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Abstract. This paper  describes a simple linearized model for the optimal 
control of a natural resource stock. Applications of the model to fisheries 
and forestry, as well as to mineral exploration and recovery, are discussed. 

1. Introduction 

In this article we discuss a simple but quite general deterministic model of 
renewable resource exploitation. Let x = x(t) be a real variable representing the 
biomass of a given biological resource at time t >/0. The fundamental  equation 
of our model is 

dx 
--~ = F(x, t )  - h(t), (1) 

where F(x,t)  is a given function describing the natural growth rate of the 
resource biomass, and where h(t)>1 0 denotes the exploitation rate, or rate of 
"harvesting." The initial population x(0) = x 0 is assumed to be  known. 

By specializing the function F(x, t) in various ways, we obtain a variety of 
models that have been used by previous authors. For  example, the logistic 
growth function F ( x , t ) = r x ( 1 - x / K )  leads to the Schaefer model [12], often 
used in fisheries management .  An alternative fisheries model, due to Beverton 
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and Holt [2], utilizes a growth function of the form F(x, t)= g(t)x. The function 
F(x,t)=at-bxCe -dx, which has been used in forestry [10] will be discussed in 
detail later in the paper. Finally the case F(x, t )=O provides a model of 
exhaustible resources [8]. 

The question of determining what criterion to utilize in defining a concept 
of optimal resource exploitation is always a difficult one. Without wishing to get 
involved in moral or political questions, we shall here adopt the standard 
economic criterion of maximizing the present value of net revenues. 

Let p denote the unit value (price) of the harvested resource, and let c 
denote unit harvesting cost. We write 

Q = p - c (2) 

for the unit net revenue, and allow Q to depend on both the time t and the stock 
level x at time t: 

Q = Q(t,x).  

Our basic assumption, however, is that Q is independent of the harvest rate h(t). 
As we shall see, this assumption leads to a linear control problem of a 
particularly simple nature. 

If 8=  8(t) denotes the instantaneous discount rate in effect at time t, then 
the appropriate discount factor for discounting revenues back to time zero is 
clearly equal to 

a(t) = exp(- ft~(~')d.r). (3) 
\ Jo  ! 

We can therefore write the present value of net revenues corresponding to a 
given harvest policy h( t), t >1 O, as 

P.V. = a(t )Q(t ,x)h( t )dt .  (4) 

We then define an optimal harvest policy to be an admissible function h*(t) >1 0 
that maximizes (4) over a certain class of admissible controls, subject to the 
differential equation (1) and to the obvious constraint 

x(t) o. (5) 

By an admissible control we mean any measurable function h(t) defined for t >/0 
and satisfying the inequalities 

0 <~ h(t) <~ hma x (6) 

where hmax=hmax(X,t) is a given nonnegative function representing the 
maximum harvest capacity. (In the final section of the paper we shall extend our 
model so that hma x also becomes a decision variable.) 

We allow the possibility that hm~x--+o o, in which case the class of 
admissible controls must be extended to include impulse (delta-function) 
controls, which result in discontinuous jumps in the state variable x. 
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The paper is organized as follows. In the next section we solve the above 
control problem by a completely elementary argument, under suitable 
smoothness assumptions and subject to an important uniqueness assumption. 
We then apply this solution to derive several known results, for models of 
optimal fishing, capital accumulation and mineral exploration. Next we apply 
the theory to a model of optimal forest rotation and thinning, and present some 
numerical results. In the final section we generalize the model to include the 
problem of optimal investment policy. 

2. Solution of the Control Problem 

The control variable h( t )  can be eliminated from the present-value integral (4) 
by substitution from Equation (1), leading to an expression of the form 

S(x) = ( G(x,t) + I-l(x,t):q at, (7) 

where to -0  and q=oo.  We shall now assume, however, that t o and tl are 
arbitrary, but finite; this assumption is easily relaxed later. The constraints (6) 
can now be expressed in the form 

.4 < < s (8) 

where A and B are given functions of t and x. The functions A,B, G,H are 
assumed sufficiently smooth--continuity of A, B and continuous differentiability 
of G, H suffices for our purpose. 

