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Abstract. This  pape r  s tudies  (g lobal )  exact  con t ro l l ab i l i t y  of abs t r ac t  semi-  
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1. Motivating Examples, Corresponding Results, Literature 

1.1. Motivatin 9 Examples and Correspondin9 Results 

T h r o u g h o u t  this pape r  we let f~ be an  o p e n  b o u n d e d  d o m a i n  of R" wi th  sufficiently 
s m o o t h  b o u n d a r y  F. F o r  the sake of s impl ic i ty  of  n o t a t i o n ,  b o u n d a r y  con t ro l s  are  
app l i ed  to the ent i re  b o u n d a r y  F. 
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this paper are announced in: Proceedings of the 28th Conference on Decision and Control, Tampa, 
Florida, December 1989, pp 2291 2294. 
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Wave Equation with Dirichlet Controls. In f~ we consider the following semilinear 
problem for the wave equation in the solution w(t, x): 

wtt= Aw + f (w)  in (0, T] x f~ = Q, (1.1a) 

w(O, x) = Wo(X ), wt(O, x) = wl(x ) in f~, (1.1b) 

w]~ = u in (0, T] x F = E, (1.1c) 

with control function u based on Z. The assumption on the nonlinearity f is as 
follows: 

f :  9t ~ 91 is an absolutely continuous function with first derivative f '  a.e. 
(almost everywhere) which is a.e. uniformly bounded on 91; 

If '(r)l < c o n s t  fora.e, re91.  (1.2) 

The linear problem (1.1) with f - 0 is exactly controllable over [0, T] on the space 
L2(fl ) x H - t ( f  D within the class of controls u e L2(0, T; L2(F)), provided that 
T > 0 is sufficiently large [LT4], [L5], [H2], [T3], [BLR]; equivalently, on the 
space Hol(f~) x L2(~ ) within the class of controls u e Hol(0, T; L2(F)), see Theorem 
3.1 below. In turn, equivalently, on the space H~(f~) x H~-l(f~), 0 < y < 1, y ¢ ½ 
(resp. H~/o2(fD x [H~/o2(f~)] ', if7 = ½ within the class of controls u s H~(0, T; L2(F)) 
(resp. u e Hol/o2(0, T; L2(F)) if7 = 1), see Corollary A.3 in Appendix A below. One of 
the contributions of this paper is to extend the same exact controllability property 
to the semilinear problem (1.1) subject to (1.2) over the same time interval. 

Theorem 1.1. Let T > 0 be a time for which exact controllability of the linear 
problem with f - 0 holds true in any one of the equivalent statements above. Let f 
satisfy assumption (1.2). Then a similar exact controllability result holds true for the 
original problem (1.1)for the same T > O: for any pair {Wo, wl} e H~(fl) x H ~- l(f~), 
0 <_ y < 1, y v~ ½ (resp. {w o, wa} e H~/o2(~) x [H~/oZ(f~)] ' for ~ = ½), there exists a 
suitable control function u e H~o(O, T; Lz(F)) (resp. u e H~/o2(0, T; Lz(F)) for ~ = ½ 
such that the corresponding solution of problem (1.2) satisfies w( T, .) = wt( T, .) = O. 

Theorem 1.1 is a specialization (see Section 4) of an abstract result (Theorem 
2.1) given in Section 2. 

Wave Equation with Neumann Control. In f~ we consider the problem 

I Wtt = Aw 

w(O, x) = Wo(X), w,(O, x) = wl(x)  

~ = #(wlr) + u 

in (0, T] x f~ = Q, (1.3a) 

in ~, (1.3b) 

in (0, T] x F = E, (1.3c) 

where v is a unit normal outward vector. Moreover, on the basis of the regularity 
results as in [LT9],  the scalar function g satisfies the following assumption 
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when dim f~ > 2: 

g: continuous H~(E) -~ L2(32), 

{; e > 0 arbitrary, 

e > 0 arbitrary, 

if f~ is a sphere. 

For dim l) = 1, take/3 = 1. 

if D is a general smooth domain, 

if f~ is a parallelepiped, 

(1.4) 

(1.5) 

Theorem 1.2. Let  tt be an L2(Z)-control function that steers the origin {0, 0} to the 
state {v(T, .), vt(T, .)} ~ Hl(f~) x LE(f~) at time T along the solution of  the linear 
problem 

Vtt ~- A u  

v(O, x)  = vt(O, x)  =- 0 

8v = # e L2(Z ) 
~v Is 

in (0, T] x ~ = Q, (1.6a) 

in D, (1.6b) 

in (0, T] x F = Z. (1.6c) 

Then the control function 

u = It -- g(v I~) ~ L2(2;) (1.7) 

used in (1.3c) of  the nonlinear problem (1.3) with Wo = Wl = 0 produces the same 
solution: 

w(t) =- v(t), w~(t) =- v,(t), 0 <_ t <_ T. (1.8) 

In particular, {w(T,  .), wt(T , .)} = {v(T, .), v,(T, .)}. Thus, problem (1.3) is exactly  
controllable on Hl(fl)  x L2(f~ ) at time T, whenever problem (1.6) is. (Notice that 
(1.4) is satisfied if, for  instance, 

n 
Ig(s)[ <_ a + blsl k, k < - -  

n - 2/3" 

Hence, g can be superlinear.) 

Theorem 1.2 is proved in Section 5. For exact controllability results for 
problem (1.6) see the recent direct approaches in [L5], [L7], and [LT5], which 
followed the original results via uniform stabilization in [C] and [L1]. 

Remark 1.1. Theorem 1.2 with fl = ~ - e in a general smooth domain (see (1.5)) 
remains true if (--A) in (1.6a) is replaced by a general second-order uniformly 
elliptic operator with smooth coefficients depending on the space variable (but not 
on the time variable). This is so because the sharp trace regularity theory [LT9], 
which provides the key estimates for the validity of the proof of Theorem 1.2, 
remains true in this more general context. 
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Remark. 1.2. 
the nonlinear problem 

y ,  = Ay + h(y[~) + u 

y(0, x) = Yo, yt(0, x) = Yl 

By a similar argument, we may give the following result. Consider 

in Q, (1.9a) 

in f~, (1.9b) 

in Z, (1.9c) 

where the scalar function h satisfies the following conditions when dim fl _> 2: 

h: continuous H'(E) ~ L2(Q), (1.10) 

i if f~ is a general smooth domain, 
= 53 e i f f l i s  aparallelepiped, e > arbitrary, (1.11) 

if f~ is a sphere. 

Let # be an L2(Q)-control function that steers the origin {0, 0} to the state {r/(T, .), 
rh(T, .)} e Hl(f~) x L2(f~) at time T, along the solution of the linear problem 

qtt = Aq + # in Q, 

q(0, .) = ~h(0, ') = 0 in f~, (1.12) 

~-~qv z = 0 inE. 

Then the control function 

u = # -- h(r/lz) e L2(Q) (1.13) 

used in (1.9a) of the nonlinear problem (1.9) with Yo = Yl = 0 produces the same 
solution y( t )  = q(t), yt( t)  = rlt(t), 0 < t < T. Thus, in particular, problem (1.9) is 
exactly controllable on Hl(f~) x L2(f~ ) at any time T, since problem (1.12) is also 
IT1]. 

A remark, similar to Remark 1.1, that (--A) in (1.9a) may be replaced by a 
general second-order uniformly elliptic operator with space-depending smooth 
coefficient, also holds true for (1.9a). We note explicitly that in the dynamics (1.3) 
and (1.9), the nonlinearity and the control appear as additive terms. 

Euler -Bernou l l i  Equat ion  with Controls  on w[~ and Awls. 
semilinear problem 

I 
Wtt + A2w = f ( w )  in (0, T] x f~ = Q, (1.14a) 

w(O, x)  = Wo, wt(O, x )  = w I in fL (1.14b) 

wl~ = ul in (0, T] x F = E, (1.14c) 

Awls = u2 in E, (l.14d) 

with nonlinearity f( t ) :  9t ~ 9t satisfying the following assumptions: f '  is absolute- 
ly continuous and 

If'(r)l + If"(r)l -< const for a.e. t e 9t. (1.15) 

In f~ we consider the 
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The linear problem (1.14) with f = 0 is exactly controllable over [0, T], T > 0 
arbitrary, on the space [-H2(~'))~ Hl(~"2)] × L2(~') ) within the class of controls 
u I - 0 and u2 e H1/4(0, T; Lz(F)) [L2], or u 2 ~ L2(0, T; H1/2(F)) [LT11]. Exten- 
sion of this result to the semilinear problem (1.14) is provided by the following 
theorem. 

Theorem 1.3. Let T > O. Let f satisfy assumption (1.15) and let dim fl _< 3. Then, 
for any pair {Wo, wl} • [H2(~) ~ HI(~)]  × L2(~), there are suitable control func- 
tions {Ul, u2} ~ H"(Z) x H1/4(0, T; LE(F)) , where m may be taken to be an arbitra- 
rily preassigned positive number, such that the corresponding solution of problem 
(1.14) satisfies w(T, .) = wt(T , .) = O. 

Theorem 1.3 is likewise a specialization (see Section 5) of the abstract result in 
Theorem 2.1. 

1.2. Literature 

As the foregoing examples indicate, the object of this paper is to study the problem 
of exact boundary controllability of semilinear wave and plate equations. The 
nonlinearity appears in the interior in the case of the wave equation (1.1), of the 
wave equation (1.9), and of the Euler-Bernoulli equation (1.14); and on the 
boundary in the case of the wave equation (1.3). In the case of problems (1.3) and 
(1.9), where nonlinearity and control appear as additive terms, the relevant exact 
controllability results in Theorem 1.2 and Remark 1.2 are simply obtained as a 
direct consequence of recent sharp trace regularity theory [LT9] for general linear 
second-order hyperbolic equations with Neumann boundary conditions. It is this 
theory that provides the key estimates. Instead, in the case of the wave problem 
(1.1) and of the Euler Bernoulli problem (1.14) with nonlinearity in the interior 
and control on the boundary, the approach is quite different. At (essentially) no 
extra effort, we present it in an abstract framework, which encompasses these latter 
two dynamics (and others as well) and unifies them all. The exact controllability 
result for the corresponding abstract semilinear model, Theorem 2.1, is the main 
result of this paper. It is based on controllability assumptions (C.I), (C.2) (exact, for 
the corresponding linear part; approximate, for the corresponding linearization) 
and, in addition, on structural assumptions (A.1)-(A.5) for the dynamics. The latter 
assumptions may appear, at first, puzzling. They are, in fact, quite natural for the 
boundary control problems of waves and plates of our interest, in which case they 
are indeed automatically fulfilled. This is verified in Section 3 for the wave problem 
(1.1) and in Section 4 for the Euler-Bernoulli problem (1.14). Other cases of waves 
and plates may be similarly handled, see Remark 4.1. 

Over the past few years there has been a marked progress in solving exact 
boundary controllability (and uniform stabilization) problems for linear waves and 
plates problems on explicitly identified, sharp spaces (of maximal regularity or of 
finite "energy"). Paper [Z], and references therein, was the first to follow these 
linear investigations with a corresponding semilinear result. Indeed, our present 
paper is motivated by [Z]: this article deals specifically with the boundary control 
problem (1.1) for the wave equation, and is cast within the general strategy of 
applying Schauder fixed-point theorem to the linearization of the original problem. 
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The approach of using a fixed-point theorem is a well-established strategy that goes 
back to a 1965 paper [ H I ]  in the case of finite-dimensional systems, see the review 
article [-CQ]. In carrying out this strategy, [Z] relied on the so-called H.U.M. 
method [L5]. The final result in [Z] is an exact controllability statement for the 
wave problem (1.1) on the same state space H~(fl) x H ~- 1(~), within the class of 
H~(0, T; L2(F))-boundary controls, as in our Theorem 1.1 above, however, only in 
the range 0 < y < 1. The limit cases ~ = 0, are explicitly excluded from [Z], as the 
requirement 0 < y < 1 is essential to its treatment; the case 7 -- 0 is excluded 
because of lack of the compactness property which is instead required by Schauder 
fixed-point theorem; the case 7 = 1 is likewise explicitly excluded in [Z], as the 
requirement 7 < 1 is "essential" [Z, above (2.54)] in that treatment. On the other 
hand, the limit cases y = 0, 1 are the most interesting and natural cases in 
applications. Thus, the present paper takes these two limit cases as a motivation to 
restudy the problem over the entire range 0 < 7 <_ 1. 

In order to overcome the difficulties in the limit cases 7 = 0 and 7 = 1 
encountered by the approach in [Z] and thus solve the exact controllability for the 
wave equation (1.1) for all 0 < ~ < 1, the issue of exact controllability of semilinear 
waves and plates is taken up anew in this paper through a direct approach, which is 
quite different from the one in [Z]. 

