Isoparametric families on projective spaces

Kwang Sung Park

Department of Mathematics, Keimyung University, Taegu, Korea

Introduction

Many authors investigated real hypersurfaces of \mathbb{CP}^m . In particular, Takagi classified homogeneous real hypersurfaces in ${\mathbb C}{\mathbb P}^m$ and proved that the number of distinct principal curvatures of a homogeneous real hypersurface is 2, 3 or 5 [14]. These hypersurfaces are special cases of Wang's isoparametric hypersurface [16]. In fact, there is no generally accepted notion of isoparametric hypersurfaces in spaces other than space forms. Wang's definition can be characterized by a transnormal system (cf. Sect. 2).

The aim of this paper is to investigate the number of distinct principal curvatures and their multiplicities of hypersurfaces in transnormal systems on \mathbb{FP}^m , where $\mathbb{F} = \mathbb{C}$ or H. In particular, we obtain the following results.

Theorem A. Let M be a connected hypersurface in a transnormal system on \mathbb{FP}^m . *Then*

(1) *The number* g_M *of principal curvatures of M is constant and can take only the values* 2, 3, 5 *or 7.*

(2) *There are at most 3 different multiplicities and one of them is 1 when* $\mathbb{F} = \mathbb{C}$ (3) *when* $\mathbf{F} = \mathbf{H}$).

The method we use to obtain these results is based on the observation that $\overline{M} = \pi^{-1}(M)$ is an isoparametric hypersurface in Sⁿ, where π is the Hopf fibration $\mathbb{S}^n \rightarrow \mathbb{F} \mathbb{P}^m$. We combine this with infinitesimal, as well as global geometric and topological arguments to obtain our results. One of the key ingredients of our consideration is the number of non-horizontal eigenspaces of the Weingarten map on \overline{M} . In fact, we have the following results.

Theorem *B. Let k be the number of non-horizontal eigenspaces of the Weingarten map on fl. Then*

- (1) *k is constant on* \tilde{M} *and takes only the values* 2, 4 *or* 6.
- (2) \overline{M} has constant principal curvatures if and only if $k = 2$.

Let $m_{\mathbf{M}}(m_{\mathbf{M}},$ resp.) be the possible multiplicities of principal curvatures of $M(\overline{M})$, resp.) and $g_M(g_{\overline{M}})$, resp.) the number of distinct principal curvatures of $M(\bar{M},$ resp.). With this notation we can make the arguments in the above theorems more precise. In fact, the following tables yield all the possibilities of k, g_M and m_M .

\boldsymbol{k}	$g_{\bar{M}}$	g_M	$\dim M$	$m_{\tilde{M}}$	m_M
$\overline{2}$	$\overline{2}$	2 $\overline{\mathbf{3}}$	$2p + 1$ $2p+2q+1$	$1, 2p+1$ $2p+1$, $2q+1$	1, 2p 1, 2p, 2q
	$\overline{\mathbf{4}}$	3 5 5 5	$2p + 1$ $4p + 5$ 17 29	1, 1, p, p $2, 2, 2p+1, 2p+1$ 4, 4, 5, 5 6, 6, 9, 9	1, p, p 1, 2, 2, 2p, 2p 1, 4, 4, 4, 4 1, 6, 6, 8, 8
$*4$	4	3 5 $\overline{7}$	$2p+3$ $2p+2q+3$	1, 1, 1, 1 $1, 1, p+1, p+1$ $p+1, p+1, q+1, q+1$	1, 1, 1 1, 1, 1, p, p 1, 1, 1, p, p, q, q
6	6	5	5	1, 1, 1, 1, 1, 1	1, 1, 1, 1, 1

Table 1. $(F = \mathbb{C})$

Table 2. $(\mathbf{F} = \mathbf{H})$

k	$g_{\tilde{M}}$	g_M	$\dim M$	$m_{\tilde{M}}$	m_M
$\overline{2}$	$\overline{2}$	2 3	$4p + 3$ $4p+4q+3$	$3, 4p+3$ $4p+3$, $4q+3$	3, 4p 3, 4p, 4q
	$\overline{4}$	3	$4p + 7$ 27	3, 3, 2, 2 2, 2, $2p+3$, $2p+3$ 6, 6, 9, 9	3, 2, 2 3, 2, 2, 2p, 2p 3, 6, 6, 6, 6
$*_{4}$	4	5 7	$4p + 7$ $4p+4q+7$	$3, 3, 2p+2, 2p+2$ $2p+3$, $2p+3$, $2q+2$, $2q+2$	$3, 3, 3, 2p-1,$ $2p-1$ 3, 3, 3, 2p, 2p, $2q-1, 2q-1$

* The cases represent possible values, not the existence

Some of the case $k = 4$ are illustrated by examples. In particular, we point out the existence of non-isometric transnormal systems in \mathbb{CP}^m whose corresponding isoparametric families are isometric.

