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Abstract. We show the effectiveness of viscosity-solution methods in asymp-
totic problems for second-order elliptic partial differential equations (PDEs)
with a small parameter. Our stress here is on the point that the methods, based
on stability results [3], [16], apply without hard PDE calculations. We treat
two examples from [117 and [23]. Moreover, we generalize the results to those
for Hamilton-Jacobi-Bellman equations with a small parameter.

1. Introduction

The effectiveness of viscosity-solution methods has been demonstrated in the study
of asymptotic problems for second-order partial differential equations (PDEs) with
small parameters. The basic scheme of applying viscosity-solution methods to such
perturbation problems consists of obtaining the estimates of solutions, indepen-
dent of the small parameters, which allow us to pass to the limit and of identifying
the limit of the solutions, as parameters tend to zero, with the viscosity solution of
the limiting equation. Such estimations of solutions usually involve hard technical
calculations. We refer to [17,[9],[12],[17], and [18] for viscosity-solution
approaches to singular perturbation problems, and also to [19] for various aspects
of applications of viscosity solutions.

* H. Ishii was supported in part by the AFOSR under Grant No. AFOSR 85-0315 and the
Division of Applied Mathematics, Brown University.
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The purpose here is to point out that there are cases where we can handle the
problem without hard PDE calculations. As typical examples, we treat two
asymptotic problems for linear uniformly elliptic equations with a small parameter
from [11] and [23]. These problems have already been studied in [9] in light of
viscosity-solution methods. However, the treatment of such problems seems to
make clear the ditference of our new approach from the classical ones [9].
Moreover, we generalize the results to those from Hamilton-Jacobi-Bellman (HJB
in short) equations with a small parameter.

In section 2 we deal with a problem treated in [11] using a recent theory of
viscosity solutions developed for a boundary problem of the Dirichlet type for
Hamilton-Jacobi equations. We also discuss a generalization of the problem to
that for HIB equations. In Section 3 we study a problem treated in [23] using a
modification of the techniques in [6] together with an idea from [15]. We apply
this method to the problem treated in [18].

After the completion of this work, the authors learned that Bardi [2]
independently established an approach to Theorem 2.1 similar to theirs based on
the theory of viscosity solutions of state constraint problems.

2. Application of Viscosity Solutions satisfying a Boundary Condition of
the Dirichlet Type

Let Q be a bounded domain in R" with smooth boundary. We denote the space of
n x n real symmetric matrices by S*. Let a = (4;;): Q — " and b = (b;): Q — R" be
given functions. We assume

a;, bye CAH(Q) for i,j=1,...,n, Q.1
and that there is positive number 6 such that ’
a,;¢E; > 0162 for xeQ and EeR™ 22

Here and later we use the usual summation convention. Let I' be a given,
nonempty, relatively open subset of 0€). We are concerned with the boundary-value
problem

82
) a;us,., — bus, =0 in Q,
u(x)=1 onT, 2.3
wi(x)=0 on 8Q\T,

where ¢ is a positive parameter. Note that (2.3) has a solution belonging to
C*(Q\0T) and satisfying 0 < u® < 1 on Q. See Remark (ii) below for an argument
related to-the existence of a solution of (2.3).

Equation (2.3) was studied by Fleming [11] in connection with the asymptotic
problem for the exit probability, from I, of solutions of stochastic differential
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equations with a small parameter. Following [11], we introduce the condition:

if ¢eHL.([0,0);RY) and &0eQ for t 20, then

Lmli'(t) — BED)I? dt = o, 2.4)

We define L: Q x R" - [0, o) by L(x, p) = a"(x)p,p; where the a”(x) denote the
(i, /) components of the inverse matrix a(x)~ ', and, under the above hypothesis,
I:Q - [0, ©) by

I(x) = inf %j LEEQ@), &&) — bE®)) dt, (2.5)
[

where the infimum is taken for all T > 0 and ¢ € HY([0, T]; R") satisfying £(0) = x,
EtyeQforte [0, T),and &T) e I'. It is easy to check that I is Lipschitz continuous
on€), I >0o0nQ, and I(x) > 0 as x - I'. We denote the continuous extension of I
to Q again by I. Obviously, I = 0 on I'. We intend to prove the following theorem
due to Fleming [11] by our new method.

