 

g~.J=gc/m,'nj), if H i ' H j = H j ' H ~ .  (18) 

Remark 7. This formula can be extended to the non-galois case as follows. 
Suppose ~zk: C--* Ck, k---i, j are two coverings which "commute" in the sense that 
there exist finite morphisms 

! . _ . ~  t 7:k Ck Cij (k=i,j)  
to a curve C'~j such that 

a )  = 

b) deg(~'i) = dii (= deg(~j)/deg(~ij)), deg(~z)) = dij. 
It then fo]lows from a) and b) that 

(~'i x ~)* (Ac~j)= Ci.j, (19) 

and hence we obtain from Theorem 1' of [Ka3] and the projection formula that 

gij = gclj, (20) 

which generalizes (18). 
Summarizing, we therefore obtain the following theorem which amply 

contains Theorem C of the introduction: 

Theorem 7. A strict idempotent relation (1) holds in End~ and only if we have 

Y, njg~ = 0 ,  1 _< i<_N, (21) 
J 

where the gij are given by (10) in general and by (15), if all the lz i are galois. Moreover, 
if the morphisms ~z i and 7zj "commute" (cf  Remark 6), then gij is given by (20). 

I f  such a relation (21) holds, then we have the K-isogeny relation 

H J~',~ I]  jl~jl (22) 
ni>O nj<O 
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which is valid for every field K over which the morphisms n i are defined. In particular, 
if gij=O for 2 < i < j < N (i.e., if  the idempotents ~,, are pairwise orthogonal for 
i = 2,..., N )  and if 

gc = gc2 +. . .  + gc~, (23) 

then we have the orthogonal decomposition: 

J c ~  Jc2 x ... x Jc~. (24) 

Proof The first four assertions are clear by the previous discussion combined with 
Theorem 2 (and Remark 4). The last assertion follows by applying the first part of 
the theorem to nl=id ,  hE, ..., nN and using (8) and (11). 

5. Examples 

We shall now illustrate some of the above theorems by presenting a few explicit 
examples. We begin by specializing Theorem B to the groups G =Z/pTZ • Zp]E and 
G = PSI2(q). 

Example 1. G = 7Z./pZ x Z /pZ  (p a prime). Since the p + 1 subgroups Ho, ..., Hp < G 
of index/order p form a partition of G, we obtain, after cancellation, from 
Theorem B (or from any one of the Theorem 4-7) the isogeny relation 

P Jc x Jc/6 ~ Jcmo • "" • Jc/Hp. (1) 

Example2. G=PSI2(q), q=p f  a prime power. By. e.g., Huppert [Hu, II.8.6, 
p. 193], G has the partition 

i = 1 j = 1 ~ j k . )  k U  1 

where the ~i, 1 __< i __< r, are the (distinct) p-Sylow subgroups of G, ~J, 1 __<j__< s, are the 
(distinct) split Caftan subgroups of G, .~l k, 1 __< k __< t, are the (distinct) non-split Cartan 
subgroups of G. 

The groups (~3,} resp. {~j} resp. (glk} constitute a full conjugacy class of 
subgroups of G and have a "canonical" representative in Sl2(q) given by 

;)1 
where ~ = trvq2/rq((), (sFq2 a (fixed) primitive (q+ l)-st root of unity. (Note  that 

since ~ 2 - ~ +  1 =0, the matrix ( ?  1 ly) has ~, ~q as eigenvalues and hence has 

order q + 1, so 9l is indeed a non-split Cartan subgroup.) 
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We observe that if we put n = ( q - 1 ,  2), then we have (cf. [Hu, pp. 191-192]): 

IGI = (q- -  1)q(q + l ) / n ,  

1~3~l = q ,  
I~j] = (q - 1)/n,  

I~k] =(q + ]) /n ,  

Thus, by Theorem B we obtain 

r = [G : No(~i)] = q + 1, 

s = [G : N~(~j)] =(q + l)q/2, 

t = [G : N~(fftk) ] = (q-- l)q/2. 

~ I  s t j~(q+l)•  J~/~, x r l  J(q=l)/n x 1~ "C/~kt(q+-l):'" (3) 
i = 1 jl__l 1 C/r163 k = 1 

Since all the curves C/~3 i (resp. all C/~j ,  resp. all C/fflk) are isomorphic, we obtain 
from (3) (after dividing by q(q + 1/2): 

l2(q - 1 ) / n , ~ 1 2  _ l ( q - -  1)In X I (q - -  l){n J~ x "c/~ "c/~,  x "c/r ~c/~: �9 (4) 

Note, however, that while the isogeny relation (3) is valid over every field K for 
which all the morphisms involved are defined, this need not be true for the isogeny 
relation (4). 

