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Introduction 

Many authors investigated real hypersurfaces of IEIP m. In particular, Takagi 
classified homogeneous real hypersurfaces in {~m and proved that the number of 
distinct principal curvatures of a homogeneous real hypersurface is 2, 3 or 5 [14]. 
These hypersurfaces are special cases ofWang's isoparametric hypersurface [16]. In 
fact, there is no generally accepted notion of isoparametric hypersurfaces in spaces 
other than space forms. Wang's definition can be characterized by a transnormal 
system (cf. Sect. 2). 

The aim of this paper is to investigate the number of distinct principal curva- 
tures and their multiplicities of hypersurfaces in transnormal systems on F F " ,  
where IF = ~ or IH. In particular, we obtain the following results. 

Theorem A. Let M be a connected hypersurface in a transnormal system on F ~ ' .  
Then 

(1) The number 9M of  principal curvatures of  M is constant and can take only the 
values 2, 3, 5 or 7. 

(2) There are at most 3 different multiplicities and one o f  them is I when IF = (E (3 
when IF = U-I). 

The method we use to obtain these results is based on the observation that 
3~r= 7:-1 (M) is an isoparametric hypersurface in S", where rc is the Hopf  fibration 
Sn--*IFIP ". We combine this with infinitesimal, as well as global geometric and 
topological arguments to obtain our results. One of the key ingredients of our 
consideration is the number of non-horizontal eigenspaces of the Weingarten map 
on 3~. In fact, we have the following results. 

Theorem B. Let k be the number o f  non-horizontal eigenspaces o f  the Weingarten 
map on f l .  Then 

(1) k is constant on ~1 and takes only the values 2, 4 or 6. 
(2) M has constant principal curvatures i f  and only i f  k = 2. 



504 K.S. Park 

Let mu(m;l ,  resp.) be the possible multiplicities of  principal curvatures of 
M(/O', resp.) and gM(g~i, resp.) the number of  distinct principal curvatures of  
M(/~r, resp.). With this notation we can make the arguments in the above theorems 
more precise. In fact, the following tables yield all the possibilities of  k, gM and m u.  

Table 1. (~'= C) 

k g~ gu 

2 
2 

3 

2 3 
4 5 

5 
5 

3 
*4 4 5 

7 

6 6 5 

dim M mff rn M 

2p+1 1, 2p+1 1, 2p 
2p+2q+l  2p+l,  2q+t  1, 2p, 2q 

2p+1 I, l ,p ,p  l ,p ,p  
4p+5 2, 2, 2p+l,  2p+l  1, 2, 2, 2p, 2p 
17 4 ,4 ,5 ,5  1 ,4 ,4 ,4 ,4  
29 6,6,9,9 1 ,6 ,6 ,8 ,8  

3 1,1,1,1 1,1, l 
2p+3 l , l , p + l , p + l  1,1, l , p , p  
2p+2q+3 p + l , p + l , q + t , q + l  l , l , l , p , p , q , q  

5 1, 1, 1, t, t, 1 1,1, 1,1,1 

dim M m~i mu 

@+3  3, 4p+3 3,4p 
4p+4q+3 4/9+3, 4q+3 3, 4p, 4q 

7 3,3,2,2 3,2,2 
4p+7 2, 2, 2p+3, 2p+3 3, 2, 2, 2p, 2p 
27 6 ,6 ,9 ,9  3 ,6 ,6 ,6 ,6  

Table 2. (F = I-I) 

k g~ 

2 

2 

4 

*4 4 

gM 

5 4p+7 

7 4p+4q+7 

3, 3, 2p+2, 2p+2 

2p+3, 2p+3, 2q+2, 
2q+2 

3, 3, 3, 2 p - l ,  
2 p - I  

3, 3, 3, 2p, 2p, 
2 q - l ,  2q-1  

* The cases represent possible values, not the existence 

Some of  the case k = 4 are illustrated by examples. In particular, we point out the 
existence of non-isometric transnormal systems in C P  m whose corresponding 
isoparametric families are isometric. 

2. Preliminaries 

A transnormal system on a complete connected Riemannian manifold N is a 
partition of  N into nonempty connected submanifolds such that any geodesic of  N 
cuts these submanifolds orthogona!ly at none or all of  its points. A nonconstant 
real-valued function f on a space of constant curvature is called isoparametric if I f  l 2 
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and A f  are functions of  f .  The  level sets o f  such a funct ion give an i soparametr ic  
family which is a special case of  t ransnormal  systems. 