The main technical differences are: 

(i) 

(ii) 

(iii) 

Instead of using H.U.M., this paper uses a direct approach based on the 
explicit construction of the controllability map. 
Instead of applying Schauder fixed point, we use a global inversion 
theorem (implicit function theorem) which requires the uniform bound 
(2.46) or (2.52) below and which dispenses with the need of compactness 
present in the Schauder approach: this way the case 7 = 0 is also included, 
where the compactness required by Schauder fixed point simply does not 
hold true. 
In establishing the required uniform bound (2.46) below, we use in a 
crucial way that certain families of operators which enter into the 
description of the problem are collectively compact, a concept already 
used by the authors in the study of other boundary control problems for 
second-order hyperbolic mixed problems [LT3, Lemma 3.12]. (If we use 
Schauder fixed point instead of the global inversion theorem, as in the first 
version of our paper, then the uniform estimate (2.46) is still the main 
technical difficulty, which esablishes that the fixed-point map takes the 
whole space where a fixed point is sought into a ball of finite radius; this 
way we get the desired controllability result for 0 < 7 < 1, but not for 

= 0 because of the compactness required by Schauder.) Our aim is to 
single out the general and essential features of the problem, which are 
common to various waves and plates equations. This leads to the abstract 
Theorem 2.1. Specialization of Theorem 2.1 to the wave problem (1.1) 
produces the new Theorem 1.1 for 7 = 0 and 7 = 1, but also recovers the 
exact controllability result in [Z] for 0 < ~ < 1. However, in Section 3, we 
explicitly treat only the most demanding cases 7 = 1 and ~ = 0. Applica- 
tion of the present abstract Theorem 2.1 to waves and plates problems 
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relies, as usual, on a uniqueness property of the corresponding linearized 
homogeneous problem, which is presently known only under certain 
assumptions of the "potential"  function [H4], [H5], [I], [KRS],  [PSI,  
[R]. We have several other examples of plates problems where all abstract 
assumptions of our Theorem 2.1 are already verified save for the unique- 
ness assumption (C.2), see Remark 4.1. Progress in this uniqueness 
question [L8] will enlarge the range of applicability of the abstract 
Theorem 2.1. 

2. Abstract Formulation. Statement of Main Result. Proof 

In this section we study the question of exact controllability of an abstract 
semilinear operator  equation, subject to certain assumptions. In later sections we 
verify that these assumptions are natural for, and in fact automatically satisfied by, 
the dynamics of our interest: wave equations and plate equations. 

2.1. Abstract Formulation. Exact Controllability Problem 

Well-posedness. Let Y and U be two Hilbert spaces. Our  basic operator model 
is the equation 

= Ay ÷ F(y) + Bu, y(O) = Yo E Y, (2.1) 

to be interpreted as specified below. Standing assumptions on (2.1) are as follows: 

A: Y ~ ~(A)  ~ Y is the infinitesimal generator of a strongly continuous semi- 
group on Y, denoted by e At, t > 0; 

B: B ~ L(U; [~(A*)] ') ,  so that 1 A - 1 B  ~ L(U, Y), where A* is the adjoint 
of A in Y, [~(A*)] '  is the dual space of~(A*)  with respect to the Y-topology; 

F: Y ~ Y is a nonlinear operator, continuous on Y, with Frechet derivative 
F'[y] ~ L(Y)  at the point y ~ Y, satisfying 

II F'[y] Ilur) < const, uniformly in y ~ Y. (2.2) 

Instead of the differential version (2.1) on, say, [~(A*)] ' ,  we consider its variation 
of parameter  version 

y(t) = eA'yo + (Sfu)(t) + ( ~ y ) ( t ) ,  (2.3) 

y(T) = eAryo + ~ r u  + ~ro~Y, (2.4) 

(o~y)(t) = F(y(t)); (2.5) 

to be interpreted under some minimal requirement of well-posedness as follows. 
There exist two Hilbert spaces: 

a Hilbert space ~/r,  based on [-0, T] x U, dense in, say L2(0, T; U), (2.6) 

and 

a Hilbert space H c Y (H will be the space of exact controllability at t = T), 
(2.7) 

1 Without loss of generality for the problem here considered, we may take that A - 1 is well defined 
as a bounded operator on all of Y. 
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such that 

(~u)(t) = f[ 
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eA(t-*)Bu(z) dz: continuous ~T ~ C([0, T]; Y), (2.8) 

~ r u  = eA(T-t)Bu(t) dt: continuous 0~ T ~ H. (2.9) 

Moreover, in (2.3) and (2.4) we have set 

fo (~lg)(t) = ea(t-Og(z) dz: continuous Ll(0, T; Y) ~ C([0, r ] ;  Y), (2.10) 

f; ~ r 9  = eA~r-t)g(t) dt: continuous L1(0, T; Y) ~ Y. (2.11) 

By (2.2)-(2.11), a fixed-point solution y e C([0, r ] ;  Y) of (2.3), i.e., of (2.1), exists 
for u e ~ r .  The space @r is invoked only for the well-posedness of (2.1) and is 
not needed in subsequent sections. 

Exact Controllability Problem on the Space H, at Time T, Within the Class of 
~lT-Controls. We now let qt r be another Hilbert space ~T C ~T (the space d~ T 
is not used anymore in this paper). Given Yo ~ H (resp. YT ~ H), we seek, if 
possible, u e qtT such that the corresponding solution of (2.3), (2.4) (resp. with 
initial condition y o = 0 )  satisfies y ( T ) = 0  (resp. y ( T ) = y T ) .  The two 
formulations are equivalent in the cases of our interest, which involve time 
reversible dynamics, see Sections 3 and 4. We consider the following linearized 
version of (2.1): 

= Az + F'[q]z + Bu + F(O), z(O) = z o ~ Y, (2.12) 

for a fixed arbitrary element ~/~ Y. The corresponding variation of parameter 
version of (2.12) is 

z(t) = eatzo + (~u)( t )  + (~ff[t/]z)(t) + (~/V(0))(t), (2.13) 

z(T) = eArzo + £PTU + ~ff r[q]Z + ~trF(O), (2.14) 

where we have set, recalling (2.10), (2.11), 

fo ;,U[t/] = ~F'[t /] ,  (3([t/]g)(t) = eA(t-~)F'[tl]g(z) dz, (2.15) 

o~r[q] = NrF'[q], ~r[ t#]0  = eA(r-OF'[q]o(t) dt. (2.16) 

For each u e ~'r ,  (2.13), (2.14) define a corresponding solution z e C([0, T]; Y). 

2.2. Assumptions and Statement of  Main Result 

We make two sets of assumptions throughout: structural assumptions (A.1)-(A.5) 
on the operators describing model (2.1); and controllability assumptions (C.1) and 
(C.2) on the linear and linearized versions of problem (2.1). 
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StructuraI Assumptions (A.1) (A.5) 

(A.1) Assumption on the operator ~q~ defined by (2.8). There  exists a Hi lber t  space 
~ r  ~ C([0, T] ;  Y) such that  2 

(2.17) Lf: q/T ~ gT is continuous.  

Moreover ,  either 

5~: q/T ~ ~T is compac t  

or  else 

~T: ~ F'[~]g ~ H is compact ,  for each g ~ ~T fixed. 
qE~T 

(A.2) Assumptions on the family sC[-r/] = ,~F'[r/]  defined by (2.15). 

(2.18a) 

(2.18b) 

(a) The following family of opera tors  is collectively compac t  in the pa rame te r  

~/~ ~T: 

X[~/]  = ~F ' [~ / ] :  ~T ~ ~T'  (2.19) 

This means,  explicitly, that  the following two propert ies  hold true: 

1. For  each mixed r/~ ~T, the ope ra to r  ~ [ ~ / ] :  O~T ~ O~T is compact .  
(2.20a) 

2. The set union U ~ [ q ]  (unit ball ofo~T) is a p recompac t  set in ~T, 
,~e~ (2.20b) 

where the union of the image under  oU[q] of  the unit ball in 8 T is taken 
over  all q running in ,d T. 

(b) For  any sequence q, ~ gT,  n = 1, 2 . . . . .  we can extract  a subsequence ~/,k, 
k = 1, 2 . . . . .  such that  

~ [ q , k ]  = ~ F ' [ q j  -~ JU ° = ~ F  o strongly in ~T (2.21) 

for a suitable opera to r  F o ~ L(Y), which depends on the subsequence. As a 
consequence of (2.2l) and (2.20), we obtain  that  3ff ° is compac t  [A1, p. 5] 
and that  

II WI-~/3 litter-) < const  uniformly in r/~ g r .  (2.22) 

(A.3) Assumption on the family ~,Ur[r/] = ~TF'[rl] defined by (2.16). The  family of 
opera tors  

~:¢~rE~/] = ~TF'Ert]:  e r  --' H (2.23) 

has the proper ty  that, for any sequence q, ~ g r ,  n = 1, 2 . . . . .  we can extract  a 
subsequence ~/,~, k = 1, 2 . . . . .  such that  

~(r[q,~] = ~ T F ' [ q , J  ~ some ~#° r = ~ r F o  weakly in H from g r ,  (2.24) 

2 In applications there is much flexibility in the choice of gr. 
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i.e., (fT[l ' lnklg,  h) n ~ ( fOg ,  h)H, Vg E O~T, Vh ~ H, for a suitable operator 
F o ~ L(Y) ,  which depends on the subsequence. As a consequence of (2.24) we 
obtain 

][ fT[- r l3  ][L(~T,H) ~ conStr uniformly in q ~ h r .  (2.25) 

The above assumption is used in the first alternative of (A.1), i.e., when 5 ° is 
compact as in (2.18a). On the other hand, in the second alternative of (A.1), i.e., 
when ~T is compact as in (2,18b), then the convergence in (2.24) is strongly in H in 
view of (2.2): for each 9 ~ gT and any sequence {r/,} ~ gT we can, by (2.2), extract a 
subsequence {q,k} such that F ' [ r / j 9  is weakly convergent in gT and so, by (2.18b), 
we then have that ~ T F ' [ q j g  is strongly convergent in H. 

(A.4) Assumption on the trajectory (~F(0))(t), 0 < t _< T. We have 

trajectory {(~F(0))(t), 0 _< t < T} ~ compact set of gT" (2.26) 

(A.5) Assumption on the point ~TF(O). We have 

~TF(O) ~ H. (2.27) 

Before formulating our controllability assumptions, we need the following 
considerations. As a consequence of our assumption (2.20a), it follows that, for any 

( I  - f E r / ] ) - a  m L(gT). (2.28) 

Indeed, by the compactness property in (2.20a), it suffices (and is equivalent) to 
show the following injectivity statement: 

(I - 0ff[q])f = 0, say f e L2(0  , T; Y), implies f = 0. ( , )  

By (2.15), we have that identity ( • ) implies f = A f  + F'[r l] f ,  f(0) = 0 and so 
f = exp{(A + F'[~l])t}f(O) =- O, and (2.28) is proved. 

l_inearized Problem. Returning to (2.13) and using (2.28), we have, by (2.17) and 
(2.26) with z o E Y, 

z(t) = (I - JU[q])- X[ea'zo + L,f'u + ~F(0)] m gm, (2.29) 

which used in (2.14) yields, for u ~ ~T, 

z (T)  = eATZo + {50T + f T [ q ] ( I  - -  ~//"[-~l)- I~P} u -]- ~, (2.30) 

where ~ is a fixed vector of H (see (2.23), (2.28), (2.26), and (2.27)) and 

= JIT[q](I -- f [~/] ) - l [eA'zo + ~F(0)] + ~ITF(O)~ H. (2.31) 
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Equations (2.29)-(2.31) give explicitly the map u ~ z of the linearized problem 
(2.13), (2.14). Note that # = 0, if z o = 0 and F(0) = 0. Moreover, if z o = 0, then 
z (T)  ~ H, by (2.17), (2.23), (2.28), (2.9), and (2.31). 

Controllability Assumptions (C.1) and (C.2) 

(C.1) (Exact controllability from the origin on the space H, at time T, of the linear 
problem (2.1) with Yo = 0, F = 0, within the class of q/T-controls.) 

LPT: ~T ~ H is surjective (onto). (2.32) 

(C.2) (Approximate controllability from the origin of the linearized problem 
(2.13), (2.14), and its limit version in the sense of (2.21), (2.24), with Zo = 0, 
F(0) = 0.) With reference to (2.30) with z o = 0, F(0) = 0, hence ~ = 0, we assume 
that: 

(a) For  each fixed ~/~ ST, the map 

Jr'Tit/] : U --+ z (T)  = JgT[rl]U 

----- {SfT + OVT[q](I -- X [ q ] ) - I ~ } U :  q/T --> H (2.33) 

has range dense in H (in the topology of H). 
(b) Also, let ~ o  and ~ o  be any of the limit operators obtained in (2.21) and 

(2.24). We likewise assume that the operator (which is well defined, see 
Lemma 2.2 below) 

~t¢O ~ ~(TT "31- 9if°( I - ~ ° )  -1Lp: ~(T --4. H (2.34) 

has range dense in H (in the topology of H). An equivalent formulation of 
(2.33), (2.34) is that the Hilbert adjoint map/operator  ~ '* :  H ~ o//r in the 
sense 

(~/ru,  Y)u = (u, ~'~Y)~T, 

want JL r either Jlr[~/] or j//o, has trivial null space ~ in H; i.e., for each 

~{~¢*[~]} = ~ { ~ *  + ~ * ( i  - ~ * E ~ ] ) - ~ x * [ ~ ] }  = {o} 

equivalent to (2.33), and likewise 

jV'{(j///°) *} - jtr{Se* + 5q*[I - ( y o ) , ] - l ( x o ) ,  } = {0} 

equivalent to (2.34). 

in H, 
(2.35) 

in H, (2.36) 

Our main exact controllability result (from the origin) for problem (2.1) is as 
follows. 

Theorem 2.1. Assume (A.1)-(A.5), (C.1), and (C.2). Then, for  any Yr ~ H, there 
exists u ~ ql r, such that the corresponding solution y o f  (2.1) (or (2.3), (2.4)) with 
Yo = 0 satisfies y (T )  = Yr. 
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2.3. Proof of  Theorem 2.1 

The proof employs a global inversion theorem. 

