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Abstract. We study an optimal design problem for the domain of an elliptic
equation with Dirichlet boundary conditions. We introduce a relaxed formula-
tion of the problem which always admits a solution, and we prove some
necessary conditions for optimality both for the relaxed and for the original
problem.

0. Introduction

In this paper we study a model problem in shape optimization for the domain of an
elliptic equation with Dirichlet boundary conditions.

More precisely, given a bounded open subset Q of RY, N > 2, and two
functions f € L*(Q) and j: Q x R - R, we consider the optimal design problem

min J J(x, u(x)) dx, (0.1)
AeAd(Q) vQ

where /(Q) is the family of all open subsets of Q and u, is the solution of the
Dirichlet problem

u,e HA), —Au,=f ind 0.2)

extended by 0 to Q\ 4.

It is well known that, in general, problem (0.1) has no solution (see, for
instance, Example 4.3). The reason is that, although the solutions u,, of (0.2)
corresponding to a minimizing sequence (A,) of (0.1) always admit a limit point u
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in the weak topology of Hy(Q), we cannot find, in general, an open subset 4 of Q
such that u = u,. On the contrary, it can be proved (see Section 3) that the limit
function u is the solution of a relaxed Dirichlet problem (see [2], [9], and [10]) of
the form

ue Ho@) N L*(Q p),  —Autup=f inQ (0.3)

for a suitable nonnegative Borel measure u which vanishes on all sets of (harmonic)
capacity 0, but may take the value + oo on some subsets of Q.

This suggests the following relaxed formulation for the optimal design problem
(0.1):

min j J(x, u,(x)) dx, (0.4)
peMo(Q) vQ
where () is the class of all measures allowed in (0.3) and, for every
u € M (Q), u, denotes the corresponding solution of (0.3).

In Section 4 we prove that, under suitable hypotheses on j, the relaxed
optimization problem (0.4) admits a solution, and that

min J Jjx, u(x))dx = inf J J(x, u,(x)) dx.
HeMo(2) VQ AeAd(Q) vQ

Moreover, we describe the close relationship between minimum points of (0.4) and
minimizing sequences of (0.1).

Similar relaxed formulations for different classes of optimal design problems
have been considered by Murat and Tartar in [21], [24], [25], and [27], and by
Kohn, Strang, and Vogelius in [19] and [20].

The main goal of this paper is to prove some optimality conditions for the
solutions of the relaxed problem (0.4). Let u € # ((Q) be a minimum point of (0.4)
and let A be the regular set of the measure u, defined as the union of all finely open
subsets B of Q with u(B) < + oo (for the definition and properties of the fine
topology we refer to Chapter XI of Part 1 of [14]). Let us consider the solution u of
the problem

ue Hy(Q) n LXQ, w), —Au+up=f inQ,
and the solution v of the adjoint problem
ve HIQ) N LAQ, 4),  —Av+op=j(xu) inQ,

where j(x, s) is the partial derivative of j with respect to s.
In Sections 5 and 9 we prove the following necessary conditions for optimality:

uw <0 almost everywhere (a.e.) in A4, (0.5)
uv =0 u-a.e.in A, (0.6)
f()j(,0 =0 aein Q\A4, 0.7)
Ou ov >0 in Qn oA, 0.8)
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where the normal derivatives du/on and dv/dn on A are defined in a suitable weak
form in Sections 6 and 7.

When the original problem (0.1) has a solution 4 € #(Q), then the measure u
defined by

0 if B\A has capacity zero,
+ o0 otherwise,

wB) = {

is a solution of the relaxed problem (0.4). Therefore, (0.5), (0.7), and (0.8) are
optimality conditions for problem (0.1), while (0.6) is trivial in this case. If, in
addition, the optimal domain A4 has a smooth boundary, then (0.5) and (0.8) imply

o _

— = QnoA.
n on 0 on N o

This optimality condition for problem (0.1) is already known in the literature (see,
for instance, [6], [22], [23], [26], and [29]), and has been obtained by using the
Hadamard method of variation of domains, whereas conditions (0.5) and (0.7)
seem to be new.

The results of this paper were announced without proofs in [5].

1. Notation and Preliminary Results

For every open subset 4 of R, with N > 2, H(A) is the usual Sobolev space of all
(real-valued) functions of L%(A) with first-order distribution derivatives in L2(A4),
endowed with the scalar product

(u, V)i = J DuDv dx + J uv dx
A A
and with the corresponding norm | - || g14). Here H(A) is the closure of C(A4) in
H'(A),and H~'(A) s the dual space of H{(A). The corresponding duality pairing is
denoted by {-, - > g-1(4. Each functionue H 3(A) is extended to R” by setting u = 0
on R™\ A. With this convention we have Hi(4) = H!(RY).

The lattice operations A and v are defined by a A b = min{a, b} anda v b =
max{a, b} for any a, beR. For real-valued functions, the lattice operators A
and v are defined pointwise. It is well known (see, for instance, Theorem A.1 of
Chapter II of [18]) that if u, ve H!(A) (resp. Hy(A)), then u A v,u v ve H(A)
(resp. HY(A)).

The capacity of a subset E of RY is defined by

cap(E) = iI;lf [lu ”IZP(RN),
where %/ is the set of all functions u € H!(R") such that u > 1 almost everywhere in
a neighborhood of E (depending on u). If a property P(x) holds for all x € E, except
for a set Z < E with cap(Z) = 0, then we say that P(x) holds quasi-everywhere on E
(g.e. on E). The expression almost everywhere (a.e.) refers, as usual, to the Lebesgue
measure.
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We say that a function u: A — R is quasi-continuous in A if for every ¢ > 0 there
exists a subset E of A with cap(A\ E) < ¢ such that the restriction u|; of u to E is
continuous on E. The notion of quasi-lower semicontinuity is defined in a similar
way.

Functions in H'(A) can be defined g.e. in A. In fact, if B,(x) denotes the open
ball centered at x with radius r, and | B,(x)| is its Lebesgue measure, then for every
u e HY(Q) the limit

rl—lrr(fl+ IB,.(X)I B(x) U(y) dy
exists and is finite q.e. in 4. We adopt the following convention concerning the
pointwise values of a function u € H(A): for every x € A we always require that

1
lim inf
r—+0* |Br(x)|

With this convention, the pointwise value u(x) is determined q.c in 4 and the
function u is quasi-continuous in A. Moreover, the following property holds:

. 1 '
er u(y) dy < u(x) < lim sup B.()| Lr(x) u(y) dy. (1.1)

r—0*

if (u,) converges to u in H'(A), then a subsequence of (u,)
converges to u pointwise g.c. on A. (1.2)

The proof of these properties can be found in [13] and [16].

The fine topology is defined as the weakest topology on RY making continuous
every superharmonic function on R”, For the properties of this topology we refer to
Chapter XI of Part 1 of [14]. The fine interior, the fine closure, and the fine
boundary of a subset E of RY are denoted by int* E, cI* E, and 0*E.

It is well known that every finely open subset A of RY is quasi-open, i.c., for
every ¢ > 0 there exists an open subset U of RY such that cap(4AU) < &, where A
denotes the symmetric difference of sets (see Chapter IV of [3]). Moreover, a real-
valued function u is quasi-continuous on an open set A if and only if u is finely
continuous q.e. in A (see Proposition 3.6 of Chapter II of {13]). Therefore our
convention (1.1) implies that every function u € H!(A) is finely continuous q.e.in A.

If A is a finely open subset of RY, by H3(A4) we denote the space of all functions
u e H'(RY) such that u = 0 g.c. on R¥\ 4, with the Hilbert space structure inherited
from HY(R™). If 4 is open (in the Euclidean topology), the previous definition is
equivalent to the usual one mentioned at the beginning of the paper (see, for
instance, [17]).

Note that if 4 is not open, then the classical definition of H3(A) as the closure
of a suitable space of regular functions does not work, because, in general,
C°(R™) n H(A) is not dense in H5(A), as the following example shows.

Example 1.1. Given an open subset Q of RY, let (x,) be an enumeration of the
points of Q with rational coordinates and let (r,) be a sequence of positive numbers
such that Y, cap(B, (x,)) < cap(Q). Then the union U of all balls B, (x,) is dense in
Q, and, by the countable subadditivity of the capacity, we have cap(U) < cap(Q).
Since cap(cl* U) = cap(U), the finely open set A = Q\cl* U has positive capacity,
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so that H{(A) contains a function which is not identically zero (see Proposition 1.2
below). On the other hand, if ue C°(R¥) ~ H}(A), then u =0 on U, and this
implies u = 0 on Q, since U is dense in Q. Therefore the zero function is the only
element in the closure of CO(RY) n H(A) in HL(A).