Note  that  the H o p f  f ibrat ion ~z : S " ~ I F ~ "  is a Riemannian submersion with 
totally geodesic fibers, i.e., each fiber is totally geodesic in S" and at each point  z o f  
S" the differential (n , )  z preserves the lengths of  horizontal vectors, i.e., vectors 
which are o r thogona l  to the fiber rc -1 (x), where r~(z)= x. A vector  at z is called 
vertical if  it is tangent  to the fiber rc -1 (x). For  each tangent  vector  ) ?on  S", v)? and 
h J? denote  the vertical and  horizontal  componen t s  of  J(, respectively. To  each 
tangent vector  field X on IFF",  there exists a unique horizontal  vector  field on )?on  
S" such that  (TZ,)z3(= X x for  all z in S". 

Le t /3  and D be the Riemannian  connect ions of  $" and IFIP", respectively. I f  X 
and Y are tangent  vector fields on F I " ' ,  then 

h (/3i ~) = (Dx Y) , (2.1) 

where X, Y, D x Y  mean their horizontal  lifts [14]. In  fact, (2.1) is true for any 
Riemannian  submersion with totally geodesic fibers. Let S be a t ransnormal  system 
on IFF m containing a hypersurface M, and ~ t =  7t -1 (M).  Let r~ be a unit  normal  
vector  field on)Q. Then the relat ionship between the two shape operat iors  Agand A, 
is given by 

h ( A y X ) = A , X  , (2.2) 

where n = n .  ( ~  and X is a tangent  vector  on M. 

Proposition 2.1. rc - l (E)  is an isoparametric family, and hence lfI is an isoparametric 
hypersurfaee on 5". 

Proof. Let y be a geodesic which is normal  to ~ t  at a point  z. Then rc o ? is a geodesic 
of  IFIP m (cf. O'Nei l l  [10]) and  normal  to M at re(z). Since S is a t ransnormal  system, 
n o y is normal  to members  of  Z" at all o f  its points. Thus ~ is no rmal  to members  of  
rt-1 (2;), and hence ~-~(12) is t ransnormal .  By [171, it is an i soparametr ic  family 
on S R. 

Proposition 2.2 (Mfinzner [7, 8], Abresch [1]). 
(i) The number 9 o f  distinct principal curvatures o f  ~I  is 1,2, 3, 4 or 6. Let 

P~ ..... Po be the distinct principal curvatures with multiplicities m 1 ..... mg. Assume 
that p~ = cot t~ and 0 < t~ <. . .  < t o < r~. Then 

(ii) m~=mi+ 2 (subscripts modo) .  
(iii) tk= t~ + ( k -  1)~/9, 1 <=k <9. 
Thus there are at most two different multiplicities, say m+ and m_.  

Moreover, m + = m_ for odd 9. 
(iv) 3~t has exactly two focal submanifolds F• o f  codimensions m • + 1. 
(v) I f 9 = 3 ,  then m+ = m _  = 1 , 2 , 4  or 8. I f 9 = 6 ,  then m+ = m _ = l  or 2. 

(vi) N" is divided into two sphere bundles B e over the focal submanifolds F• with 
common boundary alon9 )9I. Moreover, 

Hq(~• ;Z2)=~Z2 for  q -O ,m~; (modm+ + m _ )  and O < q < n  
otherwise . 

In Sects. 3 and 4, we consider ]FIP" for  m > 2. 
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3. Complex projective space 

In this section, we assume that n = 2m + 1 and IF = ~. Let ] b e  the canonical complex 
structure on C m § 1. Let Vdenote the canonical vertical vector field on M, i.e., V z = iz 
for all z in/t~'. Note that M is an isoparametric hypersurface of S z m § 1. Let Pl ..... Pg 
be the distinct principal curvatures of M and T(p~) denote the eigenspace 
corresponding to Pl- If T(p~) contains a non-horozontal vector, then we may choose 
an orthogonal basis for T(pl) of the form { Wi~ . . . . .  Wit ,, U i + V), where W~k and Ui 
are horizontal. If i ~ j ,  then 

( U  i, U j ) =  - 1  , and hence ~(U~, Uj)>zc/2 . (3.1) 

We will use the following identities which follows f rom/)  v V= 0 and /Sv~- /5~  V= 0 
(cf. [9]). 

