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Abstract. We are concerned with the Hamilton-Jacobi equation related to 
the infinite horizon problem of deterministic control theory. Approximate 
solutions are constructed by means of a discretization in time as well as in 
the state variable and we prove that their rate of convergence to the viscosity 
solution is of order 1, provided a semiconcavity assumption is satisfied. A 
computational algorithm, originally due to R. Gonzales and E. Rofman, is 
adapted and reformulated for the problem at hand in order to obtain an 
error estimate for the numerical approximate solutions. 

1. Introduction 

The main goal of this paper is to provide a constructive method to approach the 
viscosity solution v of the Hamilton-Jacobi equation related to the infinite horizon 
deterministic control problem, namely, 

(HJ) Au(x)+Max[-g(x, a)Du(x)-f(x, a)] =0.  

This is the first step if one is interested in optimal feedback controls (see, e.g., 
Fleming and Rishel [9]). 

We recall that equation (H J) may have, in general, many generalized (locally 
Lipschitz) solutions: the relevance of the notion of a viscosity solution is that it 

* This work has been partially supported by CNR-GNAFA. 
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allows the characterization of a particular solution (see Crandall and Lions [4], 
Crandall et al. [6], and Lions [12]). 

Capuzzo Dolcetta [2], in a previous paper, has shown a discretization in 
time (step h) of  the original control problem which leads to the approximate 
Hamilton-Jacobi equation 

(HJh) Uh(X)q-Max [ - (1 -hh)Uh(X+hg(x ,  a ) ) - h f ( x ,  a)] =0.  
a ~ A  

This discretization is significant for the problem at hand since it has been proved 
(Capuzzo Dolcetta and Ishii [3]) that the rate of convergence of the solutions Vh 
of (HJh) to v, as h tends to zero, is of order 1, provided a semiconcavity assumption 
on f and g is satisfied. 

Now the following question arise: how can we compute Vh? This is done 
here via a discretization in the state variable (step k) of (HJh) by means of finite 
element techniques. In such a way we obtain the approximate Hamilton-Jacobi 
equation 

(HJ k) wk(xi)=MinA[(1--Ah)wk(xi+hg(xi' a))+hf(xi, a)], 

which must be verified at any vertex xi of  a regular triangulation and which is 
finally reduced to a finite dimensional problem. The main result of Section 2 
shows that the rate of convergence of the solutions Vh k of (HJ k) toward Vh, as k 
tends to zero, is of order 1. 

As far as a numerical solution of deterministic control problems is concerned, 
the results presented here have some intersections (see Remark 2) with those of 
Gonzales and Rofman [11], who considered a direct discretization in the state 
variable of the Hamilton-Jacobi equation related to optimal stopping problems 
with impulse and continuous controls, proving the convergence of  approximate 
solutions by means of quite heavy regularization techniques. The new approach, 
i.e., discretization in time and in the state variable, permits a solution to the 
infinite horizon problem (whereas in [11] only finite horizon problems are 
considered), furthermore, it allows a simpler proof  of the convergence of approxi- 
mate solutions to v and provides a better error estimate in the case of the optimal 
stopping problem with continuous control, to which both results apply. 

We refer the reader interested in other aspects of the approximation of 
solutions of Hamilton-Jacobi equations and in stochastic optimal control prob- 
lems to Crandall and Lions [5], Lions and Mercier [13], Quadrat [14], and 
Souganidis [16]. 

In the last section we discuss the computational aspects of the mixed discretiz- 
ation procedure. The algorithm proposed by Gonzales and Rofman [11] to solve 
a fixed point problem in finite dimension is reformulated so that it appears as a 
method to speed up the convergence of a sequence defined recursively by means 
of  a contracting operator. In this way we obtain an error estimate for the 
approximate solution computed by the algorithm at the nth iteration. 

