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Abstract. The problem of contact between two elastic bodies is studied
under the assumption of nonzero initial gap in the potential contact region.
The related variational inequality is stated and existence, uniqueness, and
local regularity results are proved for its solution.

0. Introduction

The problem of contact between two deformable bodies was first considered by
Hertz in 1882 [11]. Consideration of a case with special geometry allowed him
to decide the shape of the contact region and the stress distribution on it, in good
agreement with experimental results (see [21], p. 193). Generalizations of this
procedure have been followed by a number of authors who studied this sort of
problem using the method of Muskhelishvili ([24] and [7], see also [9] for a
recent review), based on singular integral equations. While they provide good
estimates of the stress distribution, these techniques require knowing the contact
region in advance.

In 1959 Signorini [26] introduced the so called “ambiguous condition” to
describe contact phenomena where the contact region is itself one of the
unknowns. The application of variational methods to this formulation proved to
be effective: existence and uniqueness results were obtained by Fichera (see [5]
and [6]). Successive work has been done in the framework of the theory of
variational inequalities introduced by Lions and Stampacchia [20]. In particular,
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in [4] an extensive treatment of contact problems in elasticity is given, including
mechanical formulation, mathematical tools, and basic results (see also [25]).

Contact between two elastic bodies is studied in this paper, under reasonably
general assumptions on the initial geometry. In particular, a nonzero initial gap
between the two bodies is permitted. These new features distinguish this work
from previous ones, where the zero initial gap assumption is made. We recall [2}
(elastic body on elastic half plane) and [12]. References [14] and [10] study the
problem with nonzero initial gap, mainly from the point of view of numerical
approximation.

The approach we use here follows that of [15] and [16], where several
properties for the problem of an elastic body supported by a rigid punch are
obtained: in particular, regularity results and estimates on the contact region.

In Section 1 we introduce the mechanical problem and present a description
of the contact condition, using Kalker’s approach [13]. Section 2 is devoted to
a precise mathematical formulation of the problem in the form of a variational
inequality; the related boundary-value problem is presented. The existence
theorem is stated under the assumption that the external forces satisfy a compati-
bility condition. This requirement is necessary since the variational inequality is
not coercive. This also affects uniqueness, which is true up to a class of rigid-body
motions. Such a class is completely characterized in the case of a flat potential
contact region. In Section 3 we prove the local H> regularity for the solution
using the difference-quotients technique. Further regularity results, for example
Holder continuity for the gradient of the solution in two space dimensions, are
given in Section 4, based on penalization and hole-filling procedures.

It is also possible to obtain these results via the application of Gehring’s
reverse Holder inequality, first applied in differential equations by Meyers and
Elcrat [22] (cf. [17] and Giaquinta’s book [8]), but we do not present this
calculation here.

1. The Mechanical Problem and Nonpenetration Condition

We consider two elastic bodies in the space R”". Their initial position is described
by the reference coordinates x =(x,, ..., x,) = (£, x,). We denote by Q° and Q°
the reference configuration of the two bodies. They are subjected to external
forces, hence undergo a deformation, after which a particle x occupies the position
y(x) and

u(x)=y(x)—x (1.1)

is its displacement. A portion I'* = 4Q2* may come into frictionless contact with
points that in the reference configuration belong to ' <aQ’ I'“ and I’ are
referred to as “potential contact areas.”

Our first aim is to identify a suitable class of admissible displacements based
on the notion, inspired by conservation of mass, that after a motion the two
bodies should not intersect each other. Although expressing such a kinematic
condition poses no difficulty, it must be suitably linearized in order that our
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problem take on the features of a variational inequality. Different linearizations
provide different solutions and it is difficult to decide which is the most appropri-
ate. For instance, it is not clear that an arbitrary linearization leads to a well-posed
problem. Here we choose one which gives each body equal status, regardless of
their geometries. It has a natural mechanical interpretation in terms of the surface
tractions.

We assume that there is an explicit representation

r**:. x,=¢% (%), £eg® (1.2)

for an open Z<R""!, independent of Q° and Q” and that ¢°(%) — ¢°(£) =0 for
£e=. Let us denote by x*”, y*°, and u® the initial position of a material point
in Q% its final position, and its displacement, namely, u®’(x*®)=
y*P(x*?) —x%P. Let u® = (Ve?(x), —1) and u” = (V”(%), 1) be the normal direc-
tions on I'* and T'®, respectively.

Suppose that the final contact region may be represented implicitly as

h(y)=0 (1.3)

with the nonpenetration condition taking the form

{h(y“)ZO for y*=y%(x%), x"el", 14
h(y®)=<0 for y®=y°(x?), x®el®

Now, if we assume oh/ay, >0, then there exists a function ¢: R" ' - R such that
(1.3) holds if and only if
Yo =(P). (1.5)
So, (1.4) becomes
xptus—P(£2+id%) =0,
b A (1-6)
—xp—up+ (£ +d%) =0.

It is now convenient to restrict the general formula (1.6) to the case of displace-
ments u®® which are small with respect to the linear dimensions of the bodies.

Retaining only linear terms in the expansion of ¢, we have
Xntup—P(X°) —Vy(£9) - 2 =0, (17)
—xP—ub+ P(£°)+ Vy(£P) - 8 =0. '

This is true for any particle x*® € Q%°. If, in addition, x** e '*® and X = %" =%,
then adding the two inequalities of (1.7) gives

0= (%)~ ¢"(R) +ua(£, ¢°(£) ~un(% ¢°(%))
=Vy(R) - @95, o () + VY (%) - #°(%, " (%)), (1.8)

® Here and in the following, the superscript “a, b” is used for properties that hold for both a
and b.
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Now, recalling (1.1),

VY(F) - 4%°(%, o™ (%))
=y (DET(E, 0™ (£))®
=y, (DAY(F, 0 () + 4,00 (£, e (RNAL" (X, 9*°(£))

=, (£)AT° (%, 9*°(X)), (1.9)

where higher-order terms have been dropped.

We shall now make the assumption that the change of the normal vectors
w®? is small, which is usual within the frame of the linear approximation (see
[13]). This means that

Vet () =Vy(F)=Ve’(1). (1.10)
Inserting this and (1.9) into (1.8) we have that
0= *(£) = p®(£) + un(£, ¢*(R)) —un(%, ¢" (%))
—Vo(£) - 1%(%, p*(£) + V(%) - #°(%, ¢°(%)),
or
[n®- u®l(% 0*(£) +[u’ u’I(Z 0" (X)) = ¢*(X) = ¢"(%). (1.11)

Owing to (1.10), in (1.11) we could identify u® with —u®, obtaining a simpler
version of the linearized nonpenetration condition. However, in the next section
we will study a boundary condition of type (1.11), where u* and —u® are possibly
different.