Given an arbitrary subset E of R, its characteristic function 1 is defined by
1g(x) =1if xe E and 15(x) = 0if x e R"\ E.

We frequently use the following proposition concerning the approximation of
characteristic functions of finely open sets.

Proposition 1.2.  Let E be a finely open subset of RY. Then there exists an increasing
sequence (u,) in H{(E) converging to 1 pointwise g.e. on RN, such that 0 < u, < 1 q.e.
on E.

Proof.  Since each finely open set is quasi-open, the function 1, is quasi-lower
semicontinuous. Therefore the proposition follows from Lemma 1.5 of [7]. ]

Let Q be bounded open subset of RY. By #(Q) we denote the o-field of all Borel
subsets of Q, and by #(Q) we denote the J-ring of all Borel sets B such that
BccQ, ie, Bis compact and B < Q. By a Borel measure on Q we mean a
countably additive set function p: #(Q) > ] o0, + 0], not necessarily finite nor
o-finite. By a Radon measure on Q we mean a countably additive set function
p: #(€2) - R. The (total) variation of a (Borel or Radon) measure u is denoted by
|ul. It is well known that any nonnegative Radon measure u (resp. any signed
Radon measure with bounded total variation) can be extended in a unique way to a
nonnegative Borel measure (resp. to a real-valued Borel measure), for which we use
the same symbol u.

If u is a (Borel or Radon) measure on Q and if f: Q — R is a u-measurable
function, by fu we denote the Borel (resp. Radon) measure defined by

(fl(B) = Lf du (1.3)

for every B € #(Q) (resp. for every B € 8(Q)), provided that the integrals occurring
in (1.3) are well defined. If E is a y-measurable subset of Q, by u|; we denote the
Borel (resp. Radon) measure on Q defined by (ulz)(B) = u(B n E) for every
B e #(Q) (resp. for every B € Z.(Q)).

By .#,(Q) we denote the set of all nonnegative Borel measures i on Q such
that u(B) = 0 for every B € #(Q) with cap(B) = 0.

If N — 2 < a < N, then the a-dimensional Hausdorfl measure #* belongs to
the class .#(Q). In particular, the N-dimensional Lebesgue measure .#” belongs
to #(€2). Another example of measure of the class .#,(Q), which plays an
important role in this paper, is, for every S < €, the Borel measure oo defined by

0 if cap(BnS)=0,

1.
+ if cap(Bn8)>0 (14)

0g(B) = {

for every B € A(Q).
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By #*(Q) we denote the o-field of all finely Borel subsets of Q, i.e., the o-field
generated by the finely open subsets of Q. It is well known that a subset E of Q
belongs to #*(Q) if and only if there exists B € #(Q) with cap(EAB) = 0, where A
denotes the symmetric difference of sets (see Section IV of [13]). Therefore each
measure y € .#4(Q) can be extended in a unique way to a countably additive set
function, still denoted by p, defined on the larger o-field 8*(2).

The regular set A(u) of a measure u € # () is defined as the union of all finely
open subsets of Q such that u(4) < + oo. The singular set S(u) is defined as the
complement of A(yu) in Q. It is easy to see that A(u) is finely open and that if A is a
finely open subset of Q which intersects S(u), then u(A4) = + 0. By the quasi-
Lindelof property of the fine topology (see Theorem 1.XI.11 of [14]) there exists an
increasing sequence (A,) of finely open subsets of A(y), with u(A4,) < + oo for every
n, such that cap(A(u)\|J, 4,) =0. We refer to Section 3 of [8] for further
properties of the sets A(u) and S(w).

We say that a Radon measure u on Q belongs to H™ '(Q) if there exists
f € H"1(Q) such that

o0y = L pdp,  VoeCgQ). (1.5)

In this case we identify f and p. It is well known (see, for instance, [4]) that if u is a
nonnegative Radon measure which belongs to H~}(Q), then pe.#,(Q) and
HY(Q) = LY(Q, p). Moreover,

) J vdy,  Voe HYQ). (1.6)
Q

If u is a signed Radon measure on £, whose variation |u| belongs to H ™ 1(Q), then
ue H Q) and (1.6) continues to hold.
Given f, g € H™Y(Q), we say that f < g in H™}(Q) if

Lvoa-way < <9 Vu- 1y Voe Hy(Q), v=0 aeonQ

By the Riesz representation theorem, if f € H~ 1(Q) and f > 0in H ™ (Q), then there
exists a nonnegative Radon measure g on Q such that (1.5) holds.

2. The Space X (€2)

For the rest of this paper we fix a bounded open subset Q of RN with N > 2. Let us
fix p e M (). By X (Q) we denote the vector space of all functions u e H 5(€) such
that [, u* du < + co. This definition makes sense, because u vanishes on all sets of
capacity zero and every function u € H3(Q) is defined up to a set of capacity zero, so
that the integral [ u” du is unambiguously defined. On X ,(Q) we consider the
scalar product

(, Vs ) = J DuDv dx + J uv du 2.1
Q

Q

and the corresponding norm | - |l x,cq)-
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Proposition 2.1. X ,(Q) is a Hilbert space.

Proof. 1t is enough to prove the completeness. Let (u,) be a Cauchy sequence in
X (Q). Then (u,) is a Cauchy sequence both in Hy(Q) and in L*(Q, p). Therefore
(u,) converges to a function u in H5(Q) and to a function v in L%(Q, p). By (1.2) a
subsequence (u, ) of (u,) converges to u g.6. in Q. Since u vanishes on all sets with
capacity zero, (u, ) converges to u p-a.e. in Q. On the other hand, a further
subsequence of (u,) converges to v g-ae. in Q, hence v =u p-a.e. in Q and,
therefore, u € X ,(Q), and (u,) converges to u both in Hg(Q) and in L*(Q, p). This
implies that (u,) converges to u in X ,(Q). W

As X ,(Q) € Hy(Q), all functions in X ,(Q) are defined q.e. in Q and are finely
continuous q.e. in . It follows that every function in X (Q) vanishes q.¢ .n the
singular set S() of p. In other words X (Q) < H{(A(w)).

Let us consider now some examples which illustrate the structure of the space
X ,(Q) under some special assumptions on p.

Example 2.2. Assume that y = ¢.Z~ with q € LP(Q), where

{N/Zsps + 00 if N>3,

2.2
l<p< 4w if N=2. 22

By the Sobolev embedding theorem we have that X (Q) = H(Q) with equivalent
norms.

Example 2.3. Let A4 be a finely open subset of Q and let S = Q\ A. If u is equal to
the measure oog defined by (1.4), then X ,(Q)= Hy(A4), and the norms are
equivalent by the Poincaré inequality. The same conclusion holds if y = cog +
q&~, where g € I?(Q) and p satisfies the conditions of the previous example.

By X,(Q) we denote the dual space of X ,(Q), with duality pairing <{-, - >x;q);
notice that the isomorphic spaces X ,(2) and X (Q) will not be identified. We now
explain in detail how L2(Q), H ™ 1(Q), L*(Q, u) can be viewed as linear subspaces of
X(Q).

’ Let i: X (Q) - H{(Q) be the natural embedding defined by i(u) = u for every
u € X,(Q). The transpose map 'i: H ™ (Q) - X(Q) allows us to consider H™(Q) as
a subspace of X (Q). With a little abuse of notation, which is discussed in a
moment, we write f instead of i( f) for every f € H ™ }(Q). With this convention we
have

S U>x;‘(n) =L, v>g- 10 Vve Xu(Q)- (23)
In particular, for f € L?(Q2) we have

@A U>x;(n) = '[ fodx, Yve Xu(Q),
Q

and this is consistent with the usual identification of L2(Q) with its dual.
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The abuse in our notation consists in the fact that the map 'i: H™'(Q) » X W)
is, in general, not injective, because X ,(Q)-is, in general, not dense in Hgy(Q).
Therefore there may exist two elements f and g of H™1(Q) such that f # g in
H™YQ)butf = gin X(Q), where the last equality means 'i( /) = 'i(g), according to
our convention (2.3).

Example 2.4. Assume that u is the measure g defined in (1.4) taking S = Q.
Then f = 0in X(Q) for every f € H™'(Q). In fact, in this case X ,(Q) = {0}, hence
4(f) = 0 for every f e H }(Q).

If the regular set A(u) of the measure u coincides with Q, then ‘i: H™1(Q) —»
X,(Q) is injective, as the following proposition shows.

Proposition 2.5. Let f and g be two elements of H™'(Q). Then f = g in X,(Q) if
and only if <f, vz~ = g Vx- vy Jor every v e HY(A(w).