Step 1. Let Yr E H be assigned. By (C.1)= (2.32), there exists v ° ~ q/r (con- 
structed below) such that 

5erv°r = Yr and, in fact, v°r = 5V~-yr ~ [JV(L~r)] ± c q/r, (2.37) 

where ~o~ is the pseudoinverse of Lfr: q/r ~ H. This means that if 

q/r = J t r (~ r )  + [-¥'(Ser)] ± (2.38) 

denotes the orthogonal decomposition of the Hilbert space q/r, in terms of the null 
space of 5~ r and its orthogonal complement, then 

---- ( ~ T l [ X ( _ ~ r ) ] z )  . H --, [~/ff(Sfr)] ±, (2.39) 
where 

[ 5arltx(so~)j~ = 5¢ r restricted over [Jff(L~ar)] ±, (2.40) 

LfrSer ~ = identity on H, (2.41) 

~wr~ L~r = Fir = orthogonal projection H onto [o/ff(o~r)] ±, (2.42a) 

5fr~LPr = identity over [JV'(5°r)] ±. (2.42b) 

Accordingly, we henceforth restrict our search to control functions/~ ~ [JV'(Yr)] 1 
such that, replacing u in (2.4) with such/~, the solution map # ~ y(T) of problem 
(2.4) with Yo = 0 satisfies y(T) = Yr. Once such a/~ is found, any other u E q/r with 
projection 1-Iru =/~ will also yield y(T) = Yr. 

Applying ~ r  ~ to (2.4) with u there replaced by/~ now and with Y0 = 0 and 
using (2.37) and (2.42) yields 

v°r = / t  + 5~r~rF(y( /0)  =/1 + A[/~] e [JV'(L,°r)] ± c q/r, (2.43a) 

where the operator A is defined by 

A[~t] = L~v~N?rF(y(/a)). (2.43b) 

Step 2. Our final objective is to show that the C~-map 

9[kt] = / t  + A[/~]: [Jg'(SVr)]±-~ itself (2.44) 

is, in fact, surjective (onto), hence a homeomorphism of [ JV(~r) ]  ± onto itself. To 
this end, we invoke a global inversion theorem: the map g in (2.44) is a 
homeomorphism of [JV'(~r)] ± onto itself, provided that its Frechet derivative 

9'[/~] = I + A'[/~] (2.45) 

is a boundedly invertible operator on all of [Jff(5~ar)] ± at each #, with inverse 
uniformly bounded in/~, i.e., provided that 

II (9'It/I)- 1 II = II (I + A'[/~])- 1 II -< const < oe, uniformly in/~, (2.46) 

where the norm in (2.46) is the (uniform) norm of L([JV(~r)]±),  see, e.g., IS1, 
Theorem 1.22, p. 16], [B], and [D, Section 15.2, p. 152]. 
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Step 3. Claim. Recallin9 (2.8), (2.9) (2.15), and (2.16) we have 

a'E/t] = £~'r~oFr[#](I - oFEt/])- 1L~°, 

where the inverse in (2.47) is well defined by (2.28). 

(2.47) 

or  

dy = (I - oF[ t / I ) -1~ ,  (2.49) 
d# 

where the inverse is well defined by (2.28). Inserting (2.49) into (2.48) yields the 
desired conclusion (2.47). [] 

In view of (2.46), (2.47), we redefine, for each q e d°r, the operator A'[p] by 
calling it Cr[t/] (since it will be related to the approximate controllability property 
(C.2)), i.e., we set 

A'[q] = Cr[t/] = ~r~oFr[t /](I  - o F [ q ] ) - 1 ~ :  [ j V ( ~ r ) ] ±  __. itself. (2.50) 

In addition, if gfo and oFo is any of the strong, respectively weak, limits in (2.21), 
(2.24) we define, likewise, 

C ° = £P~oF°(I - oF°)- lSe:  [ Jg ' (~r ) ]±  ~ itself. (2.51) 

Step 4. Thus by (2.46), (2.50), our final goal will be to show that the operator 
9'[#] = I + A'[~t] = I + Cr[t/] has an inverse in L [ J V ( ~ r ) ]  ± which is uniformly 
bounded here in #: 

II (I + A'[#])-  111 = II (I + Cr[t / ])-  111 

= I1{I + ~r~oFr[t / ](I  -- OF[t / ] ) -X~}-I  II --< const < o% 

uniformly in #, (2.52) 

where the norm in (2.52) is the (uniform) norm of [ /V(Y'r)]  ±. Two inversions are 
involved in (2.52) and both inverses have to be shown uniformly bounded in #. The 
first task is accomplished in Lemma 2.2, equation (2.53) below; the second and 
conclusive task is accomplished in Lemma 2.5, equation (2.77) below. 

Step 5. Lemma 2.2. Not only do we have (I - OF[t/])- 1 e L(oVr) for each t~ e 8 r  
as was shown in (2.28), but moreover: 

(aO II (I - OF[t/I)- 1 Ilu~-) -< const, uniformly in t /e  g r .  (2.53) 

Proof of  Claim. By (2.43b) we obtain via (2.16), for each #, 

dy ~T~ XT[t/] dy A ' [ # ]  = £k'#r ~rF'(y(#)) ~ = d[t" (2.48) 

On the other hand, from (2.3) with (Y0 = 0 and) u replaced by # we obtain via (2.15) 

d yy = dy dy 
d# 5f + ~F'(y(#)) d~ = &,e + j f [ q ]  d#' 
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(a2) Let q,~ be a subsequence of  a given arbitrary sequence rl, ~ ~ ,  such that 

JY~[q,~] ~ some X ° = JIF o, strongly in 8r ,  (2.54) 

for some F o ~ L(Y),  as guaranteed by assumption (A.2b)= (2.21); then, 
as noted below (2.21), d(  ° is compact in gr [Al ,  p. 5]; and moreover 
( I  - ) f o ) -  1 ~ L(gT) and 

(I - s~[r/,~])- 1 ~ (I - X °)- 1 strongly in gr .  (2.55) 

Proof  o f  Lemma 2.2. Property (a2) implies property (al). We show at once the 
bound (2.53) with q = r/,k uniformly in k, as well as the strong convergence in 
(2.55). We have already noted that d f  ° is compact on gT [A1, p. 5] because of 
(A.2); thus the argument which showed (2.28) now' applies to ~ 0  of the form 
~fo = ~ F  ° by use of (2.15), yielding (I - ~ o ) - 1  E L(~T). Then, assumption (A.2) 
that ~ [ q , J  is collectively compact and strongly convergent implies, via Theorem 
1.6, p. 8, of [A1], that (2.53) holds true for r /=  q,~, in which case (2.55) follows as 
well. [] 

L e m m a  2.3. 

(a) The operators CrEw/] in (2.50)for each ~1 ~ ~ r  and the operator C ° in (2.51) 
are all compact. 

(b) By virtue of  the approximate controllability assumptions (C.2), (i.e., (2.33) 
and (2.34), or equivalently (2.35) and (2.36)), the operators 

I + Cr[q] = I + £P~3f7-[q](I - o ,~ [~ ] ] ) -  1 ~ :  

[JV'(L~ar)] ± ~ itself, for each q ~ gT, (2.56) 

I + C ° = I + 5¢~3ff°(I - JY'°)-1L, e: [JV(Ser)]± ~ itself (2.57) 

are all boundedly invertible : 

(I + Cr[q])-  1 ~ L([jff(~r)]±) ,  (2.58) 

(I + C °)-1 ~ L([jff(Lfr)]±). (2.59) 

Proof (a) Compactness of CT[l~'] , C ° is a consequence of either compactness of &o 
in (2.18a), or else of compactness of ~T in (2.18b), in assumption (A.1). 

(b) Thus to show, say, (2.58), it is equivalent to show that 

(I + C~r[q])-I ~ L([ jV(yr)]±) ,  (2.60) 

where the adjoint is taken in [Jff(L~'r)] -L = q/r, and, in fact, because of compact- 
ness of C*[q], it suffices (and is equivalent) to show that I + ~ [ q ]  is injective on 
[JV(~er)] ±. But, by (2.56), (2.42b), and (2.41) on [JV(£,er)]±: 

I + C*rrEq ] = I + 5¢*(I - o ~ ( " * [ q ] ) -  1 , )~ - [ /~ ] (~°T~)*  

= . ~ q ~ * ( ~ ) *  + ~ * ( I  - s¢~*[q])  - l ~ ¢ ~ [ q ] ( S e r ~ ) *  

= {£~a. + ~ * ( I  - Ju(*[r/])-lJ~ff*[q]}(L~a~)*, (2.61) 
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where * denotes Hilbert space adjoints; 

(Aa~)*: [~ (&aT) ]±  ~ H, ~ * :  n ~ J~T, Ae*: ~T --' qlT; 

But AaT ~ is surjective (by definition (2.39)) and so (AP~) * is injective. Thus, (2.61) 
says that I + C'l-q] is injective provided that the operator { } in (2.61) is injective 
in [-Jt/'(~T)lZ; and this is the case by assumption (2.35). The proof is identical for 
(2.59) using assumption (2.36). [] 

Step 6. To show (2.52) we need a specialization of the following lemma, which at 
no extra effort we put in a general framework. 

Lemma 2.4. Let Zi be two Banach spaces, i = 1, 2, let Q be a compact operator 
Z 1 ~ Z 2, and let W(p) be a family of bounded operators Z 2 ~ Z 1 depending on the 
parameter p ~ ~ ,  such that W(p,) ~ W ° weakly for any sequence p,, with W°: 
Z2 ~ Z1 depending on the sequence. Assume further that the operators I + W(p)Q 
and I + W°Q are all injective on Z1, and hence boundedly invertible on Za. Then 

II [I + W(p)Q] - 1 IIL(z. -< const,  uniformly in p ~ ~ ,  (2.62) 

and the weak convergence as in (2.74) below holds true. 

First proof We must show that there exists a constant C > 0 such that, for all 
z ~ Z1, we have 

llz + W(p)Qzll >_ Cl[z/I, uniformlyin p ~ ,  (2.63) 

in the norms o f Z  1. Suppose not. Then there exist sequences {z,} in Z1 and {p,} in 
such that 

II z. tl - 1 yet z, + W(p,)Qz, ~ 0 (strongly in z 0 .  (2.64) 

Thus, we can extract a subsequence, still denoted by z,, such that 

z, ~ some z weakly in Z 1 (2.65) 

and hence, by the assumed compactness of Q, 

Qz, ~ Qz strongly in Z 2. (2.66) 

The strong convergence in (2.66) and the weak convergence W(p,) ~ W ° easily 
imply [K1, p 151] 

W(p,)Qz, ~ W°Qz weakly in Z1. (2.67) 

By (2.64), (2.65), and (2.67) we have the weak limit equals the strong limit and 

z + W°Qz = 0. (2.68) 

But, by assumption, (2.68) implies z = 0. We now conclude the proof by establish- 
ing a contradiction between the property that z = 0just  obtained and II Zn 11 - 1 a s  
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in (2.64) left. Indeed, since z = 0 we have Qz, --. 0 strongly in Z 2 by (2.66), and since 
I[ W(p,)II is uniformly bounded in n from the assumption, we have 

II W(p,,)Qz. II -< constl[ Qz. II ~ 0 or W(p,,)Qz,, ~ 0 (strongly in z1). 
(2.69) 

Then (2.69) and (2.64) (right) imply that z. ~ 0 strongly in Z1 and this contradicts 
IIz.II- 1. [ ]  

Second proof (It provides more information about the adjoint family.) By the 
assumptions, Q* is compact and W*(p,) ~ (W°) * weakly for any sequence {p,} in 
~,  and hence 

Q*W*(p,) ~ Q*(W°) * strongly in Z 1, (2.70) 

Q*W*(p) is a collectively compact family in Z1 in the parameter p ~ ~.  (2.71) 

(Indeed, for any sequence {p,} and any {z,}, II z. II < 1, we can extract a convergent 
subsequence from {Q*W*(p,)z,} since II W*(p)II is uniformly bounded in p and Q* 
is compact and p. 12 of [A1] applies.) By virtue of (2.70) and (2.71), as well as by 
virtue that [-I + Q*(W°)*] -~ is a bounded operator in all of Z~, from the 
assumptions we can appeal again to Theorem 1.6, p. 8 of [A1] as was done in the 
proof of Lemma 2.2. As a result we obtain, for any sequence {p,} e ~,  

[I + Q*W*(p,)]-~ ~ [I + Q*(W°) *] -~ strongly in Z~, 

II [I + Q*W*(p,)]- i l l  -< const, uniformly in n, (2.72) 

and hence 

II [I + W(p)Q] - 1 II = II [I + Q* W*(p)] - 1 II < const, uniformly in 

as desired, from which it follows via (2.72) that, for any {p.} e ~ ,  we have 

[I + W(p,)Q]- 1 ~ [I + W°Q] -  1 weakly in Z1. [] 

pE,~,  
(2.73) 

(2.74) 

The abstract Lemma 2.4 is specialized in the next result, part (ii) (at least in the 
more demanding case where 5e is compact as in (2.18a), but ~T is not compact as 
in (2.18b)). 

Lemma 2.5. 

(i) Let rl,k be a subsequence of a given arbitrary sequence q, ~ ~T, such that 
(2.54) holds true as well as 

J f T [ q j  ~ JU° = N r F o  weakly in H (2.75) 

as guaranteed by (2.24) in assumption (A.3). Then, see (2.50), 

C T [ q j  converges weakly to C ° = 5¢~ ylr° (I - j ( o ) -  15f 

in [Jff(L~r)] ±, (2.76) 
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while convergence in both (2.75) and (2.76) is "strong" if ~T is compact as in 
(2.18b). 