Theorem 2.1.  Assume (2.1), (2.2), and (2.4). For each ¢ > 0 let u® € C*(QQ\0TI') be a
solution of (2.3) satisfying 0 < u* < 1 on Q. Then

—¢? log u¥(x) - I(x) (2.6)

uniformly on compact subsets of QuUT ase | 0.

We begin with some preliminaries concerning condition (2.4) and viscosity
solutions of boundary-value problems.

Lemma 2.2. Condition (2.4) is equivalent to the condition that

2.7

there is a C* function  on Q such that
by, < —1 on Q.

Proof. The proof that (2.4) implies (2.7) can be found in [1]. We shall show that
(2.7) implies (2.4). Assume (2.7), and let y be a C! function on Q satisfying
by, < —1on Q. Let & € Hi,.([0, 00); R") satisfy &(t) € Q for t > 0. Then

Y(E(T)) — Y(&O) = LT DY(&(1)) - &) dt
= J OT {(&(®) — B(E®))) - DY(E(D)) + B(EQD)) - DY(ER))} di
< {f:l &) — bEW)? dt}mT”2 mgXID!PI -T
for T > 0, where Dy denotes the gradient of . Hence

T <2 max|y| + T2 m_axan/zl{ [1t0 - scorr dt}”z
Q Q 0
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for T > 0. This implies

J |&2) — B(E@) I dt = oo,

0

proving our assertion. O
Following [5], [20], [3], and [16], we now recall the definition of viscosity

solutions of the problem

{F(x, u, Du, D*u) =0 inQ,

u=h or F(x,u, Du, D*u)=0 onX. (28)

Here X is an open subset of 0Q, h: ¥ — Ris a given function, F: QU X x R x R" x
S" - Ris a given function, u: Q U T — R is the unknown function, and D?u denotes
the Hessian matrix of u.

For function u: QU X —» RuU {—0, o0} we define

ut,u, QU > RuU{—0, w0}
by

u*(x) = lim sup{u(y): ye QU Z, |y — x| <r}
rlo

and

u (x) = lim inf{u(y): ye QU Z, |y — x| < r}
rlo

For function F: QuU X x R x R" x $" - R we define

F*(x,r, p, A) = lim sup{F(y,s, ¢, B): (3,5, 4, B)e QU I x R x R* x §",
" ly—x|<é,|s—r| <d,lg—pl <6, |B— Al <}
and
F (x,r,p, A) =liminf{F(y,s,q,B): (y,5,¢, B EQUZ x R x R* x §",
" ly —x|<é,|s—r| <d,|g—pl<d,|B— Al <5}

We call a function u: QU X - R U { — o0} a viscosity subsolution of (2.8) provided
u*(x) < oo for x e Q U T and whenever ¢ € C2(Q U X) and u* — ¢ attains its local
maximum at a point y € Q U X, then

F, (v, u*(»), Do(y), D*p(») <0 if yeQ

and

u¥(y) < h*(y) or F.(y,u*(y), Do(y), D*p(y)) <0 if yeX.

Similarly, we call a function u: Q U £ — R U {00} a viscosity supersolution of (2.8)
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provided u,(x) > —oo for xeQ U X and whenever ¢ € C*QuZX)and u, — ¢
attains its local minimum at a point y € Q U X, then

F*(y, u, (), Do(y), D*p(3) =20  if yeQ

and

u, () = h(y) or F*(y,u, ), Do(y), D*e(y)) >0 if yeZ.