Proof. The assertion is equivalent to the equality ker(')) = H3(A(w))*, where 1
refers to the duality pairing (-, - >g-1.q). Since ker(‘i) = im(i)*, the proposition is
an easy consequence of the following lemma. Il

Lemma 2.6. H(A(p)) is the closure of X (Q) in Hy(Q).

Proof. Since each element of X (Q) vanishes q.e. on S(u) = Q\A(u), we have
X ,(Q) = Hy(A(w). As H(A(p)) is closed in H(Q), it is enough to show that any
function of HY(A(u)) can be approximated in H(Q) by a sequence of functions of
X ,(Q).

’ Let us fix u € H3(A(w)). By the lattice properties of H3(Q) it is not restrictive to
assume that u > 0 g.e. on Q. By the property of A(u) mentioned in Section 1, there
exists an increasing sequence (4,) of finely open subsets of A(u), with p(A4,) < + «©
for every n, such that

cap<A(u)\U A,.> =0.

For every pair of positive integers n, h we set Ei = {x € 4, u(x) > h/2"} and

n2n

'/,n = 2—" Z IE:
h=1

Since u is quasi-continuous, the function y, is quasi-lower semicontinuous. Since
0<y,<nl, and w(4,) < +oo, we have ¥, e L*(Q, p). By construction, the
sequence (i) is increasing and converges to u pointwise q.e. on Q. By Lemma 1.6 of
[7] there exists an increasing sequence (u,) in Ho(Q) such that 0 < u, <, q.e.in Q.
As Y, e LX(Q, p), this implies that u, e X ,(Q) and concludes the proof of the
lemma. ]

Let j: X (Q) » L*(Q, y) be the natural embedding defined by j(u) = u for every
u € X ,(Q). The transpose map j:L*(Q, u) — X (Q) allows us to consider L*(Q, p) as
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a subspace of X, (Q). For every g e L*(Q, p) the image %j(g) is denoted by gu. With
this convention we have

B W xp@) = J vg du, Vo e X ,(Q). (24)
Q

This notation is consistent with (1.3), provided g € L3(Q, u) n LL (Q, y). In this
case, if the Radon measure |g|u belongs to H™1(Q), then (2.4) is consistent with
(1.6) and (2.3).

Since X () is, in general, not dense in L*(Q, u), the map Yj: L, ) > X (Q)
1s, in general, not injective. Therefore there may exist two elements f and g of
L*(Q, p) such that f # g in L¥(Q, ), ie., w({f # g}) > 0, but fu = gu in X(Q).

Example 2.7. Let E be the set of all points x = (x;,..., xy) in Q whose first
coordinate x, is rational. If u = ooy + £", then X (Q) = {0}. Therefore, taking
g = lg\g, we have ge L*(Q, p) and g # 0 in L*(Q, p), whereas gu = %(g) = 0 in
X'(Q).

u

The following proposition gives a necessary and sufficient condition for the
equality fu = gp.

Proposition 2.8. Let f and g be two elements of L*(Q, y). Then fu = gy if and only if
[ = g p-a.e. on the regular set A(p) of the measure p.

Proof. The assertion is equivalent to the equality
ker(}) = {g € L*(Q, p): g = 0 p-a.e. on A(p)}.

Since ker(j) = im(j)* and as the orthogonal complement of the set
{9 L*(Q, p): g = O prace. on A(p)} is the set {ge L¥(Q, u): g = 0 p-ae. on S(u)},
the proposition is a consequence of the following lemma. O

Lemma29. Theset Y= {ue L*(Q, u): u = 0 p-a.e. on S(u)} is the closure of X N(®)
in LYA(Q, p).

Proof.  Since each element of X (Q) vanishes q.e. on S(x) and as u vanishes on all
sets of capacity zero, we have X (Q) < Y. Since Y is closed in L*(Q, p), it is enough
to prove that X ,(Q) is dense in Y. Let Z be the linear space generated by the
functions 1, with A finely open set with u(4) < + co. From the properties of A(u)
we easily obtain that Z is dense in Y. Therefore, to conclude the proof it is enough
to approximate in L?(Q, u) each function 1, by a sequence of functions of X £(82).
Since A is finely open and u(A) < + oo, Proposition 1.2 provides the required
approximation. O

3. Relaxed Dirichlet Problems

In this section we recall some properties of the relaxed Dirichlet problems intro-
duced in [9] and [10]. Let us fix u € .4 ,(Q). By the Riesz-Fréchet representation
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theorem, for every F € X, (Q) there exists a unique u € X () such that

(u, U)xu(n) {F, U>x“(n), Vv e X, (Q). 3.1
By definition (2.1) of the scalar product in X ,(Q), (3.1) is equivalent to

_[ DuDv dx + J uvdp = (F, 0)x,0) Vv e X (). 3.2)
Q Q

According to our conventions (2.3) and (2.4), we can write (3.2) in the form

C=Au, vy ) + U, YDy = <F, W xa, Vv e X (Q). (3.3)

This shows that each element F of X (Q) can be represented as F = f + gu with
feH Y(Q)and g e LXQ, y). Because of (3.3), we refer to the solution of (3.1) as the
solution of the problem

ueX,Q), —Au+up=F inX,Q), (3.4)

which is called the relaxed Dirichlet problem. The reason for this name is explained
at the end of this section.

Example 3.1. Assume that u = g.#" with q € LP(Q), where p satisfies (2.2), and let
f e H Q). As X (Q) = Hy(©) with equivalent norms (see Example 2.2), it turns
out that u is a solution of the problem

ue X,(Q), —Au+up=f inX,(Q) (3.5)
if and only if
ue H{(Q), —Au+qu=f in H Y{(Q).

Note that, under our assumptions on p, the function qu belongs to H ™ ().

Example 3.2. Let A be an open subset of Q and let § = Q\ A. If u is the measure

oog defined by (1.4) and f € H™1(Q), then u is a solution of (3.5) if and only if
ue Hy(4), —Au=f], inH (4),

where f |, is defined by (f1,, ) g-14) = {f, VDg- 1, for every v e H{(A).

Example 3.3. Let 4 be an open subset of Q, let § = Q\ 4, and let f € H™}(Q). If

p = oog + g&¥", where q € LP(Q) and p satisfies (2.2), then u is a solution of (3.5) if
and only if

ue Hi(A), —Au+qu=f|, in H }(A).
The resolvent operator R,: X (Q) - X M(Q) is defined by R (F) = u, where u is

the unique solution of (3.4). Usmg (3.1) it is easy to see that R, is a continuous
linear operator from X, (Q) onto X ,(Q2) and (hat R, is symmetrzc, ie.,

(G, Ru(F»x;‘(n) = <F’ Ru(G»x;L(n) (3-6)

for every F, G € X (Q). Moreover, there exists a constant ¢ = ¢(L), independent of
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i, such that

Il Ru(f) ||H1(n) <clf ”H-l(n) 3.7
for every f e H Y(Q).

We often use the following result proved in Proposition 2.6 of [9].
Proposition 3.4. Let ue . # Q) and let f e H"Y{(Q) with f >0in HY(Q). If u is
the solution of the problem

ue X, (), —Au+up=f inX,(Q),
then u >0 ge inQand —Au < f in H }{(Q).

The notion of y-convergence in .# () was introduced in [10] in order to
study the dependence of the solution u of (3.4) on the measure pu.

Definition 3.5. We say that a sequence (u,) of measures of the class
M () y-converges to a measure p € 4 o(Q) if and only if

R, ()= R,(f) strongly in L2(Q)
for every f € L*(Q).

By (3.7) we easily obtain that (u,) y-converges to u if and only if
R, (f)— weakly in Hy(Q)

for every f € H*(Q). The name y-convergence comes from the fact that, in [10],
this notion is defined in an equivalent way in terms of the I'-convergence of the
functionals

I | Du|? dx+J u? du,.
Q Q

We refer to [1], [11], and [12] for the general notion of I'-convergence and for its
applications to the study of perturbation problems in the calculus of variations.
The equivalence between our definition of y-convergence and the definition given
in [10] can be proved as in Theorem 2.1 of [2], replacing R? by Q.

The main properties of the y-convergence are the following compactness and
density theorems.

Theorem 3.6. For every sequence (u,) in .M ((Q) there exists a subsequence (u,,)
which y-converges to a measure p € M ().

Proof. 1t is enough to replace R” by Q in the proof of Theorem 4.14 of [10]. (I

Theorem 3.7. For every p e .# ((Q) there exists a sequence (S,) of compact subsets
of Q such that the sequence (cog,) y-converges to .

