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Abstract. The problem of determining the equilibrium distribution of the 
traffic flow in a city network is studied when the traffic demands on a set of  
given routes are known. The problem is formulated in terms of a nonlinear 
variational inequality over a polyhedron and a solving procedure, different 
from those shown in [1], [3], [4], is exhibited. This procedure is based on a 
very simple, necessary, and sufficient condition for a solution of the variational 
inequality to lie on a face of the polyhedron. Moreover,  it is also compared,  
by means of numerical examples, with the procedures formulated in [1], [3], 
and [4] (see expressions (1.2) and (3.5) for a significant valuation). 

1. Introduction 

It is well known that variational inequalities in R m generalize convex program- 
ming; indeed, if S(F) is a continuously differentiable real-convex function defined 
on a nonempty, closed, convex subset K of R m, then the problem of finding 
H ~ K such that 

S(H) = min S(F) 
F E K  

is equivalent to that of  finding H in K such that (see [3]) 

OS(H) "F OradS(H)(F-H)= a ~ ~-H~)>-O, VF,K.  
r = l  

* Supported by M.P.I. and C.N.R. 
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By the way, if S(F) is strictly convex, there cannot exist more than one point in 
K minimizing S(F) because grad S(F) is strictly monotone (see [8]), i.e., 

(gradS(F1)-gradS(F2))(F1-F2)>O, F1,F2cK, F1~ F2. 

Nevertheless, variational inequalities of the type 

H c K ,  C(H)(F-H)>_O, V F ~ K ,  

where C(F) is a function from K to R" ,  can express equilibrium conditions 
without C(F) being the gradient of  a function S(F) ;  this is the case in the traffic 
equilibrium problem, For the reader's convenience we recall briefly the statement 
of this problem. Given a transportation network (N, L), where N is a set of n 
nodes P 1 , . . . ,  P, and L a subset of  N x  N, let us denote by p(Pi, Pj) a function 
from L to R ÷, which we shall think of as the steady demand for traveling from 
Pi to P~, and let us introduce the following notations: 

(i) ~'l(Pi ,  Pj)  is the set of those routes(paths) Rrfrom Pi tO Pj which traverse 
no link twice; 

(ii) m denotes the number of elements of ~ = U<P,,Pj)~L ~(P~, p;);l 
(iii) Fro R ÷ is the flow along the route Rr and F= ( F 1 , . . ,  F,,) the route flow 

distribution; 
(iv) Cr(F)~R ÷ denotes the cost along the route Rr and C ( F ) =  

(CI (F) , . . . ,  C,,(F)) is the cost distribution; 
(v) K denotes the set 

K = { F :  ~ Fr=P(Pi, Pj) (Pi, Pj )~L}.  
Rr~(Pi ,P j )  

Then, using the formulation by [9], the problem of traffic equilibrium is 
expressed by the following variational inequality 

Find H e K  suchthat  C(H)(F-H)>-O,  VF~K,  (1.1) 

where 

C ( H ) ( F -  H) = ~ Cr(H)(Fr -- Hr). 
r=l 

If we suppose C(F) continuous in K, the variational inequality (1.1) admits 
solutions because K is a nonempty, closed, convex, bounded subset of  Rm and 
the results of [8] hold. Under the additional assumptions that C(F) is strictly 
monotone the variational inequality admits a unique solution. Since problem 
(1.1) cannot be reduced to a convex minimization problem, without making 
further assumptions, we cannot use the well-known algorithms of the convex 
programming theory in order to compute the solution of (1.1). 

Some algorithms for the construction of the solution have been established 
in [1], [3], and [4]; we present here a new method different from those ones. 

We suppose that for every pair (P~, ~) there exists at least one route that connects P~ to Pj. 
Then it results m-> ILl = L 
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In Sections 3, 4, and 5 we compare our method with those of [1], [3], and 
[4], respectively. To convey an idea about these comparisons let us consider the 
model of  a circular highway studied in [1] and the normalized measure of  
convergence (73) on p. 154 of the above-mentioned paper: 

Fr Fr(F)  
r/lO Cs--+r(F) (1.2) r = l  

(we use our notation). Expression (1.2) is zero if the corresponding traffic flow 
distribution ,~ is optimal. The author of  [1] says that his algorithm yields near 
optimal flow patterns after very few iterations; but, using our method, expression 
(1.2) is zero (see [3.5]) because the solution of the variational inequality is given 
by solving the system 

F 1 ~ 0 ,  

F2=0,  

F3 = O, 

F4 = 0, 

F s=0 .  