( A ( V ) ,  X )  = (,In, X )  for X ~  T M  , (3.2) 

(A(V), V ) = 0 ,  (3.3) 

[.4(V)[ = 1 , (3.4) 

where A=Aa-, A =A n and J is the complex structure induced by J. 
Assume that T ( p l )  ..... T(pk ) contain non-horizontal vectors and that 

T(Pk + 1 ) . . . . .  T (pg )  consist of horizontal vectors. We may assume that U 1 .. . . .  U k_ 
are linearly independent. Since A(U~+ V) is horizontal by (3.3), we can express 
A(Ui)  and A(V) as follows: 

2 ( U i )  = a  1 U 1 + . . .  + (a~+pi) Ui+ ... +ak-~ Uk-~ +Pi V 

A( V) =  - - a ~ U l - a 2 U 2 - - . . . - a k _ l U k _ l  , l < i < _ k - 1  . (3.5) 

Then A is represented by the matrix 

( D ~ - ~ B  ) , where D is diagonal and 

. . . . . . .  . . . . .  ) 
\ ak-1 ak- i  ... ak_ l 'bpk_x]  

Since each fiber is totally geodesic, trace A =  trace A.  Hence we have 

al +a2 + . . .  +ak-1 =Pk �9 (3.7) 

Proposition 3.1. k>=2, i.e., there are at  least two eigenspaces which contain non- 

horizontal vectors. 

Proof. Suppose that k = 0 .  Then there are no vertical vectors, a contradiction. 
Suppose that k =  1. Then U1 + V generates a 1-dimensional space containing V. 
Then U~ = 0, and hence Vis an eigenvector. This implies that trace A = trace A - p 1 ,  
a contradiction. 
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Thus 9 ~ 2 .  Let  F•  =Tr(F•  Suppose  tha t  bo th  m+ and m_ are even, then 
m+ + m _  is even. By (2.3), we have Hq(F+ ; Z 2 ) = 0  for oddq .  F r o m  the f ibra t ion  
S 1 ~ F §  ~ F + ,  we have the Gysin  exact  sequence 

... ~ Hq(F+ ) ~  Hq(F+ ) ~  n ~- ~ (F+ ) ~  H q+ ~ (F+ ) ~  . . . .  

Then H ~ (F+)  = 0 for odd  q. But d im F+ = odd,  a contradic t ion .  This means  tha t  we 
can exclude the case 9 = 3 a l together  and  the case 9 = 6 with m+ = m_ = 2. Therefore  
the possible values of  g are 2, 4 or  6. 

Case 1 . 9  = 2. 
Since 2 <k_<q,  we have k = 2. Thus  both eigenspaces conta in  non-hor izon ta l  

vectors. F r o m  (3.3) and  (3.5), we have J f f=  - a a  U1 and al  =P2.  Then Jn is an 
eigenvector  with the eigenvalue pa +P2.  Thus we have 

Proposi t ion 3.2. A s s u m e  that 9 = 2. 
(i) I f  m _  = 1, then m+ ~ 1 and M has 2 constant  pr incipal  curvatures Pl  

and Pl  +P2 with multiplici t ies m § - 1 and 1. 
(ii) I f  m +, m _  > 1, then M has 3 constant  pr incipal  curvatures P l ,  P2 and 

Pl +P2 with multiplici t ies m + - 1, m_ - 1, 1. 

R e m a r k  3.3. Note  that  )~ris a p roduc t  of  two spheres and its focal submani fo lds  are 
also spheres. Thus the two focal submani fo lds  o f  M are complex  project ive spaces, 
and  hence M lies in a tube over  a complex  project ive space. 

Case 2. 9 = 4 .  
Let K i =  ( U  i, Ui). Suppose  tha t  k = 3  for  some po in t  o f  )~r. By (3.5) and  (3.7), we 
have al  +a2  =P3 and A ( V ) =  - a l  U1 - a 2  U2. (3.5) implies 

a lp  1 + a 2 p  z = - 1 . (3.8) 
Thus we have 

Pl  = (A(U1) ,  V)  = (U1, ,~(V))  = - a l  K 1 +a2  , 

P2 = - a2 K2 + al  and  

a , ( K  i + 1) =P3 - P l  - (3.9) 

Assume tha t  pa >P2 >P3,  then PiP3 -- - 1 or  P2P3 = - 1. We may  assume that  
p l p a =  - 1 .  Then, by (3.8), 

- 1 = (P3 - a2)Pl + a2P2 = a2 (P2 - Pl  ) - 1 . 

