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Abstract. We prove the existence of a displacement field and of a stress
field that satisfy the dynamical equation for continuous media and the
Prandtl-Reuss constitutive law of elasto-perfect plasticity. First we obtain
the existence of a displacement rate in a space of functions of bounded
deformation, where the constitutive law is satisfied in an integral form, then
we show that one can choose a good representative for the stress in such a
way that the Prandtl-Reuss law is satisfied almost everywhere with respect
to the deformation measure.

1. Introduction and Statement of the Main Results

The aim of this paper is to prove the existence of a displacement field u(x, t)
and of a stress field o(x, t) that satisfy the dynamical equation for continuous
media with suitable initial and boundary conditions, and that also satisfy the
Prandtl-Reuss constitutive law for elasto-perfect plasticity in a strong sense.

In this section we shall give a self-contained exposition of our main results
and we shall leave the proofs for the following sections. We shall study Problem
1.1in the form of Problem 1.2; Theorem 1.3 states the existence of a weak solution,
Theorem 1.4 states that our solution satisfies the consititutive law in a strong
integral form, Theorems 1.5 and 1.6 make precise in what pointwise sense the

*Work done while the first author was a guest of Sonderforschungsbereich 123 at Heidelberg
University.
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constitutive law is satisfied and, finally, Theorem 1.8 describes the pointwise
behavior of the solution at the Dirichlet boundary.

Let us fix notations and be more precise. We shall consider an open bounded
connected set Q < R® with a class C? boundary; ', and I'y will be two disjoint
open subsets of 3Q with ', Uy =3Q and o', =9’y a Lipschitz submanifold
of 4(). We take a number I'> 0 and we set

Q=QX(0>F)’ 2D=FDX(09F)’ 2N=I‘N'>((03I‘)'
We shall set
M,={ac (R3)3|aij = a;;}

and a®=a —1(tr «)I will be the deviator of a, where I is the identity matrix.
We shall denote by K some fixed bounded closed convex set in the space
M?={a e M,|tr & =0}. Recall that a” e M? for all a € M,.

We shall denote by A ={A;ui}ijnr=1.23 the elasticity coefficients matrix; we
shall assume that A-is constant in space-time, A;n = Apxy = Ajine and

AjmésEm = col€]?  forall ¢eM..

The summation convention over repeated indices is used.
We shall be concerned with the following problem:

Problem 1.1. Find a displacement field u(x, t): 0 X [0, T]->R> and a stress field
o(x, t): O x[0, T]> M,, such that
82
i u(x, t)—dive(x, t)=f(x,t) inQ,
o(x, t) - n(x,t)=F(x,t) onZXZy,
u(x,t)=g(x,t) on Zp,
u(x, 0) = uy(x),

Ju .
Y (x,0)=u(x) inQ

a(x,0) = oo(x),
oP(x,t)e K,
e(u)(x, t)=Ag(x, t)+A(x, t), (1.1)
Ax,t) - (o(x,t)—7)=0  forall reM, suchthat®cK.
We have set

0 0
e(v)=1—uy+—v ,
ax; 9x; ij=1,2,3

. 0
dive= {— lo and o n={on}i-123,
0X; i=1,2,3
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where n is the outward unit normal to 9€). By u(x, t) and d(x, t) we have denoted
(8/at)u(x, t) and (8/dt)o(x, t), respectively.

Condition (1.1) is the Prandtl-Reuss law. Clearly one must have A = A”. The
choice of the convex set K depends on the yield criterion that one uses; in the
case of the von Mises criterion one has K = {a € M?||«| =2 Yo}, where y, is the
yield constant.

Introducing the displacement rate v(x, t) =(3/3t)u(x, t) and the plastic rate
of deformation £, = £(v) — Ad, one easily sees that Problem 1.1 is equivalent to:
Problem 1.2. Find v(x, t) and o(x, t) such that

ov

——di = :

3t ive=f inQ,

oc-n=F onZn,

v=y onZp,

v(+,0)=v

*ling, L (12)

0'( ) 0) =0y

oP(x, ek,

g(x, t) - (a(x,t)—7)=0 forall reM,,

suchthat 7°eK,
where vo=u, and y=(8/dt)g.

Now we give our results for Problem 1.2, from which one can easily recover
corresponding results for Problem 1.1, if one wishes. First we have an existence

theorem. The prescribed initial and boundary values for v and o are given as
traces of functions v* and o* defined in Q. From now on we denote /3¢ by 3,.

