# Isoparametric families on projective spaces

Kwang Sung Park

Department of Mathematics, Keimyung University, Taegu, Korea

# Introduction

Many authors investigated real hypersurfaces of  $\mathbb{CP}^m$ . In particular, Takagi classified homogeneous real hypersurfaces in  $\mathbb{CP}^m$  and proved that the number of distinct principal curvatures of a homogeneous real hypersurface is 2, 3 or 5 [14]. These hypersurfaces are special cases of Wang's isoparametric hypersurface [16]. In fact, there is no generally accepted notion of isoparametric hypersurfaces in spaces other than space forms. Wang's definition can be characterized by a transnormal system (cf. Sect. 2).

The aim of this paper is to investigate the number of distinct principal curvatures and their multiplicities of hypersurfaces in transnormal systems on  $\mathbb{FP}^m$ , where  $\mathbb{F}=\mathbb{C}$  or  $\mathbb{H}$ . In particular, we obtain the following results.

**Theorem A.** Let M be a connected hypersurface in a transnormal system on  $\mathbb{FP}^m$ . Then

(1) The number  $g_M$  of principal curvatures of M is constant and can take only the values 2, 3, 5 or 7.

(2) There are at most 3 different multiplicities and one of them is 1 when  $\mathbb{F} = \mathbb{C}$  (3 when  $\mathbb{F} = \mathbb{H}$ ).

The method we use to obtain these results is based on the observation that  $\overline{M} = \pi^{-1}(M)$  is an isoparametric hypersurface in  $\mathbb{S}^n$ , where  $\pi$  is the Hopf fibration  $\mathbb{S}^n \to \mathbb{FP}^m$ . We combine this with infinitesimal, as well as global geometric and topological arguments to obtain our results. One of the key ingredients of our consideration is the number of non-horizontal eigenspaces of the Weingarten map on  $\overline{M}$ . In fact, we have the following results.

**Theorem B.** Let k be the number of non-horizontal eigenspaces of the Weingarten map on  $\overline{M}$ . Then

- (1) k is constant on  $\tilde{M}$  and takes only the values 2, 4 or 6.
- (2)  $\overline{M}$  has constant principal curvatures if and only if k=2.

Let  $m_M(m_{\bar{M}}, \text{ resp.})$  be the possible multiplicities of principal curvatures of  $M(\bar{M}, \text{ resp.})$  and  $g_M(g_{\bar{M}}, \text{ resp.})$  the number of distinct principal curvatures of  $M(\bar{M}, \text{ resp.})$ . With this notation we can make the arguments in the above theorems more precise. In fact, the following tables yield all the possibilities of  $k, g_M$  and  $m_M$ .

| k  | g <sub>M</sub> | g <sub>M</sub>   | dim M                                      | m <sub>M</sub>                                                       | m <sub>M</sub>                                                                                |
|----|----------------|------------------|--------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 2  | 2              | 2<br>3           | 2p+1<br>2p+2q+1                            | 1, $2p+1$<br>2p+1, $2q+1$                                            | 1, 2 <i>p</i><br>1, 2 <i>p</i> , 2 <i>q</i>                                                   |
|    | 4              | 3<br>5<br>5<br>5 | 2 <i>p</i> +1<br>4 <i>p</i> +5<br>17<br>29 | 1, 1, $p$ , $p$<br>2, 2, $2p+1$ , $2p+1$<br>4, 4, 5, 5<br>6, 6, 9, 9 | 1, p, p<br>1, 2, 2, 2p, 2p<br>1, 4, 4, 4, 4<br>1, 6, 6, 8, 8                                  |
| *4 | 4              | 3<br>5<br>7      | 3 $2p+3$ $2p+2q+3$                         | 1, 1, 1, 1<br>1, 1, p+1, p+1<br>p+1, p+1, q+1, q+1                   | 1, 1, 1<br>1, 1, 1, <i>p</i> , <i>p</i><br>1, 1, 1, <i>p</i> , <i>p</i> , <i>q</i> , <i>q</i> |
| 6  | 6              | 5                | 5                                          | 1, 1, 1, 1, 1, 1                                                     | 1, 1, 1, 1, 1                                                                                 |

Table 1.  $(\mathbf{F} = \mathbf{C})$ 

Table 2.  $(\mathbf{F} = \mathbf{H})$ 

| k  | g <sub>M</sub> | g <sub>M</sub> | dim M           | m <sub>M</sub>                                           | m <sub>M</sub>                               |
|----|----------------|----------------|-----------------|----------------------------------------------------------|----------------------------------------------|
| 2  | 2              | 2<br>3         | 4p+3 $4p+4q+3$  | 3, $4p+3$<br>4p+3, $4q+3$                                | 3, 4p<br>3, 4p, 4q                           |
|    | 4              | 3<br>5<br>5    | 7<br>4p+7<br>27 | 3, 3, 2, 2<br>2, 2, 2p+3, 2p+3<br>6, 6, 9, 9             | 3, 2, 2<br>3, 2, 2, 2p, 2p<br>3, 6, 6, 6     |
| *4 | 4              | 5<br>7         | 4p+7 $4p+4q+7$  | 3, 3, $2p+2$ , $2p+2$<br>2p+3, $2p+3$ , $2q+2$ ,<br>2q+2 | 3, 3, 3, 2p-1,2p-13, 3, 3, 2p, 2p,2q-1, 2q-1 |

\* The cases represent possible values, not the existence

Some of the case k = 4 are illustrated by examples. In particular, we point out the existence of non-isometric transnormal systems in  $\mathbb{CP}^m$  whose corresponding isoparametric families are isometric.