A viscosity solution of (2.8) is defined to be a function on Q U £ which is both a
viscosity sub- and supersolution of (2.8). When X = ¢, a viscosity solution (resp.
subsolution or supersolution) of (2.8) is also called a viscosity solution (resp.
subsolution or supersolution) of F(x, u, Du, D*u) = 0 in Q.

The main tools in our proof of Theorem 2.1 are the following two propositions.

Proposition 2.3. Fore>0let F,: Qu X x R x R" x §" > R be given and let u, be
a viscosity subsolution (resp. supersolution) of (2.8) with F, in place of F. Set

u(x) = lim sup{u,(y); 0 <e <8, ye QUZ, |y — x| < 8}

510
Jor xe QU X and

F(x,r,p, A) = lim inf{F,(y,s,9,B): 0 < e < 3,(y,5,4, B) e QU Z
310

xRxR"x §"|y—x|<d,|s—r|<é,|qg—pl<i,
B~ All <6}
for (x,r,p, A)e QU x R x R" x §* (resp.
u(x) = lim inf{u,(»): 0 < e <9,ye QUZ, |y — x| < 8}
410

and
F(x,r, p, A) = lim sup{F,(y,5, ¢, B):0 <e < d,(y, 5,4, B)eQUZ
310

XxXRxR'xS,|y—x|<d,|ls—r|<é,|q—p|<?d,
B — Al < é}

Jor(x,r,p, A)e QU X x R x R" x §"). Assume u is locally bounded on Q L Z. Then
u is a viscosity subsolution (resp. supersolution) of (2.8).

Stability results for viscosity solutions were first obtained by Crandall and
Lions [5]. This general result is due to Barles and Perthame [3] in the case of first-
order Hamilton-Jacobi equations and is observed by Ishii [16] in the general case.
We refer to [3] and [16] for the proof.

Proposition 2.4. Let H be a real-valued continuous function on Q x R”. Let u and v
be, respectively, viscosity sub- and supersolutions of

{H(x, Du)=0 in Q,

u=h or H(x,Duy=0  onoQ. (29)
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Assume that h is continuous on 0Q, u < h on 0Q, u is Lipschitz continuous on Q, and
p — H(x, p) is convex on R" for x € Q. Assume in addition that there is a C* function
on Q such that H(x, Dyi(x)) < 0in Q. Then u < v on Q.

This assertion is proved in [16].
Let u° be a solution of (2.3) satisfying 0 < u* < 1 on Q. We observe, by setting
¥(x) = —e2logus(x) for xeQuT,

that ¢* is positive on Q and solves

82

-5 @05, + 3 40505, — bt =0 in Q,

(2.10
*=0 onTl, )
v¥(x) = as x— 0Q\T.

Lemma 2.5. There is a continuous function C on Q U I satisfying C =0 on T for
which

vi(x) < C(x) for xeQuUT and O<e<].
Proof. Define

u(x) = sup{v’(x): 0 < e < 1} for xeQuT.

By a simple calculation, we see that, for each r > 0 and 6 € (0, r), there is a constant
A = A(r, 6) > 0 having the following properties: if y € R" and B € R and if we set

A _
wx)=———+B for xeQ,
r—lx—yl
then we have
g? .
-5 AijWyx, + 7 QWi Wy, — biw, > 0

on QN B(y; )\B(y; 6) for 0 < ¢ < 1. Using such functions w with appropriate
r, 8, B, and y, we find that v is continuous at points of I" and that if v* is finite at a
point y € Q, then v* is bounded above on any closed ball contained in Q with center
at y. Therefore the closure, relative to Q, of the set {x € Q: v*(x) < o0} is nonempty
and open, and hence v*(x) < oo for x € Q by the connectedness of Q. Thus, we see
that the conclusion of Lemma 2.5 holds. O

Lemma 2.6. Let h be a continuous function on 0Q satisfying h > 1 on dQ and h = 0
on I'. Then I is a viscosity solution of

{% At by, — b, =0 inQ, @.11)

u=h or jaju,u, —bu, =0 on 0Q.
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This lemma can be proved as in the same manner as the proof of Theorem 3.1
of [16]. See also [10]. We leave the details to the reader.