Since it is beyond the aim of this paper to present in detail the numerical 
implementation of the mixed discretization technique, we refer the reader inter- 
ested in the practice of the algorithm and in numerical tests to Falcone [7], [8]. 
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2. Discretization Procedure and Convergence of  Approximate Solutions 

The Hamilton-Jacobi equation (H J) provides a characterization of the value 
function of the following infinite horizon problem with discount: 

~0 k°° 
Inf J(x,  a ( .  ))-= Inf f ( y ( s ) ,  a(s))  e -As ds, (2.1) 
a E M  a~,~¢ 

where ~¢, the set of admissible controls, is given by 

~ /=  {a: [0, +oo) ~ A, a( .  ) measurable}, 

A is a compact subset of R", (2.2) 

and the state y evolves in ~n according to the following system of differential 
equations: 

j~(s) = g(y(s ) ,  a(s)) ,]  

y(0) = x ~ R". J (2.3) 

In fact, it is well known (see Lions [12] and related references) that the value 
function 

v(x)  = Inf J(x,  a ( . ) )  (2.4) a(.)e6a/ 

is the unique viscosity solution of (H J), provided the following assumptions are 
satisfied: 

]g(x, a) - g(x' ,  a)[--< Lglx - x'], [g(x,a)[<-Mg, Vx, x ' 6R" ,  V a c A  
(2.5) 

If(x, a) - f ( x ' ,  a)[ <-- Lflx - x'[, ]f(x ,a) l<_Mf,  Vx, x ' c R " ,  V a e A .  
(2.6) 

Moreover, it turns out that v is Lipschitz continuous and this allows us to consider 
Du in (H J) as an "almost everywhere" derivative. 

Let h be a strictly positive parameter; we shall consider the discretized 
Hamilton-Jacobi equation (see Capuzzo Dolcetta [2]) 

(HJh) Uh(X) + M a x [ - ( 1  - Ah)Uh(X + hg(x, a))  - hf(x, a) ]  = 0 
a E A  

and we shall assume that 

f ( x ,  . ) and g ( x .  ) are continuous (2.7) 

(this assumption can be suppressed in the case of a finite number of admissible 
controls, A-= { 1 , . . . ,  m}). 

The main motivation to consider (HJh) is that its solutions supply a good 
approximation of v, as is stated by the following theorem. 
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Theorem 2.1 (Capuzzo  Dolcet ta  and  Ishii  [3]). 
then (HJh) has a unique Lipschitz continuous solution Vh and we have 

sup I v h ( x ) l - - -  < My 
X C R  n 1~ ' 

Ivh(xl)-Vh(X2)l 4 
sup -~ , 
x, ¢,,2 I x l - x21 X - Lg 

sup Iv(x) - Vh(X)l <-- Ch 1/2 
X E R  n 

for  any A > Lg and h ~ [0, l /A) .  
Under the supplementary semiconcavity assumptions 

[g(x + z, a ) - 2 g ( x ,  a) + g ( x - z ,  a)l-< Mlzl 2, 

f ( x + z , a ) - 2 f ( x , a ) + f ( x + z , a ) < - M I z [  2 forany  x, z e R  ~ and 

for any h > 2 L g  and h e [ 0 ,  l /A)  we have 

sup Iv(x) - Vh(X)[ <-- Ch 
X E R  n 

for  some positive constant C. 

Assume (2.5), (2.6), and (2.7), 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

a c A ,  

(2.12) 

(2.13) 

Remark  1. The constants  appear ing  in (2.10) and (2.13) can be estimated.  In  
part icular ,  once the p r o o f  of  Theorem 2.1 is known,  it is a s imple exercise to 
prove  that  in (2.10) 

C - < m a x  A ' A  ' M g  + 2  . 

Theorem 2.1 states that  Vh converges to v locally uni formly  but  the p roo f  
does not suggest an algori thm to compute  the sequence  of  approx imate  solutions. 
The main  difficulty is that,  due to the dynamic  p r o g r a m m i n g  approach ,  in (HJh) 
the value of  Uh at the point  x depends  on all possible  values of  Uh at the points  
x + hg(x, a), a ~ A. In order  to overcome this difficulty we discretize (HJh) in the 
state var iable  using finite e lement  techniques.  

First we must  restrict our  p rob lem to a b o u n d e d  subset  of  R n. Let us notice 
that  a solut ion Vh of  (HJh) is defined for  any x ~ R n so that  the choice of  this set 
will be arbi trary,  the only condit ion being that  it contains  any discretized trajectory 
starting in it. In  part icular ,  we shall assume that  there exists a po lyhedron  l~ in 
R n such that,  for  some h, 

x + h g ( x , a ) ~ ,  V x ~ ,  V a c A .  (2.14) 

