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Introduction

Let C be a (smooth, projective, geometrically connected) curve defined over an
arbitrary field K and let 7;: C—C,, 1 £i< N, be a collection of subcovers of C, all
defined over K. The present paper was motivated by the following question: what
general relations, if any, exist between the (numerical ) invariants attached to the
curves C, Cq,...,Cy?

The basic numerical invariant of a curve C is, of course, its genus g but in
char(K)=p=0there are also other invariants, notably the Hasse-Witt invariant (or
p-rank) o.. All these invariants, however, are subsumed in a universal invariant,
h'(C)=1[J.], the 1-motive of C/K, which by definition is the K-isogeny class of the
Jacobian variety of C, and therefore we focus our attention here on this motivic
invariant.

The first evidence of such relations was furnished by Accola [Acl, Ac2] who
provided some useful sufficient conditions which force relations among the g..’s. In
[Ka2] it was shown that Accola’s relations also hold for the 6.’s, and this was
further generalized by Frey and Rick [FR]. However, Accola’s relations are not
the only general relations that exist among these invariants: it was pointed out in
[Ka2] that Accola’s hypotheses are a special case of certain idempotent relations in
a suitable group ring Q[G] which in turn determine idempotent relations in the
endomorphism algebra End®(J)=Endg(J)®Q.

The main stimulus for this paper stems from the suggestion of Accola (private
communication) that such idempotent relations should also determine relations
among the motivic invariants. In carrying out this suggestion, we made two further
observations. The first is that this phenomenon is not only restricted to the
idempotents ¢,, € End%(J,) attached to morphisms of curves but is, in fact, true for
any set of idempotents ¢; End®(4) of an arbitrary abelian variety 4; in this case
one has to replace [J ] by [¢(A)], the isogeny class of the “image” £(A4) of A under
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¢, The second observation is that, conversely, every relation among the motivic
invariants actually comes from an idempotent relation, provided that the concept
of an “idempotent relation” is slightly generalized. To this end, let us call two
elements a, b€ End®(A) character equivalent (notation: a ~ b) if we have y(a)= x(b),
for all Q-rational characters y e ch(End®(4)). We then have the following general
result.

Theorem A. Let ¢, ...,&,, &}, ..., &, € End%(A4) be (not necessarily distinct ) idempo-
tents. Then the idempotent relation

g t...te,~e +...+eE, (1)

holds in End%A) if and only if we have the isogeny relation
g1(A) X ... X g(A)~&1(A) X ... X g (A). (2)

Actually, this theorem is an immediate consequence of a slightly more precise
result (Theorem 1) proven below in Sect. 1.

The usefulness of Theorem A rests ultimately on our ability to exhibit such
idempotent relations (1) explicitly. In the case that all the coverings «; are galois,
i.e., C;= C/H,for some subgroup H; < G = Aut(C), a powerful method of producing
such relations is to study relations among the idempotents

1

o [ b S
in the rational group ring Q[ G]. Indeed, it is easy to get a complete overview of all
such idempotent relations; the Burnside ring B(G) offers a convenient framework
for studying such relations (cf. Sect. 3).

As was already remarked, the relations which Accola established for the gc.’s
stem from such idempotent relations in Q[G], and we therefore obtain such
“Accola relations” for the motivic invariants as well (cf. Sect. 3). A particularly
simple yet useful special case of these is the following:

Theorem B. Let G < Aut(C) be a( finite ) subgroup suchthat G=H,u...OH,where
the subgroups H; <G satisfy HnH;={1} for i%j. Then we have the isogeny
relation

Je X I~ T, X .. x Sy, (3)

where ¢g=|G|, b;=|H | and, as usual, J"=J x ... xJ (n times).

The groups G satisfying the hypothesis of Theorem B (with ¢> 1) are called
“groups with a partition” and have been (more or less) completely classified (cf.
Baer [Ba], Kegel [Ke] and Suzuki [Su]). These include the elementary abelian
p-groups G=Z/pZ x ... x Z/pZ, the projective linear groups PSI,(p"), Frobenius
groups, dihedral groups, etc.

If we apply Theorem B to the Fermat curve C: x* +y*=1and G=Z/pZ x Z(pZ
(where pis an odd prime # char(K)), then we obtain the well-known decomposition
(cf. e.g. Lang [La, p. 43ff]):

JC~JC1X"'XJCP—27 (4)
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where C; denotes the (normalization of) the curve y”= x(1 —x). It is interesting to
note that the isogeny (4) is defined over the prime subfield Q of K, even though the
automorphism group G is only defined over Q({,) (cf. Sect. 5).

Similarly, if we consider the case that C is the modular curve C = X(p) of level p
(defined over K=0){,)) and G=PSl,(p), then Theorem B yields the K-isogeny

relation
p—1 p—1
2

J(p)2 NJl(p)Z X Jsp(p)m X Jnsp(p)_z._ (5)

which we haven’t found in literature. Here, J(p) = Jy,), J 1(p) = J x () €tc. have their
usual meaning (cf. Sect. 5).

Still another example is furnished by a suitable quotient C of the Drinfeld curve
D:xy?—x?y=1 defined over K =IF,. Here we apply Theorem B to G = PSl,(¢) and
hence obtain a decomposition analogous to (5). As a consequence we derive the
curious fact that if g is even (i.e., g =2/}, then the Jacobian of the Drinfeld curve is a
(g—1)-st power,

Jp~ATT

where A is some abelian variety (of dimension g/2).