(1.3) 

We conclude by remarking the utility of  conditions (2.11) and (2.14) which 
allow us to construct a system of type (1.3) whose eventual solutions are the 
solutions of  the variational inequality, without assumptions of  continuity and 
strict monotony on the operator; we also want to explain that our method has 
been presented in the preliminary paper  [5] and in the partial preprints [6] and 
[7]. 

2. The Computational Method 

Let us start by transforming variational inequality (1.1) into an equivalent one. 
First, to simplify writing, let us denote by pl ,  • • •, pt and ~ . . . .  , ~1 the values 
P(Pi, P~) and the sets ~(P~, Pj), respectively; let us also set: 

10 if Rr ~ ~i ,  
~ir = if Rr ~ ~i ,  i = 1 . . . .  ,1, r = 1 . . . . .  m. 

Then K is determined by the conditions 

¢,rFr=p,, i = 1  . . . . .  i, F~>-O, r = l , . . . , m ,  (2.1) 
r = l  

and the structure of  the system enables us to derive the values of  l variables 
because the matrix (~ir) is such that in each column there is a unique entry which 
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is 1, whereas all other ones are 0; so, if we suppose that we can derive the first 
l variables, we have 2 

F i = p , -  ~ ~oirFr, i = 1 , . . . ,  1, F~ >- O, r = 1 , . . . ,  m. (2.2) 
r = / + l  

By using (2.2) we can transform the variational inequality (1.1) into the following: 

Find /-I e /~  such that F ( / 4 ) ( F - / 4 )  -> 0, Waft e/~, (2.3) 

where 

(i) K = { ( F ~ + , , . . . , F m ) I F r ~ - - O , r = I + I  . . . . .  m, 

~oi,F~<-oi, i = l , . . .  I}; 
r = l + l  

(ii) F = (Ft+x . . . . .  Fro); 
(iii) F (F)  = (F~+~(F), . . . ,  Fro(if')) 

I 

rr(~) = d~(~)- E ,p,,~,(~) 
i = l  

with 

. . . .  , p , - -  
r = / + l  r = l + l  

In fact, it results that 

C r ( H ) ( F r - H r )  = ~ Cr(H)(f,.-nr)+ 
r = l  

~o,,.Fr, F,+,,..., F,,). 

C,(H)(F,-H,) 
r = l  r = l + l  

( ) =r=1 C~(H) p , -  , ~=,+l 

+ • C , ( H ) ( F ~ - H r )  
r = l + l  

s = l + l  r = l  s = l + l  

-- ~ L(/-i)(F~ =/4,/. 
r = / + l  

(2.4) 

If  the operator C ( F )  is continuous and strictly montone in K, then, taking into 
account (2.4), the same thing can easily be established for F(F) ;  however, these 
assumptions are not necessary to reach Theorems 2.1 and 2.2 that we are going 
to prove. 

2 We observe that for fixed r there exists a unique i such that ~ir = 1. The method is also available, 
with a slight modification, if we replace 1 with a positive number  ar when R, e 9~ i. 



Applications to the Traffic Equilibrium Problem 173 

Let us start with the remark that every/4o belonging to / (  and such that 

F(Ho) = 0  (2.5) 

is a solution of  variational inequality (2.3), whereas any other so lu t ion/q  of (2.3) 
must belong to the boundary a/(  of  K;  instead, i f / ~  were an interior point (we 
observe that the interior o f / (  is not empty), we should have 

r ( H )  =0.  