The condition (1.11) (gap condition) defines the class of admissible displace-
ments. Among them, the actual displacement u®® is the minimizer of the total
energy

E(v% vb)E%J aga(x)v] (x)vi (x) dX+%J ag(x)vi;(x) o3 (x) dx
Q° ab

—(T® v*y—(T" v°), (1.12)

where aj(x) is the elastic tensor and (T*", v*”) denotes the work of the external
forces. These can be either volume forces or surface stresses given on I'>? < 5Q*°,
A further restriction for the admissible displacements is that they can be prescribed
on a portion I'3° < 9Q*®.

In the following sections, we will give a more precise formulation of the
mechanical problem described so far.

@ Here and in the following these conventions are assumed:

L v(x)=(3/x;)v(x);

2. Greek subscripts range from 1 to n—1; Roman from 1 to n;
3. Sum over repeated indices is understood.
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2. Mathematical Formulation and Existence Theorem

Let Q** = R" be a bounded domain with smooth boundary
90> =Tab ,Tab Tab, (2.1)

where '3, T'%%, T*® are mutually disjoint open smooth (n—1) manifolds, I'4?
and I'%® possibly empty. I'*® is nonempty and admits an explicit representation
as

Xo =" (£), (22)

for £e E, Z<R""! independent of Q* and Q°, with ¢*(£)— ¢?(£)=0, Ve E.
The outer normal vector to 9Q*” is denoted by u®’; set v*® = u*?/|u®?|.

Let, for integer nonnegative m, [H™(Q2%?)]" be the space of the vector
functions belonging to [L?(Q2**)]" along with all derivatives up to the order m.
The space [H'(Q%%)]" is endowed with the norm

||U||[H @ = ||U||[L @t Zl [lv; ,||[L @) (2.3)
ij=
In Q*” a tensor field aji(x) e C*(Q*?) is defined, satisfying
aga(x)=aga(x)=age(x), VxeQ* 2.4
and

{aa“’b>0 st aga(x)mymg = a®®||m|P?, (2.5)

VxeQ* Vme[R"])? with my; = my,

n

where \\m”z =Zi,j=1 m%J
The linearized strain and stress tensors of v*® e [H'(Q*?)]" are given by

ei_(va,b) [vab+vab],
' a,b a,b (2'6)
Uij(v ’ )=aij’kl(x)8kl(v ).
Define the bilinear form a®?(-,-) on [[H(Q**)]"]* as
a®®(u®?, v = o (u®*)e;(v™?) dx. (2.7)
Jas?
Thanks to (2.4), we have
[
a®®(u®?, v*t) = ,]k,(x)u“’b(x)vk, (x) dx. (2.8)
JQ*

Functions f*® € [L*(Q*")]" and g** e [H Y/>"*(I'**)]", £ >0, are given (see [19]
for the definition and properties of the latter space). We define

(Ta’b, Ua'b> = f?’b(x)U?’b(x) dx“"[ﬂ“/“e(r‘;-")]"(g?’b, U?’b>[ﬂ‘/2“(r§-")]"
a*?
(2.9)
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A function v= (0% v") with v%* e [H'(Q*®)]" is said to be admissible if it satisfies
v** =0 on I'%® and

[ 071 02 (£) +[n" - 0°1(% ¢°(R)) = ¢“(£) — ¢°(%). (2.10)
The set of admissible functions is denoted by

K={v=(v%v")s.t. v** e [H'(Q*")]",

v** =0 on I'%® and (2.10) is satisfied}: (2.11)

this is a closed convex nonempty subset of [H'(2*)]" x [H*(Q°)]".
The problem we are interested in is to solve the following variational
inequality (VI):

u=(u*u’)eK st. Vo= 0" ek,
a®(u®, v —u®)+a’(u® v°—ub)=(T? v* - u®)+(T® v’ —u®). (2.12)

Remark 2.1. Referring to the previous section, we note that VI can be interpreted
as the principle of least energy applied to the two bodies elastic frictionless
contact problem, when the elastic tensor also satisfies aé}’k",(x) = aﬁ’,f}(x). Say, (2.12)
is equivalent to minimizing the energy (1.12), where the elastic energy is given
by (2.8), the work of external forces by (2.9), and the nonpenetration condition
by (2.10). For this reason, we will use the elasticity terminology to describe our

problem.

The mechanical interpretation of VI will be more transparent once shown
the equivalence with a boundary value problem.

Theorem 2.2. Let u solve VI If u®* e [H'**(Q*")]", then:
() —ay,(u™) =2 in 12Q*");
(i) u®*=0 in [HY(I5")]";
(ifi) oy (u™*)vi* =gt in HV/2"(T#%);
(iv) oy (u®?)vreP =0 in H™V?*5(I'*") for smooth v*° with %°- v*> =0;
() [u® p®)E @%(£)+[u® p’I(% ¢°(R)) = ¢“(£) - ¢°(%), a.e. on E;
vi) oy(u*?)vitr®P <0 in H?* (1),
(vii) if P is an open subset of = where (2.10) holds strictly, then
oy (u®?) vt =0in H™/?*°(P%?), where P** ={(%, ¢**(£)): £€ P};
(viii) if Q is an open subset of E where ¢°=¢°= ¢’ then oi(u)yy; =
oy (u®)yp, in HV27°(Q°), where Q°={(%, ¢°(X)): £ Q} and v=»"=
b
-
Proof. An integration by parts in VI gives

b
—H“(n“)(a'ij,j(“a), vf— “?)H‘(n“)—H“(n")<0'ij,j(ub), v; — u?)n‘(n”)
+ a0y (u®) vy, vf — ul)wrpas
b . b_ b
+u 20005 (u) V], 0F —uldwrpaty

=(T% v —u®)+{T> v®°—u®). (2.13)
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We will often make the choice

v=(u+7n%u’) or v=(u*u’+n®), (2.14)
with appropriate restrictions on n° or 5’ In particular, (i) is obtained with
7% e [CY(Q*?)]" and then (iii) with

7*?e[C°(Q%")]", 7**=0  in a neighborhood of T**UT%.