(ii) Not  only do we have (I + Cr[t/])  -1 ~ L ( [ X ( 5 0 T ) ] l )  for  each tl ~ gT as in 
(2.58), but in fac t  

II (I + C T I-~])-IlIL(t,~(~T)V) ~ const, uniformly in t /e  d r . (2.77) 

Proof  (i) Properties (2.55) and (2.75) imply that the operator family 

def 
WT[tl] = 50~ X 'T[ t l ] ( I  -- ) f f [q])-  (2.78) 

satisfies 

W T Ft/nk] --~ 5 0 T  # oU°(I - sU°) -a weakly in d T ~ [-J~/ ' (50T)l  ± (2.79) 

from which it follows that (see (2.50) and (2.51)) Cr[tl,k] = Ww[tl,J50---+C ° 
weakly as desired, and (2.76) is proved. 

(ii) First assume the first alternative in (A.1) that 50 is compact as in (2.18a). 
Then this part is merely a specialization of Lemma 2.4 with the spaces Z 1, Z z there 
given by the spaces q/T, d r  now, respectively; the operator Q there given by the 
operator 5 ° now, which is compact by assumption (2.18a); the parameter p m 
there given by the parameter r/6 d r nOW; the family W(p) there given by the family 
Wr[tl] in (2.78) now, which is weakly convergent to W ° there given by 50T # S ° 
(I -- SU°) - 1 now via (2.79); the operators I + W(p)Q and I + W ° Q  there given by 
the operators I + Cw[~l] and I + C ° now, which are injective with bounded 
inverse by (2.58), (2.59). Thus, the uniform bound (2.62) there specializes to the 
uniform bound (2.77) now, at least under the assumption (2.18a) that 50 be 
compact. 

Next, suppose that 50 is merely bounded as in (2.17) while now the second 
alternative in (A.1) holds true that ,~r  is compact as in (2.18b). This case is far 
simpler: now the convergence in (2.75) and in (2.76) is strong (in view of (2.2), 
(2.24), and (2.50) as noted below (2.25) in the first case); while Cr [q ]  is a 
collectively compact family on [JV(50T)] ± in the parameter t/E d r .  Thus, since 
(I + C °) is injective with bounded inverse by (2.59), we can invoke directly 
Theorem 1.6, p. 8, of [A1] and conclude with the uniform bound (2.77). (That 
CT [r/] is collectively compact follows from the fact that, for any sequence {t/,} and 
any bounded sequence {z,}, we can extract a convergence subsequence from 
{ C T [ t l n l Z . }  , s e e  p. 12 of [A1]). [] 

Thus, the uniform bound (2.52) is proved, and so is Theorem 2.1 [] 

Remark 2.1. We write explicitly the specialization of the additional information 
obtained in the second proof of Lemma 2.4 in (2.70), (2.71), (2.72), (2.73), and (2.74) 
respectively (even if we do not use it in the following), which applies to the first 
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alternative when LeT is compact as in (2.18a), while ~tr is not compact as in 
(2.18b): 

C~T [r/] ~ (CO) * strongly in [Jff(SCr)] 1, (2.80) 

C~[q] is a collectively compact family on [ J f f (~ r ) ]  ± in the parameter r/E g r .  
(2.81) 

(I + C*TT [t/.k]) -1 --~ (I + (C°)*) -1 strongly in [-~/'(,,~T)] ±, (2.82) 

(I + C r I t / j ) -  1 _. (I + C ° ) -  ~ weakly in [Jff(Sfr)]  ± (2.83) 

for any sequence t/.~ E g r  such that the strong limit (2.54) and the weak limit (2.75) 
hold true. 

3. Application: A Semilinear Wave Equation with Dirichlet Boundary 
Control. Problem (1.1) 

The goal of this section is to show that the semilinear wave problem (1.1) subject to 
(1.2) fits automatically the abstract model of Section 2 on appropriate spaces. As a 
consequence, Theorem 1.1 is nothing but a specialization of the abstract Theorem 
2.1. As mentioned in Section 1, the procedure of this section is readily adapted to 
obtain exact controllability results for the wave problem (1.1) on any state space 
H = H~(f~) x H ~- l(f~) using the control space ~//r = H~(0, T; Lz(F)) , 0 _< ~ _< 
1, 7 # ½, as well as the special case 7 -- ½. However, in this section we explicitly treat 
only the most demanding and most desirable cases 7 = 1 (in Subsection 3.1) and 
7 = 0 (in Subsection 3.2), which are not covered by the methods in [Z]. 

3.1. The Case 7 = 1 in Theorem 1.1for Problem (1.1) 

With reference to the setting of Section 2, the following is the relevant specialization 
for the wave problem (1.1) in the case 7 = 1 of Theorem 1.1: 

Y = L2(n ) x H-a(f2), H : Hol(f~) x L2(f~), 

u = L:(F), ~z~ = HI(O, T; L:(F)), 

~T ---- L2(0, T; L2(~ ) × H -  1(~)). 

(3.1) 

(3.2) 

(3.3) 

3.1.1. Verification of  Assumption (C.1)." Exact Controllability of  Linear Sys- 
tem. We verify assumption (C.1) of exact controllability of the linear problem 
(1.1) with f - 0. 

Theorem 3.1. Let f - 0 in (1.1) and let T > 0 be sufficiently large as in Appendix 
A. Then, for any given pair {Wo, wl} e HI(~)) x L2(~)), there exists a suitable control 
function u ~ HI(O , T; LE(F)) such that the corresponding solution of problem (1.1) 
with f - 0 satisfies 

w ( T , . ) = w t ( T , . ) = 0  and {w, wt} e C([O, T]; H1/2(~2) x L2(~)). (3.4) 
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By time reversibility, the origin {0, 0} can be steered to all of H~(f~) x L2(fl) at time 
t = T, by usin9 HI(O, T; I~(F))-controlfunctions. Thus, for such T, 

LPr: continuous operator Hi(O, T; Lz(F) )  onto H~(~) x L2(fl ). [] (3.5) 

A sketch of the proof of this result is given in Appendix A, using a direct 
approach in the style of [LT2], [LT5], and IT3]. A different approach is given in 
I-L5]. 

3.1.2. Abstract Setting for Problem (1.1). We introduce the operators A, B, and 
F in model (2.1) corresponding to problem (1.1). We follow the treatment 
introduced in [LT1] and IT2]. Thus, details are omitted. See [DLT1] and 
Appendix A of [FLT]. Let d :  L 2 ( ~  ) = ~@(J:~) ---* t2(~") ) be the (positive self-adjoint) 
operator defined by d h  = -Ah ,  ~ ( d )  = H2(~) ~ H I ( ~ ) .  Then, - d  generates a 
strongly continuous (s.c.) cosine operator C(t) o n  L2(~'2 ) with S(t) = ~t o C(O dr. The 
operator A in model (2.1) is given by 

0 ,  I ~(A) = ~ ( d )  x ~(~¢1/2), (3.6) 
A =  0 

~ ( d l / 2 )  = Hl(~,)), [-~(~tl/2)], = H - l ( n )  

(set theoretically and topologically) (3.7) 

which generates the unitary s.c. group e at given by 

ea t = C(t) S(t) , 
- d S ( t )  C(t) II C(t)  IIL(L2(n)) + I I d l / 2 s ( t )  HL(L2(n)) <-- const, (3.8) 

on either of the spaces 

~ ( d  1/2) x L2(f~) or L2(n) x [@(dl/2)]  ' (3.9) 

topologically equivalent to, respectively 

H -= Ho~(f2) x C2(a), r = Lz(f~) x H - t ( n ) .  (3.10) 

Next, let D be the Dirichlet map (harmonic extension of boundary data) defined by 

~Ah = 0 inD, (3.11) 
3 9 = h  ~ [ h = 9  inF,  

D: continuous Lz(F ) ~ Ha/2(~) = H1/2-2~(~) = D(dl /4-") ,  'v'e > 0. (3.12) 

Then with U = Lz(F ) the operator B in model (2.1) is 

Bu = 0 , A _ I B  u =  - D u  , A - 1 B 6  L(U, Y), (3.13) 
d D u  0 
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where d in d D u  is actually the isomorphic extension, say L2(~"~ ) --~ [~(~¢) ] ' ,  of the 
original operator ~ '  defined above (3.6). Finally, the operator F in model (2.1) is 
given by 

0 0 

• )) if(t/a( ~i)Yx( ) ' ' 
F(y) = f (Yx (  ' F'[t/]y = F(0) = (3.14) f(o) 

Y = [Yx, Y2] ~ Y, t /=  [th, t/2] ~ Y, so that assumption (1.2) o n f '  becomes assump- 
tion (2.2) on F'[t/]. The operator Lf in (2.8) is explicitly 

*t 
(Lf  u)(t) = e A(r-*)Bu(r) dr 

o (3.15a) 

f' sJ  S(t - z)Du(r) dr 
0 

f' ~¢ C(t - z)Du(z) dr 
0 

[L2(0, T; L2(r)) -+ c([o, T]; La(n)  x H - x ( n ) )  

continuous j . . (see [LT2] and [LLT]), 
/ 

I (3.15b) 
[H6(0, T; L~(F)) --> c([0, T]; H1/2(Y~) x L2(~))) 

( (see Appendix A), 

while the operator ~T in (2.9) is 

f; LP r u = eA(r-')Bu(t) dt 

C(T- t)Ou(t) dt 

~L2(0, T; L2(F)) ~ Y = L2(f2) x H-l(f~), 
: continuous [H~(0, T; L2(F)) ~ U = U~(g~) x L2(~))  

(see Appendix A), 

(3.16) 

so that as the space fiT in (2.8), (2.9) we may take f i r  = q/r = Ho~( 0, T; L/(F)). 
The operator d([t/] and 3((r[t/] in (2.15) and (2.16) are explicitly obtained via 

(3.8), (3.14) as follows: let t /=  [th, t/2] ~ g r ,  see (3.3), then 

fo (of[t/]g)(t) = (~F'[t /]g)( t)  = eA('-OF'[t/]g(Q dr 

= I f l s ( t - v ) f ' ( t / , ( ' ) ) g x ( z , ' ) d r  

• continuous Lx(0, T; L2(Y2)) -* C([0, T]; H), 
H = ~ ( d  1/2) x L2(•), 

(3.17) 
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Y~T[n]g = ~ T F ' [ q ] g  = e a t T - t ) F ' [ t l ] g ( t )  dt 

f ;  t)f'(th(. ))gl(t," ) dt S ( T  - 

f o  C(T - t)f '(t/l(.  ))gl(t,. ) dt 

" continuous LI(0, T; L2(~)) ~ H = Hol(fl) × L2(~). 

(3.18) 

3.1.3. Verification of Assumptions (A.1)-(A.5) 

Proposi t ion 3.2 (Verification of (A.1), alternative (2.18a)). The operator ~ in 
(3.16) satisfies the property 

~ :  ~//T = Ho~( 0, T; L2(F)) ~ g r  = L2(0,  T ;  L2(~'-~ ) × H -  1(~"~)) is compact. 
(3.19) 

Proof We use Aubin's Compactness Lemma [A2]. In view of (3.15b), it suffices to 
show 

dLP 
- -  : continuous Hi(0, T; L2(F)) ~ L2(0  , T; X), (3.20) 
dt 

where X is an Hilbert space satisfying L2(~'] ) × H 1(~"~) C X. To show (3.20), we 
first note that if u ~ HA(0, T; Lz(F) ), then by problem (1.1) with f = 0 we obtain 

d 2 =LP u 

dt 2 
-- A ~ u  ~ L2(0 , T; H 3/2-e(~"~) X H-2(~')))  (3.21) 

upon applying p. 85 of [LM] to t , e  regularity (3.15b). Thus, application of the 
intermediate derivative theorem [LM, p. 15] between (3.15b) and (3.21) yields 
(3.20) with X = H-112-¢2(~) x H- l (~ ) ,  as desired. [] 

Proposition 3.3 (Verification of (A.2)). The family of operators ~ [ t / ]  defined by 
(3.17) satisfies both 

(a) the assumption of collective compactness 
L2(O, T; L2(O ) x H-  l(O)), and 

(b) the assumption of strong convergence (2.21). 

(2.19) on the space gr = 

Proof (a) From (3.17) and (1.2) we obtain by (3.7) 

[I U4/'[q]g [[c([o, T];n~(n) × Lz(a)) --< constT 11 gl ILL1(0, T;L2(n)) 
uniformly in r/e cY T. (3.22) 
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Moreover, from (3.17) and (3.7) we obtain, since H-1({"~) = [~(6f f l /2 ) ] t ,  in (3.3) 

foC(t ))gl(T, .) dr z)f'(r/l(. 

fo f ' ( t l l  ( • ))gl(t , .  ) -- ~¢ S(t -- z)f'(r/1 ( • ))gl(z," ) dz 

C([O, T]; L2(~) "~ 
k H -  1(~'~) ] 

with norm uniform in t / •  ~x'~ T 

(3.23a) 

dX[ t l ]g  

dt c([o, T];L2(~) x H - l(f~)) 

< constT 1191 IlL.o, T;L,(,, uniformly in q • ¢T" (3.23b) 

Thus, application of Aubin's Compactness Lemma [A2] to (3.22) and (3.23) yields 
at once that sC[r/] is compact on gT, i.e., property (al) = (2.20a); and, indeed, 
because of the uniform bounds in (3.22) and (3.23b), then property (a2) = (2.20b) 
on collective compactness attains. 

