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Abstract. We prove the existence of a displacement field and of a stress 
field that satisfy the dynamical equation for continuous media and the 
Prandtl-Reuss constitutive law of elasto-perfect plasticity. First we obtain 
the existence of a displacement rate in a space of functions of  bounded 
deformation, where the constitutive law is satisfied in an integral form, then 
we show that one can choose a good representative for the stress in such a 
way that the Prandtl-Reuss law is satisfied almost everywhere with respect 
to the deformation measure. 

1. Introduction and Statement of the Main Results 

The aim of this paper  is to prove the existence of  a displacement field u(x, t) 
and of a stress field or(x, t) that satisfy the dynamical equation for continuous 
media with suitable initial and boundary conditions, and that also satisfy the 
Prandtl-Reuss constitutive law for elasto-perfect plasticity in a strong sense. 

In this section we shall give a self-contained exposition of our main results 
and we shall leave the proofs for the following sections. We shall study Problem 
1.1 in the form of Problem 1.2; Theorem 1.3 states the existence of a weak solution, 
Theorem 1.4 states that our solution satisfies the consititutive law in a strong 
integral form, Theorems 1.5 and 1.6 make precise in what pointwise sense the 

*Work done while the first author was a guest of  Sonderforschungsbereich 123 at Heidelberg 
University. 
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constitutive law is satisfied and, finally, Theorem 1.8 describes the pointwise 
behavior  o f  the solution at the Dirichlet boundary .  

Let us fix notat ions and be more precise. We shall consider  an open  b o u n d e d  
connected set f~ c •3 with a class C 2 boundary ;  F o  and FN will be two disjoint 
open subsets o f  Oft with F o  w FN = 012 and 0Fo = 0FN a Lipschitz submanifo ld  
o f  Of/. We take a number  F > 0 and we set 

Q = fl  x (0, r ) ,  E o  = r o x  (0, r ) ,  EN = FN X (0, r ) .  

We shall set 

and a ° = a -½(tr 4)1 will be the deviator o f  a, where I is the identity matrix. 
We shall denote  by K some fixed b o u n d e d  closed convex set in the space 
M ° = {t~ ~ Msltr a = 0}. Recall that  c~ ° ~ M ° for all a ~ Ms. 

We shall denote by  A = {Auhk}~d,h,k=l,2,3 the elasticity coefficients matrix; we 
shall assume that A,is constant  in space-time, Aohk = Ahk~j = Aj~hk and 

Aijhk#ijChk>--Col¢l 2 f o r  all #cM~.  

The summat ion  convent ion over repeated indices is used. 
We shall be concerned with the fol lowing problem: 

Problem 1.1. Find a displacement  field u (x, t): ~ x [0, T] --> R 3 and a stress field 
or(x, t): 1) x [0, T] -~ Ms, such that 

0 2 
Ot---~u(x, t ) - d i v c r ( x ,  t )= f ( x ,  t) in Q, 

iT(x, t ) .  n(x, t)= F(x, t) on ~N, 

u(x, t) = g(x, t) on ~'D, 

u(x. o) = Uo(X). 

Ou (x, O) = ul(x) in f~ 
Ot 

~,(x, 0) = ~'o(X), 

g ° ( x .  t) ~ K.  

e(f~)(x, t )= Ad~(x, t ) + A ( x ,  t), 

A(x, t) • (iT(x, t ) -T ) - ->0  fora l l  ¢ ~ M s  

We have set 

{0 0 1 vj + - -  vi 

o 
div ~ = ~ - -  ~ij~ and 

( OXj Ji=1,2,3 

such that r D ~ K. 

(1.1) 

o ' .  n = {o ' ,n,}-- .2.3.  
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where  n is the ou tward  unit  normal  to 0fl. By ti(x, t) and ~(x,  t) we have  denoted  
(O/Ot)u(x, t) and (O/Ot)o'(x, t), respectively. 

Condi t ion  (1.1) is the Prand t l -Reuss  law. Clear ly one must  have h = h D. The  
choice of  the convex set K depends  on the yield cri terion that  one uses; in the 
case of  the von Mises criterion one has K = {a  ~ M°l la  1---x/2 Yo}, where  Yo is the 
yield constant.  

In t roduc ing  the d i sp lacement  rate v(x, t) = (O/Ot)u(x, t) and the plast ic  rate 
of  de fo rmat ion  ~p = e ( v ) - A ~ ,  one easily sees that  P rob lem 1.1 is equivalent  to: 

Problem 1.2. Find v(x, t) and tT(x, t) such that  

Ov 
- - - d i v  cr = f  in Q, 
ot 

o r . n = F  o n E N ,  

v = y o n ~ D ,  

v ( . ,  0) = v0 ~ in fl ,  ,, (1.2) 
o ' ( - ,  O) = ~ro J 
~rO(x, t) C K, 

~p(x, t)" (or(x, t) -- ~') --> 0 for  all r ~ M s ,  

such that  ,/.D E K~ 

where  Vo = u I and  y = (O/Ot)g. 

N o w  we give our  results for  Problem 1.2, f rom which one can easily recover  
cor responding  results for  Problem 1.1, if  one wishes. First we have  an existence 
theorem.  The  prescr ibed initial and b o u n d a r y  values for  v and  cr are given as 
traces of  funct ions  v* and or* defined in Q. F rom now on we denote  O/Ot by 0,. 