Another method of producing idempotent relations is presented in Sect. 4. This
method is based on the fact that it is possible to characterize the validity of a strict
idempotent relation

Y e, =0 (6)

by a purely numerical criterion. A useful special case of these results (cf. Theorem 7)
is the following.

Theorem C. Let Hy,...,H,<Aut(C) be ( finite) subgroups with H;-H;=H;- H,,
Jor all i, j, and let g,; denote the genus of the quotient curve C/(H;- H ). Then, for
ny, ..., neZ, the conditions

Ynng;=0, (7)
xng;=0, 1Zisn, 8)
J

are each equivalent to (6) and hence both imply the isogeny relation
[ Jem~ 11 J&k,. )
n>0 n;<0

In particular, if g;;=0 for 2<i<j<t and if

gc= 8o, t -t 8cim, s (10)
then we have (by taking H,={1} above):
JC~JC/H2X...><JC/HI. (11)

Theorem C applies in particular to the Fermat curves above and hence gives
another proof of the decomposition (4). Moreover, as is shown in Sect. 5, it also
applies to the Humbert curves (of genus 5) to yield the decomposition

Je~de, x o xdg, (12)
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of J. into a product of five elliptic curves. It is interesting to observe that this
decomposition does not follow from Theorem B.

This paper is organized as follows. In Sect. 1 we present (a sharpening of)
Theorem A, which is then applied in Sect. 2 to idempotent relations arising from
coverings of curves. In Sect. 3 we study idempotent relations in the group ring
@[ G] and derive some specific isogeny relations (e.g. Theorem B). In Sect. 4 we
study strict idempotent relations in terms of certain numerical invariants and
prove (a generalization of) Theorem C. Finally, in Sect. 5 we illustrate the above
theorems with the help of the specific examples such as the Fermat curves,
modular curves etc. which were mentioned above.

We would like to express our appreciation to R. Accola whose initial suggestion was the
original stimulus of this paper. We would also like to thank D. Hayes for drawing our attention to
the Drinfeld curve which is discussed in Sect. 5.

This research was supported in part by a grant from the Natural Sciences and Engineering
Research Council of Canada (NSERC) held by the first author and by an NSF grant held by the
second author.

1. Factors of Abelian varieties

Let A be an abelian variety defined over a field K. By Poincaré’s complete
reducibility theorem (cf. [Mu, p.173] or [Mi, Proposition12.1]), 4 is
K-isogeneous to a product

A~B:=B}'x...xB}r, )]

where the B; are K-simple abelian varieties (i.e., B; has no proper abelian
subvariety defined over K) which are pairwise non-K-isogeneous.
Let Endg(A) denote the ring of K-rational endomorphisms of 4 and let

o :=EndY(A4): =Fnd(4)® ,Q

be its associated Q-Algebra, which is known to be finite-dimentional (cf [Mi,
Theorem 12.5]). Moreover, & is semi-simple, for (1) induces a ring isomorphism

MgMnl(Sl)®“'®Mnr(Sr) (2)

where S;:=End%(B)) is a skewfield. Thus, for each i, 1<i<r, there exists an
irreducible «/-module ¥, with the property that ¥, is faithful on the subalgebra
M, (S)). Let g;: o/ »Endg(V)) denote the representation afforded by V; and let

xda)=tr(g{a))

denote its character (which is defined since dimg./ < o0).
We now want to study K-quotients of A up toisogeny. It is easy to see that cach
such quotient (or factor) A’ is of the form

A’ ~g(A), 3)

for some idempotent ¢ € . (Here and below, &(A4) denotes any representative of the
isogeny class containing the abelian subvarieties (ne) (4) C 4, where ne N is chosen
such that nee End(4)C ..
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It turns out that the structure of &(4) is completely determined by the set of
values {x;(e)}; more precisely, we have:
Theorem 1. Let € EndY(A) be an idempotent. Then
sA)~ BT x ... x B, 4)
where the m;’s are determined by the formula
x{e)=m;dimg(S,), 1=Zisr. (5
Proof. a) r=1.
Without loss of generality A= B". Let ¢;e End(4)C o/ denote the composition
g;=]j;o p;, where
pi:B"—B, plby,...b)=b;
denotes the projection map onto the i* factor and
ji:B->B", j(b)=(0,...,0,b,0,...,0)

denotes the inclusion map into the i** component. Clearly, ¢, ..., &, are pairwise
orthogonal idempotents (i.e., & =¢, & ;=0 for i+j) and 1=¢, +... +¢,. Since
of = M,(S), where S is a skewfield, it follows that each ¢; is a primitive idempotent of
<. (Use e.g. Albert [Al, II, Theorem 16 and I1I, Theorem 9].)
Now let ¢€ &7 be an arbitrary idempotent. Then by [Al IV, Theorem 2], there
exists e/ * such that
aer =g, +...+g,

for some s, 1 <s<n. (s==rk(e) is called the rank of ¢.) Clearly
(1 +...+e)(A)=5".

On the other hand, since x € &/ ™ is invertible, we have o~ 1(A4) ~ A4, 50 &(4) ~ e~ 1(A)
~a(B%) ~ B®. Thus (4) holds with

m=s=rk(g). (6)

It remains to compute y(¢). Since all ¢’s are conjugate, we have
m m .
1) =myer) = = x(1)= " dimg( V),

where V denotes the (irreducible) left .«7-module affording y. Now V=.oZ¢,, Vi and
A D..QAe,=A =M\S), so

1
dimeV = - dimqM,(8)= %(n2 dimg(S)),

and we obtain (5).
b) r>1.