(b) With r/, g • gT, i.e., t h ,  gl • L2(0, T; LE(k'~)) , we consider from (3.17) 

d 1/2 0 f l  d l / 2 S ( t  - z)f ' ( r / l ( ' ) )gl (z")  dz . 

( 0 ~q¢1/2 ~t~[r/]g)( t ) =  d~/2flc(t_z)f,(rh(.))gdz,.)d z (3.24) 

Next, by the uniform bound (2.2) we have r h --~ if(r/l): continuous 
L2(O, T; Lz(f~)) ~ bounded sphere of L°~(R). Thus, by Alaoglou's theorem, there 
exists a sequence r/1,•L2(0, T;L2(~)) such that f'(t/1, ) converges to some 
fo • L°°(R) weak star. Define the operator Fo • L(Y)  by F o y = [0, fo(" )Yl(" )] for 
Y = [Yl, Y2] • Y. Then we have 

~q~ 1/2 0 ~ 1 / 2  0 
0 ~ 1 / 2  K[q,] -~ 0 ~ 1 / 2  ~Fo,  weakly in ~X'~T, (3.25) 

i.e., if g = [gl, g2], h = [h 1, h2] • ~T, and so gx, ha, d -  1/2h 2 • L2(0, T, L2(~'))). 
then we have by (3.24) that 

( d~l/2 0 )~P[~ln']g, ) 
0 d 1/2 h ~T 

( f  (~1.(-))91( ,  ), ~ l / ~ s ( t  - ~)hl(t)). d~ dt 

+ ( f  (q~,(")/01( ," ), C(t z ) d  - 1/2h2(t))f~ d'c d t  (3.26/ 
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dY[q , ]  d ~ F  o 

dt dt 

converges to 

( ~1/2 

0 

0 ) 
~1/2 ~Fog ,  h ~T 

fo;o = (fo(")gl(r ,  " ), ~1/2S( t - Z)hl(t))f~ dr at 

ifo + (fo(")91(z, "), C(t - z)~&- 1/2h2(t)) n dr dt (3.27) 

as it follows by the Lebesgue dominated convergence theorem, using (1.2), weak 
star convergence and the uniform bound in (3.8). Moreover, 

weakly in g r  (3.28) 

since, from (3.17), 

C(t - z ) f ' ( t h .  ( • ))gl(z, " ) dz 

fo f,(r/ln( " ))gl(t, " ) _ ~1/2 ,~¢1/2S(t -- z ) f ' (q l . ( "  ))9a(z, " ) dr 

(3.29) 

and essentially the same computations as in (3.25)-(3.27) apply now to show (3.28) 
using (3.29). As a consequence of the weak convergence in (3.25) and (3.28) and of 
compactness of ~'-1/2 on Y2(f~), we deduce that 

~[~/,]  ~ ~'F o strongly on o~r (3.30) 

as desired. Thus property (2.21) has been verified. [] 

Proposition 3.4 (Verification of (A.3)). The family o f  operators ~ffr[q] defined by 
(3.18) satisfies (2.23) and the assumption o f  weak convergence (2.24). 

Proof  Property (2.23) is already contained in (3.18). Property (2.24) follows 
through an argument similar to the one of part (b) of Proposition 3.3. As in (3.25) 
we obtain 

~¢,2 0 Yr[~. ]  

0 ~¢1/2 

--~ ~q[~/2 0/2 ,~TFo, weak ly in  L2(~'~ ) × [-~(d~l/2)-], (3.31) 
d 

which is equivalent to ~{'T[q,] ~ ~TF0 weakly in ~(d2~ 1/2) M L2(~ ). [] 

Proposition 3.5 (Verification of (A.4) and (A.5)). W e  have 

(i) trajectory {(~F(0))(t), 0 < t < T} ~ compact set o f  8 r = L2(0, T; La(D ) 
× H -  l(f~)), 

(ii) ~TF(0) ~ n = ~(~,1/2) x L2(f~). 
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Proof. (i) 

( ~ f ( 0 ) ) ( t )  = e A(t-  ~)F(O) dr 

fo  S(t  - r){f(0)}(.  ) dr 

fo  C(t - r){f(0)}(.  ) dr 

and part (i) follows. Part (ii) is then contained in (3.32) with t = T. 

C([0, T] ;  ~(~1/2) X L2(~"~)) (3.32) 

[] 

3.1.4. Verification o f  assumption (C.2) .  It remains to verify assumption (C.2) on 
the approximate controllability (2.33) and its limit version (2.34) in the sense of 
(2.21) and (2.24). These two approximate controllability properties amount to the 
same "uniqueness property" ("observability" in the terminology of standard 
control theory) as explained below. To verify (2.33), equivalently (2.35), we 
consider the problem 

{ ~,, = A~ + f ' (q,)~ in (0, T] x f~ = Q, (3.33a) 

~l ,=o = 0, (~l,=o = 0 in n (3.33b) 

(l~ = u in (0, T] x F = Z, (3.33c) 

with ql a fixed element of L2(0, T; L2(f~)), which corresponds to the linearized 
abstract version (2.12) with F(0) = 0 and with z(t)  = [((t), (t(t)].We seek the dual 
J//*[q] of the map JC/r[q] in (2.33) as applied to the present case: 

JP/v[r/] : u ~ z ( T )  = ([ ( r ) ,  [ , ( r)) :  ~ ' r  = HA(0, T; L2(F)) 

-~ H = ~(~ ,1 /2 )  x L2(f~ ). (3.34) 

Let go be the solution of the corresponding homogeneous problem backward in 
time: 

go, = Ago + f'(ql)go on Q, (3.35a) 

golt=r = goo = Yl e L2(~) ,  

gotlt=T "= (,°1 = - - d Y o  ~ [--@(dl/2)] = H - l ( n )  

golz = 0 

Then, for [Yo, Yl] e H = ~ ( s ¢  l/z) x L2(~), 

in ~, (3.35b) 

on Z. (3.35c) 

u e Hol(0, T; Le(F)), we have via 
(3.35b) 

l y I ~[ ~,(T) ' 

= (ff,(T), go(r))a - (~(T), go,(T))n 

Ho~(O, T; L:(r)) 

with L z inner products over f2 and Z, where the identity in the middle of (3.36) can 
be verified, as usual, by multiplying problem (3.33) by go and problem (3.35) by 
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and integrating by parts (this is the counterpart of the operator version in (A.8) and 
(A.9) in Appendix A when f '  = 0). As in (A.9) we have in norm equivalence 

u, ~ * [ , d  yo = u,, ~ * D ]  dt 
Yl n~(o, r;L~(r)) & L2(r) 

( :  ,1) = - u, dt 2 J/*[t /]  Yo (3.37) 
L2(£) 

after integration by parts in t using u = 0 at t = 0 and t = T. Comparing (3.37) 
with (3.36) yields 

d2 Yl dt 2 ~[*[r / ]  Yo &P = ~-V ( t ,  q)0, (/01), ~00 = Y l ,  ~D1 = - - ~ ¢ Y 0 "  ( 3 . 3 8 )  

To test the injectivity condition (2.35) on J/c'*[t/] of assumption (C.2) we let 

0 - ~'*[r/] YlY° , [Yo, Yl] • H, r / •  Nr, (3.39) 

and we want to deduce that in fact [Yo, Yl] = 0. Now (3.40) implies by (3.38) 

d2~/'* [-r/] ~ 63('0 
dt 2 = ~v Iz -= 0 (3.40) 

for the solution ~o of (3.35). But the initial data {~Oo, ~ol} • L2(f~) × H-l(f~) in 
(3.35b) yield the a- priori regularity ~o • L~(0, T; L2(~)). To conclude that, in fact 
[Yo, Yl] = 0, we need the following uniqueness result. 

Theorem 3.6. Consider the problem 

{ ¢p, = Atp + p(t, x)tp in Q, (3.41a) 

¢Plt=0 = CPO • L2(~')), ¢Ptlt=o = q)l • H - l ( f 2 )  i n~ .  (3.41b) 
Q._ 

q9 = c~. =- 0 in E (3.41c) 
Z UV Z 

with p • L°°(Q). Let  T > T(x°) ,  defined in Appendix  A, below (A.23c). Then, in fact,  

~0 0 = ~01 = O. 

Proo f  o f  Theorem 3.6. Step 1. Equation (3.41b) yields the a priori regularity 
¢p • L°~(0, T; L2(f2)). Using this information, we now boost the regularity of the 
solution to (3.41) in the sense that, for T > T(x°) ,  we have 

2 (3.42) oo > II~OllL~(O,T;L2<m) > C T (  T - -  T(x°)) II {~°o, qh} Ilng(n)×L2(n).2 
Thus, with Ho~(f~) = @(dl/2), we actually have that the solution to (3.41) satisfies 

{~Oo, ~ol} • H~(f~) x L2(~)  and {~o, ~o,} • L°°(0, T;Ho~(f~) x L2(f~)). (3.43) 

To prove (3.42), we use the multipliers h. Vq~, ~o, and q~t, with h the radial field 
h(x) = x -  x o which defines T(x  °) in Appendix A. By applying the first two 
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multipliers to (3.41a) and using (3.41c) we obtain (see, e.g., [T3],  (2.20) combined 
with (2.25) and (2.26) when p = 0) with n = dim f~ 

fo fo ;o E(t) dt = 2 peph. Vq9 dQ + (n - 1) pq~2 dQ + 2b(T) - 2b(0), (3.44) 

( n  - 1)  
b(t) - 2 (¢P" ~°)n + (~o~, h. V~o)~, (3.45a) 

E(t) = fo  [V~°I2 + [q~tl2 dr1. (3.45b) 

Using Komorn ik ' s  estimate of (3.45a) (e.g., Section 5 of [L5]  and [K2])  

21b(t)l _< R(x°)E(t) so that  2(b(T) - b(0)) < R(x° ) [E(T)  + E(0)], (3.46) 

we obtain, from (3.44) for any e~ > 0 since p ~ L°°(Q), 

(1 el) E(t) dt o ( r l l q ~  2 - -  = IIL~(O,T;L2(f~))) + R(xO)[E(T) + E(0)]. (3.47) 

Next,  the multiplier opt applied to (3.41a) yields 

:of. E(t) = E(O) + 2 p~oq) t df~ dz (3.48) 

from which since p e L~(Q)  

g(t)  < E(0) + ~rll ~o, 2 Cp 
- -  IIL~(O.T;L2(f~)) + -  r[I ~o 2 liLy,O. T;L2(~,. (3.49) 

Selecting e = e2/T, e 2 > 0 preassigned, we obtain 

(1 e2) sup E(t) < E(0) + Cr(ll 2 - _ ~o IIz~(o, T;L2(.~)), (3.50) 
O < t < T  

where CT means that  the constant  of the upper  bound  may depend on T. Inserting 
(3.48) into the left-hand side of (3.47) and using (3.50) for the term E(T)  on the 
r ight-hand side of (3.47), we obtain 

- = + 1 E ( 0 )  (i  ea)TE(O) R(x°)  1 - ~2 

+ Or( l l  2 q 9 liLy,O, T;/,~(fO)) -- 2(1 -- el)aT, (3.51) 

fffofo [~T] = pq~o t dr1 dz dt 

< g T21] tot 2 C p  - IIr~0, r ;L2(~,  + - -  T2llq ~ 2 II L~tO, T; L2(fl)) g 

where we select e = ~3/T 2, e3 > 0 preassigned, so that  by (3.50)) 

2 e3 E(0) + (gr(II~0IIL~0, T;L~(~, ). (3.52) 
< 1 --e2 
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Using (3.52) into (3.51) yields 

+ 1 E(o)  = (~(l l~o __ __ ]I2~(O,T;L=(D))), (1 - -  ¢ l ) T  R ( X ° )  1 - -  e2 1 

(3.53) 

where we may take (9 r = T4C, and (3.42) follows for T > T(x  °) = 2R(x°), with 
C T = c /T  4. 

Step 2. We return to (3.41) with boosted regularity as described by (3.43). 
We then invoke the uniqueness theorem [H5],  I-KRS], [R] and obtain q~o = 
(01 = 0 .  []  

In the case of assumption (2.35), we have p = f ' ( rh) ,  ql ~ L2(0, T; L2(O)) and, 
in the case of (2.36), we have p = fo, with fo any of the L~(Q)  functions obtained as 
a limit above (3.25). Assumption (C.2) is verified. [] 

3.2. The Case 7 = 0 in Theorem 1.1 f o r  Problem (1.1) 

We give only a brief sketch of the case 7 = 0 in Theorem 1.1. With reference to the 
setting of Section 2, the following is the relevant specialization for the wave 
problem (1.1) in the case 7 = 0 of Theorem 1.1: 

Y= L2(~ ) × H-1 (~ ) ,  n = Lz(f~) × H- l ( f~ )  

U = Lz(F), q/r  = L2(0, T; Lz(F)), 

g r  = L2(0, T; L2(~) x H -  x(f~)). 

(3.54) 

(3.55) 

(3.56) 

Assumption (A.1)  in the alternative (2.18b). First we note that the continuity 
requirement (2.17) with Y/r and 8T as in (3.55), (3.56) is afortiori  true [LT2],  [L5], 
[LLT].  Next, recalling (3.14), we have F ' [ r l ] y = [ O , f ' ( q l ( ' ) ) y l ( ' ) ] ,  where 
qx ~ L2(O, T; L2(f~)) and YI ~ L2(~'~). Thus, in view of its definition (2.11). assump- 
tion (2.18b) on ~ is afort iori  satisfied provided that the operator  

0 l 'r 0 S ( T  -- t)g2(t) dt 
~ r  = J o  eA(r-o dt = (3.57) 

92(t) 92 
J o  c ( r  - t)g2(t) 

is compact:  g2 ~ Ll(0, T; L2(fl)) ~ H = L2(~ ) x H -  l(f~), which is certainly true 
since, in fact, 

0 
:~T E Hol(fl) × L2(f/). 