Proof of Theorem 2.1. For ¢ > 0 let v* be a solution of (2.10) satisfying v* > 0 on
QUT. Fore >0 wedefinew,: QUI' >R U {o0} and z,: O - R by

w,(x) = sup{v’(1):0<d<e,yeQuUT, |y — x| <é&}
for xeQuT and

z,(x) = inf{t’(y): 0 < d <&, yeQuUT, |y — x| < ¢}
for x e Q. Finally set

w(x) = lim w,(x) for xeQuT
el 0
and
z(x) =limz,(x) for xeQ.
el0
By definition we have z, < z < w < w, on Q U I'. It is easy to check that w is upper
semicontinuous on Q U T and that z is continuous at points of I' and w =z =0
onl.
It is clear that v® is a viscosity solution of
82

L _ .
— 5 Gyl + 3 gy Uy, — b, =0 in Q.

In view of Proposition 2.3 we find that w is a viscosity subsolution of
3 auu, —bu, =0  inQ

This implies that w is Lipschitz continuous on Q U I'. We denote the continuous
extension of w to Q again by w. We select a continuous function h on 0Q so that
h=0on T and w<h and I <h on 9Q. It is obvious that w is a viscosity
subsolution of (2.11). From Lemma 2.6, I is a viscosity solution of (2.11).

Next we extend ¢° to Q by setting v¥(x) = oo for x € 9Q\I'. The resulting
function is a viscosity supersolution of

82

L .
5 Aijlyx, + 7 QiU Uy, — biu,, =0 in Q,
82
= 1 =
u=h or — 5 st + 3 @ Uty — bu, =0 on 0Q.

Therefore, by Proposition 2.3, we see that z is a viscosity supersolution of (2.11).
Let y be a function on Q satisfying (2.7) in Lemma 2.2. Note that if 6 > 0 is
sufficiently small and we set u(x) = dy(x) for x € Q, then

0 _
3 Gyjuy Uy, — bu,, < 5(5 @Y, — 1) <0 onQ.
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Thus, applying Proposition 2.4, we have w <z, I <z, and w < I on Q and so
w=z=JlonQulasw=>zonQuT.

Because of the monotone convergence of w, and z,, we see as in the proof of
Dini’s lemma that w, —» w and z, — z uniformly on compact subsets of QU I as
¢ | 0. This obviously guarantees that v* — I uniformly on compact subsets of Q U T’
ase | 0. O

The above arguments allow us to deal with the following situation: we consider
the Dirichlet problem for the HIB equation

2

max { — %— afu, . — b{fufci} =0 inQ,
2.12)

wi(x) =1 onI" and #(x)=0 on 0O\T,

for &€ > 0, where m is a positive integer and the matrices (af;(x)); <; j<, are real,

symmetric, and positive definite for k = 1,..., m and x € Q; and we raise the same

asymptotic question for the solution u® of (2.12) as before.

We write

K={1,....m}, a(k,x)=(a5;(X); i j<n» and b(k, x) = (b5 (x), ..., bi(x))
fork=1,...,mand x € Q. In place of (2.4) we now assume:
if £e HL.([0,00);RY, &t)eQ for t >0, and
k: [0, 0) » K is measurable, then (2.13)

ﬁé(t) — Bk, E(0)? di = )
0

We define L: K x Q x R"— [0, o0) by L(k, x, p) = a”(k, x)p;p;, where the a”(k, x)
denote the (i, j) components of the matrix a(k, x)" 1. We denote by " the set of
measurable functions on [0, o) taking values in K. We set