Without loss of generality A=A, x...xA4,, where A,=B¥ 1Zi<r. Let
¢;€ End(4)C o denote the composition e; =y, 1, where

Tt Ay X XA~ A,;
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denotes the projection onto the i factor and
Pt A, A X .. XA,

denotes the inclusion map into the i™ component: ufa)=(0,...,0, a; 0, ...,0).
Clearly, e,,...,e, are pairwise orthogonal (central) idempotents and
1=e,+...+e,.

For any a € Endg{A4), a;:=m;° a0 u;e Endg(4;) and we have

A)xa(Ay) ... xalA4,)
(because pu(A;)=ene A), and a=e,ae, +...+e,ae,), and so for a .o/ we have
w{A)~a(A) X ... xa(A4,).

Now if a=¢ is an idempotent of &/, then each «;=¢; is an idempotent of
End®4,). Thus, by a) we have ¢(4;) ~ B™, where

X&) =m; dimg(S;),
if ¥} denotes the unique irreducible character of o7, =End®(4,). Now ¢;: o, -2,
given by @a)=py;0a-m, is an injective Q-algebra homomorphism with image

e.fe; and so yi=y; @, Since @ g;) =e;ce;, we obtain yi(s)=y{e;ce;) = x{¢), and the
assertion follows.

With the aid of Theorem 1 it is now easy to prove Theorem A of the
introduction. In order to avoid notational confusion, let us repeat (and generalize
slightly) the definition of character equivalence presented in the introduction:

Definition. Let o/ be a finite dimensional @Q-algebra. We call two elements a,,
a, € o character equivalent (in «7) and write a, ~ a, (in &), if we have y(a,)= x(a,),
Vyech(=?). Here, as usual, ch(s/)=ch(<«//@Q) denotes the ring of wvirtual
@-characters of o which, as an abelian group, is given by

ch(A)=Zy,D.. DZy,,

if {1, .--» 2} denotes the set of @-characters afforded by a basic set of irreducible
left o7-modules (each viewed as a Q-vector space).

Proof of Theorem A. By Theorem 1 we have, for each i, 1<i<n:
g{A)~ Bt x ... x By,
where n;;=x {e;)/dimg(S;), 1=<j<r. Thus

g(A)x ... xgA)~Bj x...x Bf, 7
with
5;= ;1 xdey/dimg(S;) =y e, + ... +&,)/dimg(S)), (8)
and similarly,
g(A) x ... xei{A)~ Bt x ... x Bfr, )

with
t=xfe1+ ... +&n)/dimg(S;) . (10)
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Comparing (7)}-(10) yields the equivalences

e(A)x ... xgfA)~e(A) X ... X g (A)
@yt te)=y i+ +e,), 1Z5j<n
<>g +...+e,~e +...+¢&, (in End(4)).
This concludes the proof of Theorem A. Fof future reference, it is useful to

append the following remarks, most of which pertain to the notion of character
equivalence.

Remarks. 1) Let f:o/—% be a ring homomorphism of finite dimensional
Q-algebras and let a,, a,e .. Then:

a,~a, (in &)= fla,)~ f(a,) (in %).
2) If o/ is a finite dimensional semi-simple Q-algebra and ¢,, &,€.%/ are
idempotents, then
g ~&, (in of)<>e,=aga” !, for some aesl™.

This is implicit in the proof of Theorem 1 and follows from [Al, IV, Theorem 2].
3) Let &/ be a finite dimensional semi-simple Q-algebra. As was suggested in
the introduction, a relation of the form

Lng~0(n ) (neZ, &f =¢) (11

will be called an “idempotent relation” in .. It is of some interest to know whether
each such idempotent relation is a strict idempotent relation ¥ ne; = 0; i.e., whether
the implication

Y ng~0 (in &)=Y ne=0 (12)

always holds in . Since each matrix algebra M (S;) has for n>1 (many!) distinct
yet conjugate idempotents, it is clear that a necessary condition for the validity of
(12) is that of be of multiplicity one, ie.,

=S x...x8§,, (13)
where the S; are (skew)fields. In fact, this condition is also sufficient, for in this case

r
each idempotent ¢;€ o/ has the form ¢;= Y t;,0; where t;;=0 or =1 Vi,j and o;
=1

L9 i )

denotes the (unique) idempotent +0 of S;. Thus, if (11) holds, then applying x; to
Y rg; yields Y rit;=0, 15 j<r, which means ¥ r,¢;=0. We therefore see that (12)

and (13) are equivalent; i.c., that every idempotent relation (11) is strict if and only if
& is of multiplicty one.

4) If Lis an extension field of K, then clearly o/, : =End?(4)D .« : = End%(A),
and so we have for a,, a,€.o/:

a;~a, (in f)=>a,~a, (in ;).

The converse, however, is false in general. For example, suppose A =E; x E, where
E,, E, are two elliptic curves defined over K which are not K-isogeneous but which
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are L-isogeneous; such E;’s exist (for K=@Q and L=0qXi); cf. e.g., Serre [Sel,
p.IV.22]. If ¢,, £, € End%(A) denote the idempotents belonging to E,, E, then
clearly ¢, ~ ¢, (in .&7) but ¢, ~¢, (in &7;).

In particular, we see that “idempotent relations do not descend under base-
field extensions”, i.e.,

Yre~0(n o)), eged# Y re~0(in ).

