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Abstract. We show the effectiveness of viscosity-solution methods in asymp- 
totic problems for second-order elliptic partial differential equations (PDEs) 
with a small parameter. Our stress here is on the point that the methods, based 
on stability results [3], [16], apply without hard PDE calculations. We treat 
two examples from [11] and [23]. Moreover, we generalize the results to those 
for Hamilton Jacobi Bellman equations with a small parameter. 

1. Introduction 

The effectiveness of viscosity-solution methods has been demonstrated in the study 
of asymptotic problems for second-order partial differential equations (PDEs) with 
small parameters. The basic scheme of applying viscosity-solution methods to such 
perturbation problems consists of obtaining the estimates of solutions, indepen- 
dent of the small parameters, which allow us to pass to the limit and of identifying 
the limit of the solutions, as parameters tend to zero, with the viscosity solution of 
the limiting equation. Such estimations of solutions usually involve hard technical 
calculations. We refer to [1], [9], [12], [17], and [183 for viscosity-solution 
approaches to singular perturbation problems, and also to [19] for various aspects 
of applications of viscosity solutions. 

* H. Ishii was supported in part by the AFOSR under Grant No. AFOSR 85-0315 and the 
Division of Applied Mathematics, Brown University. 
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The purpose here is to point out that there are cases where we can handle the 
problem without hard PDE calculations. As typical examples, we treat two 
asymptotic problems for linear uniformly elliptic equations with a small parameter 
from [11] and [23]. These problems have already been studied in 1-9] in light of 
viscosity-solution methods. However, the treatment of such problems seems to 
make clear the difference of our new approach from the classical ones [9]. 
Moreover, we generalize the results to those from Hamilton-Jacobi-Bellman (HJB 
in short) equations with a small parameter. 

In section 2 we deal with a problem treated in [11] using a recent theory of 
viscosity solutions developed for a boundary problem of the Dirichlet type for 
Hamilton-Jacobi equations. We also discuss a generalization of the problem to 
that for HJB equations. In Section 3 we study a problem treated in [23] using a 
modification of the techniques in 1,6] together with an idea from 1-15]. We apply 
this method to the problem treated in [18]. 

After the completion of this work, the authors learned that Bardi [2] 
independently established an approach to Theorem 2.1 similar to theirs based on 
the theory of viscosity solutions of state constraint problems. 

2. Application of Viscosity Solutions satisfying a Boundary Condition of 
the Dirichlet Type 

Let ~ be a bounded domain in ~" with smooth boundary. We denote the space of 
n × n real symmetric matrices by S". Let a = (alj): ~ ~ S" and b = (bO: ~ ~ ~" be 
given functions. We assume 

ai~, bi ~ C2(~) for i , j  = 1 . . . . .  n, (2.1) 

and that there is positive number 0 such that 

a i ~ i ~ j > O l ~ J  2 for x~ f~  and ¢ ~ " .  (2.2) 

Here and later we use the usual summation convention. Let F be a given, 
nonempty, relatively open subset of t3f~. We are concerned with the boundary-value 
problem 

~2 
-- ~ aijU~ix j --  biu~, = 0 in fL 

u ' (x )  = 1 on F, 

u~(x) = 0 on drY\F, 

(2.3) 

where e is a positive parameter. Note that (2.3) has a solution belonging to 
C2(t) \~F) and satisfying 0 < u' < 1 on f~. See Remark (ii) below for an argument 
related to ' the existence of a solution of (2.3). 

Equation (2.3) was studied by Fleming [11] in connection with the asymptotic 
problem for the exit probability, from F, of solutions of stochastic differential 
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equat ions with a small parameter.  Fol lowing [11], we introduce the condi t ion:  

if ~ n l o c ( [ 0 , ~ ) ; ~ " )  and ¢ ( t ) ~  for t > 0 ,  then 

fo °l~(t) - b(~(t))l 2 = ~ .  (2.4) dt 

We define L: D × ~" ~ [0, oo) by L(x,  p) = ai~(x)pipj where the a°(x)  denote  the 
(i,j) components  of the inverse matr ix a(x) -1, and, under  the above hypothesis,  
1: f~ ~ [0, ~ )  by 

fo I (x)  = inf½ L(~(t), ~(t) -- b(~(t))) dt, (2.5) 

where the infimum is taken for all r > 0 and ~ e/-/1([0, T] ;  R ") satisfying 4(0) = x, 
~(t) e f~ for t e [0, T), and ~(T) e F. It is easy to check that  I is Lipschitz cont inuous 
on f~, I > 0 on f~, and I (x)  ~ 0 as x --* F. We denote  the cont inuous  extension of I 
to ~ again by I. Obviously,  I = 0 on F. We intend to prove the following theorem 
due to Fleming [11] by our  new method.  

