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Introduction

Many authors investigated real hypersurfaces of €IP™. In particular, Takagi
classified homogeneous real hypersurfaces in CIP™ and proved that the number of
distinct principal curvatures of a homogeneous real hypersurface is 2, 3 or 5 [14].
These hypersurfaces are special cases of Wang’s isoparametric hypersurface [16]. In
fact, there is no generally accepted notion of isoparametric hypersurfaces in spaces
other than space forms. Wang’s definition can be characterized by a transnormal
system (cf. Sect. 2).

The aim of this paper is to investigate the number of distinct principal curva-
tures and their multiplicities of hypersurfaces in transnormal systems on FP™,
where IF=C or H. In particular, we obtain the following results.

Theorem A. Let M be a connected hypersurface in a transnormal system on FP™.
Then

(1) The number g, of principal curvatures of M is constant and can take only the
values 2,3,5 or 7.

(2) There are at most 3 different multiplicities and one of them is 1 when F=C (3
when IF=H).

The method we use to obtain these results is based on the observation that
M=n"1(M) is an isoparametric hypersurface in S”, where r is the Hopf fibration
S">IFP”. We combine this with infinitesimal, as well as global geometric and
topological arguments to obtain our results. One of the key ingredients of our
consideration is the number of non-horizontal eigenspaces of the Weingarten map
on M. In fact, we have the following results.

Theorem B. Let k be the number of non-horizontal eigenspaces of the Weingarten
map on M. Then

(1) k is constant on M and takes only the values 2,4 or 6.

(2) M has constant principal curvatures if and only if k=2.
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Let m,, (my, resp.) be the possible multiplicities of principal curvatures of
M(M, resp.) and g,,(g,;, resp.) the number of distinct principal curvatures of
M (M, resp.). With this notation we can make the arguments in the above theorems
more precise. In fact, the following tables yield all the possibilities of k, g,, and m,,.

Table 1. (F=C)

k 95 Im dim M my; Py,
2 2 2p+1 1,2p+1 1, 2p
3 2p+2g+1 2p+1, 2g+1 1, 2p, 2¢q
2 3 2p+1 ,1,p,p L,pp
4 5 4p+5 2,2, 2p+1, 2p+1 1,2,2,2p,2p
5 17 4,4,5,5 1,4,4,4, 4
5 29 6,6,9,9 1,6,6,8, 8
3 3 1,1,1,1 1,1,1
*4 4 5 2p+3 1,1, p+1, p+1 ,1L,1,p,p
7 2p+2q9+3 p+1,p+1,9+1, g+1 L14,14L,pp.4.9
6 6 5 5 L1, 1,111 1,1,1,1,1
Table 2. (F=H)
k Iri Iu dimM my; myy
2 2 4p+3 3,4p+3 3,4p
3 4p+4qg+3 4p+3, 4943 3,4p, 4q
2 3 7 3,3,2,2 3,2,2
4 5 4p+17 2,2,2p+3,2p+3 3,2,2,2p,2p
5 27 6,6,99 3,6,6,6,6
5 4p+7 3,3, 2p+2,2p+2 3,3,3 2p—1,
4 4 2p—1
7 4p+4qg+7 2p+3, 2p+3, 2q+2, 3,3, 3, 2p, 2p,
2g9+2 2g—1,2q-1

* The cases represent possible values, not the existence

Some of the case k =4 are illustrated by examples. In particular, we point out the
existence of non-isometric transnormal systems in CIP™ whose corresponding
isoparametric families are isometric.

2. Preliminaries

A transnormal system on a complete connected Riemannian manifold N is a
partition of N into nonempty connected submanifolds such that any geodesic of N
cuts these submanifolds orthogonally at none or all of its points. A nonconstant
real-valued function f on a space of constant curvature is called isoparametric if | f[*
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and 4 f are functions of f. The level sets of such a function give an isoparametric
family which is a special case of transnormal systems.