Note, however, that strict idempotent relations do descend.

2. Idempotents via coverings of curves
Given a covering { =surjective morphism)
. C-»C

of curves, we have two induced homomorphisms between their respective
Jacobian varieties:
TC*:JCr—)JC, TE*:JC_’JC/

obtained by the pull-back resp. push-forward of divisor (classes) D’ € Pic®(C')=J
resp. D € Pic%(C)=J. Since

na¥D)=deg(m)D’, VD ePic%J.), )]

we see that

n*om, eEnd®(J,) )

B = deg(n)
is an idempotent and that
eJ)~m*Jc)~Jc- 3)
Thus, by Theorem A we have

Theorem 2. If n;:C—»C, 1 £i<n, and w;: C—C), 1 <j<m, are coverings, then
Yo~ Yege[lJe,~[1Jg- 4)
i j
Since g¢,=dimJ, and dim(4, x 4,)=dim A4, +dimA4,, we obtain:

Corollary 1. ¥ nig, ~0=>3% ngc =0.

Similarly, if char(K)=p =0, then the Hasse-Witt invariant g, of C; is given by
0 ¢, =dimg (T,(J-)®Q,) and hence we have

Corollary 2. ¥ ng, ~0=3 ng.,=0.

We therefore see that Theorem 3 of [Ka2] (i.e., Corollaries 1 and 2 above) is a
special case of Theorem 2. Similarly, Statement 4, of Frey-Riick [FR] (which
generalizes Corollary 2) is an immediate consequence of Theorem 2.

To state this result, let char(K)=p=+0 and assume (for simplicity) that K is
algebraically closed. If 4 is an abelian variety over K, let A(p) denote the p-divisible
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group (=Barsotti-Tate group) associated to A4, and let D=D(A(p)) be its
Dieudonné module with Frobenius endomorphism F:D—D. Then (D, F) is an
F-crystal (cf. Berthelot [Be]) which gives rise to an F-isocrystal (D, Fy), where
Q =Quot(W(K)) is the quotient field of the ring W(K) of Witt vectors over K. By
the fundamental structure theorem of F-isocrystals (cf. [Be], Demazure [De]}),
(D, F) has a unique decomposition (as F-isocrystals)

D(A)Q = /1@1) (D(A)Q)/l (5)

into isotypic components (D(A)y); which are a direct sum of the simple
F-isocrystals “of slope 17, (cf. [Be, De]) and

my(A) = dimy(D(A4)g); (6)

is called the multiplicity of the slope A.(Note that actually m,(A)=0for A ¢[0,1];cf.
[Be].) Since A~ B=D(A)y=D(B)g<>m;(A)=m,(B), VAcQ, (and since clearly
m;(A x By=m;(A)+m,(B), YAe@Q, because D(A x B)x D(A) x D(B)), we obtain
from Theorem 2:

Corollary 3. Y nig, ~0=3 nm;(Jc)=0, VieQ.

3. Idempotent relations via Galois theory

Fix a (finite) subgroup G < Aut(C). Each subgroup H £ G defines a galois covering

ny:C—Cy=C/H

and an idempotent

L5 heqre

0 H 4
in the rational group ring Q[G]. If
a:Q[G]—-End’(J o)

denotes the canonical map of QQ-algebras induced by «(g)=g, for ge G, then we
have the formula

a(eH):gnH' (1)

This follows from the well-known facts that deg(ny)=|H| and that nj(ng),D
= ¥ h,D, for all DeDiv(C).

heH

In view of Theorem 2 (and Remark 1) we therefore see that every relation
among the idempotents &€ Q[G] induces an isogeny relation among the
Jacobians Jy=J¢; of the quotient curves C/H. It is interesting to observe that
each such idempotent relation can be equivalently expressed as a character
relation; i.c., we have

3 ey ~0 (in Q[G) =Y nylk=0 in ch(@QG)) @)
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where, as usual, 1} =Ind§(1 5) denotes the induced character. To see this, note that
by Frobenius Reciprocity we have

x(eg)= (X|H, 1= 186> (3)
and hence (2) follows since (, )¢ is non-degenerate. Summing up, we have shown:

Theorem 3. If H,,....H, H\,...,H, are subgroups of G<Aut(C), then every
idempotent/character relation

Y NEg,~ ijgH}¢>Z ”il?z,- = ijlfl; )
(with n, m;e N) induces an isogeny relation
B} X ~TE X X TR 5

Let us now determine how many independent idempotent/character relations
actually exist in Q[G]. To this end, consider the @-vector space

A(G)= @ QH
H=ZG
which is freely generated by the subgroups H of G. We are interested in
determining the dimension of the space of idempotent relations.
IR(G)={Y.nyH € A(G): ¥, ngey ~0} =Ker(ch),

where

ch: A(G)-»Q®ch(Q[G])

is defined by ch(} nyH)=Y nyl1§. Since ch is surjective by Artin’s Induction
theorem, we obtain
dimgIR(G) = dimgA(G) — dimg(Q@ch(@Q[G1))

= 4 (subgroups of G) — #{conjugacy classes of
cyclic subgroups of G), 6)

the latter equality following again from Artin’s theorem (cf. [CR1, 39.5]).
It is interesting to compare this formula to the one obtained by Rehm [Re] for
the dimension of the space

SIR(G)={Y nyHe A(G): Y nyey =0}
of strict idempotent relations:
dimgSIR(G) = # (non-cyclic subgroups of G). 7

(In fact, he establishes an explicit basis for SIR(G) (=U(G)®®, in his notation); cf.
[Re, 1.1] or Remark 5 below). Comparing (6) and (7) yields in view of Remark 3:

Q[G] is of multiplicity 1<>G is a hamiltonian group.