Let us search for the eventual solutions that lie on the boundary of the 
(m - / ) -d imens iona l  po lyhedron / ( .  This boundary consists of faces and we can 
describe a face of dimension rn - l - (h + k) in the following way: let us set 

(sh, j k ) = ( ( S 1 , . . . , S h ) , ( j l , . . . , j k ) ) ,  l<--Sq<--m, l<--ji<--l, 

I = { 1 + 1 , . . . ,  m } - { s l , . . . ,  Sk}, E = { 1 , . . . ,  l } - { j l , . . . , . ~ } ,  

= { ( F , + , , . . . ,  Fm)lFsq = O, Sq ~ S h, gh,  

tPj, rF~=pj, , j iEJk,  F~>-O, r c I ,  ~ ~irF~<--Pi, i e E  I ,  
rc l  rc l  J 

and let us consider the variational inequality on the face ~(h,k). 
Find 171 (h'k) ~ I((h'k) such that 

r (  l~I(h,k))( ~ (h ,k )  -- ~ ( h , k ) )  ~ 0 (2.6) 

for every fi(h,k) ~ i~(h,k). We can rewrite this in a more convenient equivalent form 
as follows : let us choose the indexes I x , . . . ,  Ik ~ I such that 

F~, = pj, - ~, %,rF,  (2.7) 
t e l  
r~ l~ 

and let us set 

L =  I - { l ~ ,  . . . , lk}, 

and 
f 

/;:m-,-(h÷k) =//~(h,k) e R~- l - (h+k)  l F  ~ >_ O, r ~ L, 

~)jirFr<-Pj,,jiEJ k, ~ ~i~F~<-p~,i~E~; 
rcL r~L J 

then (2.6) is equivalent to the following: 

Find ITI(h'k) ~ I(m_l_( ,+k ) such that 

r(h'k)(lY-I(h'k))(F (h'k)-  I7I (h'k)) >-- O, V/~(h'k) ~/( . - I - (h+k) ,  (2.8) 

where F (h'k) is the vector of R ''-~-(h+k) whose comonents F(~ h'k), r ~ L, are given by 

{F, -Ft ,  if there exists some i for which %,r = 1, 
F~h'k)= Fr if ~oi,, = 0, i =  1 , . . . ,  k. (2.9) 

Now, if there exists 171(o h'k) ~ I ( ,_ l_(h+k)  such that 

r(h'k )( i~l(oh'k ) ) = O, (2.10) 



174 A. Maugeri 

t h e n  ffI(o h'k) is solution of  variational inequality (2.8) and we can prove the 
following: 

Theorem 2.1. Let  us suppose that 

~j,sq=0, i = l , . . . , k ,  q = l  . . . .  , h ;  

then I2I~o h'k) is a solution o f  variational inequali ty (2.3) i f  and  only i f  

Fr (/~t(oh'k)) __> O, r ~ S  h , 

Ft~ (/4(o h'k)) -< O, i = 1 , . . . ,  k. 
(2.11) 

Proof. Taking into account (2.9), for every F c / (  we have 

r(/Toh'k))(P - / T  h'k)) = ,Es~ rr(/Toh'k))(E -- Hr) 

k 

+ E r,,(lTI~oh'k))(F,,-H,,) 
i = 1  

+ E rr(I~I(oh'k)(Fr-Hr)+''" 
r~L 

tPJlr = 1 

+ E F,(ff-I(oh'k))(Fr--Hr) 
rcL 

¢pJk r ~ 1 
+ E rr(IY-I(oh'k))(Fr--Hr) 

rEL 
~ji r~O 

i = 1 , . . . ,k  

= r~Sh r,(h(o~%Fr+r,,(FI(o ~'~)) 

x (FI"q-  r~L ~ " r F r - H I I -  EreL ~j'rHr) q ' ' ' "  

+ r,k ( IT-I(oh'k))( Ftk +r~L ~OjkrFr-- Hlk --r~ L ~jkrer) 

=;~ r,(h(o ~,~)) F,+ r,,(/To~% (,~ ~(,,, ~ j ,  rFr  - pj,) 

+ ' ' ' + F t ~ ( I ? I ( o h ' k ) ) ( r ~ ( t ~  ~jk~Fr----pik).3 (2.12) 

Since F ~ / ( ,  it results that F,>-0 and Y~r~L~(~,)~°j, rFr<<-Pj, then from (2.12) it 
follows that (2.11) are sufficient. On the other hand, letting in turn all but one 
constraint with indexes r ~ S h and ji ~ jk be satisfied as an equality we see that 
(2.11) are necessary. For instance, if we set F, = O, r = s2 , . . . , Sk, Y~r~L~(l,} %,rFr = 
Pj,, ji ~ jk, then we o b t a i n  rs,(ff-I (h'k)) ~ O, and so forth. [] 