Theorem 2.1. Assume (2.1), (2.2), and (2.4). For each e > 0 let u ~ e C2(~\ t3F)  be a 
solution of(2.3) satisfying 0 <_ u ~ <_ 1 on f~. Then 

- e  a log u~(x) ~ I(x) (2.6) 

uniformly on compact subsets of  f~ w F as e ~ O. 

We begin with some preliminaries concerning condi t ion (2.4) and viscosity 
solutions of boundary-value  problems. 

Lemma  2.2. Condition (2.4) is equivalent to the condition that 

~ there is a C 1 function ~ on ~) such that 
(2.7) 

[ bi~,x, G -- 1 on f~. 

Proo f  The proof  that  (2.4) implies (2.7) can be found in [1]. We shall show that  
(2.7) implies (2.4). Assume (2.7), and let ~k be a C 1 function on D satisfying 
bi~O~, < - 1 on ~. Let  ¢ ~ H~oc([0, oo); R") satisfy ~(t) e ~) for t >_ 0. Then  

f: ~k(~(T)) -- ~k(~(O)) = D~b(~(t)). ~(t) dt 

;o- = {(~(t) - b(~(t))).  DO(~(t)) + b(~(t)).  D0(~(t))} dt 

<_ ]~(t) - b(~(t))l 2 dt T 1/2 max]D~]  - T 

for T > O, where D~ denotes the gradient  of  ~b. Hence 

{; Z < 2 maxl01 + Z lie maxlD01 I~(t) -- b(~(t))l e dt 
fi f i -  
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for T > O. This  implies 

fo ° [~(t) b(~(t))[ 2 dt = oo, 

proving  our  assert ion.  [ ]  

Fo l lowing  [5],  [20], [3],  and  [16], we now recall  the def ini t ion of  viscosity 
solut ions  of  the p rob l em 

F(x, u, Ou, D2u) = 0 in f~, 
(2.8) 

u = h  or  F(x, u, Du, D2u) = O o n Z .  

Here  £ is an open  subset  of 0~,  h: Z --* N is a given function,  F :  ~ u Z x R x R" x 
S" --* R is a given function,  u: ~ u Z --* N is the u n k n o w n  function,  and  D2u denotes  

the Hess ian  mat r ix  of  u. 
F o r  funct ion u: f~ u £ ~ R u { -  0% oo} we define 

by 

u*, u,:  ~ u :C--, R u { -  oo, oo} 

u*(x) = lim sup{u(y): y • f l u  Z, lY --  xl _< r} 
r.~0 

and  

u, (x)  = l im inf{u(y): y • f2 ~v E, lY - xl _ r} 
r+0 

F o r  funct ion F :  f~ u E x ~ x R" x S" -o ~ we define 

F*(x, r, p, A) = lim sup{F(y,  s, q, B): (y, s, q, B) e ~ w Z x ~ x ~" x S ", 
6+0 

[y -- x] < 6, ls -- rl < 6, ]q -- p] < 6, ] l B -  A[] < 6 }  

and  

F, (x ,  r, p, A) = lira inf{F(y, s, q, B): (y, s, q, B) • f~ w E x N x N" x S", 
6+0 

ly - xl < (~, ls - rl < 6, ]q - PI < 6, IIB - AI[ < 6 }  

We call a funct ion u: f l  w Z -o N u { -  oo} a viscosity subsolution of (2.8) p rov ided  
u*(x) < oo for x • f~ u E and  whenever  q~ • C2(f~ u Z) and  u* - q~ a t ta ins  its local  

m a x i m u m  at a po in t  y • f~ w Z, then 

f , ( y ,  u*(y), Dq~(y), D2~o(y)) _< 0 if y • n 

and  

u*(y) <_ h*(y) or  F,(y ,  u*(y), DO(y), DEq~(y)) __ 0 if y e E. 