Later  we shall discuss how to extend the results to the general  case of  an open 
b o u n d e d  convex set f~ in R n. 
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Let {Sj} be a finite family of simplices which set up a regular triangulation 
(see Glowinski et al. [10]) of f~ (f~ being a polyhedron ~_Jj S t = 1)) and verify 

max{diam Sj} = k. (2.15) 
J 

Let N be the number of vertices, xi, of  the triangulation. We shall consider the 
set W k of  piecewise affine functions wk: ~ R  such that w k is continuous in 
and the gradient of w k is constant in the interior of any simplex Sj of the 
triangulation. We look for a solution in W k of  

(HJ k) wk(xi) = Min[(1 - hh) wk(xi + hg(x ,  a)) + hf(xi, a)] for any vertex xi. 
a c A  

Clearly, a solution Vh of (HJh) verifies (HJ k) and the function that we obtain 
interpolating the values of Vh on the vertices, that is, 

N N 

~h(X) = Y~ AjVh(Xj) for x = ~ ;tixj, 
j = l  j = l  

where aj>-0, Vj and Y~a-~ At = 1, belongs to W k. 

Theorem 2.2. Assume (2.7), then for any h ~ [0, l / a )  verifying (2.14) there exists 
a unique solution of  (HJh k) in W k. 

Proof. For any affine function u k, (HJ k) corresponds to 

N 

uk(xi) = M i n [ ( 1 - h h )  ~ hj(x~, a)uk(x j )+hf (x i ,  a)], 
a c A  j = l  

where 

aj>__0, 

(2.16) 

N 

V j, ~ Aj=I ,  
j = l  

N 

x,+ hg(xi, a )=  Y~ aj(xi, a)xj. 
j = l  

So it suffices to prove that there exists a unique vector U 6 •N such that 

U = Mini(1 - Ah)A(a) U+ hF(a)], 
a ~ A  

where A(a) is an N x N positive matrix A0(a ) = Aj(xi, a) and F(a)  ~ g~N is defined 
by F~(a) =f (x i ,  a), i= 1 , . . . ,  N. 

Let us define the operator T h : ~ N ~  R N 

(Th(U) ) ,=- -Min[ (1 -Ah)A(a )U+hF(a) ] , ,  i = l , . . . , N .  (2.17) 
a c m  

Th is a contraction mapping in R N which verifies 

t tTh(U) -Th(V) I I<- - (1 -Ah) I IU-Vt l ,  VU, V i n R L  (2.18) 

where IlXll = maxi=l,....NIx/[- 
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In fact, denoting the ith row of A by Ai we have 

[(Th(U) - Th(V))i[ ~< (1 - Ah) maxlAi(a)[ II U -  VII, 
a~m 

then (2.18) directly follows by the definition of A. 
By the contraction mapping theorem there will be a unique V*~ ~N such 

that Th( V*) = V*. [] 

Notice that V* = (Vh(XO, . . . ,  Vh(XN)). We shall denote by Vh k the solution of 
(HJh k) obtained by interpolating V*. We prove that Vh k converges locally uniformly 
toward Vh as k tends to zero. 

Theorem 2.3. Assume (2.5), (2.6), (2.7), (2.14), and (2.15), then for any )t > Lg 
and any he[0 ,  I/A) 

maxlvhk(X)_/)h(X) I~ t f  k. (2.19) 
x ~  A - Lg 

Proof. It is evident that vk(x) coincides with ~h(X) for any x ~  since V*= 
(Vh(XO, . . . ,  Vh(XN)), then the proof simply follows from (2.9). In fact, for any 
x ~ 1) we have 

Ivy(x) - Vh(X)l ~ Iv~(x) - ~h(X)l + ] t~h (X) -- Vh(X)l 

~" j~=lt~j'l)h(Xj)--Vh(X)l 

<_ L: k. [] 
A -- Lg 

The preceding theorem joined with Theorem 2.1 gives the following estimates 
of the rate of convergence of Vh k toward v, the unique viscosity solution of (HJ). 