T, = inf{t > 0: &(t) ¢ Q)

and

Te

J(k, &) = %J L(k(z), &), &) — b(k(z), &) dt

for £ e HL ([0, 0); R") and ke #. For x € Q we denote by E, the set of those
¢ € Hy, ([0, c0); R™) which satisfy £(0) = x, T; < oo, and &(T;) eI, and by o, we
denote the set of those mappings a: o — =, which satisfy a(k) = a(k) on [0, £]
whenever t > 0, k, k€ o, and k = k a.e. on [0, £]. Finally, we define

I(x) = inf sup J(k, a(k)) for xeQ. (2.14)

aclx ke

We extend this function to Q by continuity, and we denote the extension again by I.
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Theorem 2.7.  Assume that the af; and b satisfy (2.1) and (2.2). Also assume (2.13).
Let uf € CH(Q) n C(Q\JT') be a solution of (2.12) satisfying 0 < u® < 1 on Q. Then

—¢2 log uf(x) — I(x) (2.15)

uniformly on compact subsets of QU T"as ¢ | 0.

Remarks. (i) Equation (2.12) is the dynamic programming equation of the
following optimal control problem: for x € Q we consider the stochastic differential
equation

{dXﬁ = b(k,, X}) dt + c(k,, X}) dW, for r>0, 2.16)

5=x as,

where W, is an n-dimensional Wiener process, k, is a control (i.e., a progressively
measurable process with values in K), and c(k, x) = a(k, x)'’>. We take
P(X:eT') = E(1:.(X%)) as the cost associated with the state equation (2.16), where
P and E denote the probability and the expectation, respectively, 7 is the first exit
time of X? from Q, i.e.,

1 for yerl,

t = inf{t > 0: X 0Q} and 11"()’)={0 for y¢T

and define the optimal cost by
u'(x) = inf E(11(X?)),

where the infimum is taken over all controls k,. Then the function u® on Q solves, at
least formally, (2.12).

(i) Equation (2.12) has a solution u®* € C*(Q) n C(Q\ I satisfying 0 < u* < 1
on Q. This can be proved by the following argument: we choose a sequence {y;} of
smooth functions on dQ such that 0 < 3, <10ondQ, y;=1o0onT, and y, =0 on
OQ\T';, where I'; = (x € R": dist(x, I') < 1/}; solve the problem (see [8] and [21])

2
€ .
max{. — o A, — bf-‘uii} =0 inQ

keK 2
ul =2 on 69,

and obtain a solution of (2.12) as the limit of «' by sending ! — cc. This limiting
argument is justified by the interior Holder estimate for the second derivatives of
solutions of HIB equations (see [8] and [21]) and the standard barrier argument.

We refer to [14], [24], [22], [13], [12], and [7] for some asymptotic results on
controlled diffusion processes related to the above theorem.

We do not give here the details of the proof of Theorem 2.7 but instead indicate
Jjust how to modify the proof of Theorem 2.1 in order to prove Theorem 2.7.

First, we define A to be the set of those mappings §: # — L2 ([0, o0); R")
which satisfy f(k) = B(k) a.c. on [0, t] whenever ¢t > 0, k, ke A, and k = £ a.e. on
[0, ¢]. For x e Q, ke A, and n € L% ([0, o0); R") we solve

{é(t) = a(k(t), S(OM(E) + bk(r), &(1))  for >0,

2.17
&0) = x, (217)
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and define

Jox, k) =% f L(k(t), &t), &) — blk(D), E@))) dt + xr(&(2)
i (2.18)
= %L a(k(t), S@OM®) - () dt + x(&(v)),

where 7 = inf{t > 0: {(t) € 0Q} and

o) = 0 for yeT,
V=90 for y¢l.