## 2. Preliminaries

A transnormal system on a complete connected Riemannian manifold N is a partition of N into nonempty connected submanifolds such that any geodesic of N cuts these submanifolds orthogonally at none or all of its points. A nonconstant real-valued function f on a space of constant curvature is called *isoparametric* if  $|f|^2$ 

and  $\Delta f$  are functions of f. The level sets of such a function give an isoparametric family which is a special case of transnormal systems.

Note that the Hopf fibration  $\pi: \mathbb{S}^n \to \mathbb{FP}^m$  is a *Riemannian submersion* with totally geodesic fibers, i.e., each fiber is totally geodesic in  $\mathbb{S}^n$  and at each point z of  $\mathbb{S}^n$  the differential  $(\pi_*)_z$  preserves the lengths of *horizontal* vectors, i.e., vectors which are orthogonal to the fiber  $\pi^{-1}(x)$ , where  $\pi(z) = x$ . A vector at z is called *vertical* if it is tangent to the fiber  $\pi^{-1}(x)$ . For each tangent vector  $\overline{X}$  on  $\mathbb{S}^n$ ,  $v\overline{X}$  and  $h\overline{X}$  denote the vertical and horizontal components of  $\overline{X}$ , respectively. To each tangent vector field X on  $\mathbb{FP}^m$ , there exists a unique horizontal vector field on  $\overline{X}$  on  $\mathbb{S}^n$  such that  $(\pi_*)_z \overline{X} = X_x$  for all z in  $\mathbb{S}^n$ .

Let  $\overline{D}$  and D be the Riemannian connections of  $\mathbb{S}^n$  and  $\mathbb{FP}^m$ , respectively. If X and Y are tangent vector fields on  $\mathbb{FP}^m$ , then

$$h(\bar{D}_{\bar{X}}\bar{Y}) = (D_XY) \quad , \tag{2.1}$$

where  $\overline{X}$ ,  $\overline{Y}$ ,  $D_X \overline{Y}$  mean their horizontal lifts [14]. In fact, (2.1) is true for any Riemannian submersion with totally geodesic fibers. Let  $\Sigma$  be a transnormal system on FP<sup>m</sup> containing a hypersurface M, and  $\overline{M} = \pi^{-1}(M)$ . Let  $\tilde{n}$  be a unit normal vector field on  $\overline{M}$ . Then the relationship between the two shape operations  $A_n$  and  $A_n$ is given by

$$h(A_{\tilde{n}}\bar{X}) = \overline{A_{n}X} , \qquad (2.2)$$

where  $n = \pi_*(\tilde{n})$  and X is a tangent vector on M.

**Proposition 2.1.**  $\pi^{-1}(\Sigma)$  is an isoparametric family, and hence  $\overline{M}$  is an isoparametric hypersurface on  $\mathbb{S}^n$ .

**Proof.** Let  $\gamma$  be a geodesic which is normal to  $\overline{M}$  at a point z. Then  $\pi \circ \gamma$  is a geodesic of **FP**<sup>m</sup> (cf. O'Neill [10]) and normal to M at  $\pi(z)$ . Since  $\Sigma$  is a transnormal system,  $\pi \circ \gamma$  is normal to members of  $\Sigma$  at all of its points. Thus  $\gamma$  is normal to members of  $\pi^{-1}(\Sigma)$ , and hence  $\pi^{-1}(\Sigma)$  is transnormal. By [17], it is an isoparametric family on  $\mathbb{S}^n$ .

Proposition 2.2 (Münzner [7, 8], Abresch [1]).

(i) The number g of distinct principal curvatures of  $\overline{M}$  is 1,2,3,4 or 6. Let  $p_1, \ldots, p_g$  be the distinct principal curvatures with multiplicities  $m_1, \ldots, m_g$ . Assume that  $p_i = \cot t_i$  and  $0 < t_1 < \ldots < t_g < \pi$ . Then

(ii)  $m_i = m_{i+2}$  (subscripts mod g).

(iii)  $t_k = t_1 + (k-1)\pi/g, \ 1 \le k < g.$ 

Thus there are at most two different multiplicities, say  $m_+$  and  $m_-$ . Moreover,  $m_+=m_-$  for odd g.

(iv)  $\overline{M}$  has exactly two focal submanifolds  $\overline{F}_+$  of codimensions  $m_+ + 1$ .

(v) If g = 3, then  $m_{+} = m_{-} = 1, 2, 4$  or 8. If g = 6, then  $m_{+} = m_{-} = 1$  or 2.