Thus we have a 2 ( P 2 - P x  ) =  0 and hence a 2 = 0, a cont radic t ion .  Thus we have 

P r o p o s i t i o n  3.4. I f  9 = 4, then k = 2 or 4. 

R e m a r k  3.5. The formulas  (3.8) and  (3.9) are true for any  k. 
The number  k m a y  depend  on  the poin ts  o f  )~t. In  fact, k is cons tant  on  3~t. A t  

this m o m e n t  we assume tha t  k is cons tan t  on M. We will prove  this later  
(Propos i t ion  3.12). 

(1) k = 2 on  )l,~r, i.e., T(p l  ) and T ( p  2 ) are non-hor izon ta l  and  T(P3) and  T(p4) 
are hor izontal .  As  in the case 9 = 2, Jn is an e igenvector  with the eigenvaluepx +P2.  
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Proposition 3.6. A s s u m e  that g = 4 and k = 2. 

(i) I f  m _  = 1, then M has 3 constant  pr incipal  curvatures Pa ,P4 ,P l  +P2 with 
mult ipl ici t ies m + , m + , 1. 

(ii) I f  m + ,  m _  > 1, then M has 5 constant  principal  curvatures P l ,  P2, P3, P4, 
Pl +P2 with multiplici t ies m _  - 1, m _  - 1, m + ,  m + ,  1. 

R e m a r k  3.7. In  Proposi t ion 3.6, M lies in a tube over a complex submanifold. Note  
that  non-horizontal  eigenspaces have odd dimensions [4, 15]. 

(2) k = 4 on M . 

Thoughout  this case we assume tha tp l  >P2 >Pa >P , .  Note  that any three of  U/s 
are linearly independent,  since ~ (U/, Uj) > n/2 for  i # j .  By (3.9) and Remark  3.5, we 
have a i < 0, (i = 1,2, 3). The characteristic polynomial  f ( x )  of  B is given by 

f (x) = - x 3 + (pl +P2 +P3 +P4) x2 - [(Pl +P3)(P2 +P4)  - 1 ] x 

+ [al (PzPa + 1) + a a (Pl P= + 1 )] - (Pz +P,~ ) (3.10) 

[cf. (3.6), (3.7), (3.8) and Remark  3.5]. On the other  hand, if we replace U1,/.12, U3, 
a l ,  az, a3 by U=, U a, U 4, c 2, c 3, c A in (3.5), then e i>O ( i = 2 , 3 , 4 )  and 

f (x) = - x 3 + (Pl +P2 +P3 + P , )  x2 - [(Pl +P3 ) (P= +P4) - 1 ]x 

+ [c= (PAP4 + 1) + c 4 ( p z p  3 + 1) ] - (pa  +P3) . (3.11) 

I f  the constant  term is equal to - ( P l  q-P3)[-(P2-I-P4),  resp.], then f ( x )  has 3 
distinct roots  Pl +Pa,P2, P4 [/71,P3,P2 "+',04, resp. ]. F rom the properties of  al, ci ,Pi 
we obtain that  the constant  term of  - f ( x )  is be tweenpt  q-P3 andpz  +P4. Thus the 
graph o f  - f ( x )  must lie between the two parallel curves in Fig. 1 and be parallel to 
them. Then f (x) has 3 distinct roots  ql, qz, q3 which are different f r omp l ,  P2, P3, P4, 
Pl +P3,  P= +P4- Moreover ,  they are nonconstant .  

,/p\ 
Pl + 

Fig. l 
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Proposition 3.8. The qr are nonconstant. 

P r o o f  Suppose  that  q~ is cons tan t  then qz and q3 are constant .  Thus all pr incipal  
curvatures  are constant .  Then Jn is pr incipal  (cf. [14]). Then one of  qi's is equal  to 
Pl +Pa  or  P2 +P4 [4], a contradic t ion .  

Proposition 3.9. Assume that 9 = 4 and k = 4. 
(i) I f  m_  = 1 andre+ ~ 1, then M has 2 constant principal curvatures p2, P4 with 

the same multiplicity m+ - 1 and 3 nonconstant principal curvatures with the same 
multiplicity 1. 