2. Preliminaries

A transnormal system on a complete connected Riemannian manifold N is a partition of N into nonempty connected submanifolds such that any geodesic of N cuts these submanifolds orthogona!ly at none or all of its points. A nonconstant real-valued function f on a space of constant curvature is called *isoparametric* if $|f|^2$

and Δf are functions of f. The level sets of such a function give an isoparametric family which is a special case of transnormal systems.

Note that the Hopf fibration $\pi : \mathbb{S}^n \to \mathbb{F} \mathbb{P}^m$ is a *Riemannian submersion* with totally geodesic fibers, i.e., each fiber is totally geodesic in \mathbb{S}^n and at each point z of \mathbb{S}^n the differential $(\pi_{\star})_z$ preserves the lengths of *horizontal* vectors, i.e., vectors which are orthogonal to the fiber $\pi^{-1}(x)$, where $\pi(z)=x$. A vector at z is called *vertical* if it is tangent to the fiber $\pi^{-1}(x)$. For each tangent vector \bar{X} on \mathbb{S}^n , $v\bar{X}$ and $h\bar{X}$ denote the vertical and horizontal components of \bar{X} , respectively. To each tangent vector field X on \mathbb{FP}^m , there exists a unique horizontal vector field on \overline{X} on \mathbb{S}^n such that $(\pi_{\star})\cdot \bar{X} = X$, for all z in \mathbb{S}^n .

Let \bar{D} and D be the Riemannian connections of \mathbb{S}^n and \mathbb{FP}^m , respectively. If X and Y are tangent vector fields on \mathbb{FP}^m , then

$$
h(\bar{D}_{\bar{X}}\bar{Y}) = \overline{(D_X Y)} \tag{2.1}
$$

where \bar{X} , \bar{Y} , $\overline{D_X Y}$ mean their horizontal lifts [14]. In fact, (2.1) is true for any Riemannian submersion with totally geodesic fibers. Let Σ be a transnormal system on \mathbb{FP}^m containing a hypersurface M, and $\overline{M} = \pi^{-1}(M)$. Let \tilde{n} be a unit normal vector field on \bar{M} . Then the relationship between the two shape operatiors A_r and A_r is given by

$$
h(A_{\widetilde{n}}\overline{X}) = \overline{A_n X} \tag{2.2}
$$

where $n = \pi_*(\tilde{n})$ and X is a tangent vector on M.

Proposition 2.1. $\pi^{-1}(\Sigma)$ *is an isoparametric family, and hence* \overline{M} *is an isoparametric hypersurfaee on 5".*

Proof. Let y be a geodesic which is normal to \overline{M} at a point z. Then $\pi \circ y$ is a geodesic of $\mathbb{F}P^m$ (cf. O'Neill [10]) and normal to M at $\pi(z)$. Since Σ is a transnormal system, $\pi \circ \gamma$ is normal to members of Σ at all of its points. Thus γ is normal to members of $\pi^{-1}(\Sigma)$, and hence $\pi^{-1}(\Sigma)$ is transnormal. By [17], it is an isoparametric family on $Sⁿ$.

Proposition 2.2 (Münzner $[7, 8]$, Abresch $[1]$).

(i) The number g of distinct principal curvatures of \overline{M} is 1, 2, 3, 4 or 6. Let p_1, \ldots, p_g be the distinct principal curvatures with multiplicities m_1, \ldots, m_g . Assume *that* $p_i = \cot t_i$ *and* $0 < t_1 < ... < t_q < \pi$. Then

(ii) $m_i = m_{i+2}$ (subscripts mod g).

(iii) $t_k = t_1 + (k-1)\pi/g, 1 \le k < g.$

Thus there are at most two different multiplicities, say m_+ *and m_. Moreover,* $m_+ = m_-$ for odd g.

(iv) \overline{M} has exactly two focal submanifolds \overline{F}_+ of codimensions $m_+ + 1$.

(v) If $g = 3$, then $m_+ = m_- = 1, 2, 4$ or 8. If $g = 6$, then $m_+ = m_- = 1$ or 2.

(vi) \mathbb{S}^n *is divided into two sphere bundles* B_+ *over the focal submanifolds* \overline{F}_+ *with common boundary along M. Moreover,*

$$
H^{q}(\overline{F}_{\pm}; Z_{2}) = \begin{cases} Z_{2} & \text{for } q \equiv 0, m_{\mp} (\text{mod } m_{+} + m_{-}) & \text{and } 0 \leq q < n \\ 0 & \text{otherwise} \end{cases}
$$

In Sects. 3 and 4, we consider \mathbb{FP}^m for $m \geq 2$.