Recall that a hamiltonian group is a group G in which every subgroup is normal;
these have been characterized by Dedekind (cf. [Hu, p. 308]).

In the above formula (6), the obvious relations ey ~¢,-1y, resulting from
conjugacy contribute significantly to the count. Discarding these leads to
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considering the image of IR(G) in the Burnside ring (cf. e.g., [CR3]):
B(G)q = ®@Qci(H)

under the natural map

cl: A(G)-B(G)

which maps each subgroup H < G to its conjugacy class cH)={g~'Hg:ge G}. By
(6) we therefore see that the number of “truly independent” idempotent relations is

dimgcl(IR(G)) = #(conjugacy classes of non-cyclic subgroups of G).  (8)

It therefore follows from (6), (7), or (8) that non-trivial relations exist whenever
G is non-cyclic. This can also be seen directly. If G is non-cyclic, then we can write

G=H,u...UH, &)

with proper subgroups H;< G, and an inclusion-exclusion count shows that

t
|Gleg= X (-1t L o oHleg o ow, (10)

1i < <ip<
which is a non-trivial relation. By Theorem 3 we therefore have:

Theorem 4. If G=H u...uH,, then we have the isogeny relation

(/2]
1G} |Hiyn...0H;
J"x I Il Jgidula
r=1 15i;<..<iz=t

[t/21 r
~ Hiyn...nHyy, o]
rI;IO l§i1<..11i2r+1§t Hilln"‘nHi22"+1l ’ (11)
A nice feature of the above formula is that it holds for an arbitrary covering (9).
One of its disadvantages is, however, that since often many of the intersections
H; n...nH; coincide, considerable cancellation takes place in (10), and this is
somewhat awkward to keep track of. For example, in the case that the covering (9)
is actually a partition, i.e., H,nH;={1} for i=j, then (10) reduces to

t

IGleg= Zl 1H |eg, —(t—1)egy; (12)

but it is easier to prove (12) directly than to deduce it from (10). (Note that
Theorem B of the introduction follows immediately from (12) and Theorem 3.)
Similarly, if the covering (9) consists of all (maximal) cyclic subgroups of G, then
(10) reduces to the Brauer-Rehm relation (cf. [Re, 1.1])

IGleg= 3. aglHley, (13)
HEeF(G)

in which Z(G) denotes the set of cyclic subgroups of G, and
ag=ag=_Y w(Z:H)), (14)
Zeg G)
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where u denotes the Mobius function. Note that (13) implies the relation

|H|
1,= ag — 1%
¢ Heg(e) TGl
which is a special case of Brauver’s formula (concerning his explicit version of
Artin’s induction theorem); cf. [CR2, 15.4].
We thus have

Theorem 5. If G < Aut(C), then we have the isogeny relation

JEx 1 JpHer~ T J\er (15)
HeZ(®) He Z(G)
ag <0 apg >0

Remark 5. The relations of the type (13) are particularly interesting because if we
let G run over all non-cyclic subgroups of a group %, then the relations (13) form a
basis of the space SIR(9) of all strict idempotent relations (cf. [Re, 1.1]).

Another useful relation is

Theorem 6. Let H,,...,H,< G < Aut(C) be subgroups such that:
1) H;-H;=H;- H, Vi, }j.
2) For every (complex) irreducible character yech(C[G]) there exists a
subgroup H;CKer(y). Then we have the isogeny relation
/2]
Jex ] [ Ju

r=1 1=5i1<...<iz=t

[z/2]

ig - Higy

~ I . [ JHi,~...-H,2,+1' (16)
r=0 1<i)<...<izr+15t
Proof. As is shown in [Ka2], the hypotheses imply the idempotent relation
d +1
(=1 I emyeom, =1 17
r=1 15i1<...<iy=t

and so the result follows by Theorem 3.

Remark 6. Note that Theorem B, 4, 5,and 6 are all deduced from strict idempotent
relations. Thus, by Remark 4 the isogeny relations (0.3),(11), (15), and (16) are valid
over any field for which the morphisms involved are all defined (even if the
automorphisms groups G, H, are not.)

4. Strict idempotent relations

As in Sect. 2, let 7;:C—C,, 1<i<N, be a family of (not necessarily galois)
coverings. Here we wish to study strict idempotent relations among the ¢, , viz.
relations of the form

Lnien,=0, )

and derive a numerical criterion for such relations.
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This is based on the fact that End®(J) is endowed with a positive definite
quadratic form ¢ which can be (more or less) explicitly calculated. To define o, we
shall make use of the identification

B:€(C)=-End(J) ()
of End(J ) with the ring of correspondences
€(C)="Pic(C x C)/(pr¥ Pic(C) + pr% Pic(C))
(cf. [We] or [Ka1]). For divisors D, D, € Div(C x C), put
6(D 1, Dy)=d(D1)dy(D2)+d(D;)do(Dy)— (D, - D),
where, as usual, (-) denotes the intersection number of two divisors and, fori=1,2,
d,(D)=(D;-(4 x C))/deg(4),
dy(D)=(D;- (C x A))/deg(4),
for any divisor 4 € Div(C) with deg(A) 0. Then Castelnuovo’s Theorem states that
o is positive-definite:
o(D,D)=0; o(D,D)=0<Depr} Pr(C)+ pr¥ Pic(C) 3)
(cf. e.g., [Ka1]) and hence ¢ induces via the identification f a positive definite
quadratic form on End%J), also denoted by o.