Theorem 1.3. Suppose there exist functions v*(x, t) and o*(x, t) satisfying the
following assumptions:
v* 9% e L0, T; L*(Q, R?)),
3.£(v*) e L¥0, T; L*(Q, M,)),
o*,9,0%e L™(0, T; L*(Q, M,)), (1.3)
o2a*e LY(0, T; L™(Q, M,)),
divo*e L2(0, T; L*(Q,R®),
and such that the boundary and initial conditions are given as
’(x)=0v*(x,0)=0 inQ,
’(x)=0*(x,0) inQ,
v(x, t)=v*(x,t) onZp,
F(x,t)=0*(x,t) - n(x) onZXj.
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Assume also that
fe L*(0, T; L*(Q, R?)),
3,(f+divo*—s,0*)e LY(0, T; L*(Q)), (1.4)
f(-,0)+div o*(-,0)—a0*(-, 0) e L¥(Q).
Finally, assume that one can find o* also satisfying the following safe load condition:
o*P(x,t)e K and dist{(c*P(x,1),dK)=¢,>0  Vx & (1.5)
Then there exist, and they are unique, two functions
ve L0, T; L(Q,R%),

(1.6)

oe L*(0, T; L*(Q, M,))
such that

dwe L2(0, T; L¥(Q,R%), (1.7)
divoe L¥(0, T; L*(Q, M,)),
dov—dive=f inQ, (1.8)
v(-,0)=0 inQ,
v-n=v*-n onZp,

(1.9)

o(-,0)=0%(-,0) inQ,
o-n=c*-n only,

and such that the constitutive law is satisfied as follows: for almost all t€[0, T]
one has

oP(x, 1) ek, £ ae in Q, (1.10)
J Acg- (U—T)—J (v*—v) - div(o—'r)—J‘ e(v*) (o—7)=<0 (1.11)
Q Q Q

for all 7(x)e L*(Q, M,) such that t° e K, ¥* ae. in Q, divre L*(Q,R?), 7-n=
a*(-, t): non T n. Moreover, for almost all t [0, T] one has v(-, t) € BD(Q), and

sup J' le(o(-, 1))] <+, (1.12)
te[0, T]1 JO

where, for every fixed t, we denote by [ |e(v(+, t))| the total variation in Q of the
measure (v(-, t)).

We remark that (1.3) and (1.4) are just fairly natural assumptions on the
data. The safe load condition is a condition on the boundary force F and it is
needed to obtain estimate (1.12). While the requirement o* € K is natural, the
whole condition (1.5) is a little less natural; on the other hand, it is not clear
how to do without it, and all the existence results obtained so far in BD spaces
in elasto-perfect plasticity had to assume some condition of this type, or some
other quite strong smallness condition on the load [8], [11],{12],[4],[1]. Compare
also with [6] and [7].
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The proof of Theorem 1.3 is given in Sections 2 and 3; Problem 1.2 is
approximated by problems for elasto-plastic materials with viscosity. For every
value u > 0 of the viscosity coefficient, we can solve the problem and find functions
v¥, o¥, then we get estimates independent of x and we obtain v, o as the limit
of v*, o* for uw—0. For earlier work on this problem, with a similar type of
approach, we refer to [5], [8], [11], and [12], where an extensive bibliography
can also be found, but we point out that our approximating problems are different
from those used by the authors mentioned, and we use instead a constitutive law
of elasto-plasticity with viscosity that has been proposed in [10].

We notice that Theorem 1.3 does not say anything about the tangential
component of v taking the prescribed value v* on the Dirichlet boundary X .
We notice also that, so far, the constitutive law is satisfied only in the weak form
(1.11), where the strain rate e(v) does not appear, and the related derivatives
appear on the test function 7. Both these facts are now to be considered. In fact,
as we know that £(v) is a measure, we would like to prove that our solution
satisfies the constitutive law in some strong sense, and, to do that, we would like
to perform an integration by parts in (1.11). It is not immediately clear that this
is possible, because we would get, for instance, a term of the type IQ e(v) - (o—1),
where £(v) is in general just a measure and (o — 7) is not continuous. However,
in recent papers [9], [4], [1]-[3], a meaning has been given to the scalar product
(o — 7, £(v)) as a measure in (), and to the tangential component [(o — 7) * #1]an(x)
of the normal trace of o — 7 on 9} as an L*(58), R*) function. We shall use these
results, that are briefly recalled in Section 4, to get the following:

Theorem 1.4. For almost all t€[0, T] one has
J (a—m, ép)+J (v*(x) = v(x)) - [(6=7) * n)an(x) dH?*=0 (1.13)
(43 T'p

Sor all re L*(Q, M,) such that 7°(x)e K, ¥° a.e. in Q, divre L*(Q,R%), 7- n=
o*(-,t)-nonTy.

Notice that the measure (v* —v) dH 2|TD can be interpreted as a plastic strain
rate at the boundary. Notice also that §,=¢. and that we may write o°, 7°
instead of o, 7 in (1.13).

Now, in order to get as close as possible to (1.2), starting from Theorem 1.4,
we can prove that our solution satisfies the constitutive law in a suitable pointwise
sense.