3. Complex projective space

In this section, we assume that $n = 2m + 1$ and $\mathbb{F} = \mathbb{C}$. Let \overline{J} be the canonical complex structure on \mathbb{C}^{m+1} . Let V denote the canonical vertical vector field on \overline{M} , i.e., $V_z = iz$ for all z in \bar{M} . Note that \bar{M} is an isoparametric hypersurface of \mathbb{S}^{2m+1} . Let p_1, \ldots, p_n be the distinct principal curvatures of \overline{M} and $T(p_i)$ denote the eigenspace corresponding to p_i . If $T(p_i)$ contains a non-horozontal vector, then we may choose an orthogonal basis for $T(p_i)$ of the form $\{W_{i_1}, \ldots, W_{i_r}, U_i + V\}$, where W_{i_k} and U_i are horizontal. If $i \neq j$, then

$$
\langle U_i, U_j \rangle = -1 \quad \text{and hence} \quad \angle(U_i, U_j) > \pi/2 \quad . \tag{3.1}
$$

We will use the following identities which follows from $\bar{D}_V V = 0$ and $\bar{D}_V \tilde{n} - \bar{D}_{\tilde{n}} V = 0$ (cf. [9]).

$$
\langle \bar{A}(V), \bar{X} \rangle = \langle Jn, X \rangle \quad \text{for} \quad X \in TM \quad , \tag{3.2}
$$

$$
\langle \bar{A}(V), V \rangle = 0 \tag{3.3}
$$

$$
|\bar{A}(V)| = 1 \tag{3.4}
$$

where $\bar{A} = A_{\tilde{a}}, A = A_{\tilde{b}}$ and J is the complex structure induced by \bar{J} .

Assume that $T(p_1),..., T(p_k)$ contain non-horizontal vectors and that $T(p_{k+1}),..., T(p_n)$ consist of horizontal vectors. We may assume that $U_1,..., U_{k-1}$ are linearly independent. Since $\bar{A}(U_i+V)$ is horizontal by (3.3), we can express $\overline{A}(U_i)$ and $\overline{A}(V)$ as follows:

$$
\bar{A}(U_i) = a_1 U_1 + \dots + (a_i + p_i) U_i + \dots + a_{k-1} U_{k-1} + p_i V
$$

\n
$$
\bar{A}(V) = -a_1 U_1 - a_2 U_2 - \dots - a_{k-1} U_{k-1} , \qquad 1 \le i \le k - 1 .
$$
\n(3.5)

Then A is represented by the matrix

$$
\left(\begin{array}{c|c}\nD & 0 \\
\hline\n0 & B\n\end{array}\right), \text{ where } D \text{ is diagonal and}
$$
\n
$$
B = \begin{pmatrix} a_1 + p_1 & a_1 & \dots & a_1 \\ a_2 & a_2 + p_2 & \dots & a_2 \\ \dots & \dots & \dots & \dots \\ a_{k-1} & a_{k-1} & \dots & a_{k-1} + p_{k-1} \end{pmatrix} .
$$
\n(3.6)

Since each fiber is totally geodesic, *trace* \overline{A} = *trace* A. Hence we have

$$
a_1 + a_2 + \ldots + a_{k-1} = p_k \tag{3.7}
$$

Proposition 3.1. $k \geq 2$, *i.e.*, there are at least two eigenspaces which contain non*horizontal vectors.*

Proof. Suppose that $k=0$. Then there are no vertical vectors, a contradiction. Suppose that $k = 1$. Then $U_1 + V$ generates a 1-dimensional space containing V. Then $U_1 = 0$, and hence V is an eigenvector. This implies that *trace* $A = trace \overline{A} - p_1$, a contradiction.

Thus $g \ge 2$. Let $F_+ = \pi(\bar{F}_+)$. Suppose that both m_+ and m_- are even, then $m_{+} + m_{-}$ is even. By (2.3), we have $H^{q}(\overline{F}_{+} ; Z_{2}) = 0$ for odd q. From the fibration $S^1 \rightarrow \overline{F}_+ \rightarrow F_+$, we have the Gysin exact sequence

$$
\ldots \to H^q(F_+) \to H^q(\overline{F}_+) \to H^{q-1}(F_+) \to H^{q+1}(F_+) \to \ldots
$$

Then $H^q(F_+) = 0$ for odd q. But dim $F_+ =$ odd, a contradiction. This means that we can exclude the case $g = 3$ altogether and the case $g = 6$ with $m_{+} = m_{-} = 2$. Therefore the possible values of g are 2, 4 or 6.

Case 1. $a = 2$.