Note that the Hopf fibration n:S"—IFIP™ is a Riemannian submersion with
totally geodesic fibers, i.e., each fiber is totally geodesic in $"” and at each point z of
S” the differential (z, ), preserves the lengths of horizontal vectors, i.e., vectors
which are orthogonal to the fiber 27! (x), where n(z)=x. A vector at z is called
vertical if it is tangent to the fiber = ~!(x). For each tangent vector X on $”, vX and
hX denote the vertical and horizontal components of X, respectively. To each
tangent vector field X on IFIP™, there exists a unique horizontal vector field on X on
S" such that (n,), X=X, forall z in §".

Let D and D be the Riemannian connections of $” and IFIP™, respectively, If X
and Y are tangent vector fields on IFIP™, then

h(Dz¥)=(DyY) . 2.1)

where X, ¥, D, Y mean their horizontal lifts {14]. In fact, (2.1) is true for any
Riemannian submersion with totally geodesic fibers. Let X be a transnormal system
on FIP™ containing a hypersurface M, and M=n"'(M). Let 7 be a unit normal
vector field on M. Then the relationship between the two shape operatiors A;and 4,
is given by

h(4;X)=4,X , 2.2)

where n=mn_(#) and X is a tangent vector on M.

Proposition 2.1. =1 (X) is an isoparametric family, and hence M is an isoparametric
hypersurface on S”™.

Proof. Let y be a geodesic which is normal to A at a point z. Then zo y is a geodesic
of IFIP* (cf. O’Neill [10]) and normal to M at =(z). Since X is a transnormal system,
7 oy is normal to members of X at all of its points. Thus y is normal to members of
n~1(2), and hence n~*(X) is transnormal. By [17], it is an isoparametric family
on §".

Proposition 2.2 (Miinzner [7, 8], Abresch [1]).

(i) The number g of distinct principal curvatures of M is 1,2,3,4 or 6. Let
P1s---» P, be the distinct principal curvatures with multiplicities my,...,m,. Assume
that p;=cott; and 0 <t; <...<t,<m. Then

(i1) m;=m,, (subscripts modg).

(i) =1, +k—)n/g, 12k <g.
Thus there are at most two different multiplicities, say m, and m_.
Moreover, m . =m_ for oddg.

(iv) M has exactly two focal submanifolds F, of codimensions m, +1.

™) Ifg=3,thenm_ =m_=1,2,40r 8. If g=6, then m_ =m_=1 or 2.

(vi) §"isdivided into two sphere bundles B, over the focal submanifolds F, with
common boundary along M. Moreover,

Z, for g=0,my(modm,+m_) and 0Zqg<n

o F, - =
Hi(Fy 3 2,) {0 otherwise .

In Sects. 3 and 4, we consider IFIP" for m=>2.
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3. Complex projective space

In this section, we assume thatn=2m+ 1 and IF = C. Let J be the canonical complex
structure on €™ ** . Let ¥ denote the canonical vertical vector fieldon M, i.e., V, =iz
for all zin M. Note that M is an isoparametric hypersurface of §?™*!. Letp;,..., p,
be the distinct principal curvatures of M and T(p;) denote the eigenspace
corresponding to p,. If 7(p,) contains a non-horozontal vector, then we may choose
an orthogonal basis for T(p,) of the form {W,,..., W, , U;+ V}, where W;, and U;
are horizontal. If i#j, then

(U,U;>=-1, and hence x(U;,U;)>n/2 . 3.1

We will use the following identities which follows from Dy, ¥ =0and D, #— DzV =0
(cf. [9D).

AWM, X>={In,X> for XeTM , (3.2)
AW, V>=0 , (3.3)
[AW)=1, (3.4)

where A=A;, A=A, and J is the complex structure induced by J.

Assume that T(p,),..., T(p,) contain non-horizontal vectors and that
T(py+1),-.--» T(p,) consist of horizontal vectors. We may assume that Uj,..., U, _,
are linearly independent. Since A(U;+ V) is horizontal by (3.3), we can express
A(U;) and A(V) as follows:

‘Z((Ji)zalU1+"'+(ai+pi)(]i+“'+ak—1Uk—1+in
AV)=—-a, U, —a,Uy,—...—ay_ U_; ,- 1S5isk—1. (3.9

Then A is represented by the matrix

< g g > ,  where D is diagonal and

al +p1 al “es a1 (36)
B= a, ay+p, ... a,
a1 Gy a1+ Dry

Since each fiber is totally geodesic, trace A=trace A. Hence we have

a+ay+...+a_=p, . 3.7
Proposition 3.1. k=2, i.e., there are at least two eigenspaces which contain non-
horizontal vectors.