3 Note that 

Hj,+ Y ~jlrHr=Pji. rc L 
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N o w  suppose  that  there exist a subset  Jp of  j k  consist ing of  p e lements  
(p--< k) and  p n o n e m p t y  subsets Sj,, j~ e Jp, of  S h such that  

~ j , ~ = l ,  Sq ¢ Sj,, j~eJp; (2.13) 

then we can prove  the following: 

Theorem 2.2. 
variational inequality (2.3) /f  and only i f  

r(t)(2'~))->o, r ~ S  h -  U sj,, 
j~eJp 

r,,(~(oh,~))_< o, i = l , . . . , k ,  

r,~ ( I:I(oh'k )) -- r ,, ( ITI(oh'k )) >-- O, sq c Sj,, 

I f  conditions (2.13) are available, then I7-1(o h'k) is a solution o f  the 

ji C Jp. 

(2.14) 

Proof. Let us observe that,  when we set in the last side of  (2.12) 

E ~,j,,Fr = o j,, J, ~ Jp, 
reLy{Ill 

it results 

Fsq = 0, s leS j , ,  

because  we have the constraints  

E ~pj,rFr+ E ~Pj,sqFsq<--Pj,; 
rc Lu{ li} $q E Sji 

consequent ly  we cannot  infer  the condi t ions for  Fsq(ITt~oh'k)), S o e S~, and we must  
follow a different way when  Sq e Sj,, j~ ¢ Jp. 

Let us set 

E tpj, rFr-Pj  , = 0 ,  j i E J k - j p ,  
reLk3{li} 

Fr=O,  r E S h - -  U Sji' 
J~eJp 

and 

E ~ j , ~ E - p j ,  = o 
rcLu{li} 

for  every value jl e Jp except  one for which we set 

~j, rFr-Pj, = -  E q~j ,sFr=- E Fsq. 
r c  Lu{ l l}  Sq~ Sji sq~ Sji 

Then express ion (2.12) becomes  

r (  ffI(h'k))( ffr-- I~l(h'k)) = rl, ( fft(oh'k)) (r~L~(l,} ~j, rFr-- pj, ) + ~, 
sqCSji 

= E (LAA(o~ '~) ) -r l , (H(o~ '~) ) )F,~ .  
sq E Sii 

(2.15) 

r~(~(o~.~))F,~ 

(2.16) 
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Setting in (2.16), Fsq = 0 for all but one index in turn, we have that conditions 
(2.14) are necessary. The conditions are also sufficient because for ji ~ Jp and 
Sq ~ Sj, it results that 

rl,(ffg(oh'k))(reL~(l,} ~j, rFr--Pj,) q- ~ rsq(ffl(oh'k))Fsq 
SqESji 

re L~{li} SqeSji 

The theorem is therefore proved. [] 

Now if (2.12) or (2.14) are not satisfied for all solutions I?t(o h'k) of system 
(2.10), variational inequality (2.3) cannot have solutions belonging to the interior 
of  Km ~-(h+k); whereas, if equality (2.10) does not admit any solution in 
Km_t_(h+k), the eventual solutions of  variational inequality (2.8) must belong to 
the boundary of I~m_l_(h,k); namely, to a face of  dimension m - l -  (h + k +  1), 
for which we can repeat the same considerations; consequently, if (2.10) or (2.12) 
and (2.14) are not satified for all faces Km_l_(h+k ) with h + k < m - l ,  we can say 
that the eventual solutions of  the variational inequality lie on face of dimension 
zero, that is, they are vertexes o f / ( ;  in this way, we can find the eventual solutions 
of  variational inequality (2.3) that do not verify (2.5). 

I f  we suppose that the operator F(F)  is continuous and strictly nomonotone,  
then variational inequality (2.3) admits a unique solution that we can determine 
using the procedure described above; moreover,  if the solution /q of (2.3) is a 
vertex, the following theorem holds: 

Theorem 2.3. I f  IT-Ii, i~ P = {1 . . . . .  , p} are the vertexes of  l(, the equation 

r(A,) = E ) ,  i ~ P  (2.17) 

admits a unique solution that coincides with 17-1. 