To the convex set K we associate the map F: M?-> S¥ defined as

Fla)={Be K|Px(B+a)=8)}, (1.14)

where Px: M?- K is the projection on K. We remark that if a #0 one has
B € F(a) if and only if « is in the normal cone of K at the point 8. It follows
that one can write the second formula in (1.2) as

aP(x, 1) e F(é,(x, 1)) for all x, ¢. (1.15)
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We cannot prove that our solution satisfies exactly (1.15), but if we set f B,(x) o
(1/£*(B,(x)) f5 o oP(x) dy, and denote by (£,/|£,])(x) the density function of
the measure &, with respect to its total variation |é,|, we have the following result.

Theorem 1.5. If (1.13) holds for v and a as in Theorem 1.1, then one has

L {di8t<i,,<x> o g;<| p|(x)))}|ép’_>0 for pl0 (1.16)

for all AEQ.

Let us draw some consequences. If we write £, = £, + £,, where £, and £,
are the absolutely continuous and the singular part of £, with respect to Lebesgue
measure in {1, from Theorem 1.5 we get in particular, for all A€Q,

dist(f o, 9»*(—8"~ (x)))lé,,la» 0.
Ja B,(x) |8p|

Moreover, by the Lebesgue point theorem we have

J; oP —o(x)
B, (x)

and it follows that

|&,[*~>0
JA

aP(x)e %(I | (x)) |é,* a.e. in Q.

Now we go back to our solution v(x, t), o(x, t) and, for almost all t [0, T],
we consider a Borel set E, such that #*(E,) =|é,|(Q\ E,) =0. Then, if we define
a function S°(x, t): @ x[0, T]-> M? as

SP(x. 1) = { oP(x, t) %f xeQ\E,,

a(x,t) if xeE,,

where a(x,t): E,> M? is any |é,(-,t)|-measurable function with a(x, t)e
F((£,/é,)(x, 1)), we obviously have the following result.

Theorem 1.6. The function S(x,t)=tr o(x, t)I+SP(x,t) is a representative of
o(x, t) e L'(Q) (hence, it obviously satisfies the equation of motion and the boundary
conditions) that satisfies the constitutive law in the following sense: for almost all
t, SP(x, t) is defined, for (£>+|é,|) almost all x€ Q

SP(x,t)eK  foraa. te[0,T], for (£L+|s,)]) aa x,
|6,(+, Dl({x e Q|SP(x, ) e K})=0  foraa.t,

SP(x, t)eg‘:( &, 0

|&,(- ) (x)> |&,(-0)| ace. in Q,

foraa.t
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Remark 1.7. In general S°(x, t) is not uniquely defined in the zone where £, is
singular, but, if the set K is strictly convex, then the map %(a) is single-valued
for a # 0 and in that case we have

D _ ép( T t) s (. .
SP(x, t)= 9"(—,6,1,(.’ 0l (x)), |6,(-, )] a.e. in Q,

for a.a. t,

and

plo

SP(x, t>=1imf oP(y, 0 dy i L@, |5+ 29,
B,(x)

for a.a. &

In particular, in the case of the von Mises yield condition, one has

S5 0 =y 2, (Dl
fora.a.t.

Finally, we have to discuss the behavior of v(x, t) at the Dirichlet boundary.
For every vector n € R* with [n| =1, let us consider the bounded closed convex set

K,={(a- n)y,aec K}<R’ (1.17)
where (a* 1)y =(a-n)—((a- n) - n)n and the map %,: R*> 2% defined as
F(w)={zeK,|Px (z+0)=1z}. (1.18)

Using again the information contained in (1.13) we can prove:

Theorem 1.8. For almost all times t, one has either v(x, t)=v*(x, t) or

[0+ nlun(x) € 9;,.(”—*‘—” (x))

v*¥—v
\ |

for H? almost all xeT .

We notice that Theorem 1.8 is a statement about the way the constitutive law
is satisfied at the Dirichlet boundary.

Remark 1.9. Again, if K is strictly convex then, for weR*, w—(w- n)n#0,
F,(w) is single value and one has [0+ n]un(x) = F,(((v* — v)/|v* - v])(x)) for
|v*—v| dH? a.a. xe Ty (in the case of the von Mises conditions one has
[0 nlan(x) = yo((v* — v)/|v*—v])). However, we remark that the force density
[0 n].a(x) is in any case uniquely defined as H” a.e. on I'p (actually on 3Q),
independently of K.

A similar thing also happens on the singular support of £, in (, in this case
the singularity is of the type of a discontinuity of the tangential component of
the displacement across a rectifiable surface T.
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As a final consideration, we should like to observe that Theorems 1.5, 1.6,
and 1.8 are based only on Theorem 1.4, which is in turn true every time that
(1.10), (1.11), and (1.12) are satisfied. Hence we conclude that, whenever one
gets a pair v(x, t), o(x, t) that satisfies the Prandtl-Reuss law in the weak form
(1.7), (1.8), and (1.9) (this holds, for instance, for the solutions of the quasi-static
problem in [12]), then the constitutive law also holds in the stronger sense.