02 

Assumption (A.2) .  This is the same as in the case 7 = 1 verified in Subsection 
3.1.3, since this assumption does not depend on the space H, but on the space gT 
which is the same as before, see (3.3) and (3.56). 
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Assumption (A.3). As noted just below (2.25), the convergence in (2.24) is 
actually strong, if ~T  satisfies assumption (2.18b) as verified above. 

Assumption (A.4). Same as in the case 7 = 1 verified in Subsection 3.1.3, since this 
assumption does not depend on the space H, but on the space gT which is the same 
as before. 

Assumption (A.5). Afortiori true from (3.32) with H as in (3.54). 

Assumption (C.1). Exact controllability of the linear problem (1.1) with f - 0 
and q/T and H as in (3.55), (3.54) holds true, as recalled just below (1.2). 

Assumption (C.2). With H and °g T as in (3.54), (3.55), the procedure of Subsec- 
tion 3.1.4 starts from 

J/r[r /]  : u ~ z(T): q/r = L2(0, T; Lz(F)) ~ H = L 2 ( n  ) x H -  l(n) (3.58) 

(counterpart of (3.34)) and now yields through the counterpart relations of (3.36) 

J/4'~. In] Yo[ _ 0q~(t) (3.59) 
Yl 0v ' 

l 

where ~o satisfies the same problem (3.35) as before, except that now 
{¢Po, ¢Pl} • Hol(n) × L2(n), smoother than in (3.35b). Thus, we are now at the level 
of step 2, proof of Theorem 3.6, and, as in that step, the references mentioned there 
imply the required uniqueness ~o o = ~o I = 0. 

4. Application: A semilinear Euler-Bernoulli Equation with Boundary 
Controls. Problem (1.14) 

The goal of this section is to show that the semilinear Euler-Bernoulli 's problem 
(1.14) subject to condition (1.15) fits automatically into the abstract model of 
Section 2 on appropriate spaces. As a consequence, Theorem 1.3 is nothing but a 
specialization of the abstract Theorem 2.1. With reference to the setting of Section 
2, the following is the relevant specialization for problem (1.14). Throughout  this 
section we let d :  LE(f~) = ~ ( d )  --* L2(f~ ) be the (positive self-adjoint) operator 
defined by 

d h  = A2h, ~(~¢) = {h • H ' ( n ) :  hlr = Ahlr = 0}. (4.1) 

Then we take 

Y = L2(n ) x [~(~1/2)] , ,  H = ~ ( d  '/2) x L2(n), 

~(~1/2)  = H2(n) ~ H~(i'}), (4.2) 

U = H ' ( F )  x Lz(F), m > 0 fixed but arbitrary (for exact controllability purposes 
we may take henceforth m as "large" as desired), and 

°//r = H~'(Z) x H1/4(0, T; L2(F)), eqr = L2(0, T; Ha(n) x H - ' ( n ) ) .  (4.3) 
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4.1. Verification of  Assumption (C.1)." Exact Controllability of  the Linear 
System 

We verify assumption (C. 1) of exact controllability of the linear problem (1.14) with 
f -- 0, u 1 -- 0, and u 2 ~ H1/4(0, T; L2(F)) [L2], or u2 ~ L2(0, T; H1/2(F)) [ L T l l ] .  

Theorem 4.1. Let f = 0 in (1.14) and let T > 0 be arbitrary. Then, for any given 
pair {Wo, Wl}e[H2(f l )c~H~(~)]  x L2(~), there exists a suitable control 
u 2 6 H1/4(0, T; L2(F)), such that the solution of(1.14) corresponding to such u 2 and 
u I = 0 satisfies w(T,. ) = wt(T , • ) = O. 

4.2. Abstract Setting for Problem (1.14) 

We follow our previous operator treatement, e.g., [LT7] and [LT8]. With 
defined in (4.1) above, let again C(t) and S(t) denote the corresponding cosine and 
sine operators. Then the operator A which appears in the abstract model (2.1) is 
given by the same expression as in (3.6) with corresponding s.c. group given by (3.8) 
on the spaces of (3.9). In place of the Dirichlet map D in (3.11), we now define two 
corresponding (Green) operators G~ and G2: 

G191 - h, GI: continuous HS(F) -~ H s+ 1/2(~ '~) ,  [LM, pp. 188-189], 
(4.4) 

G2 g2 -- Y, G2 : continuous H~(F) ~ H ~ + 5/2(l)), (4.5) 

A2h = 0 in ~ ~-A2y = 0 in fL (4.6a) 

h = 91 on F, /Y  = 0 on F, (4.6b) 

Ah = 0 on F, Ay = g2 on F (4.6c) 

(we note that G1 = D, D being the operator in (3.12), see [LT8]). Thus, if 
U = H"(F)  x Lz(F), we have that the operator B which appears in the abstract 
model (2.1) is given by 

~i 0 A - 1 B  = - - G l U l  - -  G2u2 (4.7) 
B = ~1(G1Ul + U2) ' 0 

and A -  1B ~ L(U, Y), Y as in (4.2). The definition of the nonlinear operator F is the 
same as the one in (3.14). Now, the counterpart of (3.15) for u = [u, ,  u2] is 

fo (~Pu)(t) = e A(t-  V)B u(T) dqJ = (~° 1 Ul)(t ) + ( ~ 2  U2)(t), 

~ S(t -- z)Giui(z) dz 
(~iui)(t) = o 

fo ~ C ( t -  z)Giui(z )dz  

(4.8a) 

(4.8b) 

(4.8c) 
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where, for instance (see Appendix B, for sharper results), 

L~'~: continuous HI(0, T; nl°/3(F)) ~ C([0, T]; n3(~)  × Hl(~)), (4.9a) 

L'ql T: continuous Hoa(0, T; HI°/3(F)) ~ ~(~13/4) x ~(~¢1/4), (4.9b) 

continuous L2(E ) ~ C([0, T]; H_l(f~ )H°l(~) j'~ [-LT7, Theorem 1.3], 

(4.10a) 

5e2: continuous HI(0, T; L2(F)) ~ C [0, ~_1; Hoi(f2) , (4.10b) 

continuousHi/'(O,T;L2(F))~C([O,T];IHll/8(f~)c~H~a/8-~(f~) ) [ ~ ( d 2 ~  1/8) ] , 

(4.10c) 

for any ~ > 0, see Appendix B. Note that (4.10c) follows by interpolation from 
(4.11a) and (4.11b) [LM, Theorem 14.2, p. 95], see Appendix B. 

4.3. Verification of Assumptions (A.1)-(A.5) 

Proposition 4.2 (Verification of (A. 1), alternative (2.18a)). The operator 5¢ in (4.8) 
satisfies, for, say, m > 4, 

5a: q/T = n~'(Z) × Hi/4(0, T; L/(F)) ~ g r  = L2(O, T; Hi(t)) x n-~(f~)) 
is compact. (4.11) 

Proof The regularity results (4.9a) and (4.10c) give compactness in the space 
variable into ~ Hl(f~) × [~ (d l / 4 ) ]  '. Next, we use Aubin's Lemma as in Proposi- 
tion 3.2 to obtain the full statement of compactness in time and space, as required 
by (4.11). Details are omitted. [] 

Verification of Assumptions (A.2)-(A.5) proceeds as in Section 3, mutatis 
mutandis. Details are omitted, but we point out, however, that from the present 
version of (3.17) and (3.23a), we obtain the following bounds, uniformly in ~/e gr :  

II ~ [ r / ]g  lie(to, T]; ~(~,,,2)× L2(~)) < conStr II gl ILL,(0, r,L=(~)), (4.12a) 

dJ~[rl]g < constT II 0a ILL,(0, T;L2(,)), (4.12b) 
dt c([o, T];Lz(f~) x [.@(.di/z)] ' 

conterparts of (3.22), (3.23b) in Proposition 3.3. These results are then used to 
verify assumption (A.2). 

4.4. Verification of Assumption (C.2) 

It remains to verify assumption (C.2) on the approximate controllability (2.33) and 
its limit version (2.34) in the sense of (2.21) and (2.24). These two approximate 
controllability properties amount to the same "uniqueness property" as described 
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below. To verify (2.33), equivalently (2.35), we consider the homogeneous problem 

{ ~tt + A2~ = f ' ( rh)(  in (0, T1 x ~ = Q, (4.13a) 

([t=o = 0, ~tlt=o = 0 in f~, (4.13b) 

~lr~ = ul in (0, T] x F = E, (4.13c) 

A~I~ = u2 in E, (4.13d) 

with r/1 fixed element of L2(O, T; Hi(f1)) (the first component of the space g r  
in (4.3), which corresponds to the abstract linearized version (2.13) with z(t)= 
[((t), (,(t)] and F(0)) = 0). With 

pux I • //¢T [q]: u = ~ z(T) = 
u2 (t( T) 

:continuous H~'(Z) x H1/4(0, T; L2(F)) ~ H 

= [H2(f~) n H~(f~)] × L2(I)) = ~(~¢1/2) x L2(f~ ) (4.14) 

we seek its dual ~/*[r/], defined for [Yo, Yl] e ~ ( d  1/2) x L2(f~) by 

( ' /gT[rI]Ul'[ y° ) U 2  Yl ~(.~1/2) x L2(fl) =(#(T)'Y°)m(~'/~)+(~t(T)'Yl)L~(m 

= ([ ul , J / , [ r / ]  I Y° ) (4.15) 
I'/2 Yl HoCr ) x H1/4(0, T; L2(U)) 

To find Jg*[r/] explicitly, we let ~o be the solution of the corresponding homo- 
geneous problem backward in time: 

qg, + AEq~ = f'(ql)~0 in (0, T] x fl = Q, (4.16a) 

~olt=T = ~0o, q~tlt=T = ~01 in f~, (4.16b) 

~ol~ = A~olz = 0 in (0, T] x F = E. (4.16c) 

Multiplying (4.13a) by ~o and (4.16a) by ~ and integrating by parts, as usual, we 
find, after using the boundary conditions (B.C.) (4.13c, d) and (4.16c), 

/ 0A~0"~ ( & 0 )  
((,(T), ¢p(T))Lz(n ) -- (((T), q)t(T)Lz(fl) ---- / 1 2 1 , - - /  --1- tt2, \ c3v JL2(Z) ~-v L2(]~)" (4.17) 

We next introduce three isomorphisms: 

.ffl/2: isomorphism ~(~¢1/2) onto L2(f~), self-adjoint on Lz(~), so that 

(/), W)N(a~t,/2 ) = (/), ~ W ) L 2 ( n )  , V, W ~: ~( ,3~1/2) .  (4.18) 

J: isomorphism Hm(E) onto L2(X ), self-adjoint on L2(Z ), so that 

(91, 92)/~m(z) = (J91, J92)L~tZ) = (91, JZ92)L~(Z), 91 ~ Hm(Z) • (4.19) 

f¢: isomorphism Ha/4(0, T; L2(F)) onto L2(0, T; L2(F)) = L2(Y), self-adjoint 
on L2(E) so that 

(9, h)n,/*(o, T;L2(F)) = (~Q, Cffh)L2(X) 
= (g, cff2h)L2(X), 9, h ~ H1/'*(O, T; L2(I")). (4.20) 
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Then, if we set, for [Yo, Yl] ~ ~('52~1/2) X L2(~), 

q9 o = qg(T) = Yl e L2(f~), q)l = opt(T) = - - d Y o  e [~(dx/z)] ', 

we have by (4.15) 

yo ] = + y l ) - - ,  
Y0)~(,~ 1/2) 

so that 

j -2  0A~p I" ~vv 

(4.21) 

= -(((T),  q~,(T))r2tn ) + ((,(T), ¢(T))L2t~ ) 

(by (4.18) and (4.21)) 

= + (by 
ul, av IL,~) \ av jL2(~ 

av In"(~) 

8q) 

+ (U2'(ff-2~ff)H1/4(O,T;L2(F)) 

(by (4.19) and (4.20)) 

= (u~ I, sg,[q] Yo) (4.22) 
112 21 Hm(Y~) x Hl/4(O, T;L2(F)) 

[Yo, Yl] ~ ~ ( ~ 1 / 2 )  X L 2 ( ~  ). (4.23) 

Thus, to test the injectivity condition (2.35) on ~'~.[t/] of assumption (C.2) we let 

[Yo, Yl] e ~(dl /2)  x L2(Y~), q e O~T, (4.24) 0-Jg*[~/ ]  lY° [ ' y l  

which by (4.23) implies 

Ov z = -=0 (4.25) 

with q~ solution of (4.16) with initial data as in (4.21). We then want to show that, in 
fact, [Yo, Ya] = 0. This is a consequence of the following uniqueness result. 

Theorem 4.3. Consider, for  any T > 0, the problem 

q)n + A2q ~ = p(t, x)~o, 

(P]t=O = (P0 G L2(~')), (Pt[t=o = (t01 ~ [ - ~ ( ~ 1 / 2 )  l '  

,p Iz = ~ ~ = A¢ Is = aA,p T v v z  0, 

in (0, T] x Y~ = Q, (4.26a) 

in ~,  (4.26b) 

in (0, T] x F = E, (4.26c) 
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with p satisfyin9 the followin9 assumptions: 

p e L~(Q),  IVxpl e L2(0, T; L2(f~)) = L2(Q). (4.27) 

Then q'o = (Pl = 0 and so q) =- 0 in Q. 