Proof. Equation (2.17) admits at least a solution; in fact , /q ,  which is a vertex, 
is such that 

F(/-I)/-lj -> F(/-I)/{, j ~ e 

and, hence, /4 satisfies (2.17); moreover, (2.17) has a unique solution, because 
if we had two solutions hm and/4,, it would follow 

( r  - - - >  0 

and, owing to the strictly monotony, H.  = H,.. [] 

3. Comparison I 

We compare our procedure with that of  [1] by computing the solution of the 
traffic equilibrium problem in the case of  the example considered in [1]; the 
author applies his method to this example and found out that a suitable normalized 
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measure of convergence (see p. 154) gives satisfactory results even after very few 
iterations. 

The example is that of a network constituted by five nodes: P1, P2, P3, P4, 
1°5, and five pairs: (P1, P4), (P2, Ps), (P3, P1), (P4, P2), (Ps, P3), each connected 
by two routes; R~ and R 6 denote the two routes that connect P~ with P4 and R~ 
is the longer one, analogously, R2 and R7, R3 and R8, R4 and Rio connect the 
pairs (P2, Ps), (P3, P1), (P4, P2), (Ps, P3), respectively, and R2, R3, R4, R5 are 
the longer routes. F~, i =  1 , . . . ,  10 denote the flows along the routes Ri, i=  
1 , . . . ,  10, respectively, and the cost functions, that represent the travel time for 
routes, are (we consider the case when the parameter 7 is zero): 

C~( F) = 34F~ + 42FIFz + 20F1F3 + 20FIFa + 42FIFs + 34F~ +21F22 

+ 20F2F3 + 20F2F5 + 21F2 + 10F~ + IOF3 + 10F~4 + 20F, F5 

+ lOF4+21F~+21Fs+34, 

C2(F) = 21F~ + 42F~F2 + 20FIF3 + 20FIFs + 21Fl + 34F~ + 42FeF3 

+ 20F2F4 + 20F2 F5 + 34F2 + 21F 2 + 20F3 F4 

+ 21F4+ 21F3+ 10F42+ 10F4+ 10F52+ 10F5 +34, 

C3(F) = 10F~ + 20F~ F2 + 20F1 F3 + 10F~ + 21F~ + 42 F2F3 

+ 20F2F4 + 21F2 + 34F~ + 42F3F4 + 20F3Fs + 34F3 + 21F~ 

+20FaFs+21F4+ 10F~+ 10F5 + 34, 

C4(F) -~ IOF~ + 2OF, F4 + 2OF, Fs + 10F1 + lOF~ + 20F2F3 + 20F2F4 

+ lOF2+21F2+20F3Fs+21F3+42F3F4+34F~+42F4F5 

+ 34F4 + 21F2 + 21Fs + 34, 

Cs( F) = 21F~ + 20FxF2 + 20F~F4 + 42F~Fs + 21F~ + lOF2 + 20F2F5 

+ 10F2 + 10F 2 + 20F3 F4 + 20F3F5 + 10F 3 + 21F~ 

+ 42F4Fs + 21F4 + 34F2 + 34Fs + 34, 

C6(F) = 23F62+ 10F72+ 10F~o 

+20F6FT+20F6F~o+23F6+ 10FT+ 10F~o+23, 

CT(F) = 23F72 + 10F82 + 10F62 

+20FTFs+20F6FT+23FT+ 10Fs+ 10F6+23, 

C8(F) = 23F82+ 10F92+ 10F72 + 20F8F9 

+20FTFs+23F8+ 10Fg+ 10F7 + 23, 

c9(p) = 23p~+ 10F,2o + lOF~+ 20F9F1o 

+20F8Fg+23F9+ 10FlO+ 10F8 + 23, 

C,o(F) = 23F12o + 10F62+ lOF29+20F6F, o 

+20FgF~o+23F~o+ 10F6+ 10F9 + 23. 

The convex set K over which we must consider the variational inequality 

"Find H c K  suchthat  C(H)(F-H)>-O,  V F ~ K "  (3.1) 
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is given by  

K = { F = ( F 1 , . . . ,  FIo) I F, >- O, r =  1 , . . . ,  10, F , + F ~ + 5 = i / 1 0 ,  i =  1 , . . . , 5 } .  