Similarly,  we call a funct ion u: f~ w Z -* N w {oo} a viscosity supersolution of (2.8) 
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provided u , (x )  > - ~ for x E f~ w E and whenever ~o ~ C2(~~ k.) Y~) and u ,  - ~o 
attains its local min imum at a point  y e f~ w E, then 

F*(y, u,(y), D~o(y), D2~o(y)) > 0 if y ~ 

and 

u,(y)  >_ h , (y)  or F*(y, u,(y) ,  D~p(y), D2(p(y)) >_ 0 if y e E. 

A viscosity solution of (2.8) is defined to be a function on f2 w E which is bo th  a 
viscosity sub- and supersolution of (2.8). When  E = ~ ,  a viscosity solution (resp. 
subsolution or  supersolution) of (2.8) is also called a viscosity solution (resp. 
subsolution or  supersolution) of F(x,  u, Du, D 2 u )  : 0 in f~. 

The main  tools in our  p roof  of Theorem 2.1 are the following two proposit ions.  

Proposi t ion 2.3. For e > 0 let F,: ~ w Z, x ~ x g~" x S" ~ ~ be given and let u~ be 
a viscosity subsolution (resp. supersolution) of(2.8) with F~ in place o fF .  Set 

u(x) = lim sup{u~(y); 0 < e < 6, y E t~ w E, lY -- xl < 6} 
,5+0 

for  x ~ f~ w Z and 

F(x,  r, p, A) = lim inf{F,(y, s, q, B): 0 < e < 6, (y, s, q, B) ~ f~ w E 
6£0 

x R x  R " x S " , l y - x l < 6 , 1 s - r l < 6 , 1 q - p l < 6 ,  

II n - a II < 6} 

for  ( x , r , p , A )  e f l w  E x ~ x R" x S "(resp. 

u(x) = lim inf{u~(y): 0 < e < 6, y e f~ w E, lY -- xl < 6} 
6,LO 

and 

F(x, r, p, A) = lim sup{F~(y, s, q, B): 0 < e < 6, (y, s, q, B) ~ f~ u ]E 
6J, 0 

x ~ x  ~ " x S " , l y - x l < O ,  l s - r l < O ,  l q - p I < 6 ,  

II n - A II < 6} 

for  (x, r, p, A)  ~ f l  w Z x R x R ~ x S"). Assume u is locally bounded on f~ ~ ~,. Then 
u is a viscosity subsolution (resp. supersolution) of(2.8). 

Stability results for viscosity solutions were first obtained by Crandal l  and 
Lions [5]. This general result is due to Barles and Per thame [3] in the case of  first- 
order  Hami l ton - Jacob i  equat ions and is observed by Ishii [16] in the general case. 
We refer to [3] and [16] for the proof. 

Proposi t ion 2.4. Let  H be a real-valued continuous function on ~ x R". Let  u and v 
be, respectively, viscosity sub- and supersolutions o f  

H(x ,  Du) = 0 in f~, 
(2.9) 

u = h or H(x ,  Du) = O on O~. 
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Assume that h is continuous on Off~, u < h on dO, u is Lipschitz continuous on ~ ,  and 
p ~ H(x,  p) is convex on Rnfor x ~ ~. Assume in addition that there is a Cl funct ion d/ 
on ~ such that H(x,  D~b(x)) < 0 in ~. Then u < v on 1"). 

This assertion is proved in [-16]. 
Let u ~ be a solution of  (2.3) satisfying 0 < u ~ < 1 on ~. We observe, by setting 

v,(x) = _e2  log u~(x) for x ~ fl w F, 

that  v ~ is positive on ~ and solves 

- 2 ai~v~,~j + ½ aijv~,v~j - biv~ = 0 in fL 

(2.1o) 
v ' = 0 on F, 

v~(x) ~ ~ as x --* ~ \ P .  

Lemma 2.5. There is a continuous function C on f~ w F satisfying C = 0 on F for  
which 

v"(x) <_ C(x) for  x s l) w F and O < e < 1. 