(ii) I f  m +, m_ > 1, then M has 4 constant principal curvatures Pl , P2, P3, P4 with 
multiplicities m_  - 1, m + - 1, m_ - 1, m + - 1 and 3 nonconstantprincipal curvatures 
with the same multiplicity 1. 

(iii) I f  m_  = m + = 1, then M has 3 nonconstant principal curvatures with the same 
multiplicity 1. 

Remark  3.10. We have examples  for  (i) and  (ii). But we d o n ' t  know if the case (iii) 
exists.. 

N o w  we are going to prove  tha t  k is constant .  To prove this, let ~b t : A~t-, $2,,+ 1 be 
the no rma l  exponent ia l  map ,  i.e., ~bt(z)=cos t z + s i n  t8. Then ~t(ASt) has cons tan t  
pr incipal  curvatures  cot  (t i - t) with the co r respond ing  pr incipal  d is t r ibut ions  T(pi)  
unless t = t~ for  some i [7]. 

Proposition 3.11. I f  W is a horizontal eioenvector on ~I, then it is also a horizontal 
eigenvector on )9I t = qS~ (tkI) unless t = t i f o r  some i. 

Proo f  Let V(t)  be the canonical  unit  vertical  vector  field on ~ t .  Then 
V(t)  = i(cos tz + sin t ~  = cos t V + sin t,4 (V). Since W is o r thogona l  to .4(V), W is 
hor izontal .  

We want  to express U~+ V in terms o f  U~( t )+V( t ) ,  the non-hor izon ta l  
eigenvector with the eigenvalue Pi (t) at ~b t (z). Since ( U i + V, V ( t ) )  =Pi sin t + cos t, 
we have 

Ui(t) + V(t  ) = (U i + V)/(p i sin t + cos t) . (3.12) 

Proposition 3.12. Assume that g = 4 ,  then k is constant on flit. 

Proof. Suppose  that  k = 2 on  a n o n e m p t y  set S and k = 4 on a nonempty  set S ' .  Let  
d b e  the dis tance funct ion on S 2m+~. I fd (z ,  S) -~0,  then the cons tan t  term of  - f ( x )  
converges top2 -J-P4 o r p l  +P3- We m a y  assume that  it  converges  top2 d-p4. Then a 1 
and a 3 converges  to 0. No te  tha t  ai(K ~ + 1) =P4 - P v  Thus/ (1  and K 3 are u n b o u n d e d  
if d(z, S ) ~ O .  Clear ly  K 4 is u n b o u n d e d  i f  q ~ n / 4 .  F r o m  (3.12) we ob ta in  that  K 2 is 
bounded  below. Then U I , U 2, U a, U 4 are a lmos t  o r thogona l  to  each other  if  t 1 ~ n/4. 
But they generate  a 3-dimensional  space, a con t rad ic t ion  to (3.1). 

Case 3. g = 6 and  m + = m_ = 1. 
Th roughou t  this case we assume tha t  p~ >P2 > . . .  >P6- 
(1) Suppose  that  k = 2 .  Then ,In is pr inc ipal  as in the case O = 2 .  We may  assume 

that  T(p  2) and  T(ps ) are the two non-hor izon ta l  eigenspaces.  Note  tha tp2  +Ps  =P3 
for some q .  Then a focal  submani fo ld  o f  M mus t  have d imens ion  3 [4], a 
contradic t ion .  
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(2) Suppose that k = 3 ,  4 or 5. Then we can obtain similar contradictions. For 
example, if k = 4  and T(ps), T(P6) are the two horizontal eigenspaces, then 

a2(P2--pl) +a3(P3--pt)= - ( 1  + p a p 4 ) = 0  . 

But a2, a 3 < 0, a contradiction. 

Thus we have k = 6 ,  i.e., there are no horizontal eigenspaces. I f  a principal 
curvature p of  M has multiplicity > 1, let X a and Xz be orthogonal eigenvectors with 
the same eigenvalue p. Let )(~ be their horizontal lifts and A ( X i ) = p ~ + b  ~ V. I f  
b 2 # 0, then the vector ){t -(b~/b2))(2 is a horizontal eigenvector, a contradiction. 

Proposition 3.13. I f  g = 6, then M has no horizontal eioenspaees and M has 5 principal 
curvatures with the same multiplicity 1. Moreover, at least one o f  them is nonconstant. 