Under our regularity assumptions, the duality

by a,b b
“ )Vf , 077 —ud >H‘/2(an""

HV2@aas0) {0y (u
breaks into

a2 gy dm /2y ez paby( Yz ravy vty ( - Yyt ras)
(note that the natural condition g € H™"/? does not allow extending it to 0 outside
I'**). Thanks to (ii) (say the definition of K), the first term vanishes; because of
(iii), the second cancels with the corresponding one in (T*°, v*® — u®®) (see
(2.9)). Eventually, (2.13) reduces to

H“/2+°(r“)<0ij(“a) V}l, vi— u?)n‘“"’(r")

+ H“/Z“(r”)((fij("b) le", vy~ u?)H‘/Z_‘(Fb) =0. (2.15)

Choose now n*? € [C*(Q*")]" with n®?|pe» € [CT(T'**)]" in (2.14). Adopting the
notation, for ze R",

- b ab
%=z p%b 2P =7 z%0p0 (2.16)

>

(2.15) becomes
H"‘”“(r“"’)(o’ij(“a’b)V}l’b, (ﬁ:’b)i>ﬂ‘“" (T
e ganoy (U v, (00 - vBP) pEP)gue-epasy 2 0., (2.17)
If n*?- »**=0 and n2? is arbitrary, the second term in (2.17) vanishes; (2.17)
becomes an equality and we get (iv).
Going back to the general form of (2.17), we find that
e en (o (u®P) v v i, (0 ) gy pary = 0. (2.18)

If we choose n*” with *”- »** <0 (note that the corresponding v = (v v®)
belongs to K), we derive (vi).

To prove (vii), it is enough to note that, for any smooth function %" such
that 7%®|r«» has support included in P*®, there exists a )t‘,‘;" €R*suchthat VA R,
if [A|=A%" then v=(u"+An" u®) and v=(u® u®+An®) belong to K. Hence,
(2.18) becomes

H‘1/2+8(P“'b)<0-ij(u b)Va b ?b, n* Va,b)Hl/l"e(P"’b) =0,
and this implies (vii). To show (viii), it is enough to take v*® =u*®+ 7*® with
7% e[C(Q%")]", 7*°|rr e [CT(QN]", n7°er=0, niPlee=7Hr, HeCT(Q°)
(remember that on Q°, v=1"=—»% and the notation (2.16)). The function
v=(v% v®) obviously belongs to K and (2.15) gives

e[ oy (u®) — U'ij(“b)]”j’/i, Mav2-e@% = 0.

The sign of 4 is not fixed, hence this must be an equality: 4 being arbitrary, the
assertion follows. 0O
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Remark 2.3. System (i) of Theorem (2.2) is elliptic: in fact, due to the symmetry
properties (2.4), the inequality (2.5) implies that there exists an a,e R* such that,
for any & neR",

a;’kbl(x)gigknjniz 0‘0”5"2”"7”2' (2-19)

Our main tools in the proof of the existence theorem for VI are Korn’s
inequality and the structure of the nullspace of a®°(-, -), the rigid-body motions.
As for the former, we recall that, for some constant C =0 (see [4])

.[ , €(v"")eg(v™") dx + [0 [faeeyr = Cllo** B eny:
a*
thanks to (2.4) and (2.5), this implies

J , agia(x) vl (x) vt (x) dx+[|o*° | fzt)= Cllo®® |G o). (2.20)

a*
The set M of infinitesimal rigid motions is defined as M = M“ x M°, where
Ma,b = {ga,b € [Hl(Qa,b)]n: aa,b({a,b’ ;a,b) — 0}

={{%: (PP =P+ DEPx;, c*® e R", D*? € [R"]* with D§® =-Dg"}.
(2.21)

Let A=(A%A"eK satisfy (A% w) (% @%(£)+(A%- u®)(& (X)) =
¢%(£)— ¢®(X) and define the cone

K,={v— A, when veK}. (2.22)

Theorem 2.4. The variational inequality VI has a solution whenever

(T% ) +(T", (") <0 (2.23)
forall £ = (L% {°) e M', where
M/E{IE MﬁKA S.t. —{EKA}. (2.24)

The solution is unique up to an element of

M°={{eMst.(T% {)+(T? *)=0}. (2.25)

Proof. Existence is a well-known result: see, for instance, [6] and [20] or [18];
see also [1]. Note that, in order to get the existence theorem, the hypothesis
g**e[HV***(I'**)]" is a little stronger than necessary: the natural framework
would require the use of the space [H V*(T'>")]"; so, T*" turns out to be
continuous on [H'(Q%?)]".

About uniqueness, we observe that, if u is a solution and {e M, then the
function w=wu+¢ is another solution, as soon as it belongs to K. Indeed,
aa,b(wa,b, Ua,b _ wa,b) - aa,b(ua,b, va,b _ ua,b) and <Ta,b’ wa,b>= <Ta,b’ ua,b>. Con-
versely, if u and w are two solutions, then itis elementary toseethat{ =w—uec M.
Inserting v =w (resp. u) in the VI solved by u (resp. w), we get that (T° {“)+
(T? ¢®y=0. 0O
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Remark 2.5. Condition (2.23) is a “compatibility condition’ on the data in order
to have a solution for VI. This is due to the lack of coerciveness of a®®(-,-) in
the general case. However, when I'§ and '} have positive measure,”” M’ turns
out to be empty, hence no restriction is imposed on T%’; note that a rigid-body
motion can vanish on a set of nonzero n—1 measure if and only if it vanishes
identically.

Remark 2.6. The wide generality of the geometry of Q%” does not allow a more
detailed interpretation of M’ and M°. However, this is possible in special cases,
as we shall see in a moment.

In the remaining part of this section we will investigate a particular problem.
Precisely, we will make the following:

Assumption. T3 and T'% are empty and ¢° = ¢®=0. (2.26)

In this case, ['** =2 < {(%, x,) with x, =0}, and »* =—-»"=(0,0,...,0, —1).
Since we can now choose A=0, K=K, is a cone; condition (2.10) becomes

v®—0v2=0 onE.

It is immediate that M' is given by the infinitesimal rigid-body motions ¢ with
£2—{2>00n E.

Identifying the rigid motions that affect uniqueness requires some remarks.
First, we derive some easy consequences of the compatibility condition (2.23),
which will be assumed to hold true henceforth.

Lemma 2.7. For all {e K~ M with —{ €K we have that

(T ¢ +(T", (") =0.

Proof. 1t follows from [16], using the compatibility condition and the fact that
K is a cone. O
Let us introduce the notations:

F&b=(T2%, 1), i=1,...,n, (2.27)

M =(T?", x)—(T?", x),  ij=1,...,n (2.28)

Lemma 2.8. We have:

() F¥*=0,A=1,...,n-1;

(i) Fa=-F5<0;

(iii) Myl=0,A, u=1,...,n—1;
(iv) M§,=-Mb,, A=1,...,n—1.

) In this case, the problem becomes coercive and the general theory of [20] can be applied:
this gives existence and uniqueness for the solution, again without any compatibility condition on
the external forces.
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Proof. (i) For fixed A <n, the function n=(7% n°) with ¢=6,, i=1,...,n,
1% =0 belongs to K along with its opposite: Lemma 2.7 yields the result for F5.
Analogous procedure works for F3.