(vi)  $\mathbb{S}^n$  is divided into two sphere bundles  $B_{\pm}$  over the focal submanifolds  $\overline{F}_{\pm}$  with common boundary along  $\overline{M}$ . Moreover,

$$H^{q}(\bar{F}_{\pm}; Z_{2}) = \begin{cases} Z_{2} & \text{for } q \equiv 0, m_{\mp} \pmod{m_{+} + m_{-}} & \text{and } 0 \leq q < n \\ 0 & \text{otherwise} \end{cases}$$

In Sects. 3 and 4, we consider  $\mathbb{FP}^m$  for  $m \ge 2$ .

#### 3. Complex projective space

In this section, we assume that n = 2m + 1 and  $\mathbb{F} = \mathbb{C}$ . Let  $\overline{J}$  be the canonical complex structure on  $\mathbb{C}^{m+1}$ . Let V denote the canonical vertical vector field on  $\overline{M}$ , i.e.,  $V_z = iz$  for all z in  $\overline{M}$ . Note that  $\overline{M}$  is an isoparametric hypersurface of  $\mathbb{S}^{2m+1}$ . Let  $p_1, \ldots, p_g$  be the distinct principal curvatures of  $\overline{M}$  and  $T(p_i)$  denote the eigenspace corresponding to  $p_i$ . If  $T(p_i)$  contains a non-horozontal vector, then we may choose an orthogonal basis for  $T(p_i)$  of the form  $\{W_{i_1}, \ldots, W_{i_{r_i}}, U_i + V\}$ , where  $W_{i_k}$  and  $U_i$  are horizontal. If  $i \neq j$ , then

$$\langle U_i, U_j \rangle = -1$$
, and hence  $\not\prec (U_i, U_j) > \pi/2$ . (3.1)

We will use the following identities which follows from  $\bar{D}_V V = 0$  and  $\bar{D}_V \tilde{n} - \bar{D}_{\tilde{n}} V = 0$  (cf. [9]).

$$\langle \bar{A}(V), \bar{X} \rangle = \langle Jn, X \rangle \quad \text{for} \quad X \in TM ,$$
 (3.2)

$$\langle \bar{A}(V), V \rangle = 0 , \qquad (3.3)$$

$$|\bar{A}(V)| = 1$$
, (3.4)

where  $\overline{A} = A_{\tilde{n}}$ ,  $A = A_n$  and J is the complex structure induced by  $\overline{J}$ .

Assume that  $T(p_1), ..., T(p_k)$  contain non-horizontal vectors and that  $T(p_{k+1}), ..., T(p_g)$  consist of horizontal vectors. We may assume that  $U_1, ..., U_{k-1}$  are linearly independent. Since  $\overline{A}(U_i + V)$  is horizontal by (3.3), we can express  $\overline{A}(U_i)$  and  $\overline{A}(V)$  as follows:

$$\bar{A}(U_i) = a_1 U_1 + \dots + (a_i + p_i) U_i + \dots + a_{k-1} U_{k-1} + p_i V$$
$$\bar{A}(V) = -a_1 U_1 - a_2 U_2 - \dots - a_{k-1} U_{k-1} , \quad 1 \le i \le k-1 .$$
(3.5)

Then A is represented by the matrix

$$\begin{pmatrix} D & | & 0 \\ \hline 0 & | & B \end{pmatrix}, \text{ where } D \text{ is diagonal and} \\ B = \begin{pmatrix} a_1 + p_1 & a_1 & \dots & a_1 \\ a_2 & a_2 + p_2 & \dots & a_2 \\ \dots & \dots & \dots & \dots \\ a_{k-1} & a_{k-1} & \dots & a_{k-1} + p_{k-1} \end{pmatrix}.$$
(3.6)

Since each fiber is totally geodesic, trace  $\overline{A} = trace A$ . Hence we have

$$a_1 + a_2 + \ldots + a_{k-1} = p_k \ . \tag{3.7}$$

**Proposition 3.1.**  $k \ge 2$ , *i.e.*, there are at least two eigenspaces which contain nonhorizontal vectors.

**Proof.** Suppose that k=0. Then there are no vertical vectors, a contradiction. Suppose that k=1. Then  $U_1 + V$  generates a 1-dimensional space containing V. Then  $U_1 = 0$ , and hence V is an eigenvector. This implies that trace  $A = trace \bar{A} - p_1$ , a contradiction. Thus  $g \ge 2$ . Let  $F_{\pm} = \pi(\bar{F}_{\pm})$ . Suppose that both  $m_{+}$  and  $m_{-}$  are even, then  $m_{+} + m_{-}$  is even. By (2.3), we have  $H^{q}(\bar{F}_{+}; Z_{2}) = 0$  for odd q. From the fibration  $S^{1} \rightarrow \bar{F}_{+} \rightarrow F_{+}$ , we have the Gysin exact sequence

$$\dots \to H^q(F_+) \to H^q(\bar{F}_+) \to H^{q-1}(F_+) \to H^{q+1}(F_+) \to \dots$$

Then  $H^{q}(F_{+}) = 0$  for odd q. But dim  $F_{+} =$ odd, a contradiction. This means that we can exclude the case g = 3 altogether and the case g = 6 with  $m_{+} = m_{-} = 2$ . Therefore the possible values of g are 2, 4 or 6.