Since $2 \le k \le g$, we have $k = 2$. Thus both eigenspaces contain non-horizontal vectors. From (3.3) and (3.5), we have $\bar{J}\tilde{n} = -a_1 U_1$ and $a_1 = p_2$. Then *Jn* is an eigenvector with the eigenvalue $p_1 + p_2$. Thus we have

Proposition 3.2. *Assume that* $q = 2$ *.*

(i) If $m_{-}=1$, then $m_{+}\neq 1$ and M has 2 constant principal curvatures p_{1} *and* $p_1 + p_2$ *with multiplicities* $m_+ - 1$ *and* 1.

(ii) If m_+ , $m_- > 1$, then M has 3 constant principal curvatures p_1 , p_2 and $p_1 + p_2$ *with multiplicities* $m_+ - 1$, $m_- - 1$, 1.

Remark 3.3. Note that \overline{M} is a product of two spheres and its focal submanifolds are also spheres. Thus the two focal submanifolds of M are complex projective spaces, and hence M lies in a tube over a complex projective space.

Case 2. $q = 4$. Let $K_i = \langle U_i, U_i \rangle$. Suppose that $k=3$ for some point of \overline{M} . By (3.5) and (3.7), we have $a_1 + a_2 = p_3$ and $\overline{A}(V) = -a_1 U_1 - a_2 U_2$. (3.5) implies

$$
a_1 p_1 + a_2 p_2 = -1 \tag{3.8}
$$

Thus we have

$$
p_1 = \langle \overline{A}(U_1), V \rangle = \langle U_1, \overline{A}(V) \rangle = -a_1 K_1 + a_2 ,
$$

\n
$$
p_2 = -a_2 K_2 + a_1 \text{ and}
$$

\n
$$
a_i(K_i + 1) = p_3 - p_i .
$$
\n(3.9)

Assume that $p_1 > p_2 > p_3$, then $p_1p_3 = -1$ or $p_2p_3 = -1$. We may assume that $p_1p_3 = -1$. Then, by (3.8),

$$
-1 = (p_3 - a_2)p_1 + a_2p_2 = a_2(p_2 - p_1) - 1.
$$

Thus we have $a_2(p_2-p_1)=0$ and hence $a_2=0$, a contradiction. Thus we have

Proposition 3.4. *If* $q = 4$ *, then* $k = 2$ *or 4.*

Remark 3.5. The formulas (3.8) and (3.9) are true for any k.

The number k may depend on the points of \overline{M} . In fact, k is constant on \overline{M} . At this moment we assume that k is constant on \overline{M} . We will prove this later (Proposition 3.12).

(1) $k = 2$ on \overline{M} , i.e., $T(p_1)$ and $T(p_2)$ are non-horizontal and $T(p_3)$ and $T(p_4)$ are horizontal. As in the case $g = 2$, *Jn* is an eigenvector with the eigenvalue $p_1 + p_2$.

Proposition 3.6. *Assume that* $a = 4$ *and* $k = 2$ *.*

(i) If $m_$ = 1, then M has 3 constant principal curvatures p_3 , p_4 , p_1 + p_2 with $multiplicities m_+, m_+, 1.$

(ii) If m_+ , $m_- > 1$, then M has 5 constant principal curvatures p_1 , p_2 , p_3 , p_4 , $p_1 + p_2$ *with multiplicities m₋ -1, m₋ -1, m₊, m₊, 1.*

Remark 3.7. In Proposition 3.6, M lies in a tube over a complex submanifold. Note that non-horizontal eigenspaces have odd dimensions [4, 15].

$$
(2) \t\t k=4 \text{ on } \bar{M} .
$$

Thoughout this case we assume that $p_1 > p_2 > p_3 > p_4$. Note that any three of U_i's are linearly independent, since $\angle (U_i, U_j) > \pi/2$ for $i \neq j$. By (3.9) and Remark 3.5, we have $a_i < 0$, ($i = 1, 2, 3$). The characteristic polynomial $f(x)$ of B is given by

$$
f(x) = -x^3 + (p_1 + p_2 + p_3 + p_4)x^2 - [(p_1 + p_3)(p_2 + p_4) - 1]x
$$

+
$$
[a_1(p_2p_3 + 1) + a_3(p_1p_2 + 1)] - (p_2 + p_4)
$$
(3.10)

[cf. (3.6), (3.7), (3.8) and Remark 3.5]. On the other hand, if we replace U_1, U_2, U_3 , a_1, a_2, a_3 by $U_2, U_3, U_4, c_2, c_3, c_4$ in (3.5), then $c_i > 0$ (i=2, 3, 4) and

$$
f(x) = -x^3 + (p_1 + p_2 + p_3 + p_4)x^2 - [(p_1 + p_3)(p_2 + p_4) - 1]x
$$

+
$$
[c_2(p_3p_4 + 1) + c_4(p_2p_3 + 1)] - (p_1 + p_3).
$$
 (3.11)