(iii) Similarly, we can prove that M5, =0, taking 7 with 7" = x,8;, — X, 8,
n%*=0 and applying Lemma 2.7.

(ii) Let &, k be real numbers, with &> 0: the function 7 =(%° n") with
ne*=0for u=1,...,n—1, na=k m,=k—¢ belongs to K, while —n£K. By
the compatibility condition we must have

0>(T° p°)+(T® n*)=k(F2+ F%) —eF?.

This cannot be true for all £ >0 and for all k, unless F5=0, in which case for
£ -0 we get k(F2+ F5)=0. Since no restriction of sign is made on k, it must be
Fi+Fy=0.

It remains to show that F5 > 0. Assume F% = 0: plugging into the compatibility

condition the function ¢ with ¢2°=0, Vu <n, {5=0, {2=1, we derive an

immediate contradiction, so (ii} is proved.
(iv) The proof is similar to that of (ii), hence we omit it. O

A further property which shows an intrinsic interest is the following, cf. [5].

Theorem 2.9. There exists a point x,< (conv E)° such that for all { € M
(T £ +(T°, £") = Fal (o) + Frln(xo). (229)
Proof. Using the representation (2.21) for { € M, Lemma 2.8 gives the following,
where the superscript a, b has been dropped when unnecessary:
(T, {**) = Fi+3DyMj; = €uFy +3DsnMoy +3Du M,
=¢,F,+ DMy, = FR° {0 (x3"),
1

a,b
n

where x§°=—p (M3, ..., ML}, 0). (2.30)

Furthermore, (ii) and (iv) of Lemma 2.8 imply that x§ = x5. Denoting by x, their
common value, we claim that x, € (conv £)°. For, if this were not true, a function
¢ € M would exist such that {*=0, {2>0 on E°, {2(x,)=0. For this function,
(2.23) implies that

0> (T ()Y +(T% L")y =(T" (%)= Fala(x),

which contradicts (ii) of Lemma 2.8. O
As an obvious consequence of this theorem, we have:

Corollary 2.10. If{e M° then
[£n—{01(x0) =0. (2.31)
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Going back to the question of uniqueness, let u and w = u + { be two solutions
of VI with g*® e [H/*(I'**)]": we already know that { € M° (see Theorem 2.4)
and that (2.31) holds. Our aim is to show that the function

x=-00 (2.32)

vanishes identically on E. The proof of this assertion is based on the following:
Lemma 2.11. Let u be a solution of VI. Then

o,.,(u*)eLY(E) and I O (U*%) ds = —F4.

=

Proof. The procedure of [15] works also in our case, as soon as we prove that
u is locally H?: indeed, u turns out to be H? regular outside any neighorhood
of 82U al'*" (see Theorem 3.3). d

Using Lemma 2.11 and, once more, the H” local regularity, it is easy to see
that property (viii) of Theorem 2.2 is actually true, say:

Lemma 2.12. 0,,(u%)=0,,(u®) ae on E.
We are now able to prove our main theorem:

Theorem 2.13. Under assumption (2.26), the function x defined in (2.32) is
identically zero. Hence, the solution of VI is unique up to an element of

MP®={te M®% ¢{cK and -¢€K}. (2.33)

Proof. By contradiction, assume that y does not vanish identically. Anyhow, it
does vanish at x, (see Corollary 2.10) which belongs to (conv E)°. Then, the set
{(%, 0): x(%,0)=0} is a nontrivial hyperplane that splits Z into two parts with
nonempty interior. Denote with =% (resp. Z7) the part where y >0 (resp. <0).

We have
{Wﬁ—Wi’.=ui‘.+§ﬁ—uﬁ—§22x>0 on BY, (234)
ul—ub=wi-e—wi+’=—x>0 onE". '

Theorem 2.2 and Lemma 2.11 imply that
Ta(Ww*)=0 a.e. on EY, O (u*?)=0 ae.onE". (2.35)

Since (W) = 0 (U + (%) = 0, (") + 0, ({**) and 0, ({*") =0, we
derive, for instance, that o,,(w*®) =0 a.e. on =. But this is impossible, since
Lemma 2.11 and Lemma 2.8(ii) require that IE Opn(Ww*?) ds> 0. This completes

the proof. O

The result we have just obtained is physically meaningful: at the equilibrium,
only rigid motions that do not separate the two bodies are allowed without
increasing energy.
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3. Local Regularity

In this section we prove the local H? regularity of a solution u of VI. Since this
result is well known in the interior of Q*® and on I'*UT%®, we need only
consider the potential contact area. Let £,€ = and define
Ki={v=(v% 0% st v** e [H'(A** n Q*")]", v** =u*’
on 0A** ~Q*" and (2.10) is satisfied for £ e A}, (3.1)

where A*” is a smooth neighborhood of (£,, ¢**(%,)). Assume that the projections
of A%* AT*" on {x, =0} coincide, and denote them by A.

It is easy to see that the restriction to A** N Q*® of u solves a variational
inequality of the same type as VI, with convex set K4, volume integrals restricted
to A*®* N Q*® and no boundary terms in T*’. Our first step is to symmetrize the
geometry of the local problem, by means of the change of variables

x>z with £=% z,=x,—e (X)+¢°(%)]. (3.2)
The local variational inequality becomes:

{to find (4% @) e K, such that for all (5% 5°) e K,

a(da ~a__ua)+a (~b ~b b)Z<Ta’ ~a ~a)+<Tb’ 6b_ab>’
where quantities with a tilde denote the transformed of the corresponding ones
through (3.2). In particular,

a**(ar, “*”>ELG,I, ae G5 (2) BN (2) d, (3.4)

K, ={0= (% %) s.t. 5%* € [H'(A** A Q*")}", 5%° = *° on 9A*® N O™
and [6°- £°](Z, ¢*(£)+[8°- £°1(Z, $°(£) = () - ¢°(£)
for Ze A} (3.5)
Note that /i%® may not be the normal vector to ['*? in general. For fixed A% a
suitable choice of A® makes A® and A’ symmetric with respect to {z,=0}. A
reflection of A® around _the hyperplane {z, =0} allows us to state the local
variational inequality in A® n Q% Define the operator
RP:R"->R",  R®:(%z,)-> (& —-z,). (3.6)
Our local problem can be stated in A nQe by means of the functions 0°(z) and
5°(R®z), where z€ A " Q° The convex (3.5) becomes

Ke={0=(3%8")s.t. 5% 8° o R e [H'(A* n 3)]",
5°=4% and §% o R® =1%o R® on 9A* 1 0)°

and ([5°- G°]1+[(8°° R”) - (&°° R®)])(Z, °(£))=2¢°(£) for £ A}.