Corollary 2.4. Assume (2.5), (2.6), (2.7), (2.14), and (2.15), then for some positive 
real constant C and for any A > Lg and h c [0, I/A) 

maxlv~(x)_v(x)l<_Chl/2 + Ly k. (2.20) 
x~f~ A - Lg 

Moreover, i f  (2.11) and (2.12) hold, for some positive real constant C andfor  
any X > 2Lg and h ~ [0, l /A) 

m a x l v ~ ( x ) - v ( x ) l < - C h +  Lf k. (2.21) 
xEf~ X - Lg 

Remark 2. Gonzales and Rofman [11] showed a constructive approach to the 
optimal stopping problem with impulse and continuous controls. In their 
approach the value function v is characterized as the maximum Lipschitz con- 
tinuous function which satisfies a set of inequalities and approximate solutions 
w k are found via a discretization in the state variable. More recently Menaldi 
and Rofman proved that the sequence w k converges to the viscosity solution of 
the related Hamilton-Jacobi equation (see Rofman [15]). 
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In particular, in the stationary case and for an optimal stopping problem 
with continuous controls, Gonzales and Rofman obtained the following error 
estimate: 

I w k ( x )  -- V(X)] ~ C(log k)k 1/2, Vx ~ ~, 

where k always denotes the maximum diameter of  the simplices of  the triangula- 
tion. For that particular problem our estimates (2.20) and (2.21) ameliorate their 
result since we can write the optimal stopping problem as an infinite horizon 
problem simply by adding one control, ~, to the set A and defining 

g(x, ~) =- O, Vx c ~n, 

f(x,  a) =- A~b(x), Vx e R", 

where ~b represents the stopping cost. 
It is worth while observing that if 0 is bounded and Lipschitz continuous, 

which is the case in [11], then f defined in such a way still satisfies (2.6). 

Let us briefly discuss the case of a general open bounded convex set l l  in 
R'.  Let {Sj} be a finite family of simplices which set up a regular triangulation 
of l) and verify (2.15). Since all the vertices xi belong to 1) we have 

~'~k ~ U Sj c f t .  (2 .22)  
J 

Notice that ~'~k is an open polyhedron so that, in order to apply the previous 
results, we have to check that the following condition is satisfied: 

3h>O:x+hg(x ,a)c (~k ,  VX~(~k, r a t A .  (2.23) 

Clearly, (2.14) is not sufficient since ~'~k C2 ~ .  
The next result shows that (2.23) holds provided the mesh of the triangulation 

is small enough and a classical sufficient condition for the positive invariance of 
is verified. In the proof  we shall make use of  the following definitions of  the 

tangent cone, To(x), to a nonempty closed convex subset Q c ~" at x ~ Q 

To(x)=-Cl(hU>O 1 - £ ( Q - x ) )  

and of the normal cone No(x) to Q at x ~ Q 

No(x)=-- {weR": (w, z)<-O, Vz ~ To(x)}. 

Notice that they are closed convex cones with vertex at the origin and that 

Q c  x+ To(x). 

We refer to Aubin and Cellina [1] for a general overview of the properties 
of  tangent and normal cones. 

Proposition 2.5. Let ~ be an open bounded convex set of R" and let its boundary 
be an ( n -  1)-dimensional manifold of class C 1. Let g be continuous and let (2.5) 
be verified. Assume 

(~7(x),g(x,a))<c<O, Vx~01~, r a t A ,  (2.24) 
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where ~7(x) denotes the outward normal to I~ at the point x, then there exists a 
regular triangulation of  lI such that (2.23) is verified. 

Proof We start by not icing that  for any e > 0 it is always possible,  eventually 
refining the mesh,  to have 

OlIk c Ol'l + eB, (2.25) 

where  B denotes  the unit  ball  in ~". 
Let Fi be  a face o f  the t r iangulat ion belonging to OlIk. In  the relative interior 

o f  Fi , /~ ,  the ou tward  normal  to f~k is constant ,  let us denote  it by ~i. We define 
the fol lowing subset  o f  all:  

F'i ==- {x '~ Ofllx'= x +  er h for some x ~ l~i and  e > 0}. 

Since 7/(. ) is cont inuous  over  0[1, wi thout  loss of  general i ty we can always 
assume that  there exists y ~ F~ such that  

r /(y) = 7,. (2.26) 

We have  

(rh, g(x, a) )= 07(Y), g(Y, a))+ (rh, g(x, a) - g ( y ,  a ) ) + ( r h -  rl(y), g(y, a)) 

then, for  F~ and F'~ sufficiently near,  namely ,  

s u p [ x - x ' [  < e , ,  
x E F  i 
x 'E  F[ 

by the Lipschitz cont inui ty of  g we obtain 

(rh, g(x, a)) < c+ Lge 1 

which implies  

(rh, g(x, a)) < cl < O, Vx c F~, Va ~ A. (2.27) 
m 

Let us now consider  x e O i ~ i  0F~: it is evident  that  for  such an x, (2.27) is 
verified for  any  i = 1 , . . . ,  m. Since, for any i = 1 , . . . ,  m, 

(~)i ,y-x)<-O, Vy~ l I k ,  

we will have  

07~, v) <- O, Vv e Tak(x),  

that  is, 

7h~ Nfik(x),  i= 1 , . . . ,  m. 