We seek to maximize J ( x )  over the class of piecewise smooth functions x ( t )  
defined for to<<.tKt I satisfying the constraints (5) and (8) and end-point 
conditions 

X(to) = x o, x ( t , )  = x 1. (9) 

This problem, the so-called singular case of the simplest problem of the calculus 
of variations, is easily solved by elementary means (cf. [7]). Consider the 
equation 

OG OH 
3 x =  O--F (lO) 

(which is in fact the Euler-Lagrange equation for our problem). We shall assume 
that Equation (10) determines a unique function x = x* ( t )  for t o < t < t I, and that 
x* is piecewise smooth. We also suppose that x * ( t )  satisfies the constraints (5) 
and (8); problems in which these various conditions are violated can also be 
handled by the methods given here, with suitable modifications. In the 
terminology of control theory, x * ( t )  is called the singular solution. 
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Finally we assume that for all t, 
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0G OH 
0--x- ~ ~ whenever x <> x*(t). (11) 

By continuity of G,H, and by our uniqueness assumption, if (l l) is not valid 
then the reverse inequalities must hold for all t. In the latter case it can be seen 
that x*(t) is a minimizing solution, rather than the desired maximizing solution. 

The solution to our variational problem can now be described in the 
following terms. The singular solution x*(t) is the optimum optimorum level for 
the variable x. If x*(to)vax o, then x(t) should be controlled initially so as to 
approach x* as rapidly as possible: 

A(x,t) whenever x(t)>x*(t) (12) 
2 =  B(x,t) whenever x(t)<x*(t). 

In terms of the original harvesting model this means that the optimal policy h(t) 
is given by 

h(t)= I hmax whenever x(t)>x*(t) 
(13) 

0 whenever x(t)<x*(t). 

Of course the singular control h*(t)=F(x*(t))-2*(t) is required whenever 
x(t) = x*(t). Such a control policy is called a bang-bang-singular policy. 

A similar terminal adjustment phase is required in c a s e  x*(t l)~/=x 1. An 
example is illustrated in Figure 1. Here we have x0<x*(0),  so that the initial 
adjustment phase PQ is determined by 2=A(x,t), i.e. h ( t )=0 .  The terminal 
adjustment ST in this case also uses the same control limit A(x, t). The optimal 
solution x(t) is the curve PQRST. 

To establish the optimality of this solution, consider an alternative 
possibility xa(t), such as the dashed curve of Figure 1. w e  then have 

f t [ (  G(x,t) + H(x,t)2 ) dt - f t [ (  G(xa, t)+ H(xa, t)2a) dt 

= ~PQRP ( G(x, t) dt + H(x, t) dx ) 

QR Ot OX dt dx > 0 

by Green's theorem and by hypothesis (11). The same calculation applies for 
t a ~ t ~ t  l, and we conclude that J(x)>J(xa). It is clear how to modify the 
argument to cover an arbitrary admissible curve xa(t ) ~x(t). Thus the curve x(t) 
is indeed the optimal solution to our problem. 

For  the case t 1 = o¢ we require hypotheses ensuring the boundedness of the 
integral (4). We therefore suppose that 8(01>8 0 > 0 for all t, that any feasible 
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trajectory x(t) is bounded, and that Q(t, x) is also bounded. The above argument 
then shows that the optimal harvest policy consists of an initial bang-bang 
adjustment, as before, after which the singular path is followed ad infinitem. 

This definitive characterization of optimal trajectories for the linear infinite 
time-horizon problem is of some interest in view of the well known difficulties in 
the nonlinear case. We also observe that the optimal policy in the linear case is 
expressed in a simple feedback form, another distinctive advantage over the 
nonlinear case. 

3. Some Applications 

We now apply our model to derive a number of known resource-exploitation 
policies. Applying Equation (10) to the present-value integral (4), we obtain the 
following basic .equation for the singular path x*(t): 

OF r OQ = 6(t) l 3Q (14) 
a x  Q 

where 

Q( t,x) = p( t) - c( t,x) 

denotes the net revenue from a unit harvest when the biomass level equals x. A 
detailed economic analysis of Equation (14) is given in [4]. 