For the existence of  nonconstant principal curvatures, see [14]. 

4. Quaternionic projective space 

In this section, we assume that n = 4m + 3 and ~" = IH. Let J1, J2, Ja be the canonical 
complex structures on IH *+1. Note that _~3 is an isoparametric hypersurface of 
S 4"+3 and is also invariant under the canonical S~-actions given by ~ 's .  Thus the 
possible values of  g are 2 and 4, as shown in Sect. 3. 

Case 1. g = 2. 
Clearly dim T(p/) > 3. Choose orthogonal bases 

~,u{w,+ v~, w~+ v2, w~'+ v3} 

for T(p~), where ~i ,  Ui, U~, U'/are horizontal, and .V/'s are orthonormal vertical 
vectors ( i= 1, 2, 3). As in Sect. 3, n , (Ul ) ,  n,(U'l) ,  n,(U~') are eigenvectors of  the 
shape operator A = A, with the same eigenvalue Pl +P2. 

Proposition 4.1. Suppose that g = 2. 
(i) I f  m_  = 3, then m + > 3 and M has 2 constant principal curvatures Pl +P2, P2 

with multiplicities 3, m + - 3. 
(ii) I f  m _ ,  m + > 3, then M has 3 constant principal curvatures Pt +P2, Pl , P2 with 

multipficities 3, m _ - 3 ,  m + -  3. 

Since ~r  is a product of  two spheres and the two focal submanifolds are spheres, 
the two focal submanifolds of  2" are quaternionic projective spaces. Thus M lies in a 
tube over a quaternionic projective space. 

Case 2. g = 4. 
Since 2 (m + + m_ ) = 4m + 2, we may assume that m_ is odd and that m + is even. 

Assume that the two principal curvatures Pl and P2 have the same multiplicity m_. 
Let V~=aV~z be the canonical vertical vectors. Let n~:S4"+a--*~ElP 2m+I be the 
Riemannian submersion obtained by taking V~ as a unit vertical vector. 

Proposition 4.2. Assume that g = 4. I f  J~ n is an eioenvector with respect to hi, then ,12 n 
and J3n are also eigenvectors with respect to n 2 and n a. (J~ denotes the canonical 
complex structure on r "+1 induced by ]i). 
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Proof. Note  that  T(P3) and T(p4) are horizontal  with respect to V 1, i.e., the 
members o f  them have no components  o f  V~. Consider the vertical vectors 
V~ + V 2 . T(P3) and T(p4) are horizontal with respect to these vertical vectors. This 
implies that the members o f  them have no components  o f  V 2. Thus J2n is an 
eigenvector with respect to ~t 2. 

Therefore we have two possible cases. 
(1) J~n is an eigenvector with respect to nl.  

Note  that T(p3) and T(p4) are horizontal,  but T(p 1 ) and T(P2 ) are not horizontal.  
Clearly, m_ > 3. As in the case # = 2, choose or thogonal  bases 

~,u{~+ v~, u; + v~, u',' + z3 } 

for T(Pi ), where Mi, Ui, U~, UI' are horizontal  ( i =  1, 2). 

Proposition 4.3. Assume that g = 4  and that J~ n is principal with respect to rq. 
(i) I f  m_ =3 ,  then m+ = 2  and M has 3 constant principal curvatures P3, Pa, 

P~ +P2 with multiplicities 2, 2, 3, 3. 
(ii) I f  m_ #3,  then M has 5 constant principal curvatures pl , P2, P3, P4, Pl +P2 

with multiplicities m_ - 3 ,  m_ - 3 ,  m+, m+, 3. 

(2) J~ n is not  an eigenvector with respect to 7q. 

Lemma 4.4. m_ ~ 1 and m + # 2. 

Proof. Suppose that m_ = 1. Since we assume that m > 2 and m + is even, m§ >4 .  We 
choose or thogonal  bases 

~,u{u,+ ~, u; + ~ ,  v'; + v3} 

for T(Pi), where ~ i ,  Ui, U;, U'i' are horizontal,  ( i=3 ,4 ) .  Note  that  

u3, u ,  • u;, u;, • uL u'~ . 

Therefore they are linearly independent. This means that we have 9 independent 
vectors f rom an 8-dimensional space, a contradiction. By a similar argument,  we 
have m + # 2. 