If the constant term is equal to $-(p_1+p_3)(-(p_2+p_4))$, resp.], then $f(x)$ has 3 distinct roots $p_1 + p_3, p_2, p_4$ [$p_1, p_3, p_2 + p_4$, resp.]. From the properties of a_i, c_i, p_i we obtain that the constant term of $-f(x)$ is between $p_1 + p_3$ and $p_2 + p_4$. Thus the graph of $-f(x)$ must lie between the two parallel curves in Fig. 1 and be parallel to them. Then $f(x)$ has 3 distinct roots q_1, q_2, q_3 which are different from p_1, p_2, p_3, p_4 , $p_1 + p_3$, $p_2 + p_4$. Moreover, they are nonconstant.

Fig. l

Proposition 3.8. *The a*,'s are nonconstant.

Proof. Suppose that q_1 is constant then q_2 and q_3 are constant. Thus all principal curvatures are constant. Then *Jn* is principal (cf. [14]). Then one of q_i 's is equal to $p_1 + p_3$ or $p_2 + p_4$ [4], a contradiction.

Proposition 3.9. *Assume that* $g = 4$ *and* $k = 4$ *.*

(i) If $m_-=1$ and $m_+\neq 1$, then M has 2 constant principal curvatures p_2, p_4 with *the same multiplicity* m_{+} – 1 and 3 nonconstant principal curvatures with the same *multiplicity 1.*

(ii) If m_+ , $m_- > 1$, then M has 4 constant principal curvatures p_1 , p_2 , p_3 , p_4 with *multiplicities m* $_{-}$ -1, m_{+} -1, m_{-} -1, m_{+} -1 *and 3 nonconstant principal curvatures with the same multiplicity 1.*

(iii) If $m_{-} = m_{+} = 1$, then M has 3 nonconstant principal curvatures with the same *multiplicity 1.*

Remark 3.10. We have examples for (i) and (ii). But we don't know if the case (iii) exists..

Now we are going to prove that k is constant. To prove this, let $\phi_t : \bar{M} \to \mathbb{S}^{2m+1}$ be the normal exponential map, i.e., $\phi_t(z) = \cos tz + \sin t\tilde{n}$. Then $\phi_t(\bar{M})$ has constant principal curvatures cot $(t_i - t)$ with the corresponding principal distributions $T(p_i)$ unless $t = t_i$ for some i [7].

Proposition 3.11. *If W is a horizontal eigenvector on* \overline{M} , then it is also a horizontal *eigenvector on* $\overline{M}_t = \phi_t(\overline{M})$ unless $t = t_i$ for some i.

Proof. Let $V(t)$ be the canonical unit vertical vector field on \overline{M}_{t} . Then $V(t) = i(\cos t z + \sin t \tilde{n}) = \cos t V + \sin t \bar{A}(V)$. Since W is orthogonal to $\bar{A}(V)$, W is horizontal.

We want to express $U_i + V$ in terms of $U_i(t) + V(t)$, the non-horizontal eigenvector with the eigenvalue $p_i(t)$ at $\phi_t(z)$. Since $\langle U_i + V, V(t) \rangle = p_i \sin t + \cos t$, we have

$$
U_i(t) + V(t) = (U_i + V)/(p_i \sin t + \cos t) \tag{3.12}
$$

Proposition 3.12. *Assume that* $q = 4$ *, then k is constant on* \overline{M} *.*

Proof. Suppose that $k = 2$ on a nonempty set S and $k = 4$ on a nonempty set S'. Let d be the distance function on S^{2m+1} . If $d(z, S) \rightarrow 0$, then the constant term of $-f(x)$ converges to $p_2 + p_4$ or $p_1 + p_3$. We may assume that it converges to $p_2 + p_4$. Then a_1 and a_3 converges to 0. Note that $a_i(K_i+1) = p_4 - p_i$. Thus K_1 and K_3 are unbounded if $d(z, S) \rightarrow 0$. Clearly K_4 is unbounded if $t_1 \rightarrow \pi/4$. From (3.12) we obtain that K_2 is bounded below. Then U_1 , U_2 , U_3 , U_4 are almost orthogonal to each other if $t_1 \rightarrow \pi/4$. But they generate a 3-dimensional space, a contradiction to (3.1).

Case 3. g = 6 and $m_{+} = m_{-} = 1$.

Throughout this case we assume that $p_1 > p_2 > ... > p_6$.