Case 1. g = 2.

Since  $2 \le k \le g$ , we have k=2. Thus both eigenspaces contain non-horizontal vectors. From (3.3) and (3.5), we have  $\bar{J}\tilde{n} = -a_1 U_1$  and  $a_1 = p_2$ . Then Jn is an eigenvector with the eigenvalue  $p_1 + p_2$ . Thus we have

#### **Proposition 3.2.** Assume that g = 2.

(i) If  $m_{-}=1$ , then  $m_{+}\neq 1$  and M has 2 constant principal curvatures  $p_{1}$  and  $p_{1}+p_{2}$  with multiplicities  $m_{+}-1$  and 1.

(ii) If  $m_+$ ,  $m_- > 1$ , then M has 3 constant principal curvatures  $p_1$ ,  $p_2$  and  $p_1 + p_2$  with multiplicities  $m_+ - 1$ ,  $m_- - 1$ , 1.

*Remark 3.3.* Note that  $\overline{M}$  is a product of two spheres and its focal submanifolds are also spheres. Thus the two focal submanifolds of M are complex projective spaces, and hence M lies in a tube over a complex projective space.

Case 2. g=4. Let  $K_i = \langle U_i, U_i \rangle$ . Suppose that k=3 for some point of  $\overline{M}$ . By (3.5) and (3.7), we have  $a_1 + a_2 = p_3$  and  $\overline{A}(V) = -a_1 U_1 - a_2 U_2$ . (3.5) implies

$$a_1 p_1 + a_2 p_2 = -1 \quad . \tag{3.8}$$

Thus we have

$$p_{1} = \langle \bar{A}(U_{1}), V \rangle = \langle U_{1}, \bar{A}(V) \rangle = -a_{1}K_{1} + a_{2} ,$$

$$p_{2} = -a_{2}K_{2} + a_{1} \text{ and}$$

$$a_{i}(K_{i}+1) = p_{3} - p_{i} .$$
(3.9)

Assume that  $p_1 > p_2 > p_3$ , then  $p_1 p_3 = -1$  or  $p_2 p_3 = -1$ . We may assume that  $p_1 p_3 = -1$ . Then, by (3.8),

$$-1 = (p_3 - a_2)p_1 + a_2p_2 = a_2(p_2 - p_1) - 1$$

Thus we have  $a_2(p_2-p_1)=0$  and hence  $a_2=0$ , a contradiction. Thus we have

**Proposition 3.4.** If g = 4, then k = 2 or 4.

Remark 3.5. The formulas (3.8) and (3.9) are true for any k.

The number k may depend on the points of  $\overline{M}$ . In fact, k is constant on  $\overline{M}$ . At this moment we assume that k is constant on  $\overline{M}$ . We will prove this later (Proposition 3.12).

(1) k=2 on  $\overline{M}$ , i.e.,  $T(p_1)$  and  $T(p_2)$  are non-horizontal and  $T(p_3)$  and  $T(p_4)$  are horizontal. As in the case g=2, Jn is an eigenvector with the eigenvalue  $p_1 + p_2$ .

**Proposition 3.6.** Assume that g = 4 and k = 2.

(i) If  $m_{-}=1$ , then M has 3 constant principal curvatures  $p_3, p_4, p_1+p_2$  with multiplicities  $m_+, m_+, 1$ .

(ii) If  $m_+$ ,  $m_- > 1$ , then M has 5 constant principal curvatures  $p_1$ ,  $p_2$ ,  $p_3$ ,  $p_4$ ,  $p_1+p_2$  with multiplicities  $m_--1$ ,  $m_--1$ ,  $m_+$ ,  $m_+$ , 1.

Remark 3.7. In Proposition 3.6, M lies in a tube over a complex submanifold. Note that non-horizontal eigenspaces have odd dimensions [4, 15].

$$(2) k=4 ext{ on } \overline{M} ext{ .}$$

Thoughout this case we assume that  $p_1 > p_2 > p_3 > p_4$ . Note that any three of  $U_i$ 's are linearly independent, since  $\neq (U_i, U_j) > \pi/2$  for  $i \neq j$ . By (3.9) and Remark 3.5, we have  $a_i < 0$ , (i=1,2,3). The characteristic polynomial f(x) of B is given by

$$f(x) = -x^{3} + (p_{1} + p_{2} + p_{3} + p_{4})x^{2} - [(p_{1} + p_{3})(p_{2} + p_{4}) - 1]x$$
  
+  $[a_{1}(p_{2}p_{3} + 1) + a_{3}(p_{1}p_{2} + 1)] - (p_{2} + p_{4})$  (3.10)