Proof. 1t is enough to replace R” by Q in the proof of Theorem 4.16 of [10]. [
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Let pe #,Q) and let (S,) be the sequence given by Theorem 3.7. Let
fe H Y(Q) and let A, = Q\S,. By Example 3.2 the solution u, of the Dirichlet
problem

u, e Hy(4,),  —Au,= fl,, inH (4, (3.8)

can be written as u, = R, (f), where u, = oo, . Since (u,) y-converges to u, we have
that (u,) converges weakly in H(Q) to the solution u of the problem

ue X, (), —Au+up=f inX,(Q) (3.9)

Therefore Theorem 3.7 states that, for every f € H™ }(Q), the solution of (3.9) can
be approximated by the solutions of the Dirichlet problems (3.8). This is the reason
for the name “relaxed Dirichlet problems” given to problems of the form (3.9).
From the compactness and density properties stated in Theorems 3.6 and 3.7 we
obtain that the family of relaxed Dirichlet problems (3.9) is the smallest family of
equations, stable under L?(Q)-convergence of solutions, which contains Dirichlet
problems of the form (3.8).

4, The Optimization Problem
Let us fix a function f € L2(Q) and a function j: Q x R — R satisfying the following
conditions:
j(-, s)is #N-measurable in Q for every s € R; “.1
j(x, -} is continuous in R for a.e. x € Q; 4.2)

there exist a, € L}(Q) and ¢, € R such that |j(x, s)| < ay(x) + ¢, |s|?
for a.e. x € Q and for every s € R. (4.3)

For every u € L*(Q) we define

J(u) :f JCx, u(x)) dx. 44)
Q
The aim of this section is to study the optimization problem
min J(u,), 4.5)
Ae A Q)

where «Z(Q) is the family of all open subsets of Q and u, is the solution of the
Dirichlet problem

ue Hi(A), —Au= f|, in H (A).

It is well known that, in general, problem (4.5) has no solution (see, for
instance, Example 4.3 below). In order to study the behavior of the minimizing
sequences, we introduce the relaxed optimization problem

min  J(u,), (4.6)

e Mo(Q)
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where u, denotes the solution of the relaxed Dirichlet problem
ue X,(Q), —Au+4up=f in X,(Q).

The close connection between problems (4.5) and (4.6) is given by the following
theorem.

Theorem 4.1. Let feL*Q) and let j: Q x R>R be a function satisfying
(4.1),(4.2), and (4.3). Then problem (4.6) admits a solution and

min J(u,) = min J(uy,). 4.7)

ne Mo(Q) Ae L(Q)
Moreover, for a function u e H5(Q) the following conditions are equivalent:

(a) there exists a minimizing sequence (A,) of (4.5) such that (u 4, ) converges to u
weakly in HA(Q);
(b) there exists a minimum point p of (4.6) such that u = u,.

Finally, if the original problem (4.5) admits a solution A € o/ (Q), then the measure cog
corresponding to S = Q\ A is a solution of the relaxed problem (4.6).

Proof. We first observe that the functional J is continuous in the strong topology
of L*(Q) by the classical continuity theorems for Nemyckii operators (see, for
instance, Theorem 9.1 of [28]). This implies that the function u— J(u,) is
continuous on .#,(Q) with respect to the y-convergence. As remarked in Example
32,ifAe #/(Q)and S = Q\ A4, then u = u, for u = cog. Therefore, all assertions of
the theorem follow easily from the compactness and density properties of the y-
convergence stated in Theorems 3.6 and 3.7. O

Remark 4.2. By using the Sobolev embedding theorem, in the hypotheses of
Theorem 4.1 it is possible to replace the inequality in (4.3) by the weaker condition

Li(x, )| < ag(x) + ¢olsl?,
with 0 < p < 2N/(N — 2).

We conclude this section by exhibiting a simple example where problem (4.5)
has no solution.

Example 4.3. Assume that f(x) > 0 for a.e. x € Q and let w be the solution of the
problem

we Hi(Q), —Aw=f inQ

If j(x, s) = (2s — w(x))?, then it is immediately seen that the relaxed problem (4.6)
attains its minimum value O at the measure

#=£$N9
w
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which corresponds to u, = w/2. On the other hand, it is clear that there are no
domains A such that j(x, u,(x)) = 0 for a.e. x € Q. By (4.7) this implies that the
original problem (4.5) has no solution.

S. Two Optimality Conditions

In this section we obtain two optimality conditions for a solution y € .#,(Q) of the
relaxed optimization problem (4.6). The general method to prove these results
consists in computing the limit

lim J(u,,) — J(u,)]
=0 &

for suitable families (u,),- o in #,(L2): the optimality conditions are obtained from
the fact that the limit above is nonnegative.

Let us fix a function feL*<Q) and a function j:Q x R— R satisfying
conditions (4.1), (4.2), and (4.3). Let us assume, in addition, that

j(x, -) is differentiable and its derivative j (x, -) is continuous on R
for ae. x € Q; 5.Y

js(-, s) is #N-measurable on Q for every s € R; 5.2)

there exist a; € L?(Q) and ¢, € R such that |j (x, 5)| < a,(x) + ¢,|s|
for a.e. x € Q and for every s € R. (5.3)

It is immediately seen that, under these hypotheses, the map J defined by (4.4)
is differentiable on L%(Q), and that its differential J’ is given by

J'(w), vy = f Jo(x, wy dx, Yu, v e LX(Q), (5.4)
Q

where (-, - ) is the pairing between L*(Q) and its dual.
Given u € #,(Q), let u be the solution of the problem

ue X,(Q), —Au+up=f inX,(Q), (5.9
and let v be the solution of the adjoint problem
ve X,(Q), —Av + vp = jy(x,u) in X, (Q). (5.6)

Theorem 5.1. Let ue #,(Q) be a minimum point of the relaxed optimization
problem (4.6), and let u and v be the solutions of (5.5) and (5.6). Then uv < 0 g.e in Q.

Proof. Let us fix ¢ € L*(Q) with ¢ > 0 a.e. in Q. For every ¢ > 0, let u, be the
measure of the class #,(Q) defined by p, = u+ e %", and let u, be the
corresponding solution of the problem

u. € X, (Q), —Au, +up, = f inX, (Q). 5.7
Note that u, = p and u, = u. Since ¢ is bounded, we have X, (Q) = X,(Q) with
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equivalent norms. Therefore, u, satisfies

u, € X,(Q), —Au, +u.p = f —epu, in X, (Q)
or, equivalently, u, = R,(f — eou,), where R, is the resolvent operator introduced
in Section 3. Let ®: R x X ,(Q) - X ,(Q) be the function defined by

@(e, w) = w — R, (f — epw).

Then @ is continuously differentiable and its partial derivative 0®/d0w at (g, w) =
(0, u) is the identity map on X, (Q). Therefore, by the implicit function theorem, the
map & — u, from [0, +oo[ into X,(Q) is differentiable (on the right) at ¢ = 0, and

du,
de

= - Ru (¢u)

£=0
Therefore, from (5.4) we obtain

dJ(u,)

= — j Js(x )R, (@u) dx.
de Q

=0
By (5.7) and by the minimum property of u we have J(u,) > J(u,) for every ¢ > 0,
hence

~

js(xs u)Ru((Pu) dx < O
Q

Y

Since, by (5.6), we have v = R, (j,(x, u)), the symmetry condition (3.6) implies

~

uve dx < 0.
JvQ

As ¢ is an arbitrary nonnegative function of L®(Q), we obtain uv < 0 a.e. in Q.
Finally, since uv is finely continuous q.e. in §, and every nonempty finely open set
has positive Lebesgue measure, we obtain that uv < 0 g.e. in Q. O

Theorem 5.2.  Let pe #,(Q) be a minimum point of the relaxed optimization
problem (4.6), and let u and v be the solutions of (5.5) and (5.6). Then uv = 0 p-a.e.
on Q.

Proof. For every ¢ € [0, 1] the measure u, = (1 — ¢)u belongs to the class .#, ().
Let us denote by u, the corresponding solution of the problem

u, € X, (Q), —Au, + u,p, = f in X, (Q
or, equivalently, of the problem

u, € X,(Q), —Au, +up = f +eupu in X,(Q).

Using the resolvent operator, we can write u, = R,(f + su,u). Let ®:R x
X,(Q) - X,(€Q) be the function defined by

O, w) =w — R, (f + ewp).
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Then @ is continuously differentiable and its partial derivative 6®/0w at (g, w) =
(0, u) is the identity map on X, (Q). By the implicit function theorem, the map ¢ — u,
from [0, 1[ into X,(Q) is differentiable (on the right) at ¢ = 0, and
du,
de
Therefore, from (5.4) we obtain
dJ(u,)
de

By (5.8) and by the minimum property of u we have J(u,) > J(u,) for every & > 0,
hence

= R, (up).

e=0

= J Jo(x, R, (up) dx.
£=0 Q

J Js(x, wR, (up) dx > 0.
Q

Since, by (5.6), we have v = R,(j,(x, u)), the symmetry condition (3.6) and the
definition (2.4) of uy imply

J uv dp = up, R,(s(x, 0))Dx @ = 0.
Q

As uv < 0 p-a.e. on Q (Theorem 5.1), we conclude that uv = 0 p-a.e. on Q. O

6. A Boundary Measure

The following theorem associates a Radon measure v, with every bounded finely
open subset A4 of R¥. This measure, carried by the fine boundary 0*A, plays an
important role in the weak definition of the normal derivative we introduce in
Section 7.