(1) Suppose that $k = 2$. Then *Jn* is principal as in the case $q = 2$. We may assume that $T(p_2)$ and $T(p_5)$ are the two non-horizontal eigenspaces. Note that $p_2 + p_5 = p_3$ for some t_1 . Then a focal submanifold of M must have dimension 3 [4], a contradiction.

(2) Suppose that $k=3$, 4 or 5. Then we can obtain similar contradictions. For example, if $k=4$ and $T(p_5)$, $T(p_6)$ are the two horizontal eigenspaces, then

$$
a_2(p_2-p_1)+a_3(p_3-p_1)=-(1+p_1p_4)=0.
$$

But a_2 , a_3 < 0, a contradiction.

Thus we have $k=6$, i.e., there are no horizontal eigenspaces. If a principal curvature p of M has multiplicity > 1 , let X_1 and X_2 be orthogonal eigenvectors with the same eigenvalue p. Let \bar{X}_i be their horizontal lifts and $\bar{A}(\bar{X}_i)=p\bar{X}_i+b_iV$. If $b_2 \neq 0$, then the vector $\bar{X}_1 - (b_1/b_2)\bar{X}_2$ is a horizontal eigenvector, a contradiction.

Proposition 3.13. *If g* = 6, then \overline{M} has no horizontal eigenspaces and M has 5 principal *curvatures with the same multiplicity 1. Moreover, at least one of them is nonconstant.*

For the existence of nonconstant principal curvatures, see [14].

4. Quaternionic projective space

In this section, we assume that $n = 4m + 3$ and $\mathbb{F} = \mathbb{H}$. Let $\bar{J}_1, \bar{J}_2, \bar{J}_3$ be the canonical complex structures on \mathbb{H}^{m+1} . Note that \overline{M} is an isoparametric hypersurface of \mathbb{S}^{4m+3} and is also invariant under the canonical \mathbb{S}^1 -actions given by \overline{J}_i 's. Thus the possible values of g are 2 and 4, as shown in Sect. 3.

Case 1. g = 2.

Clearly dim $T(p_i) \geq 3$. Choose orthogonal bases

 $\mathscr{B}_i \cup \{U_i + V_1, U'_i + V_2, U''_i + V_3\}$

for $T(p_i)$, where \mathcal{B}_i , U_i , U'_i , U''_i are horizontal, and V'_i s are orthonormal vertical vectors (*i*=1, 2, 3). As in Sect. 3, $\pi_*(U_1)$, $\pi_*(U'_1)$, $\pi_*(U''_1)$ are eigenvectors of the shape operator $A = A_n$ with the same eigenvalue $p_1 + p_2$.

Proposition 4.1. *Suppose that* $q = 2$ *.*

(i) If $m_-=3$, then $m_+>3$ and M has 2 constant principal curvatures p_1+p_2 , p_2 *with multiplicities 3,* m_{+} *– 3.*

(ii) If $m_-, m_+ > 3$, then M has 3 constant principal curvatures $p_1 + p_2, p_1, p_2$ with *multiplicities* 3, $m_{-} - 3$, $m_{+} - 3$.

Since \overline{M} is a product of two spheres and the two focal submanifolds are spheres, the two focal submanifolds of Σ are quaternionic projective spaces. Thus M lies in a tube over a quaternionic projective space.

Case 2. g = 4.

Since $2(m_+ + m_-) = 4m + 2$, we may assume that m_- is odd and that m_+ is even. Assume that the two principal curvatures p_1 and p_2 have the same multiplicity m_- . Let $V_i = \bar{J}_i$ z be the canonical vertical vectors. Let $\pi_i : \mathbb{S}^{4m+3} \to \mathbb{C} \mathbb{P}^{2m+1}$ be the Riemannian submersion obtained by taking V_i as a unit vertical vector.

Proposition 4.2. Assume that $g = 4$. If $J_1 n$ is an eigenvector with respect to π_1 , then $J_2 n$ *and* J_3 *n are also eigenvectors with respect to* π_2 *and* π_3 *. (* J_i *denotes the canonical complex structure on* \mathbb{CP}^{2m+1} *induced by* \overline{J}_i *.*

Proof. Note that $T(p_3)$ and $T(p_4)$ are horizontal with respect to V_1 , i.e., the members of them have no components of V_1 . Consider the vertical vectors $V_1 + V_2$. $T(p_3)$ and $T(p_4)$ are horizontal with respect to these vertical vectors. This implies that the members of them have no components of V_2 . Thus J_2n is an eigenvector with respect to π .

Therefore we have two possible cases.

(1) $J_1 n$ is an eigenvector with respect to π_1 .