Proof. Define 

v ( x ) = s u p { v " ( x ) : O < e < l }  for x e ~ w F .  

By a simple calculation, we see that, for each r > 0 and 6 e (0, r), there is a constant  
A = A(r, 6) > 0 having the following properties:  if y e N" and B E N and if we set 

A 
w(x) = + B for x e ~ ,  

r -  l x - -  yJ 

then we have 

/3 2 

2 aijWx'xj + ½ a° w~i wx~ - bi wx' > 0 

on 1") n B(y; r ) \B (y ;  6) for 0 < e < 1. Using such functions w with appropr ia te  
r, 6, B, and y, we find that  v is cont inuous at points of  F and that  if v* is finite at a 
point  y ~ ~,  then v* is bounded  above on any closed ball conta ined in ~ with center 
at y. Therefore the closure, relative to ~ ,  of  the set {x ~ ~ :  v*(x) < ~ }  is nonempty  
and open, and hence v*(x) < ~ for x e ~ by the connectedness of  ~. Thus, we see 
that  the conclusion of  L e m m a  2.5 holds. [ ]  

Lemma 2.6. Let  h be a continuous function on Of~ satisfying h > I on O~ and h = 0 
on F. Then I is a viscosity solution o f  

½U aijUx~Uxj -- biux' = 0 in 1), 
(2.11) 

= h or ½ aijux, Uxj - biux, = 0 on ~ff2. 
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This lemma can be proved as in the same m a n n e r  as the proof  of Theorem 3.1 
of [16]. See also [10]. We leave the details to the reader. 

Proof of Theorem 2.1. For  e > 0 let v e be a solut ion of (2.10) satisfying v e > 0 on  

l) w F. Fo r  e > 0 we define we: f~ w F ~ ~ u { ~ }  and  z , : ~  R by 

we(x ) = sup{vO(y): 0 < 6 < e, y e f~ w F, lY - xl < e} 

for x ~ f~ w F and  

ze(x) = inf{v~(y): 0 < 6 < ~, y e f~ w F, lY -- xl < e} 

for x ~ ~.  Final ly  set 

w(x) = lim we(x) for x e f~ w F 
eJ.o 

and  

z(x) = lim ze(x ) for x ~ ~.  

By definit ion we have ze < z < w < w~ on f~ w F. It is easy to check that  w is upper  
semicont inuous  on ~ w F and  that  z is con t inuous  at points  of F and  w = z = 0 

on F. 

It  is clear that  v ~ is a viscosity solut ion of 

~2 

2 aijUxix~ q- ½ aijux, ux~ - biuxi = 0 in  ~). 

In  view of Propos i t ion  2.3 we find that  w is a viscosity subsolu t ion  of 

½ aijUx, Uxj bluxi = 0 in f~. 

This implies that w is Lipschitz con t inuous  on f~ u F. We denote  the con t inuous  
extension of w to ~ again by w. We select a con t inuous  funct ion h on 3fl so that  
h = 0 on F and  w < h and  I < h on  Off. It  is obvious  that  w is a viscosity 
subsolu t ion  of (2.11). F r o m  Lemma  2.6, I is a viscosity solut ion of (2.11). 

Next  we extend v ~ to ~ by setting ve(x)= ~ for x e 0f~\F .  The result ing 
funct ion is a viscosity supersolut ion of 

- ~ ai~u~i~j + ½ ai~u~u~j - blux, = 0 in ~,  

~2 
u = h  or 1 _ - - ~  aijUx,xj 4- ~ aijux, uxj biux, = 0 on 0f~. 

Therefore, by Propos i t ion  2.3, we see that  z is a viscosity supersolut ion of (2.11). 
Let ~k be a funct ion on ~ satisfying (2.7) in L e m m a  2.2. Note  that  if 6 > 0 is 

sufficiently small and  we set u(x) = 6~,(x) for x e f~, then 

½a,ju~,u~-b, ux,< 6(~ a,~qJx,~k~j--1)<0 on ~.  
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Thus, applying Proposi t ion  2.4, we have w < z, I < z, and w _< I on ~ and so 
w = z = I o n ~ w F a s w > z o n ~ w F .  