(3.7)

The unilateral boundary condition in (3.7) involves two vectors i® and &”° R®
which are in general different from each other. It is convenient to introduce the
orthogonal matrices E*?(%) defined as follows:

=EiN, #pe R"=EpN,

y-ije EAd

(3.3)

(3.8)
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where N is the unit normal vector to I'*. According to this, the gap condition
becomes

[af|a®|Bg+ (ke RP|E"  RPIEGINHE ¢°(2))=26(2)  for ZeA.

(3.9)
Hence, it is natural to express the variational inequality in terms of the functions
Uab_|~ab Rab|( ~ab Ra’b)Ek] , (3.10)

where R denotes the identity, to shorten notations. This leads to the following
form for the local variational inequality:

to find (U? U®) e K, such that for all (V% V®)e K,
AU Ve-U"+AU® v -U®) (3.11)

= J AFi@LVe - Ui(z)+ F2(2)[ VP - U"1i(2) dz,

where (V*® defined according to (3.10))
K ={V=(V% V*)st. V** e [H' (A"~ Q9)]", V** = U*" on EY Y
and [(V*+ V®)(Z, ¢°(2)) —26°(£)N (4, $°(2))]
x N(Z, ¢*(2))=0 for Ze A}; (3.12)
AZSUE Vir dz +J BRUMVE dz

A%nG°

Aa,b( Ua,b, Va,b) = J-a

A*nQ°

+J Cye U:‘,”V“”dz+J DUtV dz
Atn0°

= a**(a*®, o*%); (3.13)
PP = o 27+ R¥ER. (314

In (3.13) the coefficients
Ast= W (@58 R™) yuyinESES, (3.15)

B%L, C%t, D", are smooth combinations of g with coefficients depending on
4*°, E*" and on the diagonal matrix
1, i=j<n,
yy=4-1, i=j=n, (3.16)
0, i#j

) Eab 5 3 rotation which transforms N into 7% and 5° o R® respectively. Of course, if I'* and
T'* were symmetric with respect to {x, =0}, then we have E$ =38, and E}; = ¥, (see (3.16)).
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After a rigid-body motion, we can assume zy=0 and N(z,)=(0,0,...,0,—1).
Note that this can affect the ellipticity condition in the form (2.5), but not in the
form (2.19). For this reason, we will study the local problem under the property
(2.19), assuming that (2.20) remains true in Acn e

The next step is to straighten 6A° ~ (°. Define

¥(z2)=(% z,— ¢°(2)) (3.17)
for Ze A. Under this transformation, let
G,={yeR": |y|<p,y.>0}

be the image of A~ Qe for p small. In G, we define a system_of smooth
orthonormal vectors 7,(y), ..., 7,(y) such that 7, (J, 0) is tangent to 3A%~ 0% and

7.(7,0) = —=N(Z, ¢°(2)), ZeA. (3.18)

Any function- We[L*(A°~(1%)]" admits a representation on the system
m(¥), ..., Ta(y) as follows:

W(z) = Wi(y)7(y), - (3.19)

where W,(y) are suitable real numbers.
The unilateral condition in (3.12) reads

[(Ve+Ve+29,1(5,0)=0, (3.20)
where ®,, is implicitly defined by ¢*(ZYN(Z, ¢°(2)) = - {(F)m(P). For,
W(z) - N(2) == W(2) - 7,(y) = = Wi(»)(y) - 7a(y) = — Waly), (3.21)

where z=(2, ¢°(%)), y=(5,0) and (3.18) and (3.19) have been used. So, the
convex K; becomes

K={(Ve, V*)®c[H!(G,)]"x[HYG,)]": V*b=[*
on 3G, n{y,> 0} and (3.20) is satisfied}. (3.22)
We have

Aa,b( Ua,b’ Va,b) - A”a,b( l‘]'a,b’ Va,b)

f {[AZ 08k + A 20 (V2b),,
+[Bgr Ugh+ Agb Upt1(Vab),} dy (3.23)

® Vb denotes the vector of components V.
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for suitable smooth coefficients A%, A%}, Byr, A%". The variational inequality
(3.11) becomes:

to find (U? U®)eK such that for all (V% V*)eK,
A0, Vve—- 09+ A(O°, VP - 0P (3.24)

= [ Fre-on e R - 00
GP

We now use the difference quotient technique to prove the local H regularity
for U“b Let n € C*(G,) be such that 0= =n=1,n1=1in G,/4, n =0 outside G,
Let ¥, be a smooth extension to G, of ®,. We plug into (3.24) the test functlon

Vel (y) = U (3)+ n*WIT* (v + h) = T (») + ¥ (y+ h) - F(y)],
where heR is small and y+h is shorthand for 1y s Vuth oo, yn), With
1<p=<n-1.1Ttis easy to check that (V% V®)eK.

With the notation AW(y)= W(y+ h)— W(y), the principal terms in (3.24)
(see (3.23)) are

J Az UL IIATE (p) + AF (1) T}, dy. (3.25)

G,

Writing (3.24) in the variable (y + h), then choosing
Ve (y+h)= U (y+h)=n*(y+ WIAT>(0) + ¥ ()],

the principal terms are

J AGi(y+ MU+ B{=n(y+ WIAT (») + AT (y) T}, dy. (3.26)

G,

Adding together (3.25) and (3.26), we have

—J [AT**(y)+ A% (3)]Aln* A5 U7 1(y) dy

p

_J [AUab(Y)+Aq’(y)]kA[ﬂ lAukan b](}’) dy. (3.27)

Consider the_first integral in (3.27). Adding and subtracting the quantity
7 (y)A,,k,(y)U ®(y+ h), a suitable grouping yields

—L AU )ATE ()02 () AGh(y) dy

o
r

-] U (y+mATR (DAl (1) Aga(»)] dy

~

—| ATE DAY (3)AGRY) dy

p
r

| O2(y+m)Av, (Al (»)AZ(y)] dy

Jg,

=—[I{P+ ISP+ ISP+ 190 (3.28)
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Inequality (2.20) implies (see the Appendix)
C~‘|| nA f]a’b”fH‘(G‘,)]" = Aa'b("?A Ua’b, nA Uﬂ’b) +[na 0(1”’”&2(6,,)]",
hence, as shown in [15],
Cllna 0 |fwq,y = I+*+LOT, (3.29)

where LOT denotes in general a sum of “lower order terms.” These are integrals
containing the solution only in the forms:

() AUE () Ub(v);
(i) AU () U (y);
(iii) AUZ(»);

(iv) ATZ () U (y),

and so on. Note that the terms in (3.23), (3.27), and (3.28) not taken into account
so far are LOT.
We are now able to prove that

AU® AU?
n

(3.30)

2 2

h h
= C{| 0|z opr + 1 O oo + 1 B R 1 E IR, ) (3.31)

This is done by inserting (3.28) in (3.29), then using (3.24). About LOT we act
as follows. Terms containing (3.30(i)) are treated as I2°:

. 1/2 N 1/2
IIS""ISCSUP{UG 7?WIUE )P dy] “ PWMIAUE ()T dy] }

i ikt 2 G,

[H'(G)1" H'(G,)1"

1, ~, 7a
Sc[; InU** B+ mAU ’b”fﬂ‘(cp)l"]’

where £ >0 is arbitrary (Young inequality). An analogous procedure works for
(3.30(ii)); an easier one for the remaining LOT. Letting A~0 in (3.31) and
recalling that n=1 in G,,s, we have UﬁfkeLZ(GpM), Vi, k=1,...,n, Yu=
1,...,n—1.