[cf. (3.6), (3.7), (3.8) and Remark 3.5]. On the other hand, if we replace  $U_1$ ,  $U_2$ ,  $U_3$ ,  $a_1$ ,  $a_2$ ,  $a_3$  by  $U_2$ ,  $U_3$ ,  $U_4$ ,  $c_2$ ,  $c_3$ ,  $c_4$  in (3.5), then  $c_i > 0$  (i=2, 3, 4) and

$$f(x) = -x^{3} + (p_{1} + p_{2} + p_{3} + p_{4})x^{2} - [(p_{1} + p_{3})(p_{2} + p_{4}) - 1]x$$
  
+  $[c_{2}(p_{3}p_{4} + 1) + c_{4}(p_{2}p_{3} + 1)] - (p_{1} + p_{3})$ . (3.11)

If the constant term is equal to  $-(p_1+p_3)[-(p_2+p_4)]$ . resp.], then f(x) has 3 distinct roots  $p_1+p_3$ ,  $p_2$ ,  $p_4$   $[p_1, p_3, p_2+p_4]$ , resp.]. From the properties of  $a_i$ ,  $c_i$ ,  $p_i$  we obtain that the constant term of -f(x) is between  $p_1+p_3$  and  $p_2+p_4$ . Thus the graph of -f(x) must lie between the two parallel curves in Fig. 1 and be parallel to them. Then f(x) has 3 distinct roots  $q_1, q_2, q_3$  which are different from  $p_1, p_2, p_3, p_4, p_1+p_3, p_2+p_4$ . Moreover, they are nonconstant.



Fig. 1

#### **Proposition 3.8.** The $q_i$ 's are nonconstant.

*Proof.* Suppose that  $q_1$  is constant then  $q_2$  and  $q_3$  are constant. Thus all principal curvatures are constant. Then *Jn* is principal (cf. [14]). Then one of  $q_i$ 's is equal to  $p_1 + p_3$  or  $p_2 + p_4$  [4], a contradiction.

## **Proposition 3.9.** Assume that g = 4 and k = 4.

(i) If  $m_{-} = 1$  and  $m_{+} \neq 1$ , then M has 2 constant principal curvatures  $p_{2}$ ,  $p_{4}$  with the same multiplicity  $m_{+} - 1$  and 3 nonconstant principal curvatures with the same multiplicity 1.

(ii) If  $m_+$ ,  $m_- > 1$ , then M has 4 constant principal curvatures  $p_1$ ,  $p_2$ ,  $p_3$ ,  $p_4$  with multiplicities  $m_- -1$ ,  $m_+ -1$ ,  $m_- -1$ ,  $m_+ -1$  and 3 nonconstant principal curvatures with the same multiplicity 1.

(iii) If  $m_{-} = m_{+} = 1$ , then M has 3 nonconstant principal curvatures with the same multiplicity 1.

*Remark 3.10.* We have examples for (i) and (ii). But we don't know if the case (iii) exists.

Now we are going to prove that k is constant. To prove this, let  $\phi_t : \overline{M} \to \mathbb{S}^{2m+1}$  be the normal exponential map, i.e.,  $\phi_t(z) = \cos tz + \sin t\tilde{n}$ . Then  $\phi_t(\overline{M})$  has constant principal curvatures  $\cot(t_i - t)$  with the corresponding principal distributions  $T(p_i)$  unless  $t = t_i$  for some i [7].

**Proposition 3.11.** If W is a horizontal eigenvector on  $\overline{M}$ , then it is also a horizontal eigenvector on  $\overline{M}_t = \phi_t(\overline{M})$  unless  $t = t_i$  for some i.

*Proof.* Let V(t) be the canonical unit vertical vector field on  $\overline{M}_t$ . Then  $V(t) = i(\cos tz + \sin t\tilde{n}) = \cos tV + \sin t\overline{A}(V)$ . Since W is orthogonal to  $\overline{A}(V)$ , W is horizontal.

We want to express  $U_i + V$  in terms of  $U_i(t) + V(t)$ , the non-horizontal eigenvector with the eigenvalue  $p_i(t)$  at  $\phi_t(z)$ . Since  $\langle U_i + V, V(t) \rangle = p_i \sin t + \cos t$ , we have

$$U_i(t) + V(t) = (U_i + V)/(p_i \sin t + \cos t) .$$
(3.12)

**Proposition 3.12.** Assume that g=4, then k is constant on  $\tilde{M}$ .

*Proof.* Suppose that k = 2 on a nonempty set S and k = 4 on a nonempty set S'. Let d be the distance function on  $\mathbb{S}^{2m+1}$ . If  $d(z, S) \to 0$ , then the constant term of -f(x) converges to  $p_2 + p_4$  or  $p_1 + p_3$ . We may assume that it converges to  $p_2 + p_4$ . Then  $a_1$  and  $a_3$  converges to 0. Note that  $a_i(K_i+1) = p_4 - p_i$ . Thus  $K_1$  and  $K_3$  are unbounded if  $d(z, S) \to 0$ . Clearly  $K_4$  is unbounded if  $t_1 \to \pi/4$ . From (3.12) we obtain that  $K_2$  is bounded below. Then  $U_1, U_2, U_3, U_4$  are almost orthogonal to each other if  $t_1 \to \pi/4$ . But they generate a 3-dimensional space, a contradiction to (3.1).