Maximum Sustained YieM 

Suppose that 

F ( x , t ) = f ( x )  where f(0) = f ( K ) - - 0  and f ' ( x )  <0.  
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Take a finite time horizon T, set 8(0------0 and Q(t ,x )~  1. The problem then is 
simply to maximize the total yield Y over the given time interval: 

Y =forh(t)dt.  

Equation (14) becomes simply f ' (x*)=0, i.e. x* is the population level at which 
the biological production rate f (x )  is maximized. This is referred to as the level 
of maximum sustained yield. 

If x0>x*, the optimal policy is to harvest the excess stock at the fastest 
possible rate, subsequently maintaining maximum sustainable yield. If x 0 <x*, 
no harvest should be taken until the stock has grown to the level x*. 

Maximum sustained yield is the most popularly accepted concept of optimal 
renewable resource harvesting. It is the basis for almost every existing 
international agreement in marine fisheries. Yet economists have been severely 
critical of the concept for its failure to consider the costs associated with 
harvesting. The following model incorporates such costs. 

The Gordon-Schaefer Fishery Model [ 5 ], [ 12 ] 

We now specify 

Assume a constant price p, and suppose that the cost of a unit harvest is 
inversely proportional to the stock level x from which the harvest is taken. (The 
latter assumption stems from a supposition that the fishermen search at random 
for a uniformly distributed fish stock.) Thus 

c 
Q(t,x) = Q(x) = p - -  where c -- constant. (16) 

x 

Gordon [5] suggested that optimal fishery management should result, not in 
the maximization of biological yield, f(x),  but rather in the maximization of net 
sustained economic yield, Q(x)f(x). This leads to 

g c 
x* -- -~ + W£, (17) 

which is also the singular solution for the integral of economic yield: 

Yec -- forQ(x)h(t)  dt" (18) 

As observed by Gordon, this solution is more conservative than the traditional 
maximum sustained yield solution, since x*>K/2=level  of maximum yield. 
When discounted yields are considered, however, the conclusion is no longer 
valid. 
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The Gordon-Schaefer Model with Discounting [3], [4] 

Assume a constant discount rate 8 > 0 and consider the present value 

P.V. = fo°°e-8'Q(x)h(t)dt. 

The optimal biomass level (i.e. the singular solution) is now given by 

if(x*) + Q'(x*)f(x*) _ 8, (19) 
Q(x*) 

which can be solved for x* =xff: 

(c  /21 'rJ+ 2+8c' 
When 8 = 0  this reduces to the Gordon solution (17). But xff is a decreasing 
function of 8, and large discount rates may thus result in optimal population 
levels below the maximum yield level. High discount rates thus lead to reduced 
resource conservation [3]. 

Optimal Economic Growth 

Let k(t) denote the capital-to-labour ratio in a certain economy, and let c(t) 
denote the rate of consumption. Let U(c) denote utility of consumption, and 
consider the problem of maximizing total discounted utility 

fo°°e-StU( ( ))dr J =  c t  

subject to 

dk 
--~ = f ( k )  - c(t); k ( t )  > O. 

This is the celebrated Ramsey-Cass-Samuelson-Solow model of optimal 
economic growth--see [9]. In the special but rather uninteresting case that U(c) 
is a linear function, U(c)= ac, we may apply our simple linear theory, obtaining 
a singular solution k(t) = k* determined by 

if(k*) = 8. (20) 

This equation, which also holds for equilibrium ("turnpike") solutions in the 
nonlinear case, is called the modified golden rule of capital accumulation. 