Theorem 1.3. Suppose there exist functions v*(x, t) and o'*(x, t) satisfying the 
following assumptions: 

v*, Otv* ~ L~(O, T; L2(~, R3)), 

Ore(v*) ~ L2(O, T; LE(I~, Ms)), 

o'*, O,tr* ~ L°~(0, T; L~(I~, Ms)),  (1.3) 

02o'* ~ LI(0,  T; L ~ ( ~ ,  Ms)),  

div or* c L~(0,  T; L2(fl, R3)), 

and such that the boundary and initial conditions are given as 

v°(x) = v*(x, O) = 0 in II, 

o'°(x) = o'*(x, 0) in 12, 

y(x,  t ) =  v*(x, t) on ~,o, 

F(x, t) = tr*(x, t)" n(x) on EN. 
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Assume  also that 

f c  L~(0, T; L2(I], R3)), 

O,( f+  div o'* - O,v*) ~ L'(0,  T; L2(I'I)), (1.4) 

f ( . ,  0) + div or*(., 0) - Otv*(.,  0) ~ L2(fl). 

Finally, assume that one can f ind  or* also satisfying the following safe load condition: 

Or*D(x, t) ~ K and dist(o-*D(x, t), aK)  I> c1> 0 Vx, t. (1.5) 

Then there exist, and they are unique, two functions 

v 6 L°°(0, T; L2(f~, R3)), (1.6) 

ore L~(0, T; L2(f~, Ms)) 

such that 

Otv ~ L~(O, T; L2(1"~, R3)), (1.7) 

div or ~ L~(0, T; L2(12, Ms)), 

O t v - d i v  or = f  in Q, (1.8) 

v ( . ,  O)=O in ~ ,  

v .  n = v* • n o n  ~ O ,  (1.9) 

or(.,O) = or*(' ,O) in ~ ,  

or " n = or* " n o n  ~ N ,  

and such that the constitutive law is satisfied as follows: for  almost all t c [0, T] 
one has 

o r D ( x ,  t) ~ K, ~3  a.e. in f~, (1.10) 

fnA6". (or- )-fo (v,-v) .  div(o-- T)-- fn e(v*) • (or-- ~') ~< 0 (1.11) 

for  all ,r(x) ~ L2(fl ,  Ms)  such that ,:o ~ K, ~ff3 a .e .  in 1), div r e L2(O, R3), T" n = 
or*(., t) • n on F N. Moreover, for  almost all t ~ [0, T] one has v( . , t )~  B D (  f~ ), and 

sup f i e ( v ( ' ,  t ) ) l < + ~ ,  (1.12) 
te[0, T] J~ 

where, for  every f ixed  t, we denote by S~ [e(v(', t))[ the total variation in f~ o f  the 
measure e ( v ( . ,  t)). 

We remark that  (1.3) and (1.4) are just fairly natural assumptions on the 
data. The safe load condit ion is a condition on the boundary  force F and it is 
needed to obtain estimate (1.12). While the requirement or*c K is natural, the 
whole condit ion (1.5) is a little less natural; on the other hand,  it is not clear 
how to do without  it, and all the existence results obtained so far in BD spaces 
in elasto-perfect plasticity had to assume some condit ion of this type, or some 
other quite strong smallness condit ion on the load [8], [ 11 ], [ 12], [4], [ 1 ]. Compare 
also with [6] and [7]. 
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The p r o o f  o f  Theorem 1.3 is given in Sections 2 and 3; Problem 1.2 is 
approx imated  by problems for elasto-plastic materials with viscosity. For  every 
value/z  > 0 o f  the viscosity coefficient, we can solve the problem and find functions 
v ", cr ~, then we get estimates independent  o f / z  and we obtain v, tr as the limit 
o f  v ~, o -~ for  /z ~ 0. For  earlier work on this problem, with a similar type o f  
approach,  we refer to [5], [8], [11], and [12], where an extensive bibl iography 
can also be found,  but we point  out that  our  approximat ing  problems are different 
f rom those used by the authors mentioned,  and we use instead a constitutive law 
of  elasto-plasticity with viscosity that has been proposed  in [10]. 

We notice that Theorem 1.3 does not  say anything about  the tangential  
componen t  o f  v taking the prescribed value v* on the Dirichlet b o u n d a r y  Eo .  
We notice also that, so far, the constitutive law is satisfied only in the weak form 
(1.11), where the strain rate e ( v )  does not  appear,  and the related derivatives 
appear  on the test funct ion "r. Both these facts are now to be considered.  In  fact, 
as we know that  e ( v )  is a measure, we would  like to prove that  our  solution 
satisfies the constitutive law in some strong sense, and, to do that, we would  like 
to perform an integration by parts in (1.11). It  is not  immediately clear that  this 
is possible, because we would  get, for instance, a term of  the type ~ e ( v )  • (or - "r), 
where e ( v )  is in general just a measure and ( o r -  "r) is not  cont inuous.  However ,  
in recent papers  [9], [4], [1]-[3] ,  a meaning has been given to the scalar p roduc t  
(or - ,r, e ( v ) )  as a measure in ~ ,  and to the tangential  componen t  [(o- - "r) • n]tan(x) 
of  the normal  trace o f  o" - "r on 0f~ as an L°~(0f~, R 3) function. We shall use these 
results, that  are briefly recalled in Section 4, to get the following: 

Theorem 1.4. For a lmos t  all t ~ [0, T] one has 

fta (a--'r, dp)+ fr (V*(X)--V(X))'[(Or--'r)'n]tan(X)dH2>--O (1.13) 
D 

f o r  all ,r ~ L2(fl, M s )  such that  "rig(x)~ K ,  ~ 3  a.e. in D,  div "re L2(II, R3), "r. n = 
t r*( . ,  t) • n on FN.  