Theorem 6.1. Let A be a bounded finely open subset of RY and let w 4 be the unique
solution of the problem

w, € H}(A), ijADvdx=f vdx, Yve HL(A). 6.1)
A A

Then there exists a unique nonnegative Radon measure v, belonging to H™ *(R") such
that

—AWA + VA = lcl*A in H_ 1(RN). (62)
Moreover, we have v,(0*A) = ZN(cl* A) and v, (R¥\0*A4) = 0, i.e., v, is carried by
0*A.

The existence and uniqueness of a solution of (6.1) follows from the Riesz-Fré-
chet representation theorem. Before proving Theorem 6.1, in the following exam-
ples we show the connection between v, and the normal derivative dw,/0n, when A



Shape Optimization for Dirichlet Problems 33

is open and smooth, and the connection between v, and the harmonic measure of
A, when A is open.

Example 6.2. If 4 is a bounded open set with boundary 64 of class C1'%,0 < a <
1, then %4 = 84 and the solution w, of (6.1) belongs to C'*(4). An easy
integration by parts shows that

0
j vdv, = ——J vﬂd%’v‘l, Yve H'(RY),
RN oA an

where n denotes the outer unit normal to 4. Therefore

ow _
Vg = _TnA%N oa- (6.3)

Note that ow,/0n >0 on dA by the Hopf maximum principle, hence v, and
#N"1|,, have the same null sets.

Example 6.3. Assume that 4 is a bounded open subset of RY with #¥(6*4) = 0,

and let h(x, B) be the harmonic measure of 4, defined for every x € 4 and for every
Borel subset B of 64. We shall prove that

v(B) = f h(x, BN dA)dx (6.4)

A
for every B e #(R"). To this aim we introduce the bounded nonnegative Borel
measure 4 on RY defined by u(B) = {4 h(x, B~ 0A) dx for every B € B(RY). Given

ve H'(R"), we can consider the function y:A4 —R defined by y(x)=
Joa v()h(x, dy). Then y € H'(A), ¥ — v € H{(A), and — Ay = 0 on A. Therefore

f DwADvdx+f vd,u:f DwADvdx+f vdu
RN RN A 04

=J DwADnlldx+J DwAD(v—llx)dx+J vdu.
4 4 24

The first term in the last line is zero because ¥ is harmonic and w, € H}(A), while
the second term equals [, (v — ¥) dx by (6.1). Therefore

f DwADvdx+J vdu=fvdx—f xpdx+f vdu.
RN RN A A 0A

By the definition of u and  we have

f Ydx = f dxf v(Mh(x, dy) = J vdu,

hence

J DwADvdx+f vduzf vdx=f vdx, Vve HYRY),
RN RN A cl*4
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where, in the last equality, we use the fact that #N(0*4) = 0. By definition (6.2) of
v, we have u = v,, which is equivalent to (6.4).

Proof of Theorem 6.1. Let A, be a bounded open subset of RY such that
A cc Ay, let E= Ag\A, and let y = ooy be the measure of the class #y(A4,)
defined by (1.4) for every B € #(A,). Taking Example 2.3 into account, it is easy to
see that w, is the solution of the relaxed Dirichlet problem

wy € X, (4p), —Awy + wau = 1, in X, (4,).

By Proposition 3.4 we have —Aw, < 1.., in H™'(4,). Since —Aw, =0 =
1.4 in H™Y(R¥M\ 4), we conclude that —Aw, < 1., in H™ }(RY). Therefore there
exists a nonnegative Radon measure v,, belonging to H ™ }(R"), such that

—AWA + VA = lcl*A in H—I(RN).
This proves (6.2). Let us prove that v,(A4) = 0. By (6.1) and (6.2) we have

J vdv,=0, VYveH{(A).
RN

Since v, belongs to H™}(RY), it vanishes on all sets of capacity zero. Therefore
Proposition 1.2 and the monotone convergence theorem allow us to conclude that
v, (A)=0.

Let us prove that v,(R™\cl* 4) = 0. Since Dw, = 0 a.e. on R¥\ 4, it follows
from (6.2) that

J vdv, =0, Vve H(R \cl* 4),
RN

and we conclude as before that v,(R¥\cl* 4) = 0. This equality, together with
v,(4) = 0, implies that v,(R¥\0*4) = 0. Therefore, in order to prove that
v,(0*A) = LN(cl* A), it is enough to multiply equation (6.2) by a test function
@ € CT(RY) with ¢ = 1 in a neighborhood of 4. O

The following property of v, is crucial in Section 8.

Proposition 6.4. Let u c Hy(Q), let A be a finely open subset of Q, let S = Q\ A, and
let v, be the measure defined in Theorem 6.1. Then the following conditions are
equivalent:

(@A) u=0ge. onS;
(b) u=0a.e. onint* S and v -a.e. on Q.

Proof. Since the measure v, belongs to H™* (R¥) it vanishes on all sets of capacity
zero. As v, is carried by S, we immediately get that (a) implies (b).

In order to prove the converse, we introduce the space K of all functions
ve Hy(Q) such that v = O a.e. onint* Sand v = 0 v -a.c. on Q. It is clear that K is a
closed linear subspace of Hy(Q). Since H3(A4) < K, from (6.2) we obtain that w, is
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the unique solution of the problem
wy €K, J Dw,Dv dx = J v dx, Yve K, (6.5)
Q

A*

where A* = Q N cl* A. We have to prove that K = H}(A). By the lattice properties
of H}(Q), it is enough to prove that every nonnegative function of K belongs to
H{(A). Let us fix u € K with u > 0 q.c. on Q and let

K(u)={veK:v<uqe. in Q}.

For every k € N we consider the solutions u, and w, of the variational inequalities

u, € K(u), L Du,D(v — u,)dx > k L* (v — ) dx, Vo e K(u), (6.6)

w,e K, J Dw,D(v — w)dx > k f v — w,) dx, Yve K. 6.7)
Q A*

Taking the test functions v = u, A w, in (6.6) and v = u; v w, in (6.7), and adding
the inequalities term by term, we easily obtain that u, < w, q.e. in Q. Taking
v=1u, v 0in (6.6) we obtain that u, > 0 g.c. in Q. As K is a linear subspace of
H{(Q), from (6.5) and (6.7) we get w, = kw,, hence

0<uy <kw, g.e.in Q. (6.8)

This implies that u, € Hi(A) for every k e N. Taking v = u as a test function in
(6.6), we obtain the estimate

172 1/2
J [Du, |2 dx+kf (u—u,c)dxs<j | Du, |2 dx> <J |Du|? dx) .
Q A Q Q

Since u, < u a.e. on Q by the definition of K(u), the previous estimate implies that

J |Du, |2 dx < J | Du|? dx, 6.9)
Q Q

w, »u  in LY(A*). (6.10)

Asu, = u = 0a.e. onint* S, from (6.10) we obtain that (u,) converges to u in L*(Q).
This fact, together with (6.9), yields that (u,) converges to u in H{(Q). Since
H3(A) is closed in HL(Q) and as u,e Hy(A) for every ke N by (6.8), we
obtain that u € H3(A). This proves that K = Hj(A) and concludes the proof of the
proposition. [l

7. Weak Definition of the Normal Derivative

In this section, given a measure ue€ .#,(Q), we consider the solution u of the
relaxed Dirichlet problem

ue X, (Q), —Au+up=f inX,(Q), (7.1)
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with f e L2(Q). If A denotes the regular set A(u) of x and v, is the corresponding
boundary measure, the following theorem associates to the solution u a function
ae L*(Q,v,) in such a way that the measure av, plays the role of the normal
derivative of u on the fine boundary of A.

Theorem 7.1. Let pe My (Q), let A = A(w), let f € L), and let u be the solution
of (1.1). Then the measures |u|p and up, defined by (1.3), belong to H™ *(Q), and there
exists a unique o € L*(Q, v,) such that

—Au+up+ovy= fl, in H-1(Q), (1.2)

where v is the boundary measure corresponding to A = A(p), introduced in Theorem
6.1. Moreover, we have

lotllL2e,v.a < IS Nr2e)- 7.3)

If, in addition, f > 0 a.e. in Q, then a > 0 v, -a.e. in Q.