Because of  the m o n o t o n e  convergence of  w~ and z~, we see as in the p roof  of  
Dini 's lemma that  w~ ~ w and z~ ~ z uniformly on compact  subsets of  fl w F as 

+ 0. This obviously guarantees that  v ~ - .  I uniformly on compact  subsets o f ~  w F 
as e ,L O. [ ]  

The above arguments  allow us to deal with the following situation: we consider 
the Dirichlet problem for the HJB equat ion 

max t -  - b i u ~ ,  - 0  in f l ,  1 <k<_m k 2 aljUx~xj k e _ _  

- ( 2 . 1 2 )  

u~(x) = 1 on F and u~(x) = 0 on Of 2 \F ,  

for e > 0, where m is a positive integer and the matrices (a~j(x))l<i,j<, are real, 
symmetric, and positive definite for k = 1 . . . . .  m and x ~ ~ ;  and we raise the same 
asymptot ic  question for the solution u ~ of  (2.12) as before. 

We write 

K = {1 . . . . .  m}, a(k, x) = (a~j(x))~<_,,j<_., and b(k, x) = (bk(x) . . . . .  bk,(x)) 

for k = 1 . . . . .  m and x e ~. In  place of (2.4) we now assume: 

if 4 e H ~ o ¢ ( [ 0 , ~ ) ; R " ) ,  4 ( 0 e ~  for t>_0,  and 

k: [0, oo) ~ K is measurable,  then (2.13) 

f ~°l~(t ) -- b(k(t), ~(t)) = oo.) 2 dt 
0 

We define L:  K x ~ x R" --* [0, oo) by L(k, x, p) = a~J(k, x)p~pj, where the a~J(k, x) 
denote the (i, j) components  of  the matrix a(k, x ) -  1. We denote by ~ff the set of  
measurable functions on [0, oo) taking values in K. We set 

and 

T¢ = inf{t > 0 : 4 ( 0  ¢ ~} 

J(k, 4) = ½ f : ~  L(k(t), ~(t), ~(t) - b(k(t), 4(0)) dt 

for ~ e H~oc([0, or); R") and k e #g. For  x e ~ we denote by ~x the set of those 
4 e H~o¢([0, oo); R") which satisfy 4(0) = x, T¢ < o% and 4(T¢) e F, and by dx  we 
denote the set of those mappings  ~: J f  ~ E ,  which satisfy e(k) = a(~) on [0, t] 
whenever t > 0, k, ~ e J~(, and k = ~" a.e. on  [0, t]. Finally, we define 

I(x) = inf sup J(k, ~(k)) f o r  x s f t .  ( 2 . 1 4 )  
~t e,~tx ke.~ff 

We extend this function to ~ by continuity,  and we denote  the extension again by I. 
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Theorem 2.7. Assume that the akj and b k satisfy (2.1) and (2.2). Also assume (2.13). 
Let u ~ ~ C2(fl) c~ C ( f l \ 0 F )  be a solution o./'(2.12) satisfyin9 0 < u ~ <_ 1 on fla. Then 

- e  z log u~(x) --+ l (x )  (2.15) 

uniformly on compact subsets o f  ~ vo F as e ~ O. 

Remarks .  (i) Equa t ion  (2.12) is the dynamic  p r o g r a m m i n g  equa t ion  of the 
following op t imal  control  p roblem:  for x e fl  we consider  the stochastic differential 
equat ion  

{dX~ = b (k .  X~) dt + c(k,, X~) dWt for r > O, 
X~ = x a.s., (2.16) 

where W, is an n-dimensional  Wiener  process, k t is a control  (i.e., a progressively 
measurable  process with values in K), and  c ( k , x ) =  a (k , x )  x/2. We take 
P(X~ e F) = E( l r (X~)  ) as the cost associated with the state equa t ion  (2.16), where 
P and E denote  the probabi l i ty  and the expectat ion,  respectively, z is the first exit 
t ime of X~ f rom ~1, i.e., 

= inf{t > 0: X~ E Off} and 

and define the opt imal  cost by 

u~(x) = inf E(lr (X~)) ,  

10 for y E F ,  
l r ( y ) =  for y C F ,  

where the inf imum is t aken  over  all controls  k r Then  the function u ~ on ~1 solves, at 
least formally,  (2.12). 