We remark that o is compatible with the multiplication in End®(J ;) in the sense
that

G(DODDDZ):G(DDD’ODZ)’ (4)
o(D°D,D;)=0(D,, D, D’), ®)
where ' denotes the Rosati involution (i.e, D'=1t*D, where 1:CxC—-»CxC

denotes the morphism which exchanges the factors); cf. [We, p. 38]. Note that by
[We] we could have alternately defined ¢ as the trace

a(Dy, D) =tr(eAB(D5 = Dy))),

where g,: End(J ) - Endg(T,(J ) denotes the Z-adic representation (£ # char(K)),
but this (more complicated) definition does not allow us to readily compute o.
Let us now put

8= g(nb nj) = %o‘(sm, &) (6)

From (2) and (3) we therefore obtain the following two criteria for a strict
idempotent relation (1):

LhiEg =03 ming;=0
£
<Y ng;=0, 1ZisN. @)
7

In particular, we see that a non-trivial relation (1) exists if and only if det(g;;)=0.
Of course, the criteria (7) are of use only if we can compute the matrix (g;;) in
terms of the geometry of the n;’s. This is indeed possible, as will now be explained.
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To begin with, we observe that the diagonal terms are just the genera of the
curves C;; ie.,

8i= 8¢, - ®)
This follows easily (cf. [Ka3]) from the projection and adjunction formulae since
1
= *
o= doginy P ©

where, as in [Ka3], I} =(n; x 7)*(4¢).

It is somewhat more difficult to obtain explicit expressions for the off-diagonal
terms g;.. One such expression was obtained in [Ka3] and involves, aside from the
genera g;= g, and the degrees deg(w;), also the arithmetic genus p;;=p,(C;)) of the
(possibly singular) curve C;;=1Im(r;)CC;x C; which is the image scheme on
C;x C; of the morphism

My=m; X M;08c: CoC; x C;,

where d.:C—>Cx C denotes the diagonal morphism. Explicitly, we have by
Theorem 1’ of [Ka3]:

gi;i=Ld;— 1D (d;—1)+d;;g;+d;;g;— pi;1/disd ), (10)

where d;;=deg(n;)/deg(n;;) (=[n}K(C)n}K(C)):n¥K(C)], if K(C;) denotes the
function field of C,).

A special case of (10) is the following formula, which may also be proved
directly:

%a(sid, 8ni) = gCi . (1 1)

It is interesting to observe that the matrix (g;;), besides being symmetric and
positive semi-definite, is also non-negative:

this follows immediately from (10) and Castelnuovo’s inequality (cf. [Ka3]).
Alternatively, one can also deduce (12) from the fact that the idempotents ¢, are
symmetric with respect to the Rosati involution (i.e., &;, =¢, ), for we obtain then by
(4) and (5):

0(87:,-’ Snj)= 0'(8,,1, ° Enja €n;° 81:,-) go . (13)

Moreover, it follows from (13) that
gij=0<>¢,0¢, =0 (in End’(J¢)) (14)

ie, that g;;=0 if and only if the idempotents ¢,, and ¢, are orthogonal.
In the case that the =; are galois, ie., m;;=ny,:C—>C;=C/H,, for suitable
subgroups H; < G £ Aut(C), another, possibly more explicit, formula may be given

for the g;;’s. This involves the (global) Artin character ag= 3, ap which is the sum
PeC

of the local Artin characters ap and hence may be computed readily by ramification
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theory (cf. Serre [Se2]). To be precise, we have the formula

1 1
P— ————— —_ 11— h .
8=+ <gc -3, % adl )) (15)
h+1
This follows easily by combining the formula
|

8= = I 16
i |HI (hezlii h) ( )

[which is essentially a restatement of (3.1)] with (8) (for 7; =1d) and with the well-
known formula (cf. [We; Se2]):

aglg” )=, I)=2—0o(l,T,), if gheGg+h. 17
Here, as usual, I, denotes the graph of the (auto)morphism #:C—C.

It is useful to observe that in the case that H;- H; is a subgroup of G, ie., if
H;-H;=H;-H;, then Y agh) is the degree of the different of
h#*1

Tg,.u, C—~C/(H;- H) (cf. [Se2, p. 104]) and so by the Riemann-Hurwitz formula,
the formula (15) reduces to:

8i;=8cpam;-H;)p if H;-H;=H;-H;. (18)

Remark 7. This formula can be extended to the non-galois case as follows.
Suppose 7, : C—C,, k=i, j are two coverings which “commute” in the sense that
there exist finite morphisms

. C—Cl (k=i j)
to a curve Cj; such that
a) miom;=mW;om;
b) deg(nj)=d ji (=deg(n j)/ deg(nij))’ deg("})zdn‘j-
It then follows from a) and b) that

(m; % 7‘;)* (Acgj) = Ci,j s (19
and hence we obtain from Theorem 1’ of [Ka3] and the projection formula that
8ii=8cy;» (20)

which generalizes (18).
Summarizing, we therefore obtain the following theorem which amply
contains Theorem C of the introduction:

Theorem 7. A strict idempotent relation (1) holds in End®(J ;) if and only if we have
> ng;=0, 1<isN, 21)
j

where the g;; are given by (10) in general and by (15), if all the m; are galois. Moreover,
if the morphisms m; and m; “commute” (cf. Remark 6 ), then g;; is given by (20).
If such a relation (21) holds, then we have the K-isogeny relation
[1 J&~ 11 Je&! (22
nj<0

n;>0
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whichis valid for every field K over which the morphisms 1, are defined. In particular,
if 8;;=0 for 2Si<j=<N (ie., if the idempotents ¢, are pairwise orthogonal for
i=2,...,N)and if

8c=8c,t - Ty (23)
then we have the orthogonal decomposition:
Je~Je, X o x ey - (24)

Proof. The first four assertions are clear by the previous discussion combined with
Theorem 2 (and Remark 4). The last assertion follows by applying the first part of
the theorem to =,=id, n,, ..., 7y and using (8) and (11).