The following examples show why the measure av, can be considered as a
weak definition of the normal derivative du/0n on the fine boundary 9*A.

Example 7.2. Assume that 4 is an open set with boundary 04 of class C? and that
w4 = q&"|, with g € L*(A). Then u is the solution of the problem (see Example
33)

ue Hy(A), —Au+qu=fin H 1(A).

By the classical regularity results for elliptic equations we have u € H2(A), hence
ou/dn e L%(0A, #* ~1) by the trace theorem. Thus an easy integration by parts
shows that

0
J vadv, = —f 0 L AN, Yve HY(RM).
Q Qnoa On

Therefore
u
N-1
oV, = **% | A
A an Qnéd

Taking (6.3) into account we obtain that

-1
o= Oulowy HV lae. onQn0A. (7.4
on| én

Example 7.3. Assume that A is an open set with a Lipschitz boundary 04 and that
ulA = q#"| , with g € L®(A). Then Au € L*(A4) and du/dn is defined as an element
of H™12(9A). An easy integration by parts yields

ou
a,v H-12(04) = va dVA
QoA

for every v e H3(Q). Therefore du/on = av,|q .4 in H™Y2(Q N 0A).
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Proof of Theorem 7.1. Let Q, be a bounded open subset of RY with Q c< Q, and
let u, be the measure of the class .#,(Q,) defined by

(BN Q) if cap(B\Q)=0,

Ho(B) = {+ , if cap(B\Q) > 0.

The functions u and f are extended to Q, putting u = f = 0 on Q,\Q. Since each
function of X, (€,) vanishes g.e. on Q,\ A4, we have

Ue X, (Q),  —Autupy=flg, in X, (Q). (1.5)

If {20 ae. in Q, by Proposition 3.4 we have —Au < 1., in H™1(Qy).
Therefore there exists a nonnegative Radon measure 4 on Q,, belonging to
H~1(Q,), such that

_Au + l = flcl*A in H_l(Qo). (7-6)

In the general case f € L%(Q), by considering the positive and the negative part of f
we obtain that there exists a signed Radon measure Ae H '(Q,), with
|A] € H™Y(Q,), such that (7.6) holds. Let us prove that

MBNA)= f udug, VB € #(Qy). 1.7
B

As ue L3(Qy, 1) we have u = 0 py-a.e. in Qy\ 4. Since A is the union of a set of

capacity zero and of an increasing sequence (4,) of finely open sets with

Uo(A,) < + o0, in order to prove (7.7) it is enough to show that

MB) = f udpy (7.8)

for every finely open subset B of A with u(B) < + 0. Let us fix a set B with these
properties. By Proposition 1.2 there exists an increasing sequence (v,) in H3(B)
converging to 1, pointwise q.e. in Q,, such that 0 <v, < 15 q.e. in ,. Since
v, € X, (Qp), by (7.5) we have

J vuduy = S, dx — f DuDv, dx,
o ol*4 Q0

and from (7.6) we obtain

j v, di = Sfv, dx — j DuDv, dx.
Qo cl*A Qo
These equalities yield {q, v,u dyo = [q, v, dA. Since p, and A vanish on all sets of
capacity zero, by the monotone convergence theorem we obtain (7.8), which
concludes the proof of (7.7). As |A| belongs to H (), (7.7) implies that the
measures |u|y, and up, belong to H ™ 1(Q,), hence the measures |u|u and up belong
to H™1(Q).

Let us prove that

AB\cl* A)=0, VBeBQy). (1.9)
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1t is enough to show that A(B) = 0 for every finely open subset B of Qy\cl* 4. By
Proposition 1.2 there exists an increasing sequence (v,) in H3(B) converging to 1,
pointwise g.e. in £, such that 0 < v, < 15 q.e. in §Q,. By (7.6) we have

J DuDv, dx + j v, dl = fv,dx=0. (7.10)
Qo

Qo cl*4

Since u = Q a.e. on B, we also have Du = 0 a.e. on B (see, for instance, Lemma A 4 of
[18]). On the other hand, as v, = 0 a.e. on Q,\ B, we also have Dv, = 0 a.e. on
Q,\B. This implies that the first integral in (7.10) vanishes, hence [, v, dA = 0. As
A vanishes on all sets of capacity zero, by the monotone convergence theorem we
obtain A(B) = 0, which concludes the proof of (7.9).

Let us denote by v, the Radon measure on €, defined by

vi(B) = A(B N 0*A), VB e ().

Since | 4| € H™'(£,), the measures |v,| and v, belong to H™(Q,). As 0*4 =< Q,
we have |v,{(€y) < +cc. By (7.7) and (7.9) we have

v.(B) = AB) — j udyg, VB e #(Qy).

B

Therefore (7.6) yields
—Au +upy + vy = [l in H™1(Q,). (7.11)

The map f — v, from L*(Q) into H™ *(Q) is clearly linear. Since 4 > 0 for f >0,
we have

vi(B) <v,(B), VBeRBQ) (7.12)

whenever f,ge L*(Q)and f < g ae. in Q.
Let us prove that if f <1 a.e. in Q, then

v(B) <vy(B), VBe®(Q) (7.13)

where v, is the boundary measure introduced in Section 6. By (7.12) we may
assume that 0 < f <1 ae. in Q, thus u>0 qe. in Q by Proposition 3.4.
Subtracting (7.11) from (6.2) we obtain

—Awg—uw) + vy — vy =upy + (1 — gy in H™1(Q,). (7.14)

Let E = Qy\ A4 and let u; = oo be the measure of the class .#,(Q,) defined by (1.4),
with Q replaced by Q,. As observed in Example 2.3, we have X, (Q,) = H§(A).
Since w, and u belong to H3(A) and as

f vdv, = f vdv, =0, VveH}(A),
Qo Qo

from (7.14) we obtain

—Awy —uw)+ (wy — Wy, =upo + (1 — Ny, in X, (Qo).
Asu>0and 1 — f > 0, by Proposition 3.4 we have

—~Awy—u) <upg+ (1 — Ny,  in H Q).
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This fact, together with (7.14), yields v, — v, > 0in H™ 1(Q,), which is equivalent to
(7.13).
If we apply (7.13) to f and — f, we obtain

[vy|(B) < v,(B), VB e #(Q), (7.15)

for every f € L*(Q) with | f| < 1 a.e. on Q. By linearity, if f € L*(Q) we obtain from
(7.15)

Ve [(B) < | f llLw@yva(B), VB e B(Qo), (7.16)

therefore v, is absolutely continuous with respect to v, for every f € L*(Q).

If feL*(Q)and f > 0a.e.in(Q, then there exists an increasing sequence (£, ) in
L>(Q) converging to f in L2(Q), with f, > 0 a.e. in Q. Let (u,) be the sequence of
the solutions of the problems

u, € X, (), —Au, + u,uy = f, in X, (Q),

where f, is extended to Q, setting f, = 0 on Q,\€. By the continuity properties of
the resolvent operator (see Section 3) the sequence (u,) converges to u in H3(Q,).
By the comparison principle (see Theorem 2.10 of [9]) the sequence (u,) is
increasing, hence (u,) converges to u pointwise q.e. in Q4 by (1.2). Writing v, for v, ,
by (7.11) we have

—Au, +upuy +v, = fil,  in H Q) (7.17)

and by (7.12) the sequence of measures (v,) is increasing. Let v be the Borel measure
on €, defined by

v(B) = sup v,(B), VB e #(Q,).

Then v is absolutely continuous with respect to v,, since each measure v, has this
property. From (7.17) we easily obtain that

_Au + uﬂo + vV = flcl*A in H“I(QO)’

hence v = v, by (7.11). This proves that v, is absolutely continuous with respect to
vy, provided f > 0 a.e. in Q. The same property can be proved for an arbitrary
f € L¥Q) by considering the positive and the negative parts of f.