Notice that  the measure (v*  - v) dH 2] TD can be interpreted as a plastic strain 
rate at the boundary .  Notice also that ~p--~pO and that we may  write or °, "rD 
instead of  tr, r in (1.13). 

Now,  in order  to get as close as possible to (1.2), starting f rom Theorem 1.4, 
we can prove that our  solution satisfies the constitutive law in a suitable pointwise 
sense. 

To the convex set K we associate the map  off: M ° ~  S K defined as 

off(a) = {fl ~ K [PK (fl + a )  = fl}, (1.14) 

where PK: M ° ~  K is the projection on K. We remark that  if a ~ 0 one has 
/3 c off(a) if and only if a is in the normal  cone o f  OK at the point /3.  It follows 
that  one can write the second formula  in (1.2) as 

o-°(x, t) ~ off(~v(X, t)) for  all x, t. (1.15) 
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We cannot prove that our solution satisfies exactly (1.15), but if we set ~p(x) tr/~ = 
(1/~3(Bp(x))) SBe(x) o'r'(x) dy, and denote by (aAI61)(x)  the density function of 
the measure ap with respect to its total variation I ,1, we have the following result. 

Theorem 1.5. I f  (1.13) holds for v and a as in Theorem 1.1, then one has 

f f / E  / 
JA~dist~]Bp(x o'O,~r~pl(X)))~lap[-->O for p~O (1.16) 

for all A ~ O. 

• s .a and .s Let us draw some consequences. If  we write gp = ap+ ep, where Ep ep 
are the absolutely continuous and the singular part of dp with respect to Lebesgue 
measure in f~, from Theorem 1.5 we get in particular, for all A © f~, 

r d i s t ( ~  tr °, ~ (  ap (x)))l~p[a-->0. 
Ja \JB.(x) \161 

Moreover, by the Lebesgue point theorem we have 

fA ~Bp(x) O'D-Or(X) I~pI~-~O 

and it follows that 

o'D(x) e ~ ~ (x) , [~p[ a a.e. in a .  

Now we go back to our solution v(x, t), ~(x, t) and, for almost all t e [0, T], 
we consider a Borel set E, such that ~3(Et) = la~p(a \~ , )  = 0. Then, if we define 
a function SD(x, t): l l  x [0, T] -~ M~ ° as 

orD(x, t) if X e ~'~\Et, SD(x, 
t) = [ a ( x ,  t) i f  x~E,, 

where a(x, t): Et-->M ° is any lap(., t)l-measurable function with o~(x, t )c  
~((~;l~l)(x, t)), we obviously have the following result. 

Theorem 1.6. The function S(x, t) =t r  tr(x, t)I + SD(x, t) is a representative of 
o'(x, t) ~ LI(Q) (hence, it obviously satisfies the equation of motion and the boundary 
conditions) that satisfies the constitutive law in the following sense: for almost all 
t, SO(x, t) is defined, for (~+1~,1) almost all x c f l  

SO(x , t )~K fora.a, t~[0, T], for (~3+la, l) a.a.x, 

lap(., t)l({x~f~ls°(x, t)EK°})=O fora.a, t, 

SO(x, t)a : T ( . ~  t) ) \l  ",,(', t)[ (x) [a~(. t)[ a.e. in a, 

for a.a. t. 
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Remark 1.7. In general S ° ( x ,  t) is not uniquely defined in the zone where ap is 
singular, but, if the set K is strichy convex, then the map ~:(a) is single-valued 
for a # 0 and in that case we have 

" t) (x)), S °(x, t) = ~ ( ' ~  t), lap( • , t)[ a.e. in f/, 

for a.a. t, 

and 

S ° ( x ,  t ) = l i m ~  tr°(y,  t) dy in L~o¢(l~, la~l+~), 
p$O dBp(x) 

for a.a. t .  

In particular, in the case of the von Mises yield condition, one has 

a~( . ,  t) 
S ° ( x ,  t) = x/2 Yo lap( , t)l (x), lap(', t)l a.e., 

for a.a.t. 

Finally, we have to discuss the behavior of v(x, t) at the Dirichlet boundary. 
For every vector n ~ R 3 with Inl = 1, let us consider the bounded closed convex set 

K,  = {(a .  n)tanlC~ ~ K } c  R 3, (1.17) 

where ( a .  n)tan = (a" n ) - - ( ( a ,  n) • n)n and the map ~:,: R3~2  <K.) defined as 

~.(,o) = {z ~ I,:. I P, co(z +,o )  = z}. (1.18) 

Using again the information contained in (1.13) we can prove: 

Theorem 1.8. For almost all times t, one has either v(x, t) = v*(x, t) or 

( v * - v  (x)) [Or" /1]tan(X ) ~ vl 

for  H 2 almost all x ~ F o. 

We notice that Theorem 1.8 is a statement about the way the constitutive law 
is satisfied at the Dirichlet boundary. 

Remark 1.9. Again, if K is strictly convex then, for wc •  3, w - ( t o ,  n ) n # 0 ,  
~;,(w) is single value and one has [tr. n]tan(X)= ~:,(((V*--V)/IV*--Vl)(X) ) for 
I v * - v l d H  2 a.a. x~  To (in the case of  the von Mises conditions one has 
[tr.  n]tan(X)= yo((V*--V)/IV*--Vl)). However, we remark that the force density 
[o-. n]ta,(X) is in any case uniquely defined as H 2 a.e. on FD (actually on Of~), 
independently of  K. 