It is clear that our fundamental rule for singular solutions, Equation (14), is 
merely an extension of the golden rule (20) necessitated by the general nature of 
our model. Each term in Equation (14) has a straightforward economic 
interpretation [4]. 
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Mineral Exploration 

The following model of mineral exploration has been proposed by R. Uhler [14]. 
Let z = z(t) denote the cumulative effort devoted to exploration for petroleum 
(for example) over a given geographical area. Empirical studies suggest that the 
rate of discovery varies with z, increasing at first as geological structures become 
better known, but ultimately decreasing as undiscovered reserves become more 
scarce. We suppose that the net economic yield from exploration is given by 

p D ( z ) v ( t )  - cv(t)  = Ql(Z)V(t)  

where v =  d is the rate of exploration, where D(z)v( t )  is the rate of discovery, 
and where p = unit value of discovered reserves and c = unit cost of exploration. 
The objective is to maximize 

f ° ° e - S t O  ( ) ( )dr P.V.= l g f) t 
ao 

subject to 2 = v. 
Equation (10) for the singular solution z* is simply 

Q,(z*) = pD(z* )  - e = O. (21) 

This seems rather banal: exploration should proceed (at the maximum rate Vmax) 
until the revenues no longer repay the costs of exploration. An interesting 
complication arises, however, in the case that Equation (21) possesses two 
solutions z~' <z~ (Fig. 2). In this case, the initial exploration incurs a loss, but 
leads to the accumulation of knowledge from which later benefits accrue. 
Clearly exploration is advisable only if the present value of the ultimate benefits 
exceeds the present value of the initial exploration costs. Thus the optimal level 

- z *  depending on the circumstances. of cumulative effort is either z = 0 or z - 2, 
We have included this simple example to show that the linear model can be 

applied in many cases where the hypotheses listed in Section 2 fail. Typically a 
finite number of candidates for optimal solution can be easily identified, and the 
choice of the optimum optimorum is then reduced to a numerical problem. 

Mining 

The following model for the mining of known reserves originates with Hotelling 
[8]; see also [6], [13]. Let x(t)  denote the reserves remaining at time t, and let 
h(t) > 0 denote the rate of production. Then 

dx 
dt -- - h( t) 

and the objective functional is 

P.V. = fo Te-~t { p ( t )  -- c (x )  ) h(t)  at; T <  +o¢, 
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where p(t) is the anticipated price level at time t, and c(x) denotes the unit 
production cost. There is an additional constraint of the form 

x(T)  >1 O, i.e. forh(t) <. K = x(O). 

Equation (14) reduces to 

¢ ( t )  = 8. 
p(t)--c(x) 

If the unit production cost c(x) is a strictly decreasing function of x, this 
equation defines a unique singular path x=x*(t) .  If c(x) is a constant 
independent of x, however, then all production takes place at the instant T at 
which p( T) I ( P( T) - c) -- 8. 

4. Forestry Management: Optimal Thinning and Rotation 

In a study of optimal thinning and rotation of pine forests in Finland, Kilkki 
and Vaisanen [10] developed a nonlinear discrete-time model that could be 
analyzed numerically by standard techniques of dynamic programming. In this 
section we shall describe a linearized continuous-time version of the 
Kilkki-Vaisanen model, which can then be studied by means of the methods 
described above. We also take the opportunity to correct an apparent error in 
the Kilkki-Vaisanen work. 

Let x(t) denote the volume of salable timber in a given forest stand of age 
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t ~ t o ~ 0. Assume a forest-growth equation of the form 

dx 
- ~  = g ( t ) f ( x )  (t  >1 to), (22) 

where g(t)  is a positive decreasing function of t, and f ( x )  is a positive function 
with a unique maximum at X=Xma x. In the Kilkki-Vaisanen model these 
functions are of the form 

g( t )  = at-b;  f ( x )  = xe  -cx (23) 

where a, b, c are positive constants. 
Thinning is a process that simply reduces the volume x( t )  of standing 

timber. (In the forestry literature this is called "thinning from above," and 
contrasts with "thinning from below," which is a selective process of removing 
low-value trees, thereby enhancing the value of the remaining stand.) If h ( t ) ~  0 
denotes the rate of thinning, Equation (22) becomes 

dx 
= g ( t ) f ( x )  - h( t )  (t>>-to). (24) 

The forest is assumed to be thinned at a rate h(t)  >1 0 (to be determined) for 
t o < t < T, and the remaining stand is then clearcut at age T, when a new rotation 
commences. Both the thinning policy h(t)  and the rotation period T are 
considered as decision variables. The net present value of a single rotation, 
discounted to time t = 0, is given by 

P, (h)  = f f e - S t R ( t ) h ( t ) d t  + e - ~ r q ( T ) x ( T )  (25) 

where 

R( t )  -- unit net revenue from thinning 

q (T)  = unit net value of timber at age T. 