*Case 3.* g = 6 and  $m_{+} = m_{-} = 1$ .

Throughout this case we assume that  $p_1 > p_2 > ... > p_6$ .

(1) Suppose that k = 2. Then Jn is principal as in the case g = 2. We may assume that  $T(p_2)$  and  $T(p_5)$  are the two non-horizontal eigenspaces. Note that  $p_2 + p_5 = p_3$  for some  $t_1$ . Then a focal submanifold of M must have dimension 3 [4], a contradiction.

(2) Suppose that k=3, 4 or 5. Then we can obtain similar contradictions. For example, if k=4 and  $T(p_5)$ ,  $T(p_6)$  are the two horizontal eigenspaces, then

$$a_2(p_2-p_1)+a_3(p_3-p_1)=-(1+p_1p_4)=0$$

But  $a_2$ ,  $a_3 < 0$ , a contradiction.

Thus we have k = 6, i.e., there are no horizontal eigenspaces. If a principal curvature p of M has multiplicity > 1, let  $X_1$  and  $X_2$  be orthogonal eigenvectors with the same eigenvalue p. Let  $\overline{X}_i$  be their horizontal lifts and  $\overline{A}(\overline{X}_i) = p\overline{X}_i + b_i V$ . If  $b_2 \neq 0$ , then the vector  $\overline{X}_1 - (b_1/b_2)\overline{X}_2$  is a horizontal eigenvector, a contradiction.

**Proposition 3.13.** If g = 6, then  $\overline{M}$  has no horizontal eigenspaces and M has 5 principal curvatures with the same multiplicity 1. Moreover, at least one of them is nonconstant.

For the existence of nonconstant principal curvatures, see [14].

#### 4. Quaternionic projective space

In this section, we assume that n = 4m + 3 and  $\mathbf{F} = \mathbb{H}$ . Let  $\overline{J}_1, \overline{J}_2, \overline{J}_3$  be the canonical complex structures on  $\mathbb{H}^{m+1}$ . Note that  $\overline{M}$  is an isoparametric hypersurface of  $\mathbb{S}^{4m+3}$  and is also invariant under the canonical  $\mathbb{S}^1$ -actions given by  $\overline{J}_i$ 's. Thus the possible values of g are 2 and 4, as shown in Sect. 3.

*Case 1.* g = 2.

Clearly dim  $T(p_i) \ge 3$ . Choose orthogonal bases

 $\mathscr{B}_i \cup \{U_i + V_1, U_i' + V_2, U_i'' + V_3\}$ 

for  $T(p_i)$ , where  $\mathscr{B}_i$ ,  $U_i$ ,  $U'_i$ ,  $U''_i$  are horizontal, and V's are orthonormal vertical vectors (i=1,2,3). As in Sect. 3,  $\pi_*(U_1)$ ,  $\pi_*(U'_1)$ ,  $\pi_*(U''_1)$  are eigenvectors of the shape operator  $A = A_n$  with the same eigenvalue  $p_1 + p_2$ .

## **Proposition 4.1.** Suppose that g=2.

(i) If  $m_{-}=3$ , then  $m_{+}>3$  and M has 2 constant principal curvatures  $p_{1}+p_{2}$ ,  $p_{2}$  with multiplicities 3,  $m_{+}-3$ .

(ii) If  $m_-, m_+ > 3$ , then M has 3 constant principal curvatures  $p_1 + p_2, p_1, p_2$  with multiplicities 3,  $m_- - 3, m_+ - 3$ .

Since  $\overline{M}$  is a product of two spheres and the two focal submanifolds are spheres, the two focal submanifolds of  $\Sigma$  are quaternionic projective spaces. Thus M lies in a tube over a quaternionic projective space.

## Case 2. g = 4.

Since  $2(m_+ + m_-) = 4m + 2$ , we may assume that  $m_-$  is odd and that  $m_+$  is even. Assume that the two principal curvatures  $p_1$  and  $p_2$  have the same multiplicity  $m_-$ . Let  $V_i = \bar{J}_i z$  be the canonical vertical vectors. Let  $\pi_i : \mathbb{S}^{4m+3} \to \mathbb{CP}^{2m+1}$  be the Riemannian submersion obtained by taking  $V_i$  as a unit vertical vector.

**Proposition 4.2.** Assume that g = 4. If  $J_1 n$  is an eigenvector with respect to  $\pi_1$ , then  $J_2 n$  and  $J_3 n$  are also eigenvectors with respect to  $\pi_2$  and  $\pi_3$ . ( $J_i$  denotes the canonical complex structure on  $\mathbb{CP}^{2m+1}$  induced by  $\overline{J_i}$ ).

*Proof.* Note that  $T(p_3)$  and  $T(p_4)$  are horizontal with respect to  $V_1$ , i.e., the members of them have no components of  $V_1$ . Consider the vertical vectors  $V_1 \pm V_2$ .  $T(p_3)$  and  $T(p_4)$  are horizontal with respect to these vertical vectors. This implies that the members of them have no components of  $V_2$ . Thus  $J_2n$  is an eigenvector with respect to  $\pi_2$ .