A similar thing also happens on the singular support of ap in f~, in this case 
the singularity is of the type of a discontinuity of  the tangential component of 
the displacement across a rectifiable surface T. 
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As a final consideration, we should like to observe that Theorems 1.5, 1.6, 
and 1.8 are based only on Theorem 1.4, which is in turn true every time that 
(1.10), (1.11), and (1.12) are satisfied. Hence we conclude that, whenever one 
gets a pair v(x, t), tr(x, t) that satisfies the Prandtl-Reuss law in the weak form 
(1.7), (1.8), and (1.9) (this holds, for instance, for the solutions of the quasi-static 
problem in [12]), then the constitutive law also holds in the stronger sense. 

In our opinion, the meaning that we give to the constitutive law for weak 
solutions is the strongest possible, without starting a regularity theory. As far as 
we know, there are no regularity results, for general situations, in the theory of 
perfect plasticity. 

2. Elasto-Plastieity with Viscosity 

In this section we study the dynamical problem for a body subject to a constitutive 
law of elasto-plastic type with viscosity, following the approach proposed in [ 10]. 
First, we state the mechanical problem; then, in Theorem 2.2, we collect a few 
of  the results given in [10], in a form which is suitable for our purposes; finally 
we obtain an estimate, independent of the viscosity coefficient, on our solutions. 

Problem 2.1. Find a displacement rate v(x, t): l ) x [ 0 ,  T]-->R 3 and  a stress field 
~(X, t): ~X[0 ,  T ] ~ M s  such that 

O,v-div & = f  in Q, 

~.  n = tr* • n o n  ~N, 

/.) ~--- I.)* o n  ~ D ,  

v ( ' , O ) =  Vo } in l l ,  
~ ( . ,  0) = ~o 

and such that, if we set tr = or-/ze(zi),  where the constant number / z > 0  is a 
viscosity coefficient, the following constitutive law is satisfied: 

o'D(x, t) e K, (2.1) 

(e(v)(x, t ) -At~(x ,  t)) " (or(x, t ) -  T)->0 

for all (x, t) and for all ~- c Ms such that ~.o c K. 
We remark that the stress t~ is the sum of two parts: the first par t /x  ~ (v) is 

due to the viscosity and is proportional to the strain rate, the remaining part tr 
is the stress that originates from the elastic reaction to the deformation. The 
plastic behavior of the body is described then by the requirement that tr ° stays 
in the convex K and that the nonelastic strain rate e(v) -Ad~ satisfies the 
inequality in (2.1). 

Let us consider the spaces 

H = L2(I'~, Ms), 

V = {w c L2(I'~, a3)le(w) e L2(O, R9), WIF D = 0} 

= H"z(O,  R 3) n {W]ro = 0}. 
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We shall denote by V' the dual space of V, and ( , 
pairing. We shall also consider the convex set 

Y~={r~Hl 'c° (x )~K a.e. in f~}. 

One has the following theorem, whose proof is in [10]. 

Theorem 2.2. Under the assumptions 

O-o~ Y{, Vo~ L2(I'I), 

v* ~ L2(0, T; Hl'2(f~, R3)), 

Otv* ~ L2(0, T; V'), 

v * ( ' ,  0) = Vo, 

or* ~ L2(0, T; H),  

div or* c L2(0, T; V'), 

f ~  L2(O, T; V'), 

for any fixed number br > O, there exists a unique pair of functions v(x, t), or(x, t) 
such that 

v - v* ~ L2(O, T; V), 

Otl) c L2(0, T; V'), 

O r E L2(0, T; Y{), 

0to" ~ L2(0, T; H), 

v ( . ,  0) = Vo, 

or( . ,  0) = ,To, 

and such that, /ft~ = tr+tze(v),  one also has 

;o IorIo (O,(v-v*), w) at+ (~--or*) • e(w) dxdt 

= (divor*+f-Otv*, v) dt for all weL2(0, T; v), (2.2) 

Ior fa (e (v ) -A6") . (or - r )dxd t>-O forall .c(x,t)~L2(O,T;X). (2.3) 

Remark 2.3. From (2.2) one gets 0 iv-  div 6 = f  (hence div 6 c L2(0, T; V')) and 
6 .  n = Or* • n on EN in the usual sense of traces in H-1/2(EN). 

129 

) will denote the V', V 
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Remark 2.4. 
t ~ (0, T) one has 

f f  (e(v)(x, t)-A6"(x, t)).  (or(x, t)-~'(x)) dx>-O 

By standard techniques, one obtains from (2.3) that for almost all 

for all r(x) ~ Y(. 

And, if (2.4) holds for some t, then one has, for the same t, 

f A(r(x, t)" (or(x, t ) -  z(x)) dx + (div(~7(', t ) -  r), v( . ,  t ) -  v*( ' ,  t)) 

+ p. f~ le(v)(x, t)l 2 dx < - fa e(v*)(x, t) .  (~'(x, t )- 'r(x))  dx 

for all r(x) c ~  such t h a t d i v r ~ V ' ,  r . n = o r * ( - , t ) . n  

(2.4) 

on FN. 
(2.5) 

Now we prove a basic estimate, including an L ~ estimate for the strain rate, 
that is independent of the viscosity coefficient/z. The key assumption will be the 
safety condition (1.5) (see [8], [11], [12], and [1]). 