Now we may  assume that m_ > 3 and m+ > 4. We choose or thogonal  bases 

~ , ~ { u , + v , , u ; + ~ ,  u','+v3} 

for T(pl), where ~'i, Ui, U~, U~' are horizontal,  (i = 1, 2, 3, 4). As in Sect. 3, we have 
three 3 x 3 matrices B, B', B" which correspond to U~, U~, UI.'. In fact, they are equal. 
Thus A is represented by the matrix 

D 0 

B O O  

0 0 B 0  

0 0 B  

, where D is diagonal and 

[Pl +al a~ al \ 
B = ~ a z Pz + az az ) . 

\ a3 a3 P3 -1- a3 
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Proposition 4.5. Assume that g = 4 and that J: n is not principal with respect to 7q. 
(i) I f  m_ =2,  then M has 2 constant principal curvatures P3, P4 with the same 

multiplicity m+ - 3  and 3 nonconstant principal curvatures with the same multi- 
plicity 3. 

(ii) I f  m_ # 3, then M has 4 constant principal curvatures Pl , P2, P3, P* with 
multiplicities m_ - 3 ,  m_ - 3 ,  m + - 3 ,  m+ - 3  and 3 nonconstant principal curvatures 
with the same multiplicity 3. 

5. Examples 

In this section, we give explicit examples on cases which have been handled in 
previous sections. 

Example 5.1. Consider the fibration rc : S 7 ~ HIP 1 . On 1H~ 1 = S*, there are 3 dif- 
ferent isoparametric hypersurfaces 

(1) M1 with 1 principal curvature. 
i t - t  (M s) is an isoparametric hypersurface with g = 2 and (m_, m+ )=  (3, 3). 

This gives an example for Proposition 3.2 (i). 
(2) M 2 with 2 principal curvatures. 
M2=1r- l (M2) is an isoparametric hypersurface with g = 4  and ( m _ , m + )  

= (1,2). Since the multiplicities are less than 3, J1 n can not be principal. Thus its 
image M~ under the fibration S 7 -+oF  3 has nonconstant principal curvatures. This 
gives an example for Proposition 3.9 (i). 

(3) M 3 with 3 principal curvatures. 
/ ~ 3 = n - l ( M 3 )  is an isoparametric hypersurface with g = 6  and ( m _ , m + )  

= (1, 1). Accidentally we obtained an example g = 6. We know that its image under 
the fibration ST--*IEF 3 has a nonconstant principal curvature. But M 3 has constant 
principal curvatures. 

Remark 5.2. From Takagi's table we have a homogeneous hypersurface M~ r which is 
the image of an isoparametric hypersurface in S 7 with g =4  and (m_,  m+ ) = (1, 2), 
[14]. But all isoparametric hypersurface with g = 4  and ( m _ , m §  are 
congruent. Thus we have two non-isometric hypersurfaces M~ and M~ which 
correspond to isometric hypersurfaces in S 7. These are examples which were 
mentioned in Sect. 1. 

Example 5.3. The inhomogeneous examples of Ozeki and Takeuchi [11] are 
invariant under the canonical S3-action (and hence under the canonical St-action). 
These give examples for Proposition 3.9 and Proposition 4.5. 

Example 5.4. The hypersurfaces of type C and type E in Takagi's table [14] are 
invariant under the canonical S3-action. These give example for Proposition 4.3. 

We proved that the example of  type B in Takagi's example can not be i nvariant 
under the canonical S3-action (cf. Lemma 4.4). The remaining case in his table is the 
examples of type D. Let 3~r be an isoparametric hypersurface which is obtained from 
a hypersurface of  type D. Then g = 4 and (m_, m + ) =  (5, 4). Suppose that 34" is S 3- 
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invar ian t .  N o t e  tha t  d im F _  = 13 a n d  hence d im F _  = 10. F r o m  the Gys in  sequence  

... ~ Hq(F_ ) ~  Hq(F_ ) ~  H q-3 (F_ )~Hq+ I(F_ )~ . . .  

we have  H 4 ( F _ )  ~ 0 an d  H 6 ( F _ )  = 0, a con t r ad i c t i on .  T h u s  h~t c an  n o t  be i n v a r i a n t  
u n d e r  the S3-act ion.  

Acknowledgement. This is a part of author's dissertation. I would like to thank Prof. K. Grove for 
his suggestions and several helpful discussions. 
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