(ii) Equa t ion  (2.12) has a solution u ~ ~ C2(~1) c~ C( f l \OF)  satisfying 0 _< u ~ _< 1 
on fl. This can be proved  by the following a rgument :  we choose a sequence {Zl} of 
smoo th  functions on Of 2 such that  0 < Zt < 1 on ~11, Z~ = 1 on F, and  Z~ = 0 on 
O~)\F~, where F~ = (x ~ ~": dist(x, F) < l/l}; solve the p rob lem (see [81 and  [211) 

} _ a k u l k l max  ~ ij xix~ - biuxi = 0 in 

[ u ~ = Z~ on ~f~; 

and obta in  a solution of (2.12) as the limit of u ~ by sending l --+ c~. This l imiting 
a rgument  is justified by the interior H61der est imate for the second derivatives of  
solutions of H J B  equat ions  (see [81 and [21])  and  the s tandard  barr ier  a rgument .  

We refer to [14], [241, [22], [13], [121, and  [7] for some asympto t ic  results on 
control led diffusion processes related to the above  theorem.  

We do not  give here the details of  the p roo f  of  T h e o r e m  2.7 but  instead indicate 
just  how to modify  the p roo f  of  T h e o r e m  2.1 in order  to prove  Theo rem 2.7. 

First, we define A to be the set of those mapp ings  fl: ~ -~ L2oc([0, ~ ) ;  R") 
which satisfy fl(k) = fl(~') a.e. on [0, t] whenever  t > 0, k, ~" ~ ~ff, and k = ~" a.e. on 
[0, t]. Fo r  x ~ ~,  k ~ of, and  ~/~ L2oc([0, ~ ) ;  R") we solve 

(~(t)  -- a(k(t), ~(t))q(t) + b(k(t), ~(t)) for t > 0, 
(2.17) 

~ ( 0 )  = x ,  
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and define 

fo J(x,  k, q) = ½ L(k(t),  ~(t), ~(t) - b(k(t), ~(t))) dt + Xr(~(z)) 

(2.18) 
= ~ a(k(t), ~(t))q(t). q(t) dt + Zr(~(z)), 

where ~ --- inf{t > O: ~(t) e 0~} and 

{ 0  for y ~ F ,  
Zr(Y)= for y C F .  

Then we easily see that 

I (x)  = inf sup J(x,  k, fl(k)) for x ~ ~. 
#cA keel" 

The right-hand side of this identity reads as the lower value at x of the differential 
game with (2.17) and (2.18), respectively, as its state equation and cost. This 
interpretation leads to the conclusion (see [10]) that I is a viscosity solution of 

mini½ akjux, Ux~ -- bkUx, ~ ----0 in f~. (2.19) 
k ~ K  ~. ) 

Instead of Lemma 2.2 we now use 

Lemma 2.8. Condition (2.13) is equivalent to the condition that 

~there is a C a function ~ on ~ such that 

k max bi ~bx, < - 1 on ~.  
k ~ K  

(2.20) 

Also, in place of Proposition 2.4 we use 

Proposition 2.9. Let  h E C(Of~) and, for  k ~ K,  let H k be a real-valued continuous 
function on ~ x ~". Let  u and v be, respectively, viscosity sub- and supersolutions of  

rain Hk(X, Du) = 0 in ~.  

k~r (2.21) 
u = h or mink~Hk(x, D u ) = 0  on Of~. 

Assume that u is Lipschitz continuous on ~), u < h on Ofl, and p ~ Hk(X, p) is convex 
on ff~" for  x ~ f~ and k E K,  and that there is a CX function ~k on ~ such that maxk~ x 
Hk(X , D~k(x)) < 0 on ~). Then u <_ v on ~). 

The proofs of Lemma 2.2 and Proposition 2.4 are easily adapted to yield the 
above two assertions, and we leave the details to the reader. 