In our opinion, the meaning that we give to the constitutive law for weak
solutions is the strongest possible, without starting a regularity theory. As far as
we know, there are no regularity results, for general situations, in the theory of
perfect plasticity.

2. Elasto-Plasticity with Viscosity

In this section we study the dynamical problem for a body subject to a constitutive
law of elasto-plastic type with viscosity, following the approach proposed in [10].
First, we state the mechanical problem; then, in Theorem 2.2, we collect a few
of the results given in [10], in a form which is suitable for our purposes; finally
we obtain an estimate, independent of the viscosity coefficient, on our solutions.

Problem 2.1. Find a displacement rate v(x, t): O x[0, T]-R? and a stress field
a(x, t): O x[0, T]> M, such that

dp—diva=f inQ,

G-n=c*-n onZy,

v=0v* onZp,

. 0 —
i)( ’ ) UO} inQ,
U("O)ZO-O

and such that, if we set o =d — ue(u), where the constant number >0 is a
viscosity coeflicient, the following constitutive law is satisfied:

oP(x, t)e K,
(e(v)(x, t)—Ad(x, 1)) (o(x, t)—7)=0

for all (x, t) and for all 7e M, such that r° e K.

We remark that the stress & is the sum of two parts: the first part u € (v) is
due to the viscosity and is proportional to the strain rate, the remaining part o
is the stress that originates from the elastic reaction to the deformation. The
plastic behavior of the body is described then by the requirement that o stays
in the convex K and that the nonelastic strain rate e(v)— Ad satisfies the
inequality in (2.1).

Let us consider the spaces

H=L*Q, M,),
V={we L*(Q,R*|e(w)e L*(Q,R%), w|-, =0}
= H"(Q,R*) n{wlr, =0}

(2.1)
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We shail denote by V' the dual space of V, and ( , ) will denote the V', V
pairing. We shall also consider the convex set

#={re H|7°(x)e K a.e. in Q}.

One has the following theorem, whose proof is in [10].

Theorem 2.2. Under the assumptions
ooe K, vo€ L*(Q),
v*e L*(0, T; H(Q,R%)),
av*e L¥0, T; V'),
v*(+,0)=vo,
o*e L*(0, T; H),
divo*e L0, T; V'),
feL*0, T, V"),

Sfor any fixed number u >0, there exists a unique pair of functions v(x, t), o(x, t)
such that

v—v*e L¥0, T; V),
e L*0, T; V'),
oe L0, T; %),
8,0€ L0, T; H),
v(-,0)=1v,,
o(-,0)=0,,

and such that, if ¢ = o+ ue(v), one also has

T

JT<8,(v—v*), w) dt+J, J (6—0*) - e(w) dxdt

0 0

T
= I (divo*+f—o,0%, 0)dt  forall weL*0, T;v), (2.2)

0

JTJ (e(v)—Ad) - (0—7)dxdt=0 forall r(x, t)e L*(0, T;%). (2.3)

0

Remark 2.3. From (2.2) one gets 3,0 —div & = f (hence div ¢ € L*(0, T; V')) and
G-n=0%-non Xy in the usual sense of traces in H *(Zy).
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Remark 2.4. By standard techniques, one obtains from (2.3) that for almost all
te (0, T) one has
J (e(v)(x, t)—Ad(x, 1)) - (o(x, t)—7(x)) dx =0 forall =(x)ed.
Q
(2.4)
And, if (2.4) holds for some ¢, then one has, for the same ¢,

J Ac(x, t) - (o(x, t) — 7(x)) dx+(div(&F(-, t)— 1), v(-, t) —0*(-, 1))

tu L |e(0)(x, )] dx =< L e(v*)(x, 1) - (&(x, 1) — 7(x)) dx
forall r(x)e suchthatdivreV’', r-n=0c*(-,t):n only.
(2.5)
Now we prove a basic estimate, including an L' estimate for the strain rate,
that is independent of the viscosity coefficient u. The key assumption will be the
safety condition (1.5) (see [8], [11], [12], and {1]).
Theorem 2.5. Under the assumptions of Theorem 2.2, if we also assume that
v*e L0, T; L*(Q)),
d.e(v*) e LX0, T; L*(Q)),
8.0%e L™(0, T; L°(Q)),
dla*e LY(0, T; L(Q)),
oo=0"*(-0) — p € (vo),
3,(f+divo*—9,0*)e LY(0, T; L*(Q)),
f(-,0)+divo*(-, 0)—9,0*(-,0) e L*(Q),

and if the safety condition (1.5) holds, then, for the functions v(x, t), o(x, t) given
in Theorem 2.2, we also have

sup {j lo.o(x, 1) dx+f |o.0(x, t)? dx
Q Q

te[0,T]

T
+J leP(v)(x, t)| dx} +u J J |6.£(v)] dxdt=c,, (2.6)
Q 0 Q
where ¢, depends on the data, but not on u.