Proof. Suppose that k=0. Then there are no vertical vectors, a contradiction.
Suppose that k=1. Then U, + V generates a 1-dimensional space containing V.
Then U, =0, and hence ¥ is an eigenvector, This implies that race A =trace A—p,,
a contradiction.
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Thus g=2. Let F, =n(F,). Suppose that both m, and m_ are even, then
m, +m_ is even. By (2.3), we have HY(F, ; Z,)=0 for odd q. From the fibration
S'-F, > F,, we have the Gysin exact sequence

s HYF ) HUF ) > H Y (F, ) > HI Y (F )= .

Then H4(F, )=0for odd gq. Butdim ¥, =o0dd, a contradiction. This means that we
can exclude the case g =3 altogether and the case g =6 withm . =m_ =2. Therefore
the possible values of g are 2, 4 or 6.

Case 1. g=2.

Since 2k <g, we have k=2. Thus both eigenspaces contain non-horizontal
vectors. From (3.3) and (3.5), we have Ji= —a, U, and a; =p,. Then Jn is an
eigenvector with the eigenvalue p, +p,. Thus we have

Proposition 3.2. Assume that g=2.

@D If m_=1, then m_#1 and M has 2 constant principal curvatures p,
and p, +p, with multiplicities m, —1 and 1.

Gi) If m,, m_>1, then M has 3 constant principal curvatures p,, p, and
py +p, with mudtiplicitiesm, —1, m_-—1, 1.

Remark 3.3. Note that M is a product of two spheres and its focal submanifolds are
also spheres. Thus the two focal submanifolds of M are complex projective spaces,
and hence M lies in a tube over a complex projective space.

Case 2. g=4.
Let K;={U,, U)>. Suppose that k=3 for some point of M. By (3.5) and (3.7), we
have a, +a,=p; and A(V)= —a, U, —a,U,. (3.5) implies

aprtap,=-—1. (3.8)
Thus we have

p={A0),V)=(U, AV))=—a, K, +a, ,
p,=—a,K,+a;, and
a;(Ki+1)=ps—p; . 3.9

Assume that p, >p, > p,, then p;p;=—1 or p,p; = —1. We may assume that
p1p3= —1. Then, by (3.8),

—1=(p3—a)p; +a,p,=a,(p,~p)—1 .

Thus we have a,(p, —p,)=0 and hence a,=0, a contradiction. Thus we have

Proposition 3.4. If g=4, then k=2 or 4.

Remark 3.5. The formulas (3.8) and (3.9) are true for any £.

The number k may depend on the points of M. In fact, k is constant on M. At
this moment we assume that k is constant on M. We will prove this later
(Proposition 3.12).

(1) k=2on M, i.e., T(p,) and T(p,) are non-horizontal and T(p,) and T(p,)
are horizontal. As in the case g=2, Jn is an eigenvector with the eigenvalue p, +p,.
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Proposition 3.6. Assume that g=4 and k=2.

() If m_=1, then M has 3 constant principal curvatures p;,p,,p,+p, with
multiplicities m, , m_, 1.

(i) If m,, m_>1, then M has 5 constant principal curvatures p;, p,, P3, Pa»
P1+p, with multiplicities m_—1, m_—1,m, ,m,, 1.

Remark 3.7. In Proposition 3.6, M lies in a tube over a complex submanifold. Note
that non-horizontal eigenspaces have odd dimensions [4, 15].

)] k=4on M .