The arguments of the proof of Theorem 2.1 together with the above obvserva- 
tions apply in proving Theorem 2.7. 
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3. Estimate of the Rate of Convergence 

Let  f~ and  a = (ali)  be as in Sect ion 2. Let  2 be a posi t ive  number .  F o r  e > 0 we 
shall  deal  with the b o u n d a r y - v a l u e  p rob l em 

/ -- 2 alju~ixJ + 2u" = 0 in ~ ,  (3.1) 

u ~ = 1 on c~f~. 

This p rob lem has a unique  so lu t ion  be longing  to c e ( ~ ) .  
Let  L: f~ x N" ~ N be as in the first pa r t  of  Sect ion 2, and  define 

dist(x,  8~)  = inf L(~(t), ~(t)) 1/2 dt, 

where the inf imum is t aken  for all ~ • H i ( [ 0 ,  1]; N") sat isfying ~(0) = x, ~(t) • ~ for 
0 _< t < 1, and  ~(1) • ~?f~. W e  set dist(x,  8~)  = 0 for x • 8~,  and  finally 

I(x)  = (22) t/2 dist(x,  0~)  

fo - inf (½ L(~(t), ~(t)) + 2) dt for x • ~ ,  (3.2) 

where the inf imum is t aken  over  all ~ • Hilo~([0, oo); N") satisfying ~(0) = x, and  
z = inf{t _> 0: ~(t) • 8~}. 

The  fol lowing theorem par t ly  refines a resul t  by  V a r a d h a n  [23]. 

Theorem 3.1. Assume (2.1) and (2.2). For e > 0 let u ~ be the solution of(3.1). Then 
there is a constant C > 0 such that 

le log u~(x) + I(x)l <~ Ce x/z for  x • f~ and e > O .  (3.3) 

F i r s t  we set 

v~(x) = - e  log u~(x) for x • ~ ,  

and  observe tha t  v ~ > 0 on  ~ and  tha t  v ~ satisfies 

8 e aij ~)xi ~)Xj __ 2 a i jVx ix j  + 1 e ~ = 2 in  ft .  

v ~ = 0 on  8~.  

(3.4) 

Us ing  bar r i e r  funct ions x --* r -p  - Ix - y [ - P  with  a p p r o p r i a t e  r > O, p > O, 
and  y • ~¢, we easi ly deduce  this:  

L e m m a  3.2. There is a Lipschitz continuous function C on ~ satisfying C = 0 on ~ 
for  which 

v~(x) < C(x) for  x • ~ and e > 0 .  (3.5) 
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Lemma 3.3. The function I is Lipschitz continuous on ~ and a viscosity solution of  

½ aijUx, U~j : 2 in f~. (3.6) 

A proof  of  this lemma is found in I-9]. 
If  we follow the scheme explained in Section 2, then we can conclude rather 

easily that  

- e  log u~(x) ~ I(x) 

uniformly on ~ as e $ 0. This convergence result is due to Varadhan  [23]. 

Proof  of  Theorem 3,1. Let I be the function defined by (3.2) and let v ~ be a solution 
of(3.4). Let ~ > 0 and 0 < v < 1 be numbers  to be fixed later. Define ~ :  ~ × ~ ~ 
by 

@(x, y) = vI(x) - v~(y) - 1-Ix - y]2 for x, y e ~. 
Ct 

Suppose that  @ attains its max imum over ~ x ~ at a point  (2, Y)e f2 x f~. 
Then 

-aij(9)@r,r~(9) > 0 and ~, , (9)  = 0 for i = 1 . . . . .  n. 

Using these we get 

e 2 
-~ Tr a(9) + ~ ai~(9)(Y¢, -- Yi)(~ -- Yi) > 2, (3.7) 

since v ~ is a solution of  (3.4). Also, using that  I is a viscosity subsolution of  (3.6) (see 
Lemma 3.3), we have 

2 
~ aij(Yc)(Yci --  Y i ) (x j  -- Y j )  ~ V22. (3.8) 

This together with (2.2) implies that  I ~ -  Y[ < C~ for some constant  C > 0, 
independent of  ~ and v. In view of (2.1) we may  assume that If a(x) - a(y)11 -< 

CIx - y[ and [Tr a(x)l < C for x, y e f~. N o w  subtract ing (3.8) f rom (3.7) yields 

2C [ ~ -  913 + C -e > (1 - v2)A, 
~2 0~-- 

and hence 

c£ 2C3e + _> (1 - v2)2. (3.9) 
0~ 

Hereafter we set C 1 = 2(2C 3 + C)/2 and assume that  e is sufficiently small; 
namely e < C~ z. We now fix e = el/2 and v = (1 - Clea/2) a/z. This means that 

c 2C3~ + = (1 - -  V 2 ) ,  
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and hence we have 

2C3~ + C < (1 - re)2; 
C( 

a contradict ion to (3.9). Tha t  is, @ with e and v being fixed in this way does not  
attain its max imum at any point  of f~ x f~. 