Proof. In the following proof we should use the difference quotients

atu(x, 1) =% (v(x, t+h)—v(x, 1)),

ta(x, 1) =% (o(x, t+h)—a(x, t)).
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With the intent of making the proof a little less cumbersome, instead of these
difference quotients we shall write derivatives with respect to time. The results
that we get are the same that we would get by using difference quotients.

We take the equation of motion (2.2), we differentiate it with respect to time,
we take 3,(v—v*) as a test function and we perform an integration by parts in
the term containing div(d—o™) to get

t

J‘tf v —v*)? - 3,(v—v*) dxds+j I 3,(F—o*)a,e(v—v*) dx ds

0 0

t
=J J 8. (f+diva*—a,0%)a,(v— v*) dx ds.
Q

0

Recalling that & = o+ u € (v — v*) + u € (v*), and integrating with respect to time
where it is needed, we obtain

%J' |o.(v—v*)(x, )] dx—lJ 9. (v—0*)(x, 0)|* dx
a 2Ja

t t
+y,j J |a,£(v—u*)[2dxds=—pj I 3.e(v*) - 3,e(v—0v*) dx ds
0 JQ [¢)

0

t t
—J J 3,0 d,e(v—0%) dxds+J’ J 8,(f+div o* —9,0*)3,(v—v*)
Q Q

0 0

+ J. 3,0%(x, )e(v—0*)(x, t) dx— J‘ 8.0%(x, 0)e(v—v*)(x, 0) dx
Q Q

—J-t J 370* - e(v—v*) dx ds. 2.7

0

By inequality (2.3) we have

J' j (6,£(v)—08,Acd) - odxds=0. (2.8)

0

From (2.8) we then get
J J (Aa,d)sj j 8.6(v) - 8,0 (2.9)
0 JQ 0 J0Q
and it follows that

lj g(x, 1) Ad(x, t) dx—l J' d(x,0) - Ad(x, 0) dx
2Ja 2J)a

< J’t j 8,6(v) - 9,0 dx ds. (2.10)

0
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Summing (2.7) and (2.10), and taking into account the positive definiteness of
the matrix A, we get

c3{j. {a"|2dx+J' Ia,(v—v*)|2dx+pj J |a,s(v—v*)|2dxds}
Q, t 0 JQ

sj |o’-]2dx+J’ |a,(v—v*)|2dx+uj J |6, (v*)|* dx ds
Qo Q Q

0

1/2
+ sup [J’ lo"z dx] l|8.& (0*)| 10,5200
Q,

sef0,¢t]

1/2
+ sup [J o, (v—v*)] dx] l8.(f+div o* —8,0%)|| Li(0,: L)
Q;

s€[0,t]

+ sup J le(v—v*)|(x, 5) dx{[|970*|| L'0.0:.=2))
s€[0,1]

Q,

+ {180 || L2, =@}
where we write (1, to signify that the integral is taken for ¢ fixed, and ¢; = ¢3(co)-
Taking the supremum on both sides, we get

sup J |6 dx+ sup J |6.(v—0*)* dx

sef0,t]1 JQ s€f0,t]1 JO

+MJ J le(v—v*)|? dxds =< cs+cs sup J le(v—v*)| dx, (2.11)
Q Q,

0 s€[0,1]

where ¢, and ¢s depend on various norms of the data.
Now we have to estimate [, |e(v—v*)| dx. By the safe load condition (1.5),
for almost all (x, t) € Q, we have that

(e(v) — Ad) - (0 — %)= ¢ )|e(v) — Ad|. (2.12)

By (2.12) we get, for almost all ¢,
J le(v)| deJ |Ad| dx+céj (e(v)—Ad) - (0 —0™*) dx, (2.13)
Q, Q, Q,

where ¢ = c;'. Now we use the equation of motion (2.2) with the test function
(v—v*) to estimate [, &(v) - (0 —0o*) dx. We have

J e(v)(o—o*) dx=<| f+divo* —30*|| 12a,llv — 0¥ 120,
Q,
+8.(v = ") 2y llo = 0¥ 2@y + o — 0*|| 2, (™) | 260,y

“ia j e +20 j (™). (214)
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By (2.12), (2.13), and (2.14) we then get

I
sup J’ lo]* dx+ sup j |6, (v—v*)? dx+p,I j le(v—v*)P dxds=
se[0,t] JOg se[0,1 J O, 0J0

Sc7+cs{ sup J |o—a* dx+ sup I |o— v* dx

sef0,t] J O3 se{0,1]

Qs

+u sup J le(v)|? dx}. (2.15)

sef[0,t] JQ

Estimating the right-hand side of (2.15) by an integral of the left-hand side,
using the Gronwall Lemma, and recalling again (2.13) and (2.14) we obtain (2.6).
O

3. Proof of Theorem 1.3

First Step. Under the hypotheses of Theorem 1.3 there exist functions v(x, t),
o(x, t) as in (1.6), that also satisfy (1.7), (1.8), and (1.9).