Therefore we have two possible cases.

(1)  $J_1 n$  is an eigenvector with respect to  $\pi_1$ .

Note that  $T(p_3)$  and  $T(p_4)$  are horizontal, but  $T(p_1)$  and  $T(p_2)$  are not horizontal. Clearly,  $m_- \ge 3$ . As in the case g=2, choose orthogonal bases

$$\mathscr{B}_i \cup \{U_i + V_1, U_i' + V_2, U_i'' + V_3\}$$

for  $T(p_i)$ , where  $\mathscr{B}_i$ ,  $U_i$ ,  $U'_i$ ,  $U''_i$  are horizontal (i=1,2).

**Proposition 4.3.** Assume that g=4 and that  $J_1n$  is principal with respect to  $\pi_1$ .

(i) If  $m_{-}=3$ , then  $m_{+}=2$  and M has 3 constant principal curvatures  $p_3$ ,  $p_4$ ,  $p_1+p_2$  with multiplicities 2, 2, 3, 3.

(ii) If  $m_{-} \neq 3$ , then M has 5 constant principal curvatures  $p_1, p_2, p_3, p_4, p_1+p_2$  with multiplicities  $m_{-}-3, m_{-}-3, m_{+}, m_{+}, 3$ .

(2)  $J_1 n$  is not an eigenvector with respect to  $\pi_1$ .

Lemma 4.4.  $m_{-} \neq 1$  and  $m_{+} \neq 2$ .

*Proof.* Suppose that  $m_{-} = 1$ . Since we assume that  $m \ge 2$  and  $m_{+}$  is even,  $m_{+} \ge 4$ . We choose orthogonal bases

$$\mathscr{B}_i \cup \{U_i + V_1, U_i' + V_2, U_i'' + V_3\}$$

for  $T(p_i)$ , where  $\mathscr{B}_i$ ,  $U_i$ ,  $U'_i$ ,  $U''_i$  are horizontal, (i=3,4). Note that

$$U_3, U_4 \perp U'_3, U'_4 \perp U''_3, U''_4$$
 .

Therefore they are linearly independent. This means that we have 9 independent vectors from an 8-dimensional space, a contradiction. By a similar argument, we have  $m_+ \neq 2$ .

Now we may assume that  $m_{-} \ge 3$  and  $m_{+} \ge 4$ . We choose orthogonal bases

$$\mathscr{B}_{i} \cup \{U_{i} + V_{1}, U_{i}' + V_{2}, U_{i}'' + V_{3}\}$$

for  $T(p_i)$ , where  $\mathcal{B}_i$ ,  $U_i$ ,  $U'_i$ ,  $U''_i$  are horizontal, (i = 1, 2, 3, 4). As in Sect. 3, we have three  $3 \times 3$  matrices B, B', B'' which correspond to  $U_i, U'_i, U''_i$ . In fact, they are equal. Thus A is represented by the matrix

$$\begin{pmatrix} D & 0 \\ B & 0 & 0 \\ 0 & 0 & B & 0 \\ 0 & 0 & B \end{pmatrix} , \text{ where } D \text{ is diagonal and} \\ B = \begin{pmatrix} p_1 + a_1 & a_1 & a_1 \\ a_2 & p_2 + a_2 & a_2 \\ a_3 & a_3 & p_3 + a_3 \end{pmatrix} .$$

**Proposition 4.5.** Assume that g = 4 and that  $J_1 n$  is not principal with respect to  $\pi_1$ .

(i) If  $m_{-}=2$ , then M has 2 constant principal curvatures  $p_3$ ,  $p_4$  with the same multiplicity  $m_{+}-3$  and 3 nonconstant principal curvatures with the same multiplicity 3.

(ii) If  $m_{-} \neq 3$ , then M has 4 constant principal curvatures  $p_1$ ,  $p_2$ ,  $p_3$ ,  $p_4$  with multiplicities  $m_{-}-3$ ,  $m_{-}-3$ ,  $m_{+}-3$ ,  $m_{+}-3$  and 3 nonconstant principal curvatures with the same multiplicity 3.

# 5. Examples

In this section, we give explicit examples on cases which have been handled in previous sections.

*Example 5.1.* Consider the fibration  $\pi: \mathbb{S}^7 \to \mathbb{HP}^1$ . On  $\mathbb{HP}^1 = \mathbb{S}^4$ , there are 3 different isoparametric hypersurfaces

(1)  $M_1$  with 1 principal curvature.

 $\pi^{-1}(M_1)$  is an isoparametric hypersurface with g=2 and  $(m_-, m_+)=(3, 3)$ . This gives an example for Proposition 3.2 (i).

(2)  $M_2$  with 2 principal curvatures.

 $\overline{M}_2 = \pi^{-1}(M_2)$  is an isoparametric hypersurface with g=4 and  $(m_-, m_+) = (1,2)$ . Since the multiplicities are less than 3,  $J_1 n$  can not be principal. Thus its image  $M'_2$  under the fibration  $\mathbb{S}^7 \to \mathbb{CP}^3$  has nonconstant principal curvatures. This gives an example for Proposition 3.9 (i).