The s tar t ing po in t  o f  our  p r o c e d u r e  is to der ive  the  values o f  var iables  F~+5, 
i = 1 , . . . ,  5 by  means  o f  the re la t ions  

i ~.5=~-~, i=1,...,5 

and  to the  t r ans fo rm var ia t iona l  inequa l i ty  (3.1) in the  fo l lowing one 

" F i n d  H ~ / (  s u c h t h a t  F ( H ) ( / 3 - / ~ ) > - 0 ,  V / 3 ~ / ( " ,  (3.2) 

where  

/~ ={/3_= ( F t ,  • • •,  Fs) [ 0--- F, <- i/lO, i = 1 , . . . ,  5} 

and  F(/3)  is the  vec tor  with c o m p o n e n t s  

r ( / 3 )  = c , ( / 3 )  - c,+~(/3) ,  i = 1 , . . . ,  5. 

We remark  that  F~(/3) represen t  the  difference be tween  the t ravel  t imes o f  
the  longer  pa ths  and  those  o f  the  shor te r  ones.  We also emphas ize  the fact that  
the steps we are  going  to make ,  in o rde r  ot f ind the  so lu t ion  o f  the  var ia t iona l  
inequal i ty ,  are  the  same ones we mus t  t ake  to i m p l e m e n t  the m e t h o d  by  computer .  4 
F o r  the r eader ' s  conven ience  we give the  express ion  of  F~(/3). 

We have 

F~(/3) = 11F  2 + 22F1F2 + 20F~F3 + 20F1F4 + 22F~F5 + 75.6F1 + 11 F 2 

+20F2F3+20F2Fs+37F2+ 1 0 F 2 +  10F3 

+ 1 0 F 2 +  20F4F5 + 10F4+ 11 F2 + 4 3 F 5 -  2.83, 

F:( /3)  = llF~+22F~F2+20F~F3+20FIFs+37FI+llF22 
+ 22 F :  F3 + 20F2F4 + 20F2Fs + 74.2F2 + 11F  2 + 20F3F4 

+ 41F3 + 1 0 F 2 +  10F4+ 1 0 F ~ +  10F5 - 1.12, 

F3 (F )  = IOF2+2OF~F:+2OF~F3+ 10F~ + llF22+22F2F3+20F~F4 
+ 4 1 F 2 +  11F~+22F3F,,+20F3Fs+ 82.8F3 + l l F 4  ~ 

+20F4Fs+45F4+ 1 0 F 2 +  10F5 - 9 . 5 7 ,  

F4(/3) = 10F2+20FIF4+20F~Fs+ 10F~ + 10F2+20F2F3+20F2F4 

+ 10F2+ 11F~+22F3F4+20F3Fs+45F3+ 11F2+22F4F5 

+ 91.4F4+ 11F~+  49F5 - 19.68, 

F5(/3) = 11F~ + 20FIF2+ 20F~F4+ 22F~Fs+43F~ + 10F2 + 20F2F5 

+ 10F2+ 10F~+20F3F4+20F3Fs+ 10F3 + 11F24+22F4F5 
+ 4 9 F 4 +  11F2 + 9 0 F 5 -  17.95. 

4A program in Fortran to compute the solution of variational inequality (3.1), even when 3' is 
different from zero, has been given by F. Turiano in her graduation thesis "Programmi di calcolo 
per un modello non lineare di traffico su rete". Catania, a.a. 1983-84. The results reported here are 
taken from this dissertation. For the same topic we also recall the thesis of A. Carolla "Un algoritmo 
che applica le disequazioni variazionali a problemi di equilibrio di traffico su rete", Pisa, a.a. 1982-83. 
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The first step consists in seeing whether  the system 

F(/4o) = 0 (3.3) 

admits solutions Ho in /~. Since system (3.3) has a solution with two negative 
components ,  we must  pass to the second step. 

In this step we have to consider four-dimensional  faces /~(,.o), r = 1 , . . . ,  5 
o f / ~  and the restriction I "(r'°) o f  F to these faces. 5 Since the system 

v(r'°)(/~ (r'O)) = 0, r = 1 , . . . ,  5 

have solutions with some negative component ,  we must  pass to the next step. 
In this step we consider  the three-dimensional  faces o f  type/~(~1.~,o), Sl, s2 = 

1 , . . . ,  5, s~ # s2, and observe that, on  face/~(L2,o), the system 

r(l'2'°)(/-] (1'2"0)) = O, 

i.e., 

I 
F3(/-~ (1'2"0)) = 0, 

F4( /~  (1'2"0)) = 0, (3.4) 

Fs(/T ''2'°)) = 0, 

has the solution 6 

/~(1,2,o)( = 0.018807, 0.135947, 0.114582) 

for which it results 

FI(~  "'2'°)) >- 0, F d / T  ''~'°)) - 0. 