Proof. For p >0, let us denote by v*, o* the solution obtained in Theorem 2.2
for the problem with viscosity coefficient u. By estimate (2.6) there exists a
sequence v, o*, that we shall denote v’, o, such that

v/> 0 in L™(0, t; L*(Q)) weak*,
a’>o in L®(0, t; L*(Q)) weak*,

for some v and o. On the other hand, we have
t
J |67 — ' dx = pul j le(v)]? dx =< p, J J 6. (v") dx ds < e,
Q Q, QJo

and it follows that one also has
6> o in L0, t; L*(Q)) weak™.

By estimate (2.6), also using the equation of motion to get a bound for
Ildiv (7 = o™®)|| L=, .12¢qy)» We have that

8,07 >3
8,07 >d3,0 in L*(0, t; L*(Q)) weak*, 3.1)
divo/>dive
and we also have that
dive/>dive in L*(0, t; L*(Q)) weak*®

because, as is easily seen from (2.3), one has div v’ =tr(Ad,o’). Conditions (1.7),
(1.8), and (1.9) now follow.
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Second Step. We have

lim sup {J |o-“—o-|2dx+J. |v“—v|2dx+,u,J
a, o,

wn—01t€[0,T] (4]

t

J le(v*)|* dx ds} =0,
(3.2)

Proof. Taking the test function »=¢ in inequality (2.2), and integrating by
parts, we get

J J Ad“-(a“—a)dxds+J' J (v* —v*) - div(d* — o) dx ds
(4} 0

0 0

t t ’

+u I J le(v™)|? dxdssj J e(v*) - (6* — o) dx ds.
0o JQ 0JQ

Using the equation of motion we obtain

t

J |a“—a|2dx+J |v“—v|2dx+,uj I le(v*)? dx ds
0, Q, o Ja

=g Jl J {e(v*)(c* —a)—(v—0v*) div(6* ~0)— (" —0) - Ad,o

o

+(v* —v)(f+divo* - 90%)} dx ds+ cop? J'
0

|5(Uo)’2 dx (3.3)

and (3.2) follows just be noticing that the right-hand side of (3.3) goes to zero
uniformly with respect to t€[0, T], for u 0.

Third Step. If we write inequality (2.5) for v* and o*, then, by (3.2), we can
take the limit for w - 0, for almost all ¢, and we get (1.11). Finally, (1.12) follows
because of the lower semicontinuity of the total variation [, |¢”(v)| with respect,
for example, to the L'(€),)-convergence of v.

Finally, if oy, v, and o, v, are two pairs of solutions for our problem, we
can write (1.8) and (1.11) for o, v, using o,, v, as test functions, and vice versa,
then we can sum and we immediately get that o, = o,, v, = v,.

4. Strong Formulation for the Constitutive Law

In this section we prove Theorems 1.4-1.6 and 1.8. We begin by recalling a few
known results.

Lemma 4.1. Assume that 3Q is of class C*. If e e L*(Q, M,), troe LXQ),
div o€ L*(Q), then there exists a function y,(x) € L”(6Q, R®) that depends linearly
on o, such that

Yo(x) - n(x)=0, H? a.e. on 3Q,

1
IIYUIIm,anSE lo®llea,
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and

J o(x) - e(ulx)) dx+J u(x) - div o(x) dx=J u(x) + v,(x) dH?

a0
for all ue C'(Q) such that u- n=0 on 3Q. We shall denote the function vy, (x) by
[o- nlan(x).

Proof. This lemma is proved in [4] (Theorem 5.3) in the case where div o€ L*.
That proof extends immediately to our case; compare with the first section
of [3]. O

Obviously, the integration by parts formula in Lemma 4.1 also holds for all
functions u € L*(Q, R®) such that div u € L*(Q), e(u)e L'(Q).

Lemma4.2. Assume that 9Q is of class C* and that o® € L(Q, M,), tr o € L*(Q),
divoe L*(Q). If 6€(0, 8,), for &, sufficiently small, the map (x, 8) > x — dn(x) is
a diffeomorphism between 9Q x (0, 8,) and {x € Q|dist(x, 8Q) > 8,}. Set

¥ (x) = (o(x~8n(x)) - n(x))
and set also y5, = y® —(y°- n)n. Then one has

‘Y?an -> [0' : n]tan in LOO(B‘Q', RS) We,ak*.