In  part icular ,  we notice that  ~7~ e ONak(x), since for  any z e F~ we have 

(~/~, z - x ) = O  

and z - x  clearly belongs to The(x). 
Moreover ,  it is easy to prove  that, for  M > O, 

co{Air/i, . . . ,  X,,~,,} = N a k ( x )  (2.28) 
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(otherwise there will be at least one point w = Ai~ + Ajrb, i j  = 1 , . . . ,  m, which is 
not on the boundary of  Nhk(x)). Then, by (2.27), for any x e af~k, and a e A, we 
have 

(w, g(x, a)) < cl, Vw e Nhk(x), 

that is, g(x, a) e 7"c~(x) (notice that Tak(x) is clearly not empty since l~k # 9). 
Let us now show that for any x e al)k and a e A there exists hx,, > 0 such that 

x+ hx, ag(x, a) e f~k. (2.29) 

In fact, suppose that 

Vh, x+hg(x,  a)~l)k,  

we will have 

g(x, a) ~ h (Ok -- X), 

that is a contradiction since 

1 
U = 

h>O 

By a compactness argument it can be proved that hx, a c a n  be chosen indepen- 
dently of  a. 

For any x e Ok (2.29) is verified since g is bounded. Since flk is open, by 
the continuity of  g we can affirm that for any x e ~k  there exists a neighborhood 
Vx of x such that 

VX'E VxN~k, x'+hxg(X, a)E~'~k, Va~A .  

We define 

~?h=-- {X ~ k :  x + hg(x, a)~f~k, Va e A}. 

The sets (~h are open and constitute a covering of  l)k. So we can take out a finite 
covering {(~hj}j=l,...,p and affirm that (2.23) is verified for h = minj{hj}. [] 

3. The Algorithm 

The proof  of  Theorem 2.2 immediately suggests an algorithm to compute an 
approximate solution of (HJ). Starting at any point VoeR N, by applying the 
operator Th we obtain the sequence 

V, = Th(V,_,) (3.1) 

which converges to V*. Since V* belongs to B(0, My~A), the closed ball with 
center 0 and radius My/;t, the following estimate holds: 

IV , -  V*[<-(1-hh)."8, Vn, (3.2) 

where 

8 = max IV o -  V]. 
V~B(O,Mf/A) 
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Let us denote by vh k'n the affine function obtained by interpolating the vector 
V, defined in (3.1), then, by Corollary 2.4, we have 

m a x l v ~ , n ( x ) _ v ( x ) l <  - Chl/2_l_(l_hh)nt~+ Lf k (3.3) 
x~n A - Lg 

for any A > Lg and h ~ [0, I/A) and, provided the semiconcavity assumptions 
(2.11) and (2.12) are satisfied, 

maxlv~h,(X)_V(X)l<_Ch+(l_Ah)n~ + Lf k (3.4) 
x~fi A - Lg 

for any A >2Lg and h ~[0, I/A). 
In practice, for h = 0 we expect the convergence of V, to V* to be very slow 

since, in that case, ( 1 - A h ) =  1. How to overcome this difficulty? Here we can 
apply a relaxation type algorithm proposed by Gonzales and Rofman [11] to 
solve a fixed point problem in finite dimension: this algorithm has given good 
results in their numerical tests. By means of a new formulation we shall prove 
that it can be reinterpreted as an acceleration method for the sequence generated 
by the contracting operator Th and this will provide an error estimate. 

Let us briefly recall, for the reader's convenience, some basic properties of 
the algorithm (to simplify notations in the following, we will write v n and Aj(a) 
rather than Vh k'n and Aj(xi, a)): 

(1) At the (nN+i)th step it modifies the ith component of I7"~ 
(~"(xl),..., ~n(xN)) according to the iterative scheme 

vn+l(xi)--- a~t.MiAn[(1 -- h A )~j~Aj(a)f)"+~(xj)+~..Aj(a)v"(xj))+hf(xi, a ) ] j = ,  
/i-1 

(3.5) 
(for the original formulation see [11]). 