As shown in [15], an estimate for || U ;f’,f’,,lle(Gp L0 i=1,..., n, can be obtained
in terms of the remaining second derivatives by means of (i) of Theorem 2.2.
Eventually we can go back to u*® by means of smooth linear combinations (see
(3.19)), using also the regular operators R*® and E*’. So, we have proved the
following:

Theorem3.1. Letf*" e [LA(Q*?)]", g*® e [HYX(T**)]™. Any solution of VI belongs
to [H(Q3)]" x [HX(Q5)]", for any 6 >0, where
Q2P ={x*? e Q% dist(x*", T ** Lal'§° L AT 2®) > 8}. (3.32)

Thanks to the Sobolev embedding theorem, Theorem 3.1 immediately yields the
following continuity resuit.
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Corollary 3.2. Under the same assumptions as in Theorem 3.1, any solution of
VI belongs to:

1. [CO*(QOHTPX[C™ QDT for all e €[0,1],if n=2;
2. [COVHQHT X[CHAQR)T, if n=3.

If n=2, a stronger regularity result will be proved in Section 4, namely local
Holder continuity for the gradient of u®’. The same method will also provide
local Holder continuity for the solution when n=4.

Remark 3.3. If in a neighborhood of %,€E it is ¢°(X) = ¢”(%X), then the H’
regularity near x, can be obtained simply by a straightening of the common
boundary (see (3.17)), then manipulating the variational inequality (3.24).

4. Further Regularity of the Solution

4.1. The Main Result

To illustrate how additional regularity of the solution is achieved, we shall employ
the method of [17] based on penalization and Widman’s hole-filling device [27],
but limited to the case where the two bodies Q® and Q° are initially in contact
on an open submanifold of the x,, = 0 hyperplane. Indeed, since our considerations
are local, we set

G*={xeR": x,>0,|x| <1}, G’ ={xeR": x,<0,|x|<1},
[*=r*=r={xeR":x,=0,|x|<1}, T =9sG*"\T,

and consider the convex
Ko={v=(v% v"): v** e [H(G*")]", v*—v®=0 on T, v*® = 8*® on T'3"},

where 9*° is a given function in [H'(G**}]". Suppose that the force distribution
is given by

<T,£>EJ f“-{“dx+J frottdx, =055,
G*° Gt

where f*” are suitably smooth, for instance, f** € [L*(G*?)]".
Finally, let u = (u° u”) e K be the solution of

a®(u®, v —u®)+a’(ub, v°—u®)=(T, v~ u), veKg. 4.1)

Thus problem (4.1) corresponds to the variational inequality VI of the preceding
sections suitably localized, and somewhat simplified for purposes of exposition.
Our object is to prove an integral estimate {see Theorem 4.1 below) which implies
Holder continuity for the solution when n =4 and for its derivatives when n =2,
in, say, a neighborhood of x=0. This ought to provide some confidence in the
variational approach, not to mention the smoothness assumptions used to derive
the constraints appearing in K.
To shorten notations, let us set [V2{[? =Y, ., (¢ x)* for {=(L4, ..., &)
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Theorem 4.1. Let u be the solution of (4.1). Then there exist M >0 and B>0
(depending on f**, 9*°, a*”) such that for r<}% and |x,|<}
r

V2uf dx<=Mr*f,  x,e G, (4.2a)

J B (x0)nG*®

and

IV2ubP dx< Mr*®,  x,e G. (4.2b)

J B,(xo)r\Gb

Before proving the theorem, let us state its consequences.

Corollary 4.2. Let B> 0 be the number found in Theorem 4.1.

() Ifn=4, then u®* e [C**(G*" n B,,4,(0))]*, for all A < B;
(ii) If n=2, then u®" e [C"*(G*® N B,,4(0))1*.

Proof of the Corollary. (i) From (4.2a,b) it follows that u{; belongs to the
Morrey space L>**(G*). Since u®® e [H*(G**)]*, we get the Holder continuity
with exponent A, for all A < (see [3]).

(ii) This is a consequence of (4.2a,b), by application of Morrey’s lemma
[23]. O

So, we just need to prove Theorem 4.1.

A statement of the complementarity conditions will help to clarify our point
of view. With the same method as in Section 2 we can derive from (4.1) the
following:

—oy,; (") =" in G*°

ul—ut=0

Uﬂn(ua) = Unn(ub) = a.nn S 0
. onl, (4.3)

(uz - un)onn =0

a',m(ua’b) =0

u*=9%° onl%’.

Set ||Z]l= (%, 0)— ¢°(X, 0). Due to Theorem 3.1, in (4.3) the equality ||, |0, =0

isintended a.e. onT5 =T N {(%, 0): |X| <1 -8}, forall § € ]0, 1[. Since [|u,]| actually
belongs to H*(T';), we get that

el .o =0 ae.onls, 8€]0,1[, pu=1,...,n-1 (4.4)

To obtain (4.2a,b) we shall exploit (4.4) in conjunction with the inequalities,
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valid for sufficiently small r and constants C.;, ..., Cyno1)
J |V2us? dx+j |V2u®[* dx
G Gt
M,
== {J un. - ca ) dx+j \ (uh,—ch.)? dx}
H® H®

r

+M0{J‘ |V2uc)? dx+-[ |V2ub}? dx}+F(r)
H? HS
and

j V2ul? dx+J [V2u® dx

r r

2l[ (ontur et | oty ]

+ MO{J [VZu®? dx + J |V2u®[? dx} + F(r),
H? H
where M, is a suitable positive constant,
G =G** n{xeR": |x|<r},
H»=G3N\G?,
0<F(r)=Cr” fora C>0, andforall vel0,1[,

269

4.5)

(4.6)

and a summation on u =1,..., n—1 is intended in (4.5). The proof of (4.5) and

(4.6) is delayed to Section 4.2.

To understand how (4.2a, b) follow from (4.5) and (4.6) we recall two familiar

Poincaré inequalities. For this, let

T,={(%,0): r=|%|=<2r}.