Proof. It is sufficient to take a function w € L'(5€), R?), with w(x)  n(x) =0, and
to extend it to a function & € L*(Q) with £(®)e L'(Q), div & € L*(Q) (a slight
modification of Theorem 5.2 of [4]), then one easily sees that

Jn 7fan(x) ) a;;san(x)—)J [0" n]tan(x) * w(x),

a
where @°(x)=&(x—6n(x)). Recalling that ¢°>w in L'(3Q) one has the
result O

Lemma 4.3. Assume that 3§ is of class C*. If oPe L¥(Q, M,), tr o e L}(Q),
divoe L*(Q),0- n=00nYyanduc BD(Q)N L*(Q) withdivue L*(Q),u- n=0
on Ty, then one has

J' (o, s(u))+J u(x) - divo(x) dx = j [ nlan(x)u(x) dH?, (4.1)
Q Q

Tp

where (o, e(u)) is a bounded real valued measure in Q characterized [9] by
(o, e(u)), <P>=J u(x) - div(po)(x) dx, Ve Co(Q).
Q

Proof. This is basically Theorem 3.2 of [9], but we have ue L? and divoe L?
instead of ue L¥? and div o e L. O

We recall that if o is as in Lemma 4.3 and o” is also continuous in Q, one
has §, (0, e(u)) ={z o(x) - e(u) for all Borel sets B< Q.
Now we can integrate by parts in (1.11).
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Proof of Theorem 1.4. If o and v are as in Theorem 1.3, by Lemma 4.3, for
almost all ¢, for all 7(x): Q> M, such that

P e L7(Q), tr re L*(Q), div re L*(Q),
r-n=0*,t)-n onlyx (4.2)

we have

J (o—1, 8(0—0*))+j (v—20*) - div(c —7) dx

_J (v_v*)'[(o-_T)'n]tandH2=O

I'p

and (1.13) follows immediately from (1.11). O
Now we need a simple approximation lemma.

Lemma 4.4. Let K be a bounded closed convex subset of M, assume that <) is
of class C* and let o € L*(Q, M.) be such that

oP(x)eL
divoe L*(Q)

Then, for p € (0, p), for some p,> 0, there exists functions a, € L*(Q, M,) N C°(Q)
such that

} Fa.einQ.

o,(x) ={( o(y)dy if dist(x,aQ)>2p, (4.3)
B,(x)
sup || 0';?"00,0 = cy0(K),
p

div o, € L*(Q),
ag,(x)>0, £ ae,
tro,>tro inL*(Q),
divo,~>divo in L*(Q),

[o,-n]l=[o-n] onadQ forallp. (4.4)

Proof. One can follow [13], i.e., for any fixed p, one considers openset Q; €Q, €
Q,... with U Q; =1, one takes a partition of unity ¢; for covering A, =Q,,

o

o,(x)=1% J (¢j0),
J=1J B, (x)
where 7;> 0 have to be chosen depending on Q;, ¢;, p. If p is sufficiently small
one can take Q, = {x € Q|dist(x, 3Q) > p}, ¢,(x) =1 0on Q,, and 7, = p in order to
have (4.3). The other properties follows as in [13], except for (4.4), which is
easily understood, as one can choose 8 >0 so that [o - n] is arbitrarily close to
ols,* n (where S, ={xeQ|dist(x,4Q)=38}) and [0, n] is arbitrarily close to
0,|s,* n, while o,|s,- n>ols, - n for almost every fixed 8, for p— 0. d
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We remark that we need not have af,) (x) € K for all x € Q, on the other hand,
by (4.3), we do have o2 (x) € K if dist(x, Q) > 2p.
Now we prove the following lemma.

Lemma 4.5. Ifo=o(-,t) and v="v(-,t) are such that (1.13) holds, o, are as in
Lemma 4.4 and we denote by Pxos(x) the projection of o (x) on the convex set
K, we have

J (Poy(x) =) - &

‘J (v*=0) * ([0 n)an=[72" n)an) dH* = w0 (p), (4.5)

where lim,_, w(p) =0, for all pairs of functions 7,: Q> K, 7,: I'p > K, such that
7, is |é,|-measurable and t, is H?|, measurable.