We assume in general that, since clearcutting costs may be different from 
thinning costs, q ( T ) v ~ R ( T ) .  

We shall suppose that the second, and all subsequent, rotations are 
characterized by the same growth functions, and the same economic relations, as 
the first rotation. Maximization of the present value of all future rotations then 
implies that the optimal thinning and rotation policy will be the same for each 
rotation. Thus the total present value is given by 

o~ 

P.V.= ~] p 1 e - k S r =  . Pl_6r.  (26) 
k = O  1 -- e 

In order to determine the optimal policy, we first treat T as a parameter, 
and determine the optimal thinning policy h*(t)  for t o < t < T. If P t ( T )  denotes 
maxPl(h  ), we then maximize P'~(T) with respect to T. 
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The singular solution x*(t) for (24), (25) satisfies 

1 [6 R ' ( t ) ]  (27) 
y' (x*)  = R(t)  

If f ' (x) is monotone, this equation determines a unique singular path x*(t). 
The optimal thinning policy then consists of an initial bang-bang adjustment 
beginning at t = t 0, followed by a singular control, followed in turn by a terminal 
bang-bang phase. 

The latter phase is not determined by a given terminal value x(T) = xr as in 
Equation (9), but is instead characterized by an appropriate transversality 
condition. Intuitively it is clear that if (as we shall henceforth assume) 

qr > R(T) 

then thinning should not be carried out for t near T because greater revenues 
can be obtained by clearcutting. Thus we will have 

h*(t)=O for t I < t  < T. 

See Figure 3. 
The information obtained so far is readily translated into an effective 

numerical scheme for determining the optimal thinning and rotation policy. 
First the singular path x*(t) is computed. Assuming next that X(to)= x*(to), we 

X 0 

to  

Fig. 3. 
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then de te rmine  t I so tha t  Pl(h) is maximized ,  with h(t)=h*(t) for  t< t  1 a n d  
h ( t ) = 0  for  tl<t<<.T. A t  this stage, P'{(T) is known,  so tha t  T*, the t ime  of  
c learcut t ing  that  maximizes  P'{(T), can  then be de te rmined .  

If X(to)vax*(to), this p r o c e d u r e  m a y  require  mod i f i ca t ion  if the con t ro l  
const ra in ts  p revent  x(t) f rom reaching  the s ingular  pa th  before  t = t  1. Of 
prac t ica l  impor t ance  is the case  in which X(to) is be low x*(to) a n d  X(tl) is still 
be low x*(t O. Clear ly  an  op t ima l  po l icy  in this case does  not  involve  any  
th inning  at  all, so the  on ly  p r o b l e m  is to de te rmine  the op t ima l  age of ro t a t ion  
T*. F o r  this, the well  k n o w n  F a u s t m a n n  fo rmula  suffices: 

V'(T*) 6 
V(T*) 1 - e -St* 

where  V(T)= q(T)x(T)  denotes  the  ne t  revenue  ob t a ined  f rom c learcu t t ing  a t  
age T. 

The  above  m e t h o d  was used  to de te rmine  an  op t ima l  th inn ing  and  ro t a t ion  
po l icy  b a s e d  on the fo l lowing m o d e l  used  b y  Ki lkk i  and  Va i sanen  [10]: 

__dx = 5 6 . 9 t -  l'23xe "O03x 
dt 

Here  x denotes  the vo lume  of  usable  t imber  in a one-hec ta re  s t and  of Scotch  
p ine  of age t years .  A l inear  a p p r o x i m a t i o n  to the cost  a n d  pr ice da t a  used  b y  
these au thors  y ie lded  a net  revenue  func t ion  

R(t) = .337t + 5.06 ( F m k / m  3) 

Fo l lowing  Ki lkk i  a n d  Vaisanen ,  we supposed  that  th inn ing  and  c learcu t t ing  
could  occur  only  at  f ive-year  intervals ,  t = 50, 55, 60 . . . . .  W e  thus d iscre t ized  our  
con t inuous- t ime  m o d e l  accord ing ly .  