Thoughout this case we assume that p, > p, > p, > p, . Note that any three of U;’s
are linearly independent, since X (U;, U;) > n/2fori#j. By (3.9) and Remark 3.5, we
have a; <0, (i=1, 2, 3). The characteristic polynomial f(x) of B is given by

F )= =X+ (p+p,+p3 +p) % — (P +3) P2 +ps)— 11x

+[a, P03+ D +as(ppy + D] —(p2+pa) (3.10

[cf. (3.6), (3.7), (3.8) and Remark 3.5]. On the other hand, if we replace U, , U,, U,,
a, a,, a3 by U,, Uy, U, ¢;, ¢35, ¢4 in (3.5), then ¢;>0 (i=2,3,4) and
F @)= =X+ (py+p;+p3+p)x* = [(p1 +p3) (P2 +ps) —11x

+le2(Papat ) +es(paps+D]—(py+p3) - (3.11)

If the constant term is equal to —(p;+p;)[—(p,+p,). resp.], then f(x) has 3
distinct roots p, +ps, ps, pa [P1,P3, P2+ Pa, resp.]. From the properties of a;, ¢;, p;
we obtain that the constant term of — f(x) is between p, +p, and p, + p,. Thus the
graph of — f(x) must lie between the two parallel curves in Fig. 1 and be parallel to
them. Then f (x) has 3 distinct roots ¢, , ¢,, g5 which are different from p, , p,, ps3, pa,
D1 +P3, P, +Da. Moreover, they are nonconstant.

P1+p3

Potp pytp

P/ 2 A~ \1’213/
// Ps\ "_ Tn

PytP,

Fig. 1
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Proposition 3.8. The g;’s are nonconstant.

Proof. Suppose that ¢, is constant then ¢, and g, are constant. Thus all principal
curvatures are constant. Then Jn is principal (cf. [14]). Then one of ¢;’s is equal to
P1+p;3 or p,+p, [4], a contradiction.

Proposition 3.9. Assume that g=4 and k=4.

(@) Ifm_=1andm, #1, then M has 2 constant principal curvatures p,, p, with
the same multiplicity m, —1 and 3 nonconstant principal curvatures with the same
multiplicity 1.

(ii) Ifm,, m_>1, then M has 4 constant principal curvatures p;, p,, P, P4 With
multiplicitiesm_ —1,m, —1,m_—1,m_ — 1 and 3 nonconstant principal curvatures
with the same multiplicity 1.

(it}) If m_=m, =1, then M has 3 nonconstant principal curvatures with the same
multiplicity 1.

Remark 3.10. We have examples for (i) and (ii). But we don’t know if the case (iii)
exists..

Now we are going to prove that k is constant. To prove this, let ¢, : M—S2"*1 be
the normal exponential map, i.€., ¢,(z) =cos ¢z +sin tA. Then ¢,(M) has constant
principal curvatures cot (¢, — ¢) with the corresponding principal distributions 7'(p;)
unless t=t; for some i [7].

Proposition 3.11. If W is a horizontal eigenvector on M, then it is also a horizontal
eigenvector on M,= ¢ (M) unless t =t, for some i.

Proof. Let V(t) be the canonical umit vertical vector field on M,. Then
V(t)=i(cos tz-+sintA)=cos tV+sintA(V). Since W is orthogonal to A(V), W is
horizontal.

We want to express U,+V in terms of U,(z)+ ¥V (¢), the non-horizontal
eigenvector with the eigenvalue p,(¢) at ¢,(z). Since (U;+V, V(¢)>=p;sint+cost,
we have

U+ V()=U,+V)/(p;sint+cost) . (3.12)
Proposition 3.12. Assume that g=4, then k is constant on M.

Proof. Suppose that k=2 on a nonempty set S and £k =4 on a nonempty set S'. Let
d be the distance function on §2™*!_If d(z, §)—0, then the constant term of — f(x)
converges to p, +p, or p; +p;. We may assume that it converges to p, +p,. Then g,
and a; converges to 0. Note that ¢,(K;+ 1) =p, —p,. Thus K| and K, are unbounded
if d(z, §)—0. Clearly K, is unbounded if ¢, »z/4. From (3.12) we obtain that K, is
bounded below. Then U, , U,, U,, U, are almost orthogonal to each other if ¢, —»n/4.
But they generate a 3-dimensional space, a contradiction to (3.1).

Case 3. g=6and m, =m_=1.

Throughout this case we assume that p, >p,>...>p;.