To complete verification that assumption (C.2) on approximate controllability 
is satisfied we take p as follows. In the case of verifying (2.35), we take p = f ' ( q l )  
with r/~ e L2(0, T; H~(f~)) (the first component of the space g r  in (4.3)); hence 
VxP = f " (q l )Vxq l ,  so that the required assumptions (4.27) on p are guaranteed by 
the assumption (1.15) on f .  In the case of verifying (2.36), we take p = fo(t, x)  with 
fo any of the limits obtained as follows. If {ql,} is an arbitrary sequence in a ball of 
L2(0, T; H 1 (f~)), then by assumption (1.15) on f we have that 

(i) f ' (rh, (X,  t)) in a fixed ball of L~(Q) and 
(ii) Vxf '(rl ln(X , t) = f"(q~,(x ,  t))Vxrh, are in a fixed ball of L2(0 , T; L2(~'))), 

uniformly in n. 

Thus, there exists a subsequence ql,k such that f '  (ql , (x ,  t ) ) ~  some fo both 
in L°~(Q) weak star and in L2(0 , T;Hi(D))  weakly. Thus fo e L~(Q)  and 
[V~fo[ e L2(Q), as required by (4.27). 

Proo f  o f  Theorem 4.3. To begin, we have from (4.26b) the a priori regularity that 
q) E L°°(0, T, L2(~)) for problem (4.26). Using this information, we now boost the 
regularity of ~o in the following two-step procedure. (This is similar to the proof of 
Theorem 3.6 for waves.) 

Step 1. Lemma 4.4. 

(a) For problem (4.26) with p e L~(Q)  we have, for  T sufficiently large > some 
T i and for  some constant Cr  = C ( T  - T1) > O, 

2 > II¢II,~(O,T;L~(.. > CTIl{~Oo, ~0,} 2 

~ ( ~ 1 / 2 )  = { h e H 2 ( n ) : h l r = O } ,  Ilhll~(~-2) = IldX/2hll~2(n) 

= fu (Ah)2 df~. 

(4.28) 

(4.29) 

(b) Thus, the initial data and the regularity o f  problem (4.26) are boosted to 

((~0, (/91} e ~ (~1 /2 )  X L2(f~), 
{tp(t), q~t(t)} e U°(0, T; ~ ( d  1/2) × Lz(f~)). (4.30) 

Proo f  o f  L e m m a  4.4 (Sketch). We use the multipliers h. Vq,, q~, and (0t as applied 
to (4.26a), with h the radial field h(x) = x - x o, x o e R". By applying the first two 
multipliers and using the B.C. (4.26c), we obtain, with n = dim f~ (see, e.g., [-LT11]), 

fo fo ( )fo El( t  ) dt = pq~h. Vtp dQ + - 1 pq)2 dQ + flor, (4.31) 

) 1 flor =- -- + 1 (q~t, ¢)u + (tp,, h. V(p)u (4.32) 
O' 

El( t )  =- f [Aq,(t)l 2 + Ict(t)l 2 df~. (4.33) 
Ju 
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Next, because of the B.C. go[r = Agolr = 0 in (4.26c) we have 

fn 'Vgo(t)12 df~ = l/4 2 fn l i d  go(t)llL2(n)< Clldl/2go(t)ll22(n)= C [Ago(t)[ 2 d~, 

(4.34) 

which also applies to goo ~ ~ ( d ) .  With such goo we show (4.28) and then extend it 
by continuity to all goo ~ ~(~¢x/2). Using (4.34) on (4.32) (along with the Poincar6 
inequality) and on the first integral on the right of (4.31) we obtain, for any e 1 > 0 
since p ~ L~(Q), 

f'o (1 - -  el) E~(t)dt = C(EI(T ) + El(0 ) + II go 1122(Q)) . (4.35) 

Next, multiplying (4.26a) by rpt yields 

fofo El(t) = El(0) + 2 p~ogot dr1 dz (4.36) 

from which, since p e L ~ ( Q ) ,  

El(t ) < E I ( 0  ) + er  II 2 + Cp - lle~(o, r;L2(a))" (4.37) go, llL~(O, r;L2(a)) Tllgo 2 
e 

Selecting e = e2/T, e2 > 0 preassigned, we obtain 

(1 /~2) sup Edt ) < El(0 ) + (9r(l[ 2 - _ ~o IIL~(O, r; L~(n))), (4.38) 
O < t < T  

where here and hereafter (9 r means that the constant of upper bound may depend 
on T. Inserting (4.36) into the left-hand side of (4.35) and using the estimate (4.38) 
for the term EI(T ) on the right-hand side of (4.35), we obtain 

(1 el )TEl(0 ) C(EI(O)) + (gr(11 go 2 - = II/.~(o,r:,.~(.))) - 2(1 --/~I)~T, (4.39) 

I~rl -- pgogo, dfl dz 

< gT211 2 C p  T 2  2 
_ - -  IILo~(O,T;L2(n)) gotIIL°o(O,T;L2(fl)) -[- Ilgo 

8 

(where we select e = e 3 / T  2, 53 > 0 preassigned, so that by (4.38)) 

~3 Ex(0)+  (gr(ll 2 <-- l _ e 2  go I1,.~(o, r;L=(.)))" (4.40) 

Then (4.40) used in (4.39) yields (4.28) for T sufficiently large, as desired, by 
(4.29). [] 

Step 2. Let now go satisfy problem (4.26) for 0 < t < T, say T arbitrarily small. 
Define, for 0 < t < T ,  ~ = p  and ~=go ,  and, for t > T ,  / ~ = ~ - 0 .  Then 
/~ ~ L~((0, ~ )  × f~) and go satisfies the same initial condition as in (4.26b) and, 
moreover, for almost all t > 0, the equation ~ ,  + A2~ =/3~ and all four boundary 
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conditions as in (4.26c). Then q3 e L~((0, oo) x f~) and Lemma 4.4 applies to 0 
yielding the corresponding inequality (4.28) over some [0, T~], 7"1 sufficiently large, 

where  II O IIL~(o, T,,L=(.)) -- II¢ IIL~<o, r;L2(D." 

Step 3. Lemma 4.5. 

(a) Consider problem (4.26) with p satisfying assumptions (4.27)for any T > 0 
and with a priori regularity for ~p given by (4.30). Then, if n <_ 3 we have in 
fact that, for any T >  0 and for some constant C T > O, 

oo > tllV¢l 2 2 IIL°~(O,T;L2(~)) + II ~, I[L~(O,T:L=(~)) -b II q~ II2~(Q)II [VxP[ II2=¢Q) (4.41) 

>__ c lf{ 0o, 

~ ( d  ~/4) = Ho~(~), @ ( d  3/ ' )  = {h e n3(~):  hit = Ahlr = O} 

(with equivalent norms), 

II h [l~(~l/.) = tl d l / 4 h  IIL~(.) 

(4.42) 

(4.43a) equ,valen,,o{L Vh2 O}lJ2 
{L },12 

IIh 11~<~3,,) = I1 d3/4h IIL=t~) equivalent to [V(Ah)[ 2 df~ (4.43b) 

(b) Thus, the initial data and the regularity of  problem (4.26) are further boosted 
to 

{(~0' ~01} E: ~ ( ~ 3 / 4 )  X ~(~l /d- ) ,  
(4.44) 

{~o(t), q~t(t) e L°°(0, T; ~ ( d  3/4) x ~ ( d l / ' ) ) .  

Proof  o f  Lemma 4.5. We now apply the multipliers h. VAq~, Aq~, and Aq~t to 
(4.26a), with h(x) = x - x o again. Using the first two multipliers and invoking the 
B.C. (4.26c) we obtain (see [LT8], (2.29), (2.34), and (2.36) in the case p - 0) 

i fo E2(t ) dt = - p~oh. V(A¢) dQ - ~ pqgA~p dQ + boy, (4.45) 

[ n;o boT -- (qgt, h. V(Aq~)) n - ~ Vq~" Vq~, df~ o' (4.46) 

E2(t) =- fo  IV(A¢(t))I2 + IV~o,(t) l 2 d~ 

equivalent to II (p(t) 2 2 I1~(~,~,,) + II ~ot(t)I1~(~','). (4.47) 

Using the estimate (2.41) in [LT8] for boT and the Poincar6 inequality on the 
second integral on the right of (4.45) we obtain, for any el > 0 since p e L~(Q), 

L (1 -- el) E2(t) dt <_ etC~,h(E2(r) + E2(0)) 

+ o(11 IV~ol 2 2 ~P, IIL~(O, r; L2(~)) IIL~(0, T;L~(D)) + II + II ~011L2~(Q))" 
(4.48) 
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Next, multiplying (4.26a) by Arp, yields, e.g., [LT8] 

E2( 0 = E2(0) - 2 p(oA~o, d~ dr, 

where, by Green's first theorem, using the B.C. (4.26c), 

V being the gradient in the space variable x from which, using p e L~(Q), 

] fl fo dn 

(4.49) 

(4.50) 

< 2~TIIIV~oA 2 Cf l  ~ Ilt~o,r;t~<~)) + lilY(01 2 

+C(f:fnlq~Vpl2dfldz ). (4.51) 

Selecting 2e = g 2 / T ,  ~2 > 0 preassigned, and using the Sobolev embedding 
~p ~ L~(0, T; H2(f~)) (from (4.30)), (0 ~ L~(Q) for n < 3, we obtain from (4.49) via 
(4.51) 

(1 e:) sup EE(t ) < E2(O) + CT(IIIV~pl 2 -- IIL~(O, r;L:(m)) 
O<<.t<T 

+ 0(11 ~o II~(e)ll IVpl I1~)),  (4.52) 

Inserting (4.49) into the left-hand side of (4.48) and using the estimate (4.52) for the 
term E2(T ) on the right-hand side of (4.48), we obtain 

(1 - g l ) T E 2 ( 0 )  N/31Cn, h 1 - -  /~2 + 1 E2(0  ) + O(II~0,1I~(0, T;L:¢.))) 

+ OT(lllV~ol 2 I IL~c0, T;L:~))) 

+ (~(11 ~o II~toll IVp111~2t~)) ÷ 2(1 - el)~)T, (4.53) 

where from (4.51) and proceeding as in (4.52) 

I 'rl -- l fl f P oA'P, dnd  dt 
< 2 ~ T2IIIV(o,I 2 IIL~(O, T; L2(f~)) 

CpT 2 
+ II IV~pl I1~<o, T;L:(m) + (9(T II ~p [I~(Q)I[ IVp[ II~:<Q)) (4.54) /3 

(selecting now 2~ =/33/T 2,/33 > 0 preassigned, and recalling (4.52)) 

/33 E2(0) + CH(II IV~ol 2 IIL~<0, T;L:~., + [I ~0112~¢Q~ II IVp[ II~¢Q)). (4.55) 
--< 1 --e 2 

Using (4.55) in (4.53) yields (4.41) for any T > 0, as desired, by virtue of (4.47). 
[] 

Conclusion of proof of Theorem 4.3. Having boosted the a priori regularity of 
problem (4.26) to {~p, ~p,} ~ L~(0, T; Ha(D) x Hl(f~)) from (4.44), T > 0 arbitrary, 
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we can now apply the uniqueness result as in I-I] twice in succession (as [I] 
deals with the Schrodinger equations) and conclude that, in fact, tp o = ~01 = 0, as 
desired. [] 

Remark 4.1. The general setup of this paper may apply to other semilinear plate- 
like problems, in addition to the Euler-Bernoulli equation (1.14). For  instance, we 
may replace the B.C. (1.14d), with Aw + (1 - #)Bw = u 2 on Z, B the boundary 
operator arising in the two-dimensional model, for which the corresponding exact 
controllability result has been recently established in [H3]. 

As another example, we may consider the Euler Bernoulli equation (1.14a), 
this time with boundary controls 

0w 
~ /22 . Wlz U l '  ~Y Z 

The exact controllability of the linear equation ( f  = O) on the space 

H = ~ ( d  1/4) x [ ~ ( d i / 4 ) ]  ' = Hol(f~) x H- i ( l ) ) ,  

{  h0} ~¢h = A2h, ~(~¢) = h • H4(~)): hlr = 0v r 

with controls u i = HI(0, T; LE(F)) and u 2 - 0 is given in Theorem 1.2 of [LT6], 
complemented by [LT12] for arbitrarily short T > 0. Here, we may take g r  = 
L2(0 , T;  [~(~¢1/2)],) and u 2 e H~(0, T; H - I ( F ) )  for the semilinear model. All 
structural assumptions (A.1)-(A.5) as well as the exact controllability assumption 
(C.1) can then be verified. The approximate controllability assumption (C.2) leads 
to a uniqueness property which is apparently open at present. 

Finally, it seems likely that the semilinear version of the Kirchhoff problem in 
[ L T l l ]  can also be covered by the present setup. 

5. Proof of Theorem 1.2 and of Remark 1.2 

The crux of the proof of this theorem is on the trace regularity vlz of the solution v 
of problem (1.6), due to the control action/~ • L2(Z). According to recent results 
[LT9, Main Theorem 1.3 and Remarks 1.2], we have that, in fact, vl~ • Ha(Y.), fl as 
specified in (1.5). By assumption (1.4) on g, it then follows that g(vbz)• L2(Z). We 
next define the function u by setting u = ~ - g(vl,O • L2(Z) as in (1.7). Then (1.8) 
holds as desired. Note that the general question of well-posedness of problem (1.3) 
with a general u • L2(Z ) is handled, e.g., by [L3]. 