Since v, and v, are bounded Borel measures on €2, and as v, is absolutely
continuous with respect to v,, by the Radon-Nikodym theorem for every
f € LX(Q) there exists f, € L'(Q,, v,) such that

Vf = vaA' (7.18)
The map f — B, from L*(Q) into L'(Q,,v,) is clearly linear. Moreover, (7.12)
implies that

B, =0 vy-a.e. in Qg (7.19)
for every f € L*(Q) with f > 0 a.e. in Q. From (7.16) we have that B, € L*(€2, v,)
for every f e L*(2) and

I Br | oo, va) < I1f Loy (7.20)
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Let us prove that

1B Lioyvny < IS lLry (7.21)

for every f € L%(Q). It is not restrictive to assume that f > 0 a.e. in Q, hence u > 0
g.e. in Q, by Proposition 3.4 and i, > 0 v -a.e. in Q by (7.19). Let ¢ € C3(Q,) with
@ =10n Q. As v, is carried by 0*4 and Du = 0 a.e. on Q,\Q, taking ¢ as a test
function in (7.11) and using (7.18) we obtain

1B lLi (o, va) < J‘ udp, + J Bydvy= J fdx,
o o4 A

which proves (7.21).
By the Riesz-Thorin interpolation theorem (see VI.10 of [ 15]), from (7.20) and
(7.21) we obtain that i, € L*(Q,, v,) for every f e L*(Q) and

I Bs |20, v.0) < 11 S Nr2g@y- (7.22)

Let us fix f € L*(Q) and let « be the restriction of §; to Q. Then « € L*(, v,)
and (7.3) is a consequence of (7.11) and (7.18), while the positivity of « for a positive
f follows from (7.19). |

We conclude this section with a corollary of Theorem 7.1.

Corollary 7.4. In addition to the hypotheses of Theorem 7.1, assume that the regular
set A(p) of the measure u coincides with Q. Then the measures |u|u and uu belong to
H Y(Q) and

—Autup=f  inH YQ).

Proof. Since A = (, the measure v, is carried by 0Q. Therefore (7.2) is equivalent
to (7.23). (|

8. A Singular Perturbation

In this section we consider a singular perturbation (), o of a measure p of the
class 4 ((Q) and study the weak L*(Q) limit, as ¢ — 0, of the difference quotient

1
- R = R(f)]

forevery f € L*(Q). Let us fix y € # ,(Q) and f € L*(Q). By A = A(u)and S = S(u)
we denote the regular and the singular set of the measure u. Let u be the solution of
the problem

ue X,(Q), —Au+up=f inX,(Q). @&.1D

By Theorem 7.1 the measures |u|u and up belong to H™*(Q) and there exists
a € L3(Q, v,) such that

—Au+up+av,= flgu, in H YQ), (8.2)
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where v, is the boundary measure introduced in Section 6. Let @, Y € C%(Q) with

inf ¢ > 0, infy > 0. (8.3)
Q Q
For every ¢ > 0 we consider the measure g, of the class .#(€2) defined by
o= pilg + e (@7 LN ines + YT V) (8.4)
Let u, be the corresponding solution of the problem
u,e X, (Q), —Au, +up, = f in X, (Q). (8.5)

Since A(u,) = Q, by Corollary 7.4 the measures |u,|p, and u,u, belong to H™1(Q)
and

—Au,+up, = f  in HYQ). (8.6)

Our aim is to prove that (u, — u)/e converges weakly in L%(Q) as ¢ — 0. In order
to compute the limit of the scalar products

U —u
f t—gdx,
g 8

for every g € L%(Q) we consider the solution v of the problem

ve X, (Q), —Av+op=g inX,(Q). 8.7)

As in the case of problem (8.1), the measures |v|u and vu belong to H™*(Q) and
there exists f € L%(Q, v,) such that

_Av + vll + ﬁvA = glcl‘A in H_I(Q). (8.8)
The following theorem is the main result of the present section.
Theorem 8.1. Let u be the solution of (8.1) and, for every ¢ > 0, let u,be the solution
of (8.5) corresponding to a given pair @, Y of functions of C°(Q) satisfying (8.3). Then

(u,) converges to u strongly in HY(Q) as ¢ > 0 and (u, — u)/e converges weakly in
L*(Q). More precisely, for every g e L*(Q) we have

'[ e U gdx— -[ Sgo dx + j afy dv,, (8.9)
o ¢ int*S Q
where o and f are defined by (8.2) and (8.8).

In order to prove the theorem, we fix g e L*(Q) and, for every ¢ > 0, we
consider the solution v, of the problem

v € X, (Q), —Av, + v, 4, =g in X, (Q). (8.10)
As in the case of problem (8.5), the measures |v,|u, and v.u, belong to H™ () and

—Av, +v,u, =g  in HY(Q). (8.11)

The following lemma proves the first assertion of Theorem 8.1.
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Lemma 8.2. As ¢ — 0, the sequences (u,) and (v,) converge to u and v strongly in
HY(Q).

Proof. Itis enough to prove the convergence of (u,). Taking u, as a test function in
(8.5) and using definition (8.4) of i, we obtain

j |Du8|2dx+s‘lj‘ <p‘1u62dx+s_1j w"ufdvA+J uZ du
Q int*S Q A

= f fu, dx, (8.12)
Q

which immediately implies that (u,) is bounded in H3(Q) and in L*(A, p). Passing, if
necessary, to a subsequence, we may assume that (u,) converges weakly in H3(Q) to
a function w, and weakly in L2(4, ) to a function w,.

Let us prove that w, = w, u-a.e. on A. There exists a sequence (z,) converging
to w, strongly in H}(Q) such that each function z, belongs to the convex hull of the
set {u,: 0 < & < 1/n}. By (1.2) a subsequence of (z,) converges to w, q.e. in Q, hence
p-a.e. on A. Since (u,) converges to w, weakly in L2(A4, p), the convex combinations
z, still converge to w, weakly in L*(A4, u). Since (z,) converges to w, y-a.e. on A, we
conclude that w, = w, u-a.e. on A. Therefore (u,) converges to w, weakly in the
spaces H3(Q) and L?(4, p). Let us prove that w; = u. Since ¢ and y are bounded in
Q, from (8.12) we obtain that

1 1
- J uZdx and - f uZ dv,
€ Jinss € Ja

are bounded as ¢ — 0. Therefore (u,) converges to 0 strongly in the spaces L2(int* S)
and L*Q,v,). This implies that w; =0 ae. on int*S and v -ae on Q. By
Proposition 6.4 we obtain that w, =0 q.e. on S. Since w, € L?(4, u), we can
conclude that w, € L%, u), hence w, € X «(Q). Let ze X (Q). Since z =0 a.e. on
int* § and v,-a.e. on £, by taking z as a test function in (8.6) we obtain

f Du,Dz dx +-[ u,z dy ='[ fz dx.
Q A4 Q

Since (u,) converges to w, weakly in the spaces H3(Q) and L*(A4, u), we get

j leDzdx+J W1Zdﬂ=f fz dx,
Q 4 Q

which implies that w, is a solution of (8.1), hence w, = u and the whole sequence
(u,) converges to u weakly in the spaces H3(Q) and L?*(4, p).

Let us prove that (u,) converges to u strongly in H3(Q). As (u,) converges to u
weakly in L2(A, u), we have

f u?* dy < lim inf f u? dp. (8.13)
A A

=0

Since (u,) converges to u strongly in L2(Q) by Rellich’s theorem, (8.12) and (8.13)
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yield

lim supj | Du,|? dx + J uw*du < J fu dx. (8.19)
Q A Q

=0

Taking u as a test function in (8.1) we get

j fudx=f |Du|2dx+J u? dy,
Q Q A

which, together with (8.14), gives

lim supJ [Du,|? dxs'[ |Du|? dx.
Q Q

0

Since (u,) converges to u weakly in H}(Q), this implies that (u,) converges to u
strongly in H(Q). O

Lemma 8.3. As ¢ — 0 we have

(a) v,/e = g weakly in L*(int* S),
(b) v,/e > By weakly in L*(Q, v,),
(c) v.pil  — vul, weakly in H 1(Q).

Proof. By linearity it is not restrictive to assume that g > 0 a.e. in Q. Then we also
havev, > 0qe.inQ,v > 0qe. inQ,and f > 0 v -a.e. in Q (see Proposition 3.4 and
Theorem 7.1). Since (g z du, < {q z du for every quasi-continuous function z: Q —~ R
with z > 0 g.e. in Q, by the comparison principle (Theorem 2.10 of [9]) we have

v<v, qeinQ. (8.15)
As u, < p, for n > & > 0, for the same reason we have
v, <v, ge. inQforn>¢>0. (8.16)

By (8.16) and by Lemma 8.2 the sequence (v,) is decreasing and converges to v
strongly in Hj(Q2) and pointwise g.e. in Q (see (1.2)).