Theorem 2.5. Under the assumptions of Theorem 2.2, /f we also assume that 

v* ~ L°°(0, T; Lz(E~)), 

ate(v*) ~ L2(0, T; L2(ED), 

ator* c L°°(O, T; L°°(f/)), 

a~or* ~ L'(0, T; L°°(f~)), 

~o = o r * ( . 0 ) - ~ ,  ~ (Vo), 

Ot(f + div or*-Otv*) c LI(O, T; L2(f/)), 

f (  -, O) + div or*(., O) -- OtV*( ", O) ~ L2(f~), 

and if the safety condition (1.5) holds, then, for the functions v( x, t ), o'( x, t) given 
in Theorem 2.2, we also have 

s~PT]{f 'O,or(x,t)lZdx+falOtv(x,t)12dx 

;o ) Io fo + [e°(v)(x, t) I dx +Ix Iote(v)l 2 dxdt <- c2, (2.6) 

where c2 depends on the data, but not on Iz. 

Proof In the following proof  we should use the difference quotients 

1 
oh v(x, t )=~  (v(x, t + h ) -v (x ,  t)), 

1 
Ohtor(x, t ) = ~  (or(x, t + h )-or(x, t)). 
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With the intent of making the proof a little less cumbersome, instead of these 
difference quotients we shall write derivatives with respect to time. The results 
that we get are the same that we would get by using difference quotients. 

We take the equation of motion (2.2), we differentiate it with respect to time, 
we take Ot(v-  v*) as a test function and we perform an integration by parts in 
the term containing d iv (~-or*)  to get 

Iofo IoIo O~(v-v*) 2" Or(v-v*)  dxds+ O,(~-~r*)Ot~(v-v*) dxds  

;Io = 0 , ( f +  div o'* -Otv*)Ot(v - v*) dx ds. 

Recalling that ~ = o- + be e (v - v*) + be e (v*), and integrating with respect to time 
where it is needed, we obtain 

In l l a  ½ [O,(v - v*)(x, 012 dx - ~  IO,(v - v*)(x, 0)12 dx 

IoIo IoIo +be lore(v-v*)[ 2 dxds=  -be O,e(v*) " OrE(v-v*) dxds  

- f t o l a O , o " O , e ( v - v * ) d x d s + ~ / f O , ( f + d i v o ' * - O t v ' ) d , ( v - v * )  

+ f .  o,~*(x, t)~(v-v*)(x, t) dx- I. o,~*(x, o)~(v-v*)(x, o) dx 

IoIo , - Ot~ " e ( v - v * )  dxds. (2.7) 

By inequality (2.3) we have 

I~ In (O,e (v ) -O ,A6" ) '6"dxds~O.  (2.8) 

From (2.8) we then get 

fofo f/I. (AOt6") <- O,e(v) . 0,o" (2.9) 

and it follows that 

1 - I a 6 " ( x ' t ) ' A 6 " ( x ' t ) d x - ~ f a 6 " ( x ' O ) ' A 6 " ( x ' O ) d x 2  

<- Ore(v) • O,o'dxds. (2.10) 
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Summing (2.7) and (2.10), and taking into account the positive definiteness of 
the matrix A, we get 

-< ]6"[ 2 dx + Io,(v-v*)l 2 dx + . lore(v*)] 2 dxds 
0 0 

s~[O,t] s 

se[O,t] 

+ sup f [ e (v -  t )*)[ (x ,  s )  dX{HO2or*IILI(O,t;L°°(yI)) 
s~[0,t] d~s  

where we write fit to signify that the integral is taken for t fixed, and c3 = c3(c0). 
Taking the supremum on both sides, we get 

sup f a  l~12dx+ sup fa Io,(v-v*)12dx 
s~[O,t] ~ s~[0,t] 

Io;  Io + .  le(v-v*)l= dxds<-c4+c5 sup Ie(v-v*)ldx, (2.11) 
se[O,t] 

where c4 and c5 depend on various norms of the data. 
Now we have to estimate Sn, l e ( v  - v*)l dx. By the safe load condition (1.5), 

for almost all (x, t) c Q, we have that 

(e(v) - Ac~)- (o- - or*) _> clle (v) - A~I. (2.12) 

By (2.12) we get, for almost all t, 

f. le(v)l dx<- f. IAdl dx + c6 f .  ( e ( v ) -  Ad) . (tr-tr*) dx, (2.13) 
t t t 

where c6 = c~ -~. Now we use the equation of motion (2.2) with the test function 
( v - v * )  to estimate ~n, e(v).  (tT-~*) dx. We have 

f e(v)(cr-cr*) Ilf+ div ~*-a ,v* l l~=<,~ . ) l l v -v* l [ ,~=¢. , )  dx<- 
t 

+ IIo,(v-v*)ll~=.~,>llv-v*ll~¢.,>+ I1~- ~*11 v¢.,)ll ~(v*)llL=¢.,> 

+ 3  In, le(v)12+12" In, le(v*)12" (2.14) 
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By (2.12), (2.13), and (2.14) we then get 

L Io f0Io sup l~t= d x +  sup la , (o-v*) l=  d x + ~  l e ( v - v * ) l =  d x d s  < - 
s~[0,t] ~ se[O,t] 

-<c7+c8I sup [ Icr-cr*12dx+ sup f a  Iv-v*12dx 
ts~[O,t] ./f~ sE[O,t] 

+/.~ sup I a  le(v)12dx}" (2.15) 
selO, t] 

Estimating the fight-hand side of (2.15) by an integral of  the left-hand side, 
using the Gronwall Lemma, and recalling again (2.13) and (2.14) we obtain (2.6). 