Then we easily see that

I(x) = inf sup J(x, k, p(k))  for xeQ.
BelA ket
The right-hand side of this identity reads as the lower value at x of the differential
game with (2.17) and (2.18), respectively, as its state equation and cost. This
interpretation leads to the conclusion (see [10]) that I is a viscosity solution of

min{% Al ty, — b{-‘uxi} =0 inQ. (2.19)
keK

Instead of Lemma 2.2 we now use

Lemma 2.8. Condition (2.13) is equivalent to the condition that

{ there is a C! function Y on Q such that

max by, < -1 onld (2.20)

keK

Also, in place of Proposition 2.4 we use

Proposition 2.9. Let he C(0Q) and, for k€ K, let H, be a real-valued continuous
function on Q x R". Let u and v be, respectively, viscosity sub- and supersolutions of

min H,(x, Du) =0 in Q.
kek
X (2.21)
w=h or min H(x,Du)=0 on 0Q.
keK

Assume that u is Lipschitz continuous on Q, u < h on 0Q, and p — H,(x, p) is convex
on R" for x € Q and k € K, and that there is a C* function y on Q such that max, g
H,(x, Dyr(x)) < 0 on Q. Then u < von Q.

The proofs of Lemma 2.2 and Proposition 2.4 are easily adapted to yield the
above two assertions, and we leave the details to the reader.

The arguments of the proof of Theorem 2.1 together with the above obvserva-
tions apply in proving Theorem 2.7.
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3. Estimate of the Rate of Convergence

Let Q and a = (a;;) be as in Section 2. Let 4 be a positive number. For ¢ > 0 we
shall deal with the boundary-value problem

2
U, T AU =0 in Q,

—_— ai.
2" (3.1)
u =1 on 0Q.
This problem has a unique solution belonging to C*(Q).
Let L: @ x R"— R be as in the first part of Section 2, and define
1
dist(x, 0Q) = inf J L&), E(t))VV? dt,
0
where the infimum is taken for all ¢ e H'([0, 1]; R") satisfying £(0) = x, &(t) € Q for
0 <t <1,and (1) € 0Q. We set dist(x, 0Q) = 0 for x € dQ, and finally

I(x) = (24)''? dist(x, 0Q)
= inf Jt & LE®), &) + A dt for xeQ, 3.2
0

where the infimum is taken over all & e HL ([0, o0); R") satisfying £(0) = x, and
7 = inf{t > 0: &(t) € 0Q}.
The following theorem partly refines a result by Varadhan [23].

Theorem 3.1. Assume (2.1) and (2.2). For ¢ > 0 let u® be the solution of (3.1). Then
there is a constant C > 0 such that

lelog uf(x) + I(x)| < Ce'?  for xeQ and &£>0. (3.3)

First we set
(x) = —¢glog u(x) for xeQ}

and observe that v* > 0 on Q and that v® satisfies

& £ 1 E & A 3 Q
5 GV, + 2 AU V5, = in Q.
(3.4)

¥ =0 on 0Q.

Using barrier functions x —r~? — |x — y| ~? with appropriate r >0, p > 0,
and y e Q, we easily deduce this:

Lemma 3.2. There is a Lipschitz continuous function C on Q satisfying C = 0 on 0Q
Jor which

(x)<C(x) for xeQ and e>0. (3.5
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Lemma 3.3. The function I is Lipschitz continuous on Q and a viscosity solution of
Faucu, =4  inQ (3.6)
A proof of this lemma is found in [9].

If we follow the scheme explained in Section 2, then we can conclude rather
easily that

—e¢ log u*(x) — I(x)

uniformly on Q as ¢ | 0. This convergence result is due to Varadhan [23].

Proof of Theorem 3.1. Let I be the function defined by (3.2) and let v* be a solution
of (3.4). Let o > 0and 0 < v < 1 be numbers to be fixed later. Define ®@: Q x Q —» R
by

1 _
<I>(x,y):vI(X)—v‘(y)—z.;Ix—yl2 for x,yeQ

Suppose that @ attains its maximum over Q x Q at a point (%, 7)€ Q x Q.
Then

—a;()D,, (=0 and @,(3)=0 for i=1,...,n
Using these we get

zTr a(y) + &27 aij(j))(ii - j)i)()_cj - 5’,) > 4, (3.7

since v* is a solution of (3.4). Also, using that I is a viscosity subsolution of (3.6) (see
Lemma 3.3), we have