5. Examples

We shall now illustrate some of the above theorems by presenting a few explicit
examples. We begin by specializing Theorem B to the groups G =Z/pZ x ZpZ and
G=PSl,(g).

Example 1. G=2Z/pZ x Z/pZ (p a prime). Since the p +1 subgroups H,, ..., H,<G

of index/order p form a partition of G, we obtain, after cancellation, from

Theorem B (or from any one of the Theorem 4-7) the isogeny relation
JCXJE/G’VJC/HOX...XJC/HP. (1)

Example 2. G=PSl,(g), q=p’ a prime power. By. e.g., Huppert [Hu, IL8.6,
p. 193], G has the partition

r s it
G={ B U u Y RN, )
i=1 =1 k=1
where the B, 1 <i<r, are the (distinct) p-Sylow subgroups of G, €, 1 <j<s, are the
(distinct) split Cartan subgroups of G, \,, 1 £k <t, are the (distinct) non-split Cartan
subgroups of G.

The groups {P;} resp. {€;} resp. {M,} constitute a full conjugacy class of
subgroups of G and have a “canonical” representative in S/,(g) given by

1 «o
1;:{(0 1)eSlz(q).rxe]Fq},

¢={(§ ﬁ?l)eszz(q):ﬂewz},

a=((5 )

where y=trg g ({), {€]F,. a (fixed) primitive (g + 1)-st root of unity. (Note that
0 .
since {2 —y{+1=0, the matrix (_ 1 1) has ¢, {9 as eigenvalues and hence has

order g+1, so N is indeed a non-split Cartan subgroup.)
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We observe that if we put n=(g— 1, 2), then we have (cf. [Hu, pp. 191-192]):
|Gl =(g—1)a(g +1)/n,
IBil=q, r=[G:NsPB)l=q+1,
I€=(g—1)/n, s=[G:Ng@)]l=(a+1)q/2,
=@ +1)/n, t=[G:Ne(NJ]1=(q—1)q/2.

Thus, by Theorem B we obtain
J%(q+ 1)« J(qual)q(ﬁ in ﬁ chm X li[ J(Cq/é.”/"x li[ J(qugtkl)/n‘ 3)
i=1 toj= ’ k=1
Since all the curves C/%P; (resp. all C/€,, resp. all C/R,) are isomorphic, we obtain
from (3) (after dividing by q(q+ 1/2):
JEXJEE DM~ JE g X TG D Jag . 4

Note, however, that while the isogeny relation (3) is valid over every field K for
which all the morphisms involved are defined, this need not be true for the isogeny
relation (4).

We now apply the above “group theoretical examples” to specific curves.

Example 3. Fermat curves. Consider the Fermat curve
C,:x"+y"=1

of exponent m, which is a smooth curve of genus {(m—1)(m—2) if char(K)ym
(which we assume henceforth). Let pjmbe aprime and forO0<i<p—1letC;=C,, ,;
denote the normalization of the curve

s™=tmP(1 — Py,

Note that the genus of C; is given by

m m
= (p—1 +<——1) m—1), if 1=igp-2,
8=, (p g, 1)m=1D p

m m
=gc,_ = (p—1)+ [ —1 )(m—1).
gCo ng—1 2p (p 1)+ <2p 1>(m )

If we put C,=Cy, then we have the isogeny relation

Je. XJE,  ~Jcpy X X Jc, (5

To prove this, suppose first that K contains a primitive p-th root of unity {. Then
there exist (unique) automorphisms o, T Aut(C,,) such that

ox)=0{x, o()=y; Ux}=x, WY=Ly,
and these generate a (sub)group G =~Z/pZ x Z/pZ. Since the coverings

1;:Co=C; (02i=p)
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defined by n}t=x?, n}s=x'yfor0<i<p—1and by n¥t=x, n}s=y” correspond to
all the subgroups of index/order p of G, and since the covering
ng:Cp—=C/G=C,,,
is given by nfx=x?, nfy=y", the isogeny relation (5) follows from Example 1.
Moreover, since all the curves and morphisms are defined over the prime field
QCK, it follows by Remark 6 that the isogeny relation (5) is valid over every field.
Note that the isogeny relation (0.4) of the introduction is a special case of (5)
above since in the case m=p, the curves C,,,, Co=C,, C,_, all have genus 0.