[] 

3. Proof of Theorem 1.3 

First Step. Under the hypotheses of Theorem 1.3 there exist functions v(x, t), 
tr(x, t) as in (1.6), that also satisfy (1.7), (1.8), and (1.9). 

Proof. For br > 0, let us denote by v ", o -~" the solution obtained in Theorem 2.2 
for the problem with viscosity coefficient /x. By estimate (2.6) there exists a 
sequence v~J, tr~J, that we shall denote v j, tr j, such that 

v ~-~ v in L~(0, t; L2(~)) weak*, 

t rJ~ o" in L°~(0, t; L2(fD) weak*, 

for some v and tr. On the other hand, we have 

Io L LIo 
and it follows that one also has 

6J ~ o ~ in L~°(O, t; L2(F~)) weak*. 

By estimate (2.6), also using the equation of motion to get a bound for 
[Idiv (t~ j - ~ * ) I I L ~ ¢ 0 , ~ . L = ~ . , ,  we have that 

0ttr j ~ 0,o" I in L°°(0, t; L2(I~)) weak*, (3.1) 
div t~ j ~ div tr 

and we also have that 

div v J ~ d i v  v in L~(0, t; L2(I'~)) weak* 

because, as is easily seen from (2.3), one has div v ~ = tr(AO,trJ). Conditions (1.7), 
(1.8), and (1.9) now follow, 
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Second Step. We have 

{fo f fofo } l im sup ]tr ~-tr[ 2dx+ Iv~-vl 2dx+~ I~(v~)l 2dxds =0. 
~ 0  t~  [O,T] i d[)t 

(3.2) 

Proof. Taking the test function ~'--or in inequality (2.2), and integrating by 
parts, we get 

foIAO'~'(O'~'&--o1) dxds'lll/I~.(V~l~'~*)'div(OlP'lO1)dxds 

Io;o IoL +~ I~(v")12dxds<- ~(r*) (~'~-o) dxds 

Using the equation of motion we obtain 

I~, loll'~'lOll2dx-[" ff, fl ll.Jl'~'l~12dxJF[d.. I/ I IE(vll')12dxds 

Io;o <-c9 { e ( v * ) ( ~ ' " , o ' ) - ( v - v * )  d i v ( ~ " - o ' ) - ( o ' " - c r )  • AOto" 

+(v"-v)(f +div o'*-O,v*)} dxds+c9~2 In I~(Vo)12 dx (3.3) 0 
and (3.2) follows just be noticing that the right-hand side of  (3.3) goes to zero 
uniformly with respect to t ~ [0, T], for ~ ~ 0. 

Third Step, I f  we write inequality (2.5) for v" and cr", then, by (3.2), we can 
take the limit for ~ ~ 0, for almost all t, and we get (1.11). Finally, (1.12) follows 
because of  the lower semicontinuity of  the total variation Ia, l e O(v)l with respect, 
for example, to the L1(12,)-convergence of  v. 

Finally, if  oq, v~ and o-2, v2 are two pairs of  solutions for our problem, we 
can write (1.8) and (1.11) for ~ ,  v~ using or2, v2 as test functions, and .vice versa, 
then we can sum and we immediately get that 0"1 = or2, Vl = v2. 

4. Strong Formulation for the Constitutive Law 

In this section we prove Theorems 1.4-1.6 and 1.8. We begin by recalling a few 
known results. 

Lemma 4.1. Assume that 012 is o f  class C 2. I f  t r °  ~ L°°(fl, Ms), tr o'~ L2(12), 
div t rc  L2(12), then there exists a function y,~(x) ~ L~°(012, R 3) that depends linearly 
on o', such that 

y ~ ( x ) ,  n ( x ) =  O, H 2 a.e. on 012, 

< 1  
II ~11~,~.-.~ II ~D I1~.., 
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and 

f cr(x)'e(u(x))dx+f u(x)'divcr(x)dx=fo u(x)'y~(x)dH2 
for all u e C1(~) such that u.  n = 0 on a l l  We shall denote the function y~(x)  by  
[~" n]ta°(X). 

Proof This l e m m a  is p roved  in [4] (Theorem 5.3) in the ease where  div tr ~ L 3. 
That  p r o o f  extends immedia te ly  to our  case; compare  with the first section 
of  [3]. []  

Obviously,  the integrat ion by parts fo rmula  in L e m m a  4.1 also holds  for  all 
functions u e LE(f~, R 3) such that  div u e LE(fD, e(u) e Ll(f~). 

Lemma 4.2. Assume that af~ is of  class C 2 and that tr D ~ L°°(I~, Ms), tr t r e  L2(12), 
div t r e  L2(f~): I f  6 e (0, 60), for 6o sufficiently small, the map (x, 8) -> x - 6n( x ) is 
a diffeomorphism between of~ × (0, 6o) and {x e f~ldist(x, 0f~) > 6o}. Set 

~(x) = (,~(x- ~n(x)). n(x)) 
and set also ~ - Y ta , -  Y ~ - ( Y 8  n)n. Then one has 

yt~, ,~[tr"  n]ta, in L°°(al),R 3) weak*. 