We now apply the above "group theoretical examples" to specific curves. 

E x a m p l e  3. Ferma t  curves. Consider the Fermat curve 

C , , : x m + y r ~ = l  

of exponent m, which is a smooth curve of genus 2 ~ m - l ) ( m - 2 )  if char(K)J(m 
(which we assume henceforth). Let pJm be a prime and for 0 =< i =< p -  1 let C' i = C'm,p,i 
denote the normalization of the curve 

S m : t im/P(1  - -  t in~V). 

Note that the genus of C'~ is given by 

~ (~ g c i = p ( p - - 1 ) +  ~p--1 (m--l) ,  if l < _ i < _ p - - 2 ,  

If we put C~ = C~), then we have the isogeny relation 

J c  x JP cm/p ~ Jca x ... x Jc'~" (5) 

To prove this, suppose first that K contains a primitive p-th root of unity (. Then 
there exist (unique) automorphisms a, z e Aut(Cm) such that 

a(x) = ( x ,  o(y) = y; z ( x ) :  x, z(y) = (y,  

and these generate a (sub)group G ~_7Z/p7Z x 7ZipS. Since the coverings 

7rr Cm-~C'  i (O<__i<=p) 
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defined by r~*t = x p, ~z*s = xiy for 0 -< i -< p -- 1 and by rr*t = x, n*s = y~' correspond to 
all the subgroups of index/order p of G, and since the covering 

~ :  Cm-- ,CjG = C,,/p 

is given by n*x = x p, rc~y = yP, the isogeny relation (5) follows from Example 1. 
Moreover, since all the curves and morphisms are defined over the prime field 
Q ( K, it follows by Remark 6 that the isogeny relation (5) is valid over every field. 

Note that the isogeny relation (0.4) of the introduction is a special case of (5) 
t t above since in the case m=p,  the curves Cm/p, C~ = Cp, Cp_ 1 all have genus 0. 

Example 4. Modular curves. Let X(p) denote the modular curve of level p (=  an 
odd prime) and J(p) its Jacobian variety which are defined over K = tl~(e2~IP). It is 
well-known that X(p) can be realized as a galois covering 

j : x ( p ) - ~ P  1 

of F 1 with group G = Sl2(p)/{ 4-1 } = PSI2(p) defined over K. The quotient of X(p) 
with respect to the subgroup ~ of Example 2 is usually denoted by X~(p)= X(p)/~3 
and its Jacobian by Jz(P). Moreover, we shall write X~p(p)= X(p)/~ and X,~p(p) 
= X(p)/ff[, and denote their respective Jacobians by J~,(p) and J,~p(p). (The curves 
X~p(p) and X,~p(p) should not be confused with Mazur's [Ma] X s p l i ~ ( p )  = X(p)/NG(~_. ) 
and X~o~_ ~plit(P)= X(p)/NG(~) which are double subcovers of X~p(p ) and X,~v(p). ) 
We therefore obtain by Example 2 the K-isogeny relation 

j(p)2 ~ jl(p)2 X J ~ -  1)/2 x -1 ~p- 1)/2 
- - t I sp  (6) 

Example 5. DrinfeId curves. Let K be a field of characteristic p 4= 0, and put q = pY, 
f >  1. The Drinfeld curve D is defined by the equation 

D : xy ~ -  x~y = 1. 

It is easy to see that D is a smooth plane curve and hence has genus �89 1). If 
K 3 Fq, which we assume henceforth, then G = Sl2(q ) acts (faithfully) as a group of 
K-automorphisms on D (or, more precisely, on the function field F = K(x, y)) as 
follows: 

~ G .  g(x) = ax + by, g(y) = cx + dy, if g = c 

Thus, if Z = Z(G) denotes the centre of G (i.e., Z = { 4-1 } if q is odd and Z = { 1} if q is 
even) then G =  PSl2(q) acts on C = D/Z and hence we can apply Example 2. 