Example 4. Modular curves. Let X(p) denote the modular curve of level p (=an
odd prime) and J(p) its Jacobian variety which are defined over K =Q(e?"?), It is
well-known that X(p) can be realized as a galois covering

j: X@p)-P

of IP* with group G =Sl,(p)/{ + 1} = PSI,(p) defined over K. The quotient of X(p)
with respect to the subgroup P of Example 2 is usually denoted by X,(p)= X(p)/P
and its Jacobian by J,(p). Moreover, we shall write X (p)=X(p)/C and X,,,(p)
= X(p)/N, and denote their respective Jacobians by J,(p) and J,,(p). (The curves
X, (p)and X, (p)should not be confused with Mazur’s [Ma] X ;. (p) = X (p)/N4(©)
and X ,n - o1idP) = X (p)/N () which are double subcovers of X, ,(p) and X,,(p).)
We therefore obtain by Example 2 the K-isogeny relation

JE) ~ 3P x SR T O Q

Example 5. Drinfeld curves. Let K be a field of characteristic p+0, and put g =p’,
f21. The Drinfeld curve D is defined by the equation

D:xyl—xy=1.

It is easy to see that D is a smooth plane curve and hence has genus 3q(g—1). If
KDIF,, which we assume henceforth, then G =S1,(g) acts (faithfully) as a group of
K-automorphisms on D (or, more precisely, on the function field F = K(x, y)) as
follows:

gix)=ax+by, g(y)=cx+dy, if g=<z i)eG.

Thus, if Z = Z(G) denotes the centre of G (i.e., Z={+ 1}ifgisodd and Z= {1} if g is
even) then G= PSl,(q) acts on C=D/Z and hence we can apply Example 2.

It is a routine (but tedius) calculation to determine explicit equations for the
quotients C/H. We summarize these in the following table, in which we put:

n=,Zl=ng(2’q—1)a 6=n—1,
s=xy, t=xly, T=t94 b
u=x"—yxty+y?,  v=x?—yxy+y?

where, as in Example 2, y=tre . (0.
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Table 1
Subgroup H £ 51,(g) So/m Fix (H) Equation
! 1a(q—-1) K(x,y) xy?—xTy=1
1 gqeven K(x,y) xyl—xly=1
Centre: Z= Hq—3d)(q—1
entre {ii 4 odd 2q—-9)(@q-1) K(s,0) art g-1
52—+t 2 =0
p-Sylow subgroup: 0 K(y) -
ARY 0 K(y") -
a1
Split Cartan subgroup: € Hq—6) K(s,T) s 2 (T*~1)+T=0
Non-split Cartan subgroup: it Hq—3) K(u,v) =y —yut 1

From this table we see that D/(Z - B) and hence D/G have genus 0, and so (4)
reduces to
e~ Tt T U

where the equations of C = D/Z, D/€ and D/9t are given in Table 1. (More precisely,
- C, D/Z etc. are the normalization of the (possibly singular) plane curve given in the
table.)
Since D=C if q is even, we obtain from (7) the interesting fact that

Jp~AT"1, (g even) (8)

for some abelian variety A of dimension g/2.

All the examples up till now were illustrations of Theorem B. We conclude with
an example that illustrates Theorem 7 (and which does not follow from
Theorem B).

Example 6. Humbert curves. By definition (cf. e.g., [Ac3, p. 861), a Humbert curve is
a (smooth) curve C of genus 5 which admits five pairwise non-isomorphic
coverings

n;:C—E;, 1ZiZ5,
of degree 2 to curves E; of genus gz =1. (It is possible to show that if char(K) 2,
then the normalization of every plane sextic of the form

yr—4(x*—ax?+ 1)y? +b%x*=0 9)

with a, be K, ab+0, (2a+ b)? + 16, has this property, but we do not need this here.)
As we now prove, each Humbert curve has the (“orthogonal”) decomposition

Je~Jdg X X Jg,. (10)
This, in fact, follows immediately from (the last assertion in) Theorem 7 once

we have shown
gij=a-(€1n781cj)=0’ if 14:]9 lél’ ]és (11)

because we obviously have gc=gp + ... +gg,. To prove (11), we use formula (4.10).
Here deg(n;)=1 (because K(C)=n}K(E) n¥K(E), if i%j), so n;;:C—C;; is
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birational, and hence p;;=g.=35. Thus, by (4.12) and (4.10),
0=g;=[C-D2-1)+2-1+2-1-p;]/2-2)
<4(5-80=0. (12)

This proves (11) and therefore (10) follows.

In the introduction it was remarked that the decomposition (10) follows from
Theorem C. To see this, let us first observe that each covering 7, being of degree 2,
is automatically galois: 7; =, for some involution ;€ Aut(C). Next we note that
if we put Cj;=C/<1;,1;» then

because if Cj; had genus =1, then by the Riemann-Hurwitz formula it would
follow that m;: E;= C/{t,>—Cj; is unramified for k=1, j (and that gcy,=1), so
m;om;: C—Cyj is unramified, which is impossible. Thus, to be able to apply
Theorem C, it is enough to show

Ti.szrj'Tiﬂ 1§ia]§ka (14)

and this follows easily by an application of Accola’s genus relation (cf. [Acl,
p. 4797]).

Finally, let us observe that (10) does not follow from an idempotent relation in
Q[G], where G={1,,...,7T5); in other words, we assert that

yF eyt T ey (15)

{Note that since G is abelian, every idempotent relation is a strict idempotent
relation by Remark 3.) But this is clear, for the right hand side equals (3)- 1
5

+3% Y 1;%1 since the 1,51 are pairwise distinct.

i=1

Actually, by using Accola’s relations, it is not difficult to show that G={z,)
X ...x {14y and that t5=1,-... -7, (cf. also [Ac3, p. 56]), but we do need this

here.
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