Proof It is sufficient to take a funct ion to e L~(af~, ~3), with to(x) • n(x)  = 0, and  
to extend it to a funct ion o3 e L2(12) with e(03)e L~(II),  div 03 e L2(fl)  (a slight 
modif icat ion of  Theo rem 5.2 o f  [4]), then one easily sees that  

Io YP~.(x) " 03g~(x)--" fo [~" n]ta°(X) " 'o(x), 

where 03~(x)=03(x-6n(x) ) .  Recalling that  038~to in La(af~) one has the 
result []  

Lemma 4.3. Assume that a~ is of  class C 2. I f  0 -D e L~(f~, Ms),  tr t r e  L2(I~), 
div tr ~ L2(fl),  tr .  n = 0 on YN and u e B D ( ~ )  0 L2(~)  with div u e L2(~) ,  u .  n = 0 
on To, then one has 

f (~, e(u))+ f u(x) " div cr(x) dx= fTo[~" n]tan(X)U(x) dg2, (4.1) 

where ( tr, e ( u ) ) is a bounded real valued measure in f~ characterized [9] by 

((tr, e(u)),  ~) = f~  u(x)"  div(~pcr)(x) dx, V~ e C~(f~). 

Proof. This is basical ly Theorem 3.2 of  [9], bu t  we have u e L 2 and  div t r e  L 2 
instead of  u e L 3/2 and div o- e L 3. []  

We recall that  i f  tr is as in L e m m a  4.3 and  o -°  is also cont inuous  in 1-1, one 
has ~n (tr, e ( u ) ) = ~  t~(x), e(u) for all Borel sets B ~ I ) .  

Now we can integrate by  parts in (1.11). 
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Proof of  Theorem 1.4. 
almost  all t, for  all r (x ) :  f~-~ M~ such that  

o ~ LO~(~), tr ~- ~ L2(~),  div r ~ L2(f~), 

r - n = o r * ( . , t ) . n  o n F N  

we have 

fn  (o'-'r, e ( v - v * ) ) +  Ia ( v - v * )  " div(o'- 'r) dx 

- (  (v-v*). [ (~r-r ) .  n]ta~dH~=O 
,,,IF D 

and (1.13) follows immedia te ly  f rom (1.11). 

Now we need a s imple approx ima t ion  lemma.  

I f  o- and v are as in T h e o r e m  1.3, by L e m m a  4.3, for  

(4.2) 

[]  

Lemma 4.4. Let K be a bounded closed convex subset of  M °, assume that O~ is 
of  class C 2 and let o'~ L2(~,  Ms) be such that 

trD(x) C L ~ ~3 a.e. in ~.  
div o- c L2(fl)  J 

Then, for p ~ (0, Po), for some Po > O, there exists functions trp ~ L2(~,  Ms) N C ° ( ~ )  
such that 

trp(x) = ~  tr(y) dy / f  dist(x, 0~)) > 2p, (4.3) 
a B p ( x )  , 

sup II o-~11~,,~-< clo(K), 
P 

div o'~, ~ L2(f~), 

~rp(x)~tr ,  ~3  a.e., 

tr o'p ~ tr or in L2(fD, 

div o'p ~ div or in L2(f~), 

[o'p. n] = [tr. n] on Of~ for all p. (4.4) 

Proof One can fol low [ 13], i.e., for  any fixed p, one considers open  set I~1 © f~2 
f~3- . ,  with ~_] l~j = l~, one takes a par t i t ion of  uni ty ~p~ for  covering A1 = f~2, 
A t = ( l~+1-12j_1) if j - 2 ,  and sets 

~p(x)  - (~j~) ,  
j = l  ~j(x) 

where  rj > 0 have  to be  chosen depend ing  on ~ j ,  Cj, p. I f  p is sufficiently small 
one can take ~ = {x ~ f~[dist(x, a ~ )  > p}, ,p~(x) = 1 on f ~ ,  and rl = p in order  to 
have (4.3). The other  proper t ies  follows as in [13], except  for  (4.4), which is 
easily unders tood ,  as one can choose 8 > 0 so that  [o-- n] is arbitrari ly close to 
crisp, n (where $8 ={xEf~[dis t (x ,  0 ~ ) =  8}) and  [o'p. n] is arbitrari ly close to 
trpls~ • n, while o'pls~ • n-~ O'[s~" n for  a lmost  every fixed 8, for p ~ O. [] 
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We remark that  we need not have orp°(x) e K for  all x e II,  on the other  hand,  
by (4.3), we do have o'p°(x) e K if dist(x, a~ )  > 2p. 

N o w  we prove the following lemma. 

Lemma 4.5. I f  o-= or(., t) and v = v(. , t) are such that (1.13) holds, orp are as in 
Lemma 4.4 and we denote by PKo-oO(x) the projection of or~(x) on the convex set 
K, we have 

Iq ( PKOrD ( x ) -- TI)" Ep 

- - f  (V*--V)" ([O r" n]tan--[T 2 " n]tan ) dH2~to(p), (4.5) 
dF D 

where limp~0 to(p) =0 ,  for all pairs of functions z,: 12-> K, z2: FD-'* K, such that 
.q is [#~[-measurable and "r2 is H2lr .  measurable. 