Proof. First we notice that for all 7 such that (4.2) holds, using (1.13) we have

_Jﬂ (o-PD(x)—TD(x)9 gp)_I (U*_U) ) ([0-' n]tan_[T. n]tan) de

Tp

= _J' (O-D_TD: ép)_J (D*-—U)([O" n]tan—[T' n]tan) dH2

Tp

+j Ad-(ap—a)—J (v*—v)div(ap—a)—J e(v*) (o, —0)

= cpfllo— o, | 12+ ||divie ~o,) | 2y} = (p), (4.6)
where ¢;;, = c;,(0, v, 0¥, v™). Then we remark that for all = such that
re L*(Q,M,), °(x)eK, £ ae, divreL’(Q), (4.7)
one has
- U Pyoy Sp—J- (7, ép)] —J (v*=v) - ([0 * n]ian—[7" n)ian) dH?
Q Q Tp
=w(p). (4.8)

In fact, take 8 >0 and take a function ¢ € C'(3Q) such that 0=¢ =1, ¢ =1 on
I'n, H*({xeTp|e(x)>0}) <8, then extend it to a function ¢ € C'({) such that
again 0= ¢ =<1 on Q and £*({x e Q|p(x)> 0}) < 8. Let 7 be such that (4.7) holds
and take

a=(1-g)r+po®,

then it is clear that « satisfies (4.2) and by (4.6) we get that the left-hand side
of (4.8) is less or equal than

w(p)+2€10{J |ép‘+J +j 'D*_U| dH2}
Q, {xeQp(x)>0} {xelple(x)=>0}

=w(p)t (),
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where Q,, = {x e Q|dist(x, 9Q) <2p} and where w,(8)>0 for §>0. As & is
arbitrary, (4.8) is proved.
Now consider the Radon measure u on R® defined by

p(B)=|é,|(BnQ)+H*(BNnTp)  for all Borel sets BcR’®
and the u-measurable function 7,: R*> K defined by

. (x):{'rl(x) in Q,

m(x) on Tp.

We can approximate 7, by a sequence of functions a; € C'(R?, K) that converge
u a.e. For all j we have (4.8) and, taking the limit for j—» o, we get (4.5). O

Proof of Theorems 1.5 and 1.8. We shall use Lemma 4.5 with a particular choice
of 7, and 7,, more precisely we can take 7, and 7, such that the hypotheses of
Lemma 4.5 hold and

i(x)e 9(% (x)>, |é,| a.e. in Q,
’ (4.9)

Tz(x)ey(! — !(x)® n(x)) |v*—v| dH? a.e. on T'p,

where

10 g oA [ 0 ]

v¥*—v v —y| 1 Jo*—v
| |

In fact, we notice that % is the subgradient of the polar function I of the
indicator function Ix of K, then we can suitably approximate I from above by
a sequence of smooth functions h; and consider the sequence of functions

aj(x)=9”<| ) (x))
810 =355 0 @.n(),

where F’ is the subgradient of h;. The functions a”, B’ are |¢,|-measurable and
|v* — v| dH?|; -measurable, respectively, and one can extract subsequences that
converge weakly so some T,, 7, that are as in (4.9). We remark that if 7, is as in
(4.9) then, by the definition of &, we have

(1:(x) — Pxo(x)) - e E(x)=0, [§,]ae. | (4.10)

pl

Moreover, if K, and %, are as in (1.17) and (1.18), we have that the functions
y® of Lemma 4.2 all belong to the convex set

Hi={ze '(Tp, #*)|z(x) € Kyx), #*a.e.}
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and by Lemma 4.2 one also has that [0 - n},.,€ #,. Finally we notice that if 7,
is as in (4.9), we have

() ) hane 1 ()
|v* - o]
and it follows that
([72 * nan(x) = [0 MJian(6)) %{f—' (0)=0, Haeonlp (411

Writing (4.5) for 7, and 7, as in (4.9), and taking into account (4.10) and
(4.11), we conclude

(7(x) — PxoP(x)) - | E(x)>0 inL'(Q,|é,) (4.12)

pl

for p-»0, and

(72 nJan(x) =[o - n]un(x)) - 1* |( x)=0,

|v*—v|%* a.e. on T'p. (4.13)

Now, (4.13) proves Theorem 1.8, while Theorem 1.5 follows from (4.12)
recalling the following well-known lemma:
Lemma 4.6. Let G,(x, a), Gy(x, a): A x K-> R be two positive Caratheodory
Sfunctions such that

Gl(x, CY) =0 = Gz(x, a) =0.

Then, if £,(x): Q- K, pe(0, po), are u-measurable functions in x € Q for each
fixed p such that

Gi(x, &)~>0 in measure p, for p >0, then one also has

Gy(x, £)~>0 in measure p, for p > 0.

In fact, if we take

Gi(x, a) =(7o(x) — ) - 5l (x),

I &

G 01=ai a5 00,

fp(X) = PKO-pD(x)a
by Lemma 4.6 and (4.12) we have

lirré dist(PKa,’,)(x), 97(% (x))) =0  in |é,|-measure in Q
P> EP

and by the boundedness of the function dist(a, #((£,/ Iép|)(x)) we get (1.16),
which concludes the proof of Theorem 1.5. |
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