It is a routine (but tedius) calculation to determine explicit equations for the 
quotients C/H. We summarize these in the following table, in which we put: 

n=[Z[=gcd(2 ,q -1 ) ,  6 = n - 1 ;  

s = x y ,  t = x / y ,  T = t  ~q-l)/", 

u = x  q+l - -?xqy+y 2, v = x 2 - y x y + y  z 

where, as in Example 2, y = t r r  .,F_(O. 
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Subgroup H < Sl2(q} gore Fix (H) Equation 

1 �89 - 1) K(x, y) xy q -  xay = 1 

Z = ~ 1 q even K(x ,  y) x y  q -  xqy = 1 
Centre: 1.+1 q odd ~(q-6)(q-l)  K(s,t) ~+1 ~-1 

- s 2 (tq-1 1 )+ t~-=0  

p-Sylow subgroup:~ 0 K(y) - 

Z .  ~ 0 K(y") - 
q + l  

Split Caftan subgroup: ~ ~(q-6) K(s,T) s 2 (T2 l)+ T=0 

Non-split Cartan subgroup: 9l ~(q - 6) K(u, v) v q + ~ = u 2 - ?u + 1 

From this table we see that D / ( Z .  ~3) and hence DIG have genus 0, and so (4) 
reduces to 

c ~ oo/~ x (7) 

where the equations ofC = D / Z ,  D / ~  and D/Tt  are given in Table 1. (More precisely, 
�9 C, D / Z  etc. are the normalization of the (possibly singular) plane curve given in the 
table.) 

Since D = C if q is even, we obtain from (7) the interesting fact that 

J o ~ A  0 - 1 ,  (q even) (8) 

for some abelian variety A of dimension q/2. 

All the examples up till now were illustrations of Theorem B. We conclude with 
an example that illustrates Theorem 7 (and which does not follow from 
Theorem B). 

E x a m p l e  6. H u m b e r t  curves. By definition (cf. e.g., [Ac3, p. 86]), a Humbert  curve is 
a (smooth) curve C of genus 5 which admits five pairwise non-isomorphic 
coverings 

n i : C ~ E  i, 1-<i-<5, 

of degree 2 to curves E i of genus g~, = 1. (It is possible to show that if char(K)# 2, 
then the normalization of every plane sextic of the form 

y4 _ 4(X 4 _  ax  2 + 1)y2 + b2x 4 = 0 (9) 

with a, b ~ K ,  ab 4: O, (2a_+ b) 2 4:16, has this property, but we do not need this here.) 
As we now prove, each Humbert  curve has the ("orthogonal") decomposition 

J c ' ~  JE,•  ... x JEs" (10) 

This, in fact, follows immediately from (the last assertion in) Theorem 7 once 
we have shown 

gi j=a(e , , , e~)=0,  if i4 : j ,  l < i , j < 5  (11) 

because we obviously have gc = gr.1 + . . .  + gE~. To prove (11), we use formula (4.10)�9 
Here deg(rqj)=l (because K ( C ) = n * K ( E i ) . n * K ( E ~ ) ,  if i4:j) ,  so n i t :C~Ci j  is 
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birat ional ,  and hence p i j> gc=  5. Thus,  by (4.12) and (4.10), 

0 < g,j = 1-(2-1) (2--  1) + 2- 1 + 2 .1  - po]/(2 �9 2) 

<'(5-go)=0. 02) 
This proves  (11) and  therefore (10) follows. 

In the in t roduct ion  it was remarked  tha t  the decompos i t ion  (10) follows f rom 
T he o rem C. To  see this, let us first observe tha t  each covering 7ti, being of degree 2, 
is automat ica l ly  galois: rci = ~t<,,> for some involut ion Tie Aut(C). Next  we note  that  
if we put  C'i~ = C/(zi,  z j )  then 

gc~,j=O, if i :~j ,  (13) 

because if C'i~ had  genus > 1, then by the R iemann-Hurwi t z  formula  it would 
t . - - ~  ft follow that 7rt. E~=C/(,k) Cij is unramified for k=i,j  (and that gc3=l), so 

t ---). t t  rr~ o rq: C C~j is unramified,  which is impossible.  Thus,  to be able to apply  
T h e o r e m  C, it is enough to show 

z i ' z j = ~ j ' z  i, l <i, j < k ,  (14) 

and  this follows easily by  an appl ica t ion of Accola 's  genus relat ion (cf. [Acl ,  
p. 479]). 

Finally, let us observe that  (10) does not  follow f rom an idempoten t  relation in 
~ [ G ] ,  where G =  <zl . . . . .  % ) ;  in other  words,  we assert  that  

g{1 } 4= e<~,> + . . .  + e<~5>. (15) 

(Note  tha t  since G is abelian, every idempoten t  relation is a strict idempoten t  
relat ion by R e m a r k  3.) But this is clear, for the right hand  side equals (~). 1 

5 
+�89 Z z~=t= 1 since the z~4= 1 are pairwise distinct. 

i = l  

Actually,  by using Accola 's  relations, it is not  difficult to show tha t  G = ( z , )  
x ... x ( z 4 )  and tha t  % = % . . . .  "~4 (cf. also [Ac3, p. 56]), but  we do need this 

here. 
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