Proof. First we notice that for all z such that  (4.2) holds, using (1.13) we have 

- f  (o'D(x)--'rD(x), #p)--f (V*--V)" ([or" n]tan--[T" n]tan ) dH 2 
J To 

=--II~ (o'D--TD'EP)--ITD(V~--V)([Or" n]tan--[T" n]tan) dH2 

+ I  A6~'(orp-o')-I  ( v*-v )  div(orp-or)-I  e(v*)'(orp-or) 

_< c . ( l l  Or- Ors II L2( . )+ Ildiv(Or - Ors)II L:(.)} = (P) ,  (4.6)  

where cu = Cl,(Or, v, or*, v*). Then we remark that  for all r such that  

r e L2(f~, Ms), rD(x) e K, ~3  a.e., div r e Lz(f~), (4.7) 

one has 

--[IO PKo'D" Ep--Ii)(T, Ep)]- ITD (Vg--V)" ([O"" n]tan--[T" n]tan) dR 2 

<- to(p). (4.8) 

In fact, take 6 > 0 and take a funct ion q~ e C~(al~) such that 0 < - q~ -< 1, q~ = 1 on 
FN, HZ({x e FDI ~(x)  > 0}) < 3, then extend it to a funct ion ~ e C~(I~) such that  
again 0 < - q~ - 1 on f~ and 5f3({x e 121~o(x) > 0}) < 6. Let r be such that  (4.7) holds 
and take 

a = (1 - ~o)~+ ~or*, 

then it is clear that a satisfies (4.2) and by (4.6) we get that  the left-hand side 
o f  (4.8) is less or equal than 

to(P)+ 2c'°{f~ l#'l+ f{=~nl~(~)>o}+ f{x~r°l~(x)>o}l v*-vl dHz} 
= t o ( p ) +  to , (8 ) ,  
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l~2~={x~flIdist(x, af~)<2p} and where oJ1(8)~0 for 8 ~ 0 .  As 8 is where 
arbitrary, (4.8) is proved. 

Now consider the Radon measure/Z o n  R 3 defined by 

/z(n)=l~pl(nc~sq)+u2(nc~ TD) for all Borel sets B c R  3 

and the /z-measurable  function to: R 3 ~ K defined by 

[ rl(x) i n l 2 ,  

r°(x)=[ r2(x) on TD. 

We can approximate ro by a sequence of functions a s ~ CI(R 3, K )  that converge 
/z a.e. For a l l j  we have (4.8) and, taking the limit for j ~  oo, we get (4.5). [] 

Proof of Theorems 1.5 and 1.8. We shall use Lemma 4.5 with a particular choice 
of  rl and z2, more precisely we can take r~ and r2 such that the hypotheses of 
Lemma 4.5 hold and 

~[~= ) n(x)~ \[~1 (x) , I~=1 a.e. in f~, 

(4.9) 
( /')* - / )  ) 

• 2(x) ~ ~ \ ~  (x) ®= n(x) , Iv*- vl d H  e a . e .  on FD, 

where 

~*- ~ 1 [(~*- ~)j (~*l~*-~----~- ~)' ] 

In fact, we notice that ~- is the subgradient of  the polar function I *  of the 
indicator function IK of  K, then we can suitably approximate I *  from above by 
a sequence of smooth functions h s and consider the sequence of  functions 

j /  v*-  v ~J(x) = ~ ~l-y-s-~_~[ (x) ®= .(x)), 

f i t  where ~'J is the subgradient of  hi. The functions a s, are I~pl-measurable and 
I v * - v  I dH2lrD-measurable, respectively, and one can extract subsequences that 
converge weakly so some r l ,  r2 that are as in (4.9). We remark that if ~1 is as in 
(4.9) then, by the definition of ~;, we have 

~p 
(rx(x)--PKo'D(x)) "-~vl(X)>~O, I~1 a.e. (4.10) 

Moreover, if K ,  and o~, are as in (1.17) and (1.18), we have that the functions 
y~ of Lemma 4.2 all belong to the convex set 

5~ 1 = {z ~ LI(FD, ~ K,( ,) ,  ~2 a.e.} 
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and by Lemma 4.2 one also has that [tr. n]tan~ fig'1. Finally we notice that if ~2 
is as in (4.9), we have 

v * -  v 

and it follows that 

v * - v  
([r2" n]tan(X)--[~" n]tan(X)) Iv*-vl  ( x ) - o ,  ~e 2 a.e. on Fo. (4.11) 

Writing (4.5) for rl and h as in (4.9), and taking into account (4.10) and 
(4.11), we conclude 

g~ 
( , ~ ( x ) -  PKtr°p (x)) • ~ (x) ~ 0 in L'(f~, I~pl) (4.12) 

for p -~ 0, and 

v * - v  
([7"2" n]tan(X) -- [O'" n]tan(X)) • ~ (X) = 0, 

IV*--VI~ 2 a.e. on FÜ. (4.13) 

Now, (4.13) proves Theorem 1.8, while Theorem 1.5 follows from (4.12) 
recalling the following well-known lemma: 

Lemma 4.6. Let G~(x, a), G2(x, a):  fl  x K ~ ~ be two positive Caratheodory 
functions such that 

G,(x, 4 )=0  G2(x, 4)=0. 

Then, if  sOp(x): f ~  K, p ~ (0, Po), are ix-measurable functions in x ~ 12 for each 
fixed p such that 

Gl( x, ~p) -~ 0 in measure IX, for p ~ O, then one also has 

G2(x, ~p) ~ 0 in measure IX, for p ~ O. 

In fact, if we take 

~p 
4) = 4).  (x), 

G 2 ( x , a ) = d i s t ( a , ~ ( ~ ( x ) ) ) ,  

~o(x) = pKo'D(x), 

by Lemma 4.6 and (4.12) we have 

o~o \ ~p[ (x) = 0 in li ,  l-measure in f~ 

and by the boundedness of the function dist(4, ~((~/l~pl)(x)) we get (1.16), 
which concludes the proof  of Theorem 1.5. [] 
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