(1) Suppose that k =2. Then Jnis principal as in the case g =2. We may assume
that 7'(p,) and T'(ps) are the two non-horizontal eigenspaces. Note that p, +ps =p,
for some 7;. Then a focal submanifold of M must have dimension 3 [4], a
contradiction.
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(2) Suppose that k=3, 4 or 5. Then we can obtain similar contradictions. For
example, if k=4 and T(ps), T(ps) are the two horizontal eigenspaces, then

ay(py—p1)+as(p3—p1)=—1+p1py)=0 .

But a,, a; <0, a contradiction.

Thus we have k=6, i.e., there are no horizontal eigenspaces. If a principal
curvature p of M has multiplicity > 1, let X; and X, be orthogonal eigenvectors with
the same eigenvalue p. Let X, be their horizontal lifts and 4(X,)=pX,+b,V. If
b, #0, then the vector X, —(b,/b,) X, is a horizontal eigenvector, a contradiction.

Proposition 3.13. If g =6, then M has no horizontal eigenspaces and M has S principal
curvatures with the same multiplicity 1. Moreover, at least one of them is nonconstant.

For the existence of nonconstant principal curvatures, see [14].

4. Quaternionic projective space

In this section, we assume that n=4m+3 and F =H. Let J,, J,, J; be the canonical
complex structures on IH™*!. Note that M is an isoparametric hypersurface of
§*m*2 and is also invariant under the canonical S'-actions given by J;’s. Thus the
possible values of g are 2 and 4, as shown in Sect. 3.

Case 1. g=2.
Clearly dim T(p;) = 3. Choose orthogonal bases

B,u{U+V,, Ui+ V,, U/+V3}

for T(p,), where 4;, U;, U], U} are horizontal, and .}}’s are orthonormal vertical
vectors (i=1,2,3). As in Sect. 3, n,(U;), n,.(U;), n,(Uy) are eigenvectors of the
shape operator A=A, with the same eigenvalue p, +p,.

Proposition 4.1. Suppose that g=2.

() If m_=3, then m, >3 and M has 2 constant principal curvatures p, +p,, p,
with multiplicities 3, m . —3.

Gi) Ifm_,m_ >3, then M has 3 constant principal curvatures p, +p,, p, , p, with
multiplicities 3, m_ -3, m, —3.

Since M is a product of two spheres and the two focal submanifolds are spheres,
the two focal submanifolds of X are quaternionic projective spaces. Thus M liesina
tube over a quaternionic projective space.

Case 2. g=4.

Since2(m, +m_)=4m+2, we may assume that m_ is odd and that m, iseven.
Assume that the two principal curvatures p, and p, have the same multiplicity m _.
Let V,=J;z be the canonical vertical vectors. Let z;:S*"**>CP?™*! be the
Riemannian submersion obtained by taking V; as a unit vertical vector.

Proposition 4.2. Assume that g =4. If J, n is an eigenvector withrespect to r,, then J,n
and Jyn are also eigenvectors with respect to r, and ny. (J; denotes the canonical
complex structure on CIP>™*! induced by J,).



Isoparametric families on projective spaces 511

Proof. Note that T(p;) and T(p,) are horizontal with respect to V], i.e., the
members of them have no components of V;. Consider the vertical vectors
Vi 2 V,. T(p;) and T(p,) are horizontal with respect to these vertical vectors. This
implies that the members of them have no components of V,. Thus J,» is an
eigenvector with respect to x,.

Therefore we have two possible cases.

(1) Jyn is an eigenvector with respect to =, .
Note that T'(p,) and T'(p,) are horizontal, but T'(p, ) and T(p,) are not horizontal.
Clearly, m_ =3. As in the case g =2, choose orthogonal bases

B AU+ VW, Ui+ V,, Ul + Vs }
for T(p,), where %;, U, U;, U{ are horizontal (i=1, 2).

Proposition 4.3. Assume that g=4 and that J,n is principal with respect to =, .

(1) If m_=3, then m =2 and M has 3 constant principal curvatures p;, p,,
p1+p, with multiplicities 2,2,3, 3.

(i) If m_ #3, then M has 5 constant principal curvatures p,, p,, P, Pa, P1+ Dz
with multiplicities m_ —3, m_-3, m,, m,, 3.

(2) Jyn is not an eigenvector with respect to ;.
Lemma 44. m_+#1 and m, #2.