Then /4 = (0, 0, 0.018807, 0.135947, 0.114582) is the unique solution ( C ( F )  

is strictly mono tone)  o f  variational inequali ty (3.2) and 

H = (0, 0, 0.018807, 0.135947, 0.114582, 0.I,  0.2, 0.281193, 

0.264053, 0.385418) 

o f  variational inequaiity (3.1). 
It is remarkable  that it results in 

F, ----7~_-_Fr(/4) 
,=, r/1O c~+An)  =° '  

(3.5) 

and, therefore,  our  me thod  gives, apart  f rom the calculation o f  the solutions o f  
the systems, an exact solution. 

5/~ ((s, ,....,h ),(s, ,...ak )) denotes the face that we obtain by setting Fs, = . . . .  Fsh = 0 and ~. '~'= t+ L %,Fr = 
pj,,, i= 1,.. . ,  k; if h =0 or k=O we write 

1~ (O'jl'''''jk) and /~ %''''sh'°), 

respectively. 
The meaning of F ~,''s,)'~j,'Jk)), F ~°'.j-'jk) and F ~,' '~'°) and of/-~((~,.....,h).(J,.....i~)), l?l(O.J,.....i~) 

and /4 ~s,''''''~h'°) is obvious. 
6 In the thesis of F. Turiano this solution is evaluated by means of the Newton-Raphson method 

with an approximation of 10 -'s. 
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4. Comparison II 

The algorithm given by [3] is close to that of [1] but less efficient (see [1, p. 141]). 
We solve by our method the example presented in [3] and note that we obtain 
the exact solution at the second step, whereas in [3] ten interactions were needed. 

The network is consitituted by two modes P~ and P2 and three routes R~, 
R3, R4 from P~ to P2 and two routes R2, R5 from P2 to P~. The travel demands 
are  

P(P1,/)2) = 210, P(Pz, P~) = 120 

and the cost distribution is given by 

C(F) = ( (C, (F) ,  C2(F), C3(F), C, (F) ,  Cs(F)),  

where 

CI(F) = 10F1 + 5F2 + 1000, 

C2(F)  = 2 0 F  2 d- 2F~ + 1000, 

Ca(F) = 15F3 + 3F5+950, 

C4(F) = 20F4 + 3000, 

C5(F) = 25F5 + F 3 + 1300. 

The set K is given by 

{ F =  (F1, F2, F3, F4, Fs), Fr>-0, r =  1 , . . . ,  5, Fl+F3+F3=210, 

F2 + F5 = 120}. 

Then we derive the values of two variables F~ and F2 by means of the relations 

F,=210-F3-F4, F2= 120-F5 

and consider the variational inequality 

"Find H ~ / (  suchthat  F(H)(F-H)>.O, V F ~ / ( " ,  (4.1) 

where 

/ (  ={/@~ (F3, F4, Fs) [ F~-> 0, r = 3, 4, 5, F3+ F4-< 210, F s -  < 120}, 

and 

r ( F )  = (r3(F) ,  r4(F) ,  r s (F) ) ,  

with 

F3(F) = 25F3 + 10F4+ 10F5-2750, 

r4(/~) = 10F3 + 30F4 + 5 F5 - 700, 

Fs(F) = 3F3+2F4+45Fs-2520. 

In the first step we look at whether the system 

= 0  (4.2) 
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has a solution in /(. Because system (4.2) has a solution with one negative 
component,  we pass to the second step. In this step, we consider the two- 
dimensional faces and note that the system 

r(3'O)(/~ (3'0)) : 0 

has a solution/~(3,o) = (14.1, 54.4) which belongs to /~(3,o). Since it results 

['3(0, 14.1, 54.4)<0,  

it follows that /~(3,o) is not a solution of variational inequality (4.1). 
In face /~(4,o) the system 

F(4"°)(/~ (4"0)) ~-- 0 

i.e., 

25/-/3+ 10/-/5 --- 2750, 

3/-/3 + 45/-/5 = 2520, 

has the solution/~(4.0) = (95, 50) which belongs to /~(4.o) and is such that 

F5(90, 0, 50) > 0. 