Note that $T(p_3)$ and $T(p_4)$ are horizontal, but $T(p_1)$ and $T(p_2)$ are not horizontal. Clearly, $m_{-} \geq 3$. As in the case $q = 2$, choose orthogonal bases

$$
\mathscr{B}_i \cup \{U_i + V_1, U'_i + V_2, U''_i + V_3\}
$$

for $T(p_i)$, where \mathcal{B}_i , U_i , U'_i , U''_i are horizontal (i=1,2).

Proposition 4.3. *Assume that g* = 4 *and that* $J_1 n$ *is principal with respect to* π_1 *.*

(i) If $m_-=3$, then $m_+=2$ and M has 3 constant principal curvatures p_3 , p_4 , $p_1 + p_2$ with multiplicities 2, 2, 3, 3.

(ii) If $m_- \neq 3$, then M has 5 constant principal curvatures $p_1, p_2, p_3, p_4, p_1 + p_2$ with multiplicities $m_{-} - 3$, $m_{-} - 3$, m_{+} , m_{+} , 3.

(2) $J_1 n$ is not an eigenvector with respect to π_1 .

Lemma 4.4. $m_- \neq 1$ *and* $m_+ \neq 2$.

Proof. Suppose that $m = 1$. Since we assume that $m \ge 2$ and m_{+} is even, $m_{+} \ge 4$. We choose orthogonal bases

$$
\mathscr{B}_i \cup \{U_i + V_1, U'_i + V_2, U''_i + V_3\}
$$

for $T(p_i)$, where \mathcal{B}_i , U_i , U'_i , U''_i are horizontal, (i=3,4). Note that

$$
U_3, U_4 \perp U_3', U_4' \perp U_3'', U_4'' \ .
$$

Therefore they are linearly independent. This means that we have 9 independent vectors from an 8-dimensional space, a contradiction. By a similar argument, we have $m_+ \neq 2$.

Now we may assume that $m_{-} \geq 3$ and $m_{+} \geq 4$. We choose orthogonal bases

$$
\mathscr{B}_i \cup \{U_i + V_1, U'_i + V_2, U''_i + V_3\}
$$

for $T(p_i)$, where \mathcal{B}_i , U_i , U'_i , U''_i are horizontal, (i=1, 2, 3, 4). As in Sect. 3, we have three 3×3 matrices *B*, *B'*, *B''* which correspond to U_i , U'_i , U''_i . In fact, they are equal. Thus \vec{A} is represented by the matrix

$$
\begin{pmatrix}\nD & 0 \\
B & 0 & 0 \\
0 & B & 0 \\
0 & 0 & B\n\end{pmatrix}, \text{ where } D \text{ is diagonal and}
$$
\n
$$
B = \begin{pmatrix}\np_1 + a_1 & a_1 & a_1 \\
a_2 & p_2 + a_2 & a_2 \\
a_3 & a_3 & p_3 + a_3\n\end{pmatrix}.
$$

Proposition 4.5. *Assume that g* = 4 *and that J₁</sub> <i>n is not principal with respect to* π_1 *.*

(i) If $m = 2$, then M has 2 constant principal curvatures p_3 , p_4 with the same *multiplicity m+ -3 and 3 nonconstant principal curvatures with the same multiplicity 3.*

(ii) If $m_- \neq 3$, then M has 4 constant principal curvatures p_1, p_2, p_3, p_4 with multiplicities $m_$ - 3, $m_$ - 3, $m_$ + -3, $m_$ + -3 and 3 nonconstant principal curvatures *with the same multiplicity 3.*

5. Examples

In this section, we give explicit examples on cases which have been handled in previous sections.

Example 5.1. Consider the fibration $\pi : \mathbb{S}^7 \to \mathbb{HP}^1$. On $\mathbb{HP}^1 = \mathbb{S}^4$, there are 3 different isoparametric hypersurfaces

(1) M_1 with 1 principal curvature.

 $\pi^{-1}(M_1)$ is an isoparametric hypersurface with $g = 2$ and $(m_-, m_+) = (3, 3)$. This gives an example for Proposition 3.2 (i).

(2) M_2 with 2 principal curvatures.

 $\overline{M}_2 = \pi^{-1}(M_2)$ is an isoparametric hypersurface with $g=4$ and (m_-,m_+) $= (1,2)$. Since the multiplicities are less than 3, $J_1 n$ can not be principal. Thus its image M'_2 under the fibration $\mathbb{S}^7 \rightarrow \mathbb{CP}^3$ has nonconstant principal curvatures. This gives an example for Proposition 3.9 (i).

(3) M_3 with 3 principal curvatures.