The  results,  o b t a i n e d  on  an  I B M  370 compute r ,  a re  shown in the tables.  
Tab le  I gives the s ingular  pa ths  x*(t) co r re spond ing  to a r ange  of d i scount  rates  
8 f rom 0 to 8% per  annum.  The  sensi t ivi ty of these results  to the values  of 8 is 
no tewor thy ,  and  is typica l  of op t ima l  forest  m a n a g e m e n t  policies.  

Table I. Singular path x*(t) (m3/hectare). 

Discount Age (t), years 

Rate 
8 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 

.01 397 389 380 371 362 352 343 

.02 293 280 266 254 241 229 217 

.03 229 213 197 183 169 155 142 

.04 181 163 147 131 116 101 87 

.05 142 124 106 89 74 58 44 

.06 llO 90 72 55 38 23 8 

.07 82 62 43 25 8 

.08 57 36 17 

333 324 315 306 297 288 280 271 263 
205 194 183 173 163 153 143 134 125 
129 117 106 94 84 73 63 53 44 
74 61 49 37 26 15 5 
30 17 4 
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Table H. Optimal rotation age, T* (years) and optimal age, q, of final 
thinning (years). (A blank implies no thinning.) 

Discount Cost Ratio (0) 

Rate 1.0 1.1 > 1.2 

8 t I T* t I T* t I T* 

.01 95 100 60 85 - -  80 

.02 85 90 60 75 - -  70 

.03 75 80 55 70 - -  65 

.04 70 75 - -  60 - -  60 

.05 60 65 - -  55 - -  55 

.06 55 60 - -  55 - -  55 

.07 - -  50 - -  50 - -  50 

.08 - -  50 - -  50 - -  50 

Table  II  shows the optimal rota t ion age T*, and  the age t 1 of final thinning, 
for the same range of  discount  rates 8. In  this table the parameter  O represents 
the ratio of  thinning costs to clearcutt ing costs. For  example, when thinning and  
clearcutting costs are equal (O= 1.0), optimal thinning continues until the last 
period prior to clearcutting: t l =  T * - 5 .  W h e n  0/> 1.2, on  the other  hand,  
thinning is never profitable. Not ice  that, when thinning is profitable, it has the 
effect of increasing the length of  the optimal rota t ion per iod T*. As in Table  I, 
the sensitivity of  the optimal thinning and rota t ion policy to the discount  rate 
is apparent.  

While somewhat  simpler to interpret, our  numerical  results canno t  be 
compared  directly with those of Kilkki and  Vaisanen,  because of  the 
linearization assumed in our  treatment.  Moreover ,  our  me thod  also differs in the 
choice of the objective functional  (26), representing total d iscounted revenues 
over an infinite time horizon. Ins tead of this, Kilkki and  Vaisanen assumed a 
fixed "site-value" S, and  maximized the single rota t ion value 

P l (h )  + Se -~T 

where P l ( h )  is given by (25). Since the value of a forest site depends (critically) 
upon  the proposed utilization, this procedure  appears  to be incorrect.  

5. Optimal investment policy 

Another  significant aspect of resource exploitation that can  be studied on  the 
basis of our  linear model  is the quest ion of opt imal  investment in harvest ing 
equipment.  We shall discuss this problem briefly on the basis of  the 
Gordon-Schaefer  fishery model  described in Section 3. 

Our  analysis leads to the s tandard  rule of investment  planning:  the opt imal  
level of investment is such that  the marginal  present value of  returns equals the 
marginal  cost of  investment.  In  renewable resource management ,  however,  this 
rule has a perhaps unexpected corollary:  the opt imal  level of  investment during 
the initial harvest stage m a y  be greater than the level required for opt imal  
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sustained yield. If investment is irreversible, the optimizing manager may thus 
wind up with an excess of harvesting capacity. 