In  view of  Lemmas  3.2 and 3.3 we m a y  assume that  

I I(x) - I(Y) I < c Ix - y l and I : ( x )  - : (Y)  I < C Ix - Y l 

for (x, y) • 0(f~ x f~) and e > 0. This yields 

@(x, y) _< f i x -  Yl ~1 - x -  ~:12 for 

Thus we conclude 

O < s u p ( v I - v  ~)< supqb_< 
E~ ~ x ~  

That  is, we have 

(x,  y )  • O(f~ x f~). 

max {Cx ,2} 
( x , y ) e O ( f ~  × f~) 

1 
0 < sup ( v I -  : )  < C I x -  Y l -  i l x  - yl 2 

Q 

for some (x, y) e t?(f~ x f~), which in part icular  yields Ix - Y l < Ce. Therefore 

s u p ( v / -  v ~) < Cot, 

and so 

I ( x )  - v~(x) < Co~ + (1 - v ) I ( x )  <_ C2 el/2 

for x • ~ and 0 < e < Ci -2 and for some constant  C2. 
If we proceed as above with 

qb(x, y) = v~(x) -- v I (y)  --  l-Ix - yl  2, 
O~ 

where v > 1 and c~ > 0, then we have 

: ( x )  - I ( x )  < C3 el/2 

for x • ~,  for e > 0 sufficiently small, and for some constant  C3. Since I is bounded  
on ~ and {v '} is uniformly bounded  on t), we see that  (3.3) holds for some 
constant  C. [ ]  

The above arguments  are easily adapted  to the p roof  of  the following 
generalization of  Theorem 3.1. We consider the Dirichlet problem 

max{ " } k~K 2 auUx'xj + 2u~ 0 in fL (3.10) 

u ~ = 1 on t?f~, 
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where K = {1 . . . . .  m} for s o m e  posit ive integer m. Let L: K x ~) x ~" --* ~ and X" 
be as in the second part of  Sect ion 2. Let x ~ ft. We  denote  by E x the set o f  those  
functions ~ E Hloc([0, ~ ) ;  ~") which satisfy 3(0) = x and by Mx we denote  the set o f  
those  mappings  ~: ~ ~ - = x  which satisfy ~t(k)= ~(~) o n  [0, t] whenever  t > 
0, k, k" e X', and k = ~ a.e. on  [0, t]. W e  set 

M~ = {~ e d~:  ~(k)(1) ~ ~fl  and c~(k)(t) ~ t) for k e ~ff and 0 < t < 1} 

and define 

fo I(x) = (22) 1/2 inf sup L(k(t), ~(t), ~(t)) 1/2 dr, where ~ = e(k). (3.11) 
~t ~ ~¢ Ix k a ~  r 

It is not  hard to see that 

;o I(x) = inf sup (½~ L(k(t), ~(t), ~(t)) + 2) dt, 

where ~ = c~(k) and z = inf{t > 0: ~(t) e (?f~}. 

Our general izat ion of  Theorem 3.1 is: 

Theorem 3.4. Assume that the ai~ satisfy (2.1) and (2.2). Then there is a constant 
C > 0 such that 

[ e l o g u ~ ( x ) + I ( x ) l _ < C e  1/2 for x e ~  and 0 < e < l .  (3,12) 

The uniform convergence  of  - e  log u"(x) to I(x) as e ~, 0 is proved by K o i k e  
[18].  We  refer to [18]  for the m o t i v a t i o n  to this asymptot i c  problem and some  
properties of  the funct ion I. W e  leave the proo f  of  the above  theorem to the reader 
as it is similar to the proo f  of  T h e o r e m  3.1. 
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