Lemma 4.3. Suppose that { e H'(H?) satisfies

meas,_{{=0,xe T.} =3 meas,_,T,.
Then

I Pax= Crzj' |V¢|? dx,
HS HS}
where C is independent of r.

Lemma 4.4. Suppose that { e H'(H?) and that E < T, satisfies

meas,_; E =1meas,_, T,.
Then

2
J Fdx= C{rzj |V{l2dx+r2—"[J {d)’c‘] },
HS HS E

where C is independent of r.
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Analogous results hold for H?. Obviously, Lemma 4.3 follows from Lemma
4.4. We regard the proof of Lemma 4.4 to be routine and omit it.
Proof of Theorem 4.1. According to the complementarity condition {4.4), either

meas,_{o,, =0, xc T,} =1 meas,_, T, 4.7)
or
meas, {||u]|. =0, xe T,} =3 meas,_, T,, p=1,...,n-1 (4.8)

If (4.7) holds, we employ (4.6) and Lemma 4.3. After simplifying in (4.6) we find
that

j |V2u? dx+j . |V2u®|* dx
GY G

SMI{J |V2uc|? dx+J |V2u®[? dx}+F(r). (4.9)
H® H®
However, if (4.8) holds, there are sets E,, < T, such that

ui,=u,, onkE,, meas,_,E, =3 meas,_, T, u=1,...,n—1.
Choosing now, in (4.5),

1 n 1
— b a4
Cny = u;, dx= Uy, dX,
meas, . E, E, meas,_E, Jg

(3

we obtain
J (udh —c,.) dx=Cr J [Vulbl? dx=Cr J [V2u®b|? dx
HEY HS ’ HEP

by Lemma 4.4. As will be seen, it is necessary to choose the numbers c,,
independently of a, b to derive (4.5). In this way we again arrive at (4.9).
Writing

w(r)= j . |V2uc)? dx+f , |V2u®|? dx

r r

we have from (4.9),
o(r)=M[w(2r)—wo(r)]+ F(r)

or
1
=Aw(2r)+ F
w(r) = A0 (2r)+m F(1),
M
A:1+1i41<1’ |F(r)|$cr2y fOr VE]O, 1[

By a well known lemma (see [18]), there exist M >0 and 8 € ]0, 1[ such that
w(r)=Mr*®,  rsmall

This proves Theorem 4.1 in the case x,=0. When x,€T, |xo|=<%, and r=} the
procedure is analogous. The remaining cases may be treated in the same manner
as [15]. ]
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Up to verification of (4.5) and (4.6), the proof of Theorem 4.1 is complete.
Far from oI', when n=2 Holder continuity for the derivatives of u*® on the
remaining part of G*” can be obtained again in the same way as in [15]. Thus
we have the following:

Theorem 4.5. Let f** € [L°(G*")]". There exists B €10, 1[ such that the solution
of (4.1) belongs to

(i) [C™(GI*X[C™* (G, if n=4;

(ii) [C"P(GHP X[CP(GHP, if n=2;

for any 8 €10, 1{, where

g’b = {xa’b e G*: dist(xab, o) > &}

4.2. Proof of the Estimates (4.5) and (4.6)

In Section 3 we employed a finite difference technique to establish our estimates,
so here, to illustrate a different idea, we use penalization. Conditions (4.3) suggest
consideration of

—0y,,;(u*?) =f*" in G*,

— O+ Be(([|unf) =0 }
onTl,

(4.10)
T (u®?)=0
u*?=9%" onl%’,

where B8.(t) e C*(R), B.(t)=0for t=0, B.(t)<0 for t <0 and lim,, B, () = —©
for t <0. Written in weak form, (4.10) becomes:

u*® e [H(G*®)]", u**=9*" onT'%" and for

ga,b € [Hl(Ga,b)]n’ {a,b — 0 on rs,b’
0 (U, £) + ab(u®, £) + J B DIl d% = (T, . (4.11)

The solution u2? of (4.11) is smooth in G%°. This may be shown by applying
difference quotients repeatedly. Expression (4.11) is a result of multiplying the
equation by ¢{*” and integrating by parts, using, of course, (4.10). It is easy to
check that % > u®? in [H'(G*®)]" and weakly in [H*(G2®)]".

Now we are able to prove (4.5) and (4.6), beginning with the former. For
€ >0, consider the penalized problem (4.11); in the interest of brevity, drop the
subscript ¢ in u, and B,. We set { = (% ¢°) with

# = (uil = i) s @12

where ¢’ are constants subject to ¢, = ch, and 7€ C3(G*U G®UT) is a cutoff



272 P. Boieri, F. Gastaldi, and D. Kinderlehrer

function with

n=1, |x|=r,
n=0, Ix|=2r, (4.13)
val=7

r

With this ¢ in (4.11), we consider the boundary term first:

J D =~ Bt o=
== Bttt a

= L "’ZB'(IH“'-”D”W,,IH?M de=0

since ¢4, = ch, and B'=0. Thus
a®(u®, {*)+a"(u’, {*)=(T, {). (4.14)

Consider now the term a®(u®, {%):

a®(u®,{%) =1 ou(u*)Li dx=J Oy (u)[n*(ug, — i)l dx
J G G

= oy’”(u“)ugjunzdx+J oy, () (Ui, —ct)(n?),;dx
" a Gd

r

= o;(us)ui,n’ dx+J 7y (Vu®)ul,,n* dx
. o

vy G

+J oy () (Ui, — ) (n°); dx,
Gd

where we have written
0y, () = oy(u,) + 7;(Vu®), 7;(Vu®) = agu , uis.

Analogous result holds for a®(u®, ¢°). After addition, using also (4.14) we obtain
that

J ﬂzaij(“fzn)"zm dx+J b nzo’ij(u,bﬂ-)ugju dx
G G

—+

=(T, )+ U 73 (Vu®)ui,m* dx J \ r,(Vu®)ul,,n* dx
G* G

+ H oy, (Wi, —ci)(n?) ;dx
Gll

+

J' o'ij,#(ub)(ugy"cibp.)(nz),j dx|. (415)
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We now apply the technical observation, Lemma 3.2 of [17], to estimate the L?
norm of the second derivatives of u*® in terms of the left-hand side of (4.15).
Thus, we obtain that

J 7 V2ul dx+J ) 2 VZu® dx < J*+ J® +[r.hss. of (4.15)], (4.16)
G* G
where

ab __ a,b a,b a,b a,b
J& = J . aijklnn,j(ui,y. ~Cig )ulgly. dx
G*
.
a,b ab a,b ab __ .ab
+ ) agan,m, {(us, — i ) ui, Ck,u) dx
G*

+ 2 (udl —cil)? dx+J [, (Ul =i dx
J Ga,b Ga,b
.
,b 3 N
ot s - o

o

Owing to the weak convergence of u®® to u®® in [H*(G2”)]", using also the weak
Ls.c. of the norm, we may pass to the limit when ¢ - 0, obtaining (4.16) for the
limit function u®°.©®

In the right-hand side of (4.16) we apply Young’s inequality to the various
terms, including those in (7, {), and obtain expressions of the following types:

@) v Lu V2 ut dx;
e 1 2 a,bl2
(ii) —y— Gabn [Vu®? dx;
(iii) LM lud? — e’ dx;

. 1
(iv) WJ blu,‘-ff—c?;“dx;
H?

r

w | lska

where ¥ is a small parameter. Let us examine the various cases:

(i) This term is moved to the left-hand side.