Since v, u, belongs to H™'(Q), for every z € H}(Q) the function |z| belongs to
L(A, v,p). Therefore, by the dominated convergence theorem we have

f zv, du — J zv dy, Vz e HY(Q),
4 4

which proves (c). From (8.8) and (8.11) we obtain

J D(v, — v)Dzdx + ¢! J
Q

int*S

v,z@ ldx +&7! f v,z tdv,
Q

+ J (v, —v)zdu = j gz dx + f Pz dv, (8.17)
A int*§ Q
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for every z € Hi(Q). Taking z = (v, — v)/e we obtain

a"lj |D(v£—v)|2dx+s_2J vfgo‘ldx+s_2j 2y~ tdv,
Q int*S Q

+8_1J (vs—v)zdu-——a_lf gvsdx+£_1f Bv. dv,,
A int*S Q

where we have used the fact that v = 0 q.e. on § and, therefore, v = 0 v,-a.e. on Q,
since v, is carried by 0¥*4 < S. As ¢ and ¢ are bounded in Q, we have

j (e 'w)* dx + '[ (e v dvy < c[f ge v, dx + J Be v, dvA:l
int*S Q int*s o

for a suitable constant ¢ > 0, which immediately implies that the sequence (v,/¢) is
bounded in L2(int* S) and in L%*(€, v,). Therefore, up to a subsequence, (v,/e)
converges weakly in L2(int* S) to a function h and weakly in L*(Q, v,) to a function
7. Since (v,) converges to v weakly in H3(Q) by Lemma 8.2, from (c) and from (8.17)
we obtain

et f v,z tdx > gzdx, Vze HiGnt*S)
int*S

int*S
(recall that every function of Hi(int* S) vanishes v,-a.e. in (), because v, is carried
by 0*A). By (8.3) this implies

n

hzo tdx = j gz dx, Yz € Hi(int* S),

Jint*S int*S

and by Proposition 1.2 we get

~

ho~tdx =J g dx
B

vB

for every finely open subset B of int* S, hence h = g¢ a.e. on int* S. As the limit &
does not depend on the subsequence, this proves that (v,/¢) converges to go weakly
in L(int* S).

Taking now an arbitrary z € H3(Q) and using (a) and (c) we obtain from (8.17),
as ¢ - 0, that

J gzdx+f yzn//_ldvAzj gzdx+J Bz dv,,
int* S Q int*S Q

hence

j yzyy " tdv, = f Bzdv,, VzeHyQ),
Q Q

which yields y = B v4-a.e. in Q and concludes the proof of (b). [l
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Proof of Theorem 8.1. Let us fix g € L*(Q). Taking (u, — u)/e as a test function in
(8.11) we obtain

u, —u
J ¢ gdx = s_lj Dv,D(u, — u) dx + s‘ZJ vu.0 dx
a ¢ Q int*S

+s_2J vsusl//_ldvA-ks_lj v(u, — u) dp, (8.18)
Q A

where we have used the fact that u = 0 q.e. on § and, therefore, u = 0 v -a.e. on Q,
since v, is carried by 0¥4 = S. Taking v,/¢ as a test function in (8.2) and (8.6) we
obtain that the right-hand side of (8.18) equals

J fe o, dx—j fe v, dx+j ae” to, dvy,
Q Qncl*4a

Q

therefore

J ue_ugdx= fe v, dx+f o ‘v, dvy,. (8.19)
Q

€ int*S Q

By Lemma 8.3 the sequence (v,/¢) converges to g¢ weakly in L2(int* S) and to Sy
weakly in L*(Q, v,). Therefore (8.19) implies (8.9). The weak convergence of
(u, — u)/e in L%(Q) now follows from the Banach-Steinhaus uniform boundedness
principle. O

9. Further Optimality Conditions

In this section we prove two necessary conditions for the solutions of the relaxed
optimization problem introduced in Section 4. These optimality conditions are
obtained by means of the singular perturbation studied in Section 8.

Let us fix a function f e L*Q) and a function j:Q x R >R satisfying
conditions (4.1), (4.2), (4.3), (5.1), (5.2), and (5.3). Given ue .#,(Q), by A = A(w)
and S = S(u) we denote the regular and the singular set of the measure u. Let u be
the solution of the problem

ue X ,(Q), —Au+up = f in X,(Q), O.1)
and let v be the solution of the adjoint problem
ve X, (Q), —Av + vu = j(x,u) in X (Q). 9.2)

By Theorem 7.1 the measures |u|y, |v|y, uy, and vy belong to H™1(Q) and there
exist «, w € L*(Q, v,) such that

—Autup+ov,=flu, inH YQ), 9.3)
—Av + op + By, =jx, wl .y, in H™1(Q), 9.9)

where v, is the boundary measure introduced in Section 6.
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Theorem 9.1. Let pe #,(Q) be a minimum point for the relaxed optimization
problem (4.6) and let u and v be the solutions of (9.1) and (9.2). Then
f()j(-,0 =0 a.e. onint* S, 9.5
af =0 v, — a.e onQ, 9.6)
where o and B are defined by (9.3) and (9.4).

In order to prove the theorem, we need the following lemma.

Lemma 9.2. Let X be a Banach space with dual X' and let F: X >R be a
continuously differentiable function. If (u,) converges to u strongly in X and (u, — u)/e
converges to w weakly in X, then

PU =IO, w, ©.7)

where F' is the differential of F and < -, - > denotes the duality pairing between X' and
X.

Proof. By the mean value theorem we have

M _ <F’(u), “AS_EN < sup | F'(v) — Fw)lx

velg

u, —u

>

X

where I is the line segment joining u, to u. Since F’ is continuous and (u, — u)/e is
bounded, the right-hand side of the previous inequality tends to 0, hence (9.7)
follows. O

Proof of Theorem 9.1. Given o,y € C%Q) satisfying (8.3), for every ¢ >0 we
consider the measure p, € #,(Q) defined by (8.4) and the corresponding solution u,
of (8.5). By Theorem 8.1, applied with g(x) = j(x, u(x)), we obtain that (u,)
converges weakly in L*(Q) to a function w such that

[mwwax={  mwsods+ | awav,
Q int*S Q
Recalling that u = 0 a.e. on S, from (5.4) and from Lemma 9.2 we obtain

J(u,) — J(u)
e

J Jx, 0) fo dx + J afyr dv,.
int*S Q

Since p is a solution of the relaxed optimization problem (4.6), we have J(u,) —
J(u) = 0, hence

f i, 0)f ¢ dx + f wBy dv, 0
int*S Q

As this inequality holds for any ¢, ¥ € C°(Q) satisfying (8.3), we obtain (9.5) and
9.6). Wl
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The following theorem summarizes the necessary conditions obtained in this
paper for the relaxed optimization problem (4.6).

Theorem 9.3. Let ye #,(Q) be a minimum point of (4.6) and let u and v be the
solutions of (9.1) and (9.2). Thenu =v =0 g.e. on S and

(a) uv <0 g.e. on A,

(b) uv =0 p-ae. on A,

©) f(-)j(-,0)>0ae. onint* S,
(d) af =0 v -ae on Qn I*4,

where o and 8 are defined by (9.3) and (9.4).
Proof. Property (a) is proved in Theorem 5.1, (b) in Theorem 5.2, and (c) and (d)
in Theorem 9.1. 0
Example 9.4. Assume that a minimum point u of (4.6) has the form

1= og+ gL,

where g € L*(Q), g > 0a.e.onQ, S = Q\ 4, and A4 is an open set with boundary 64
of class C2. By Example 3.3 the functions u and v are the solutions of the problems

ue Hi(A), —Au+qu=f in H 1(A),
ve Hi(A), —Av + quv =j(x,u) in H '(4),

hence u, v € H*(A). By Example 6.2 the measures v, and HY~!|, have the same null
sets, and by Example 7.2 we have

_Ou[ow, ]t ﬂ_ﬁv ow, ]t

“on| on | “on| on
#N " l.ae on Qn 84, where w, is defined in (6.1). Therefore conditions (a)-(d) of
Theorem 9.3 take the form

(@) uww<0q.e. on A4,

(b") uv =0 a.e. on {x € A: g(x) > 0},

©) f()j(-,0=0ae.onS,

(d) (Ou/on)(Ov/on) = 0 #N~'-ae. on QN 0A.

Since 84 is of class C? and u, v € H%(A), conditions (a’) and (d’) imply that
(&) (Bufon)(@v/on) = 0 #1-ae. on Q M 04,

as we can easily check by considering the one-dimensional functions ¢—
u(x + tn(x)) and t— o(x + tn(x)), which are continuously differentiable in a
neighborhood of ¢t = 0 for #¥~!-a.e. point x € Q N 0A.

Example 9.5. Assume that the shape optimization problem (4.5) admits a solution
A with boundary 4 of class C2. By Theorem 4.1 the measure cog, with S = Q\ 4, is
a solution of the relaxed problem (4.6). By specializing Example 9.4 to the case
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0, we obtain that u and v are the solutions of the problems
ue Hi(A), —Au=f inH (4),
ve H(l)(A)9 —Av = js(x5 u) inH™ I(A)’

and conditions (a"), (c), and (¢) take the form

uw <0 q.c. on 4,

f()]s(9 0) >0 a.c. on S,

6u@_

57 =0 HN"lae.on Qn oA,

while condition (b’) is trivial in this case.
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