(2) Let Mh: R N~ R N be the operator defined component by component in 
(3.5), i.e., Mh(Vn) = (~+1(Xl), • • •, ~7~+l(xN)), then the sequence gener- 
ated by the iterative scheme 

("n = Mh( Vn-l) (3.6) 

will converge to a fixed point for Mh, provided it starts at a point I7" 0 
such that 

f/o<-(1-Ah)A(a)fZo+hF(a), VaeA.  (3.7) 

The main characteristic of this algorithm is that once the ith component of 17" 
is modified it is immediately substituted in the right-hand side of (3.5) giving a 
contribution to the calculus of the (i + 1)th component. 

On the contrary, since by definition 

Vn+ 1 ~ Th( Vn) ~ Min[(1 - Ah)A(a) V, + hF(a)], (3.8) 
a c m  

the ith component of V.+I does not appear in the calculus of its ( i + l ) t h  
component. 
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Let ~ denote the following subset of •N: 

~------{v~RN: V < _ ( 1 - A h ) A ( a ) V + h F ( a ) , V a ~ A } ,  

notice that ~ is a closed convex set. 
The following proposition holds true. 

Proposition 3.1. For any starting point V o E T', 

(1) {V,} and {17n} are monotone nondecreasing; 
(2) for any n, V, and 17, belong to °l/'. 

Proof. The monotonicity of Vn is trivial, we only prove that ~7 is monotone. 
We have 

N 

v°(x l )<-(1-Ah)  ~ Aj(a)v°(x j )+hf(x l ,a) ,  r a t A ,  
j = l  

then v°(xl) <- ill(x1). Since 

v°(xj) <-- ~'(xj), Vj < i, 

implies 

v°(xi)<-(1-Ah) Y, Aj(a)~l(xj)+ Aj(a)v°(xj) +hf (x , ,a ) ,  V a e A ,  
j = l  j = i  

we have 

v°(xi) <- O'(xi), Vi = 1 , . . . ,  N, 

that is, Vo-< 17'1. 
Since 17",_ 1 --- I7, implies 

N 

z3"(Xl)<-(1-xh) 2 Aj(a)v"- l (x j )+hf(Xl ,  a) 
j = l  

N 

-<(1-Ah) Y~ Aj(a)~"(x~)+hf(xl ,a) ,  r a t A ,  
j=l 

we have 13"(xl)-< zS"+l(xl). Then, repeating the same argument that we have used 
before, we prove that 

~"(xi) <-- zT"+t(x,), Vi = 1 , . . . ,  N, 

and by induction on n we end the proof. 
The fact that {V,} and {17,} stay in o~ immediately follows by the 

monotonicity. [] 

Proposition 3.1 clearly imply that V* is the maximum element of W, as it is 
the limit of all monotone sequences generated by Th starting at any Vo ~ ~. 

The following proposition shows that 17, also converges to V*. 
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Proposition 3.2. Let { V,}, { ~/~} be the sequences respectively defined in (3.6) and 
(3.8), the following inequality holds 

V, -< Vn --- V*, Vn. (3.9) 

Proof The second inequali ty is trivial. We start by proving that  the first inequality 
in (3.9) holds true for n = 1. Since vl(Xl) = 131(Xl) and v°(xl) <- ~1(xl) we have 

N 

vl(x2) <-- (1 - Ah) • Aj(a)v°(xj) + hf(x2, a) 
j=l 

N 

<-(1-Ah)Al(a)~l(Xl)+ Y. Aj(a)v°(xj)+hf(x2, a), VacA, 
j = 2  

that  is, vl(xz) <- 01(x2). By iterating we prove that  VI-< 91. 
Let us now show that V, -< V, implies V,+I -< 9",+1. In fact, for any i, we have 

v"+l(x~)=Min[(1-Ah)j~=lAj(a)v"(xj)+hf(xi, a) ] 

<-MiAn[(1-Ah)  ~ Aj(a)v~(xj)+hf(xi, a)] 
j = l  

--< ( 1 - A h )  Zj(a)l)n+l(xj)+ Aj(a)~"(xj) +h f (x , ,  a) . 
j =  j = i  

[] 

Then defining v~'" as the affine function obtained by interpolating V, instead 
o f  V, we obtain a better approximat ion  of  the viscosity solution v o f  (H J). Notice 
that the error estimates (3.3) and (3.4) remain valid. 
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