Proof. Suppose that m _ =1. Since we assume that m =2 and m, iseven, m, =4. We
choose orthogonal bases

Bo{U+V, U+ V,, Ui+ Vs}
for T(p,), where 4;, U, U;, U; are horizontal, (i=3,4). Note that
U,, U, LU3, U, L U35, U5 .
Therefore they are linearly independent. This means that we have 9 independent
vectors from an 8-dimensional space, a contradiction. By a similar argument, we

have m, #2.
Now we may assume that m_ =3 and m, =4. We choose orthogonal bases

B{U+V, Ui+, Ul + Vs

for T(p,), where #;, U,, U;, U7 are horizontal, (i=1, 2, 3,4). As in Sect. 3, we have
three 3 x 3 matrices B, B’, B’ which correspond to U,, U;, U;. In fact, they are equal.
Thus A is represented by the matrix

D 0
B0oO N
oloBo ,  where D is diagonal and
00B

pita; a @
B=| a pyt+a, a .

as a3y piyta,
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Propeosition 4.5. Assume that g =4 and that J, n is not principal with respect to =, .
() If m_=2, then M has 2 constant principal curvatures ps, p, with the same
multiplicity m, —3 and 3 nonconstant principal curvatures with the same multi-
plicity 3.
(ii) If m_#3, then M has 4 constant principal curvatures p,, p,, p;, P, With
multiplicitiesm_ —3,m_—3,m_ —3, m, —3 and 3 nonconstant principal curvatures
with the same multiplicity 3.

5. Examples

In this section, we give explicit examples on cases which have been handled in
previous sections.

Example 5.1. Consider the fibration n: S’ HP!. On HIP* =S*, there are 3 dif-
ferent isoparametric hypersurfaces

(1) M, with 1 principal curvature.

n~!1(M,) is an isoparametric hypersurface with g=2 and (m_,m,)=(3,3).
This gives an example for Proposition 3.2 (i).

(2) M, with 2 principal curvatures.

M,=n"1(M,) is an isoparametric hypersurface with g=4 and (m_,m,)
=(1,2). Since the multiplicities are less than 3, J; n can not be principal. Thus its
image M, under the fibration S’ —CIP? has nonconstant principal curvatures. This
gives an example for Proposition 3.9 (i).

(3) M, with 3 principal curvatures.

M,=n"1(M,) is an isoparametric hypersurface with g=6 and (m_,m,)
=(1,1). Accidentally we obtained an example g = 6. We know that its image under
the fibration 87 —CIP® has a nonconstant principal curvature. But M, has constant
principal curvatures.

Remark 5.2. From Takagi’s table we have a homogeneous hypersurface M} whichis
the image of an isoparametric hypersurface in S’ with g=4 and (m_,m,)=(1,2),
[14]. But all isoparametric hypersurface with g=4 and (m_,m )=(1,2) are
congruent. Thus we have two non-isometric hypersurfaces M; and M; which
correspond to isometric hypersurfaces in S§’7. These are examples which were
mentioned in Sect. 1.

Example 5.3. The inhomogeneous examples of Ozeki and Takeuchi [11] are
invariant under the canonical §3-action (and hence under the canonical St-action).
These give examples for Proposition 3.9 and Proposition 4.5.

Example 5.4. The hypersurfaces of type C and type E in Takagi’s table [14] are
invariant under the canonical S3-action. These give example for Proposition 4.3.

We proved that the example of type B in Takagi’s example can not be invariant
under the canonical S*-action (cf. Lemma 4.4). The remaining case in his table is the
examples of type D. Let M be an isoparametric hypersurface which is obtained from
a hypersurface of type D. Then g=4 and (m_,m, )=(5,4). Suppose that M is S*-
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invariant. Note that dim F_ =13 and hence dim F_ = 10. From the Gysin sequence

s HUF_ )= HY(F_ )= H 3 (F_)»HI  (F_)>...

we have H*(F_)#0and H®(F_)=0, a contradiction. Thus M can not be invariant
under the S3-action.

Acknowledgement. This is a part of author’s dissertation. I would like to thank Prof. K. Grove for
his suggestions and several helpful discussions.
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