2 e e =
2 a;;(X)(x; ~ yi)X; —y;) < vZi. (3.8)
This together with (2.2) implies that |x — y| < Ca for some constant C > 0,

independent of o and v. In view of (2.1) we may assume that | a(x) — a(y)|| <
C|x — y| and | Tr a(x)| < C for x, y € Q. Now subtracting (3.8) from (3.7) yields

2C . _ I
o X -y + C; > (1 —v)i,
and hence

2C% + Cs > (1 — v (3.9)

Hereafter we set C, = 2(2C* + C)/4 and assume that ¢ is sufficiently small;
namely ¢ < C; 2. We now fix a = ¢'/? and v = (1 — C,&*/?)¥/2, This means that

2
20+ CE =21,
a 2



Remarks on Elliptic Singular Perturbation Problems 13

and hence we have
2C% + CC < (1 — vy,
o

a contradiction to (3.9). That is, @ with « and v being fixed in this way does not
attain its maximum at any point of Q x Q.
In view of Lemmas 3.2 and 3.3 we may assume that

H(x) ~I(y»)| < Clx —y| and [v°(x) —v(y)| < C|x — y|
for (x, y) € 6(Q x Q) and ¢ > 0. This yields

1
(IJ(x,y)sC|x—y|—&|x—y|2 for (x,y)ed(Q x Q).
Thus we conclude

1
O<sup(vI — v ) <sup®< max {Clx—yl——|x—y|2}
o o

QxQ (x,y)ed(Q x Q)

That is, we have
1
0<sup(vI — ") < C|x _y|—&|x —y?
Q

for some (x, y) € &(Q x Q), which in particular yields |x — y| < Ca. Therefore
sup(vl — v*) < Co,

and so
I(x) — v%(x) < Ca + (1 — WI(x) < C, &2

for xeQ and 0 < ¢ < C;? and for some constant C,.
If we proceed as above with

1
O(x, y) = v*(x) — vI(y) — X = yI?

where v > 1 and a > 0, then we have
v*(x) — I(x) < C5e'?

for x € Q, for & > 0 sufficiently small, and for some constant C,. Since I is bounded
on Q and {v*} is uniformly bounded on ), we see that (3.3) holds for some
constant C. tl

The above arguments are casily adapted to the proof of the following
generalization of Theorem 3.1. We consider the Dirichlet problem

2
& .
max {— = aful,., + /lub} =0 inQ,

keK 2

(3.10)
u'=1 on 0Q,
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where K = {1,..., m} for some positive integer m. Let L: K x Q x R* — R and o~
be as in the second part of Section 2. Let x € Q. We denote by E, the set of those
functions & € Hj ([0, c0); R") which satisfy £(0) = x and by .7, we denote the set of
those mappings a: 4 — =, which satisfy a(k) = «(k) on [0, ] whenever t >
0,k ke A, and k = k a.e. on [0, ]. We set

oA} ={oed;oak)1)edQand a(k)(t)eQforke # and 0 <t < 1}

and define

I(x) = 2)Y* inf sup f 1 L(k(D), &), E@)Y2 dt,  where ¢ =a(k). (3.11)

aesdL ket JO

It is not hard to see that

I() = inf sup j " @ L), 0, 60 + ) di,
0

aed kel
where & = a(k) and 7 = inf{r > 0: &(z) € 0Q}.

Our generalization of Theorem 3.1 is:

Theorem 3.4. Assume that the af; satisfy (2.1) and (2.2). Then there is a constant
C > 0 such that

lelog u®(x) + I(x)| < Ce*’*  for xeQ and O<e< 1. (3.12)

The uniform convergence of — ¢ log u(x) to I(x) as ¢ | 0 is proved by Koike
[18]. We refer to [18] for the motivation to this asymptotic problem and some
properties of the function I. We leave the proof of the above theorem to the reader
as it is similar to the proof of Theorem 3.1.
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