(ii) Since any derivative of u®® belongs to H(G%®), from Sobolev embed-
dings we get that it also belongs to LY(G%%), where ¢ =2n/(n—-2) if
n>2 and gq is arbitrary if n =2. Then,

r

1/q
J 2| Vu®®f dx =< L[ IVu“’qu] [meas(G*%)}*/" = Cr*”
Ga,b Ga,b

for all v€]0, 1[ (actually, »€]0, 1], if n>2).

®) Remember that in (4.16) u®? stands for u®®.
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(iii) Applying Poincaré inequality (Lemma 4.4) and taking as ci;’ the average
of ui’f on G2°, we are able to estimate this term by means of the quantity
Cr’ [ gos [V u®*? dx.

(iv) For i= A <n, let cﬁ’: = average of u
inequality (Lemma 4.4). Thus

a,b

%> on H®® and apply Poincaré

1
= lugh —cttPax=cC VZu®Pdx, A=1,...,n-1.
a7 H®

a,b
i,

Since uﬁf’,f’,, may be expressed in terms of u;,, A <n, the corresponding term may
be added to the left by increasing the constants on the right (cf. Section 3).
Defining F(r) as the sum of the terms of type (ii), (iii} and (v), we get (4.5).
Note that it was necessary to choose ci, =ch, to obtain cancellation in the
boundary terms.

Proof of 4.6. Again, let ¢ >0 and u=u,, B = B,. Set, for fixed pu=1,...,n—1,
(=050,
P =—ntull, (4.17)

and let cj-j-’b be two matrices of constants with ¢’ =0. We place ¢ in (4.11) and
consider, again, the boundary term first:

[, Bz a8 == gl i, .1

r

= B'(lluall) a5+ L BllunlD(n?), ullesall .. d5

=] BllwallD(n®) slllanll... d%

~

= o)) lluall . d%

JI

from (4.10). As £ >0, according to the boundary condition (4.4) and the weak
convergence of u®’ to u®? in [H}(G%)]",

im [ (Dl =
Turning now to the volume integrals, since c&’ =0,
a®(u, (%)= J oy (u®){i; dx = J [oy(u®) —c51Li; dx,
G° G*
50

a®(u®, %)= J' o-,j#(u")ufj,m2 dx+J [o(u®) - cg-]ujfj,t('qz),pL dx.
G* G
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Rearranging this in a manner similar to the preceding derivation, applying the
technical Lemma 3.2 of [17], letting £ » 0, and using Young’s inequality, we find
that the limit function u®® satisfies

J 3 Vusf? dx+J 73 V2u® dx
Ga Gb

C
SF [J'Ha lo (u®) - c§f? dx+J.Hb o (u®)— 3 dx] + Lo+ L2

(4.18)

In L*® there are terms of the same kind as (i), (ii), (iii), and (v) of the first part
of this section. The first term of the right-hand side of (4.18) shows three types
of summands.

For i<n and j<n, choose cg-"’ =average of ’zr,-j(u"’b) on H*® and apply the
Poincaré lemma. For i=u <n and j=n, we have a,,(u**)=0 on I (see (4.3)),
and Lemma 4.3 may be used. Finally, o,,(u*?) appears in the final form of (4.6).

Again, uﬁ’,f’,, may be found by the equation. This permits absorption of the
second derivatives integral over G*®, and the proof of (4.6) is complete. a
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Appendix

In order to get (3.29) a coerciveness-type inequality has been used: it is not trivial
to see how it can be derived from (2.20). Let us prove the following:

Lemma A.1. Assume (2.20) holds. Then there exists a constant C >0 such that
forall V= (V2 V®e¢ [H'(G,)]" x[H'(G,)]", with Ve® =0 on 8G, Nn{y,> 0},
APV, Vo) + | V8 e = CI V! o, (A.1)

Proof. From (2.20) it follows immediately that

J L, @5l ORT dx+ 0% [faans namey = Clo* (Bt nasnyr,  (A2)
A*~Q®

for all v** € [H'(A%* A Q*?)]" with v*® =0 on 9A%* N Q*®, where C is the same
as in (2.20). After the change of variables (3.2), it is easy to see that there exists
C, >0 such that

d“’b(ﬁ“”’, 6"”’) +| e I fLZ(Aa,bmﬁa.b)]n =G| %t I %Hl(;\a,bﬁﬁn,b)]n’ (A3)

for all 5*° e [H'(A** A 1**)]" with 5%° =0 on 9A%* A *°.
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After the change of variables (3.6), using the definitions (3.10) and (3.13),

we have that there exists C,> 0 such that

A%V, VA | VAR nany = Coll VAP [ fataentios (A4)

for all V*®e[H'(A* ~19)]" with V*®* =0 on dA° A% Let us detail this step.
From (3.13) we have

Aa,b( Va,b, Va,b) — da,b(i-"a,b’ ﬁa,b). (AS)

Furthermore,

J VEbtvetdz= J {l|&*® o R**|(8%" - R**)E’]
At~0° A?nQ°

x[lﬂa,b ° Ra,bl(ﬁ;l,b ° Ra,b)E;i,b] dZ}

_ ~ab|2 ~a,b ~ab
= J . . |[.L | Vi Vg dZ,
AP A0

which is equivalent to ||5%°||fi2zet~aty). As for the derivatives, we have

J- _ VEVE dz= G| 5% |[fir g+ ndrnoyy
A?AQ°

Eventually, recalling (A.3) and (A.5),

A%P(VeP vy 4+ [ Va’b” %Lz(/'\“hfl")]" =a** (5%, 5“”’) +| 6a’b”fﬁ(7\“"’mﬁ"-”)]"
=X e | %Hl(z'i"’b ~faby"

= G| V¥ |t e ndis

which is (A.4). In an analogous way we can derive (A.1) from (A.4). Note that
the vanishing of Vet on 8G,n{y,>0} entails an analogous behavior for
the corresponding functions at each intermediate step. This is obvious for V*°
(see (3.19)), while for *® we can read (3.10) as a linear system with nonsingular
matrix. O
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