Let E =  E(t) denote the rate of fishing "effort" utilized in a certain fishery. 
It is normal to assume that the resulting rate of harvest h(t) is given by 

h(t) = qE(t)x(t) (28) 

where q is a positive constant. Considering now E(t) as the basic control 
variable, we may express the optimization problem in the form 

maximize f ~ e - S t ( p x ( t ) -  c)E(t)dt 
Jo 

dx 
subject to -~- = f ( x )  - qEx (t >> O) 

x(0 )  = x0; x( t) >. 0 

O<<.E(t)<Em~x. 

Now let K =  K(t) denote the level of capital invested in fishing equipment. 
We shall assume that the maximum rate of effort, Ema x, is proportional to K: 

Ema x -~- olK (29) 

where a is a positive constant, called the coefficient of capital effectiveness. We 
now consider K, and concomitantly Emax, as an additional decision variable. 
Essentially this allows for a separate treatment of fixed costs and variable costs 
in our fishery model. 

Irreversibility of invested capital seems to be a characteristic of resource 
industries. (See Arrow [1] for a general treatment of irreversible investment.) In 
many cases, rapid acquisition of equipment may be feasible, but disinvestment 
may be difficult since unwanted equipment may have no value other than as 
scrap. We shall model these observations in an extreme form by assuming that 

dK 
0 < - ~  = I(t) <. +oo. (30) 

where I(t) denotes the rate of investment. 
The net present value corresponding to a given investment schedule I(t), 

and given harvest policy h(t)= qx(t)E(t) is given by 

f0 ° 
NPV = e - ~ t { ( p x ( t ) - c ) E ( t ) - I ( t ) ) d t  (31) 

It is intuitively clear that the optimal investment policy is a bang-bang policy, 
and this can easily be verified via the Pontrjagin maximum principle [11]. Let x* 
denote the optimal population level as determined by Equation (19). If x(0) >x*  
it can be seen that the optimal investment policy utilizes an impulse control at 
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time t---0 to adjust K(0) to some optimal level K*>>K(O). The  problem thus 
reduces to the determination of K*. 

Let PV(Em~x) denote the present value of the optimal harvest policy, given 
that E ( t ) < E m a  x. Then (given that x (0 )> x* )  PV(Emax) is a strictly increasing 
function of Ema x, and is bounded by P V ( +  oo)<  + ~ .  Given K* we have 
Ema x - a K *  and hence 

N P V  = PV(Emax) - 1 Emax + K(O). 

The problem is then to choose K * =  a -  1Ema x so as to maximize this expression. 
Assuming differentiability, we see that the solution satisfies 

d P V  1 d P V  
- - = - - ,  or - - - - -  1 (32)  
dEm~ x a d K  

i.e. the optimal value of K is such that marginal increase in present value equals 
marginal cost of investment. 

The solution now falls into three distinct cases, depending on the 
capital-effectiveness coefficient a. If a is small, Equation (32) will have no 
solution, so that K* = 0 is the op t imum investment level. If  K(0)=  0, the fishery 
will not be exploited at all because fixed costs are too high. 

- * where If a is of moderate  size, then (32) will have a solution Ema x -  Ema x 
--1 * 0 < E*~x < E* = f ( x * ) / q x * .  If K(0) < ct Em~ x, the fishery will be exploited, but at 

a lower level than would occur if only variable costs were relevant. Of course if 
K(0) is sufficiently large, i.e. if K(0) > a - 1E*, then the fishery will be exploited at 
the level E*. 

Finally, when capital effectiveness is high, we obtain * * Em~x > E . T h e  fishery 
is exploited initially at an effort level in excess of the optimal sustained level. 
Once the population has been reduced to x*, the level of effort must  also be 

• E * .  reduced from Ema x to This is true even though the excess capital 

1 , 
ge = --d (Emax -- E*) 

cannot be reduced. In other words, an optimally managed  fishery in which 
investment is irreversible may  reach an equilibrium position with excess 
equipment that should not be utilized. 
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