 $\overline{M}_3 = \pi^{-1}(M_3)$ is an isoparametric hypersurface with $g=6$ and (m_-,m_+) $= (1, 1)$. Accidentally we obtained an example $g = 6$. We know that its image under the fibration $S^7 \rightarrow \mathbb{CP}^3$ has a nonconstant principal curvature. But M_3 has constant principal curvatures.

Remark 5.2. From Takagi's table we have a homogeneous hypersurface M^{*n*} which is the image of an isoparametric hypersurface in S^7 with $g = 4$ and $(m_-, m_+) = (1, 2)$, [14]. But all isoparametric hypersurface with $g=4$ and $(m_-,m_+)=(1,2)$ are congruent. Thus we have two non-isometric hypersurfaces M'_{2} and M''_{2} which correspond to isometric hypersurfaces in $S⁷$. These are examples which were mentioned in Sect. 1.

Example 5.3. The inhomogeneous examples of Ozeki and Takeuchi [11] are invariant under the canonical \mathbb{S}^3 -action (and hence under the canonical \mathbb{S}^1 -action). These give examples for Proposition 3.9 and Proposition 4.5.

Example 5.4. The hypersurfaces of type C and type E in Takagi's table [14] are invariant under the canonical \mathbb{S}^3 -action. These give example for Proposition 4.3.

We proved that the example of type \bf{B} in Takagi's example can not be invariant under the canonical $S³$ -action (cf. Lemma 4.4). The remaining case in his table is the examples of type **D**. Let \overline{M} be an isoparametric hypersurface which is obtained from a hypersurface of type **D**. Then $q = 4$ and $(m_-, m_+) = (5, 4)$. Suppose that \overline{M} is \mathbb{S}^3 - invariant. Note that dim $\bar{F}_{-} = 13$ and hence dim $F_{-} = 10$. From the Gysin sequence

$$
\ldots \to H^q(F_-) \to H^q(\overline{F}_-) \to H^{q-3}(F_-) \to H^{q+1}(F_-) \to \ldots
$$

we have $H^4(F) \neq 0$ and $H^6(F) = 0$, a contradiction. Thus \overline{M} can not be invariant under the \mathbb{S}^3 -action.

Acknowledgement. This is a part of author's dissertation. I would like to thank Prof. K. Grove for his suggestions and several helpful discussions.

References

- 1. Abresch, U. : Isoparmetric hypersurfaces with four or six distinct principal curvatures. Math. Ann. 264, 283-302 (1983)
- 2. Bolton, J.: Transnormal systems. Quart. J. Math. Oxford Ser. (2) 24, 385-395 (1973)
- 3. Caftan, E. : Sur les families remarquables d'hypersurfaces isoparametriques dans les espaces sphérques. Math. Z. 45, 335-367 (1939).
- 4. Cecil, T., Ryan, P. : Focal sets and real hypersurfaces in complex projective space. Trans. A. M. S. 269, 481-499 (1982)
- 5. Kimura, M. : Real hypersurfaces and complex submanifolds. Trans. A. M. S. 296, 137-149 (1986)
- 6. Lawson, H. : Rigidity theorems in rank-1 symmetry spaces. J. Differ. Geom. 4, 349-357 (1970)
- 7. Münzner, H.: Isoparametrische Hyperflächen in Sphären. I. Math. Ann. 251, 57-71 (1980)
- 8. Münzner, H.: Isoparametrische Hyperflächen in Sphären. II. Math. Ann. 256, 215-232 (1981)
- 9. Okumura, M.: On some real hypersurfaces of a complex projective space. Trans. A. M. S. 212, 355-364 (1975)
- 10. O'Neill, B.: Submersions and geodesics, Duke Math. J. 34, 363-373 (1967)
- 11. Ozeki, H., Takeuchi, M. : On some types ofisoparametric hypersurfaces in spheres. I. Tohoku Math. J. 27, 515-559 (1975)
- 12. Ozeki, H., Takeuchi, M. : On some types of isoparametric hypersurfaces in spheres. II. Tohoku Math. J. 28, 7-55 (1976)
- 13. Takagi, R. : On homogeneous real hypersurfaces in complex projective space. Osaka Math. J. 10, 495-506 (1973)
- 14. Takagi, R.: Real hypersurfaces in a complex projective space with constant principal curvatures. I. J. Math. Soc. Japan 27, 43-53 (1975)
- 15. Takagi, R. : Real hypersurfaces in a complex projective space. II. J. Math. Soc. Japan 27, 507-516 (1975)
- 16. Wang, Q.: Isoparametric hypersurfaces in complex projective space. Proc. Beijing symposium on differential geometry and differential equations, 1509-1523 (1980)
- 17. Wang, Q. : Isoparametric functions on Riemannian manifolds. I. Math. Ann. 277, 639-646 (1987)

Received July 1, 1988; in revised form December 19, 1988