The proof of the content of Remark 11.2 is similar, this time applying Main 
Theorem 1.2 and Remark 1.1 of [LT9]. 
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Appendix A. Proof of Theorem 3.1 

A.1. Proof of  Exact Controllability 

We use a direct app roach  as in [LT5] ,  [LT6] ,  [LT8] ,  and [T3].  

L e m m a  A.1. The exact controllability on [0, T]  of problem (1.1) with f =- 0 on the 
state space Hi(g2)×  L2(D ) and within the class of HI(O, T; L2(F))-controls as 
expressed in Theorem 3.1 is equivalent to the following property: there is a constant 
C T > 0 such that 

Ov + g ° r  dE _> Crll {~po, q~l} II~¢n>×L2tn>, (A.1) 

where ~p solves the corresponding homogeneous problem backward in time 

I ~cp u = Atp in (0, r ]  x f~ = Q, (A.2a) 

/~,_= --~0o, ~o,l~=r--~Pl in~, (A.2b) 

0 in (0, T]  x F - Z, (A.2c) 

explicitly given by 

cp(t) = C(t - T)tPo + S(t - T)tp,, (A.3) 

- 1  
KOT = ~ - -  D * d { [ I  -- C ( T ) ] ~ -  Xtp~ - S(T)~po }. (A.4) 

Proof. The exact control labil i ty sought  (say from the origin) means  that  the 
cont inuous input-solut ion opera to r  A¢T in (3.16) satisfies 

ONTO 
At'T: HI(0 ,  T; L2(F)) , Hi(f~) x L2(Y~ ) = ~ ( d  '/2) x L2([~), (A.5) 

equivalently, the Hi lber t  space adjoint  ~ * :  H i ( ~ )  x LE(Y~ ) ~ HI(0,  T; L2(F)) has 
a cont inuous  inverse: there exists a constant  C r > 0 such that  

Z ~ *  > Crll{zo, zl} e 
Z1 T;L2(F)) 

since, for any g ~ Hi(0 ,  T;  L2(F)), 

[Igl[nA~o,r;~.:w)) equivalent  to I d g [ I  (A.7) 
I"~ II L2(0, T; L2(F)) 
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We compute  the adjoint  L~. as usual: from (3.16) with u ~ HI(0,  T;  L2(F)), I-z 0, z i ]  e 
~ ( d  i/2) x L2(f~ ) using that  d ,  S(. ) (odd), C(- ) (even) are self-adjoint, then [LT5] ,  
[T3] 

since u(T) = u(O) = O. By compar ing (A.8) with (A.9) we may take 

Integrating (A.10) in t and requiring that 

i - i 

vanishes at t = 0 and t = T, yields 

since D*~4 = - ~ / 0 v [ L T 2 ] ,  where q9 solves (A.2) with q~o = Zo, q~i = zi, and Kor is 
given by (A.4). Then  (A.11) used in (A.6) yields (A.1), as desired. [ ]  

Lemma A.2. Inequality (A.1) (which is equivalent to exact controllability of the 
linear problem (1.1) with f =- 0 on the space Hi(f~ ) × Lz (~  ) within the class of 
HI(O, T; L2(F))-controls ) is in turn equivalent to the inequality 
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for some C'r > 0 (which is equivalent, e.g., [L5], [H2], I-T3], to exact controllability 
of the linear problem (1.1) with f - 0 on the space L2(fl) x H-l(f~)  within the class 
of L2(O, T; L2(F))-controls). 

Corollary A.3. 

(i) 7he linear problem (1.1) with f - 0 is exactly controllable in [0, T] on 
Hol(~')) × L2(~) ) with HA(O, T; L2(F))-controls if and only if it is exactly 
controllable in [0, T] on L2(~ ) × H-1 (~ )  with L2(0 , T; L2(F))-controls. 

(ii) When part (i) holds, then problem (1.1) with f - 0 is exactly controllable in 
[0, T] on the space 

~(~1(~-0)/2) x [~(~¢o/2)3, = HA-O(f~) x H-°(f~), 0 < 0 < 1, 0 ~ ½, 

or  

HA/o2(n) x [HA/o2(n)] ' if 0 = ½ (A.13) 

with HA-°(O, T; L2(r))-controls for 0 ¢ ½, and HA/oZ(O, T; L2(r))-controls 
for 0 = ½. This follows by interpolating between the statement that ( ~ * ) -  a is 
continuous: HA(fl) x L2(O) --* HA(O, T; Lz(F)) as in (A.6) (which is equiva- 
lent to (A.5)) and the statement that ( ~ , ) - a  is continuous: L2(f~)x 
H -  l(f~) __, L2(0 ' T; L2(F)) (which is equivalent to ~ r :  Lz(0, T; L/(F)) onto 
L2(fl ) x H-~(fl)),  see pp. 64-66 of [LM]. 

Proof of  Lemma A.2. We adapt to present circumstances a compactness argu- 
ment [L5], [L7], lET5], [LT6], [LTS] by "absorbing" the "lower-order" term 
Kor given by (A.4). First, we assume (A.12) and show that (A.1) holds. By 
contradiction, let there be a sequence {~Oo,, (o1,} e HA(f~) x L2(f~) such that with 
q~,(t) = C(t - T)qgon + S(t - T)(ox,, i.e., 

= & o . ,  
] 

~ o . l t = r  = q~.o,  ~o' . l t=r  = q~nl, 

/q~n I~ ---- 0, 
we have 

(A.14) 

~v = 1, 

+ Kor, .  ~ 0 

(A.15) 

as n ~  ~ .  (A.16) 

But (o,(t) satisfies (A.12) and so there is a subsequence {q~o., qh.} ~ some {~o, ~1} 
in HA(fl) x L2(~ ) weakly, and by compactness, for 5 > 0, 5 ¢ ½, 

 o1.) 
strongly in HA-~(fl) X H - t ~ ( ~ )  = ~ ( ~ ( 1 - 6 ) / 2 )  x [ -~(~6/2)- ] t ,  (A.17) 
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equivalently 

{d (1-~)/~0o., ~¢- ~/~0~.} --, {d  o-~)/2~o, ~¢-~/~q~} 
stronglyin L2(f~ ) × L2(f~ ). (A.18) 

By (A.18) with e = ¼ - 6/2 recalling D * d  1/4-~ ~ L(L2(~) ,  Lz(F)) from (3.12), we 
have from (A.4) that 

- 1  
K°T'" -- T D*~/a/4-~[I - -  C ( T ) ] s ~ C - 1 / g + e ( P l n  

+ I T D * ~ c l / 4 - e d l / 2 S ( T ) d u g + E c p o  n (A.19a) 

converges strongly in L2(F ) to 

Kor _ 1 D*d{ [ I  - C(T)]~¢- ~5o - S(T)0~}. (A.19b) 

Thus, 

Kor,,  -~/(or  strongly in Lz(0 , T; LE(F)). (A.20) 

By (A.16) and (A.20) 

O~0, • - K o r  strongly in L2(0, T; LE(F)) (A.21) 0v 

and by (A.15) we deduce 

II/~0T ]IL2(~ = 1. (A.22) 

On the other hand, ~b(t) = C(t - T)(o o + S(t - T)(ol satisfies 

/ ~b, = A~ in Q, [ (~,),, = A~b in Q, (A.23a) 

q5 Iz = 0 in fL hence J ~t I~ = 0 in f2, (A.23b) 

[ ' 9 + / £ o r ] ~  = 0 inE,  [ ~ v  t z = 0  inE,  (A.23c) 

by differentiating in t. The standard uniqueness property [H4] applies to problem 
(A23) right, and yields ~, = 0 in Q, hence ~ - const in Q, finally O~o/dv = 0 in Y.. By 
(A.23c), left problem, we get g o t  = 0 and this contradicts (A.22). Thus (A.12) 
implies (A.1). The proof that (A.1) implies (A.12) is identical. [] 

The proof of the exact controllability statement in Theorem 3.1 is now 
complete since (A12) is known to hold true for sufficiently smooth ~ and for 
T > T (x  °) = 2R(x °) = 2 max l x -  Xo[, for x ~ ~, by Komornik's remark [L5, 
Section 5]. The case where the control u in (1.1c) acts only on a prescribed portion 
F 1 of F can likewise be handled, see, e.g., IT3], where estimates of T are given. 

A.2. Proo f  o f  Regularity S tatement  (3.4) in Theorem 3.1. 

It is essentially contained, say, in the proof of Theorem 3.4 of [LLT]. If 
u ~ Ho~(0, T; L2(F)) in (1.1c) of problem (1.1) with w o = wl = 0 and f - 0, then 
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integrating by parts (3.15) in t yields, since u(0) = 0 (see also (3.23) in [LLT]) and 
ti • Lz(Z), 

fo w(t) = Du(t) - C(t - r)Dfi(O dr, (A.24) 

fo wt( t )  = s~  s ( t  - O D ~ ( O  dr  • C([0, r ] ;  L 2 ( n ) ) ,  (A.25) 

Du(t) • HI(O, T; H~/2(n)) by (3.12), (A.26) 

f o C ( t  dr T]; @(s~ '1/2) = Ho~(~)) from in [LLT]. T)D1.i(r) C([0, J (3.24) 

(A.27) 

Thus, using (A.26), (A.27) in (A.24) and noting (A.25) yields (3.4), as desired, and 
Theorem 3.1 is fully proved. Moreover, for u(T) = 0, we get from (A.24), (A.27) that 
w(r)  • H~(~), and (3.16) is also proved. [] 

Appendix B. Proof of (4.9) and of (4.10b) 

Proof o f  (4.9). We actually show sharper results. Starting from (4.8) with i = 1, 
rewritten now as 

(dLluO(t)] 
(~qaxUl)(t) = Llul(O' dt J 

and integrating by parts in t time (as in Section 3 of [LLT] and in [LT7] with ul(t ) 
satisfying 

ul • C([0, T], Hs/2(F)), fi~ • C([0, T], H1/2(F)), fi~ • L2(Z ), (B.la) 

u~(O) = ti~(O) = O, (B.lb) 

we obtain 

( L ~ . O ( O  = a l U l ( O  - c ( t ) ~ u ~ ( O )  - s(o~,a~(o) 

;o - S(t - r)Gliil(T) dr e C([0, r ] ;  H3(~)), (B.2) 

(dLlul) 
dt (t) = dS(t)fi~lUl(O ) + G,fil(t ) - -  C(t) )~l~l(0  ) 

fo - c ( t  - O G l i i l ( O  dr  • C([0, r]; HI(~)) (B.3) 

by using (4.4) on G1 and Theorem 1.3 of [LT7] on the integral terms. Moreover, if 
in addition we have 

u~(T) = fix(T) = 0, (B.4) 
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then 

fo" ( L ~ u 0 ( r )  = - S ( T  - t)C, j i t ( t )  dt • ~(d3 /4 ) ,  (8.5) 

(dLiul f r  o dt (T) = - C(T - t)GjJ(t) dt• ~(~¢x/4). (B.6) 

The regularity properties required of ul in (B.la) are satisfied if Ul belongs to the 
space { dZh } 

w(o,  T) = h • L~(0, T; H~°/3(F)), ~ s L~(O, T;  L2(F)) (B.7) 

as it follows via Theorem 3.1, p. 19, of [LM],  while properties (B.la), (B.lb), and 
(B.4) are afortiori satisfied if ul • H~(0, T; Hl°/3(F)). []  

Proof of  (4.lOb) and (4.10c). As already observed, statement (4.10a) is proved in 
Theorem 1.3 of [LT7]. Next, to prove statement (4.10b), let u 2 • H~(0, T; L2(I')) so 
that ti 2 • Lz(Y~ ). Integration by parts in t on (4.8b) with i = 2 yields 

fo GEU2(t) -- C(t),~2u2(O) -- C(t - z)Gzfi2(z) dz 
(~e2u2)(t) = (B.8) 

s#S( t )~2u2(O) + ..~ S(t  - z)G2~i2(~) dr 

Since, by (4.5) and, respectively, by (4.10a) with [~(s~l/4)] ' = H-i ( f~)[G] ,  [LT7], 

;o GEUz(t ) • H~(O, T; HS/E(f~)), C(t - z)Gzfiz(z) dz • C([0, r ] ;  @(d3/4)), 

(B.9) 

we obtain via (B.8), (4.10a), and ~(~¢3/4)= {h•H3(f~): hlr = Ahlr = 0} [G], 
[LT7] that 

(~2Uz)(t) • C([0, T]; Hs/z(D) × H~(~)) (B.10) 

and (4.10b) is proved. Note, moreover, that since u2(T ) = 0, (B.8)-(8.10) yield 

- C(T -- t)fiz(t ) dt ~ ( d  3/4) 
c~zru2 = r • (B.11) 

d J o  S(T - t)G2fiz(t) @ ( d  1/4) = H~(~) 

To prove (4.10c) note also that [G], [LT7] 

H5/2(~) = H5/2-4~(~) = ~(~¢5/8-~) = {h • HS/Z-4~(D): hlr = 0} (B.12) 

and hence interpolating between (4.10a) and (4.10b), with 0 = ~, 

{ [ns/z(f~), Hl(f~)]3/4 = Hil/s(f~), (B.13) 

[-H5/2(~'~), H01(~'~)]3/4 c [-~(~¢5/8-~), ~(~9~114)-]3/4 = ~(~1.1/32-e/4), (B.14) 

~(~¢xl/32-~/4) = {h • Hal/is-~(f~): hit = 0} = Hoi'/8-~(f~). [] (8.15) 
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