(3)  $M_3$  with 3 principal curvatures.

 $\overline{M}_3 = \pi^{-1}(M_3)$  is an isoparametric hypersurface with g=6 and  $(m_-, m_+) = (1, 1)$ . Accidentally we obtained an example g=6. We know that its image under the fibration  $\mathbb{S}^7 \to \mathbb{CP}^3$  has a nonconstant principal curvature. But  $M_3$  has constant principal curvatures.

Remark 5.2. From Takagi's table we have a homogeneous hypersurface  $M''_2$  which is the image of an isoparametric hypersurface in  $\mathbb{S}^7$  with g=4 and  $(m_-, m_+)=(1, 2)$ , [14]. But all isoparametric hypersurface with g=4 and  $(m_-, m_+)=(1, 2)$  are congruent. Thus we have two non-isometric hypersurfaces  $M'_2$  and  $M''_2$  which correspond to isometric hypersurfaces in  $\mathbb{S}^7$ . These are examples which were mentioned in Sect. 1.

*Example 5.3.* The inhomogeneous examples of Ozeki and Takeuchi [11] are invariant under the canonical  $S^3$ -action (and hence under the canonical  $S^1$ -action). These give examples for Proposition 3.9 and Proposition 4.5.

*Example 5.4.* The hypersurfaces of type C and type E in Takagi's table [14] are invariant under the canonical  $S^3$ -action. These give example for Proposition 4.3.

We proved that the example of type **B** in Takagi's example can not be invariant under the canonical S<sup>3</sup>-action (cf. Lemma 4.4). The remaining case in his table is the examples of type **D**. Let  $\overline{M}$  be an isoparametric hypersurface which is obtained from a hypersurface of type **D**. Then g = 4 and  $(m_{-}, m_{+}) = (5, 4)$ . Suppose that  $\overline{M}$  is S<sup>3</sup>- invariant. Note that dim  $\overline{F}_{-} = 13$  and hence dim  $F_{-} = 10$ . From the Gysin sequence

$$\dots \to H^q(F_-) \to H^q(\overline{F}_-) \to H^{q-3}(F_-) \to H^{q+1}(F_-) \to \dots$$

we have  $H^4(F_-) \neq 0$  and  $H^6(F_-) = 0$ , a contradiction. Thus  $\overline{M}$  can not be invariant under the S<sup>3</sup>-action.

Acknowledgement. This is a part of author's dissertation. I would like to thank Prof. K. Grove for his suggestions and several helpful discussions.

#### References

- 1. Abresch, U.: Isoparmetric hypersurfaces with four or six distinct principal curvatures. Math. Ann. 264, 283-302 (1983)
- 2. Bolton, J.: Transnormal systems. Quart. J. Math. Oxford Ser. (2) 24, 385-395 (1973)
- 3. Cartan, E.: Sur les familles remarquables d'hypersurfaces isoparametriques dans les espaces sphérques. Math. Z. 45, 335-367 (1939)
- Cecil, T., Ryan, P.: Focal sets and real hypersurfaces in complex projective space. Trans. A. M. S. 269, 481-499 (1982)
- 5. Kimura, M.: Real hypersurfaces and complex submanifolds. Trans. A. M. S. 296, 137-149 (1986)
- 6. Lawson, H.: Rigidity theorems in rank-1 symmetry spaces. J. Differ. Geom. 4, 349-357 (1970)
- 7. Münzner, H.: Isoparametrische Hyperflächen in Sphären. I. Math. Ann. 251, 57-71 (1980)
- 8. Münzner, H.: Isoparametrische Hyperflächen in Sphären. II. Math. Ann. 256, 215–232 (1981)
- 9. Okumura, M.: On some real hypersurfaces of a complex projective space. Trans. A. M. S. 212, 355–364 (1975)
- 10. O'Neill, B.: Submersions and geodesics, Duke Math. J. 34, 363-373 (1967)
- 11. Ozeki, H., Takeuchi, M.: On some types of isoparametric hypersurfaces in spheres. I. Tohoku Math. J. 27, 515–559 (1975)
- 12. Ozeki, H., Takeuchi, M.: On some types of isoparametric hypersurfaces in spheres. II. Tohoku Math. J. 28, 7-55 (1976)
- Takagi, R.: On homogeneous real hypersurfaces in complex projective space. Osaka Math. J. 10, 495-506 (1973)
- 14. Takagi, R.: Real hypersurfaces in a complex projective space with constant principal curvatures. I. J. Math. Soc. Japan 27, 43-53 (1975)
- Takagi, R.: Real hypersurfaces in a complex projective space. II. J. Math. Soc. Japan 27, 507-516 (1975)
- 16. Wang, Q.: Isoparametric hypersurfaces in complex projective space. Proc. Beijing symposium on differential geometry and differential equations, 1509-1523 (1980)
- 17. Wang, Q.: Isoparametric functions on Riemannian manifolds. I. Math. Ann. 277, 639–646 (1987)

Received July 1, 1988; in revised form December 19, 1988