Then the point 

/q = (90, 0, 50) 

is a solution of variational inequaltiy (4.1). The solution is unique because C(F), 
as an easy calculation shows, is strictly monotone.  

5. Comparison III 

The method of [4] is not based on a projection technique; essentially, it consists 
in the search of those constraints which the solution is subject to, if the system 

r ( g q - -  0 (5.1) 

has no solution i n / ( .  
In this sense the method of [4] is a little closer to ours than the preceding 

ones; however, the starting point and the procedure of  [4] are quite different 
from our ones. 

In fact, the authors of  [4] assume that system (5.1) has a solution Ho and, 
if  Ho does not belong t o / ( ,  they consider the constraints which/q0 does not fulfil 
and, taking into account a previous result, search the solution subject to one of 
these constraints. This search is based on an effective calculation of the solutions 
of  variational inequality over the linear manifold that are not subsets o f / (  and 
on the inspection as to whether one of these solutions belongs to / ( ;  on the 
contrary, our method is based on the inspection as to whether the zeros of  the 
restrictions of  the operator over faces of  K are also solutions over all the convex 
/ ( ;  this inspection is very simple because we have at our disposal conditions 
(2.11) and (2.14); however, we must say that the convexes considered by [4] are 



182 A. Mauger i  

more  general  than those considered by us. Also, in this case we solve by our  
me thod  the example  p roposed  by [4, p. 21] and  we remark  again on the fact that  
the steps that  we are running long are the same ones that  we must  consider  if 
we want  to use the compute r ;  but  we can easily solve this example  by very s imple 
manua l  computa t ions .  

We have to solve the variat ional  inequal i ty  in R 4 

"F ind  ~ K  s u c h t h a t  C ( ~ ) ( x - ~ ) > 0 ,  Vx~K" 
where C(x) has the four  components :  

Cl(x) = 20Xl - cos 2 xl + x3 - sin x3 + 2 x 4 -  7, 

C2(x)=2tanhxl+19x2+2exp[-2x23+O.5]+O.5[arctanx4 + Xl--~x~] + 5 ,  

C3(x) = sin(xl + x 2 ) -  x2-F 2Ox3-~ x4 -12, 
",/1 + x~ 

C4(x) = log(x~ + 1.5 + ~/x 2 + 3x~ + 5) + sin x2 + x3 + 18x4, 

and  

K={xER4:xi>_O,i=I,.. .,n, xl+2x3~e~, X2 ~_ ~X ~ ~}.3 

We observe  that  the opera to r  is strictly mono tone  and cont inuous,  and that  
the system 

C(x) = 0  

does not admi t  solut ion in K, because  C3(x) is negat ive in K ;  hence £~OK. 
Fol lowing our  p rocedure ,  let us consider  the faces K u'°), i = 1, 2, 3, 4 and the 

restriction C(i'°)(x(~'°)); the system 

CU'°)(x u'°)) = 0, i = 1, 2, 3, 4 

does not admi t  solut ion K u'°) because  we find some negat ive componen t ;  hence 
~ K (i'°), i -- 1, 2, 3, 4. 

Let us consider  the faces of  type K (°'~), j = 1, 2, it is easy to check that  the 
systems 

C(°J)(x (°a)) = 0, j = 1, 2 

do not admi t  solution K(°'~); hence ~ K (°a), j = 1, 2. 
Analogously  it is very easy to check that:  

(i) ~ does not be long  to K (s'k'°), h < k, h, k = 1, 2, 3, 4; 
(ii) ~ does not be long  to K (u)'O)), i = 1, 2, 3, 4, j = 1, 2; 

(iii) ~ does not be long to K ((l'h)'s) or  to K ((2'3)'s), h = 2, 3, 4, s = 1, 2. 

Now let us consider  the face 

K ((2,4),(1)) .~_ { x  I Xl ~" 0 ,  x 2 = 0 ,  x 3 ~ 0 ,  x 4 = 0 ,  x I = 2 _ 2x3}  

and the system in K ((2'4)'(1)) 

C((2"4) ' ( I ) ) (x  ((2'4)'(1))) = 0 ,  
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i.e., 

i.e., 

C3 = 2C1, 

9 8 X  3 "-k sin (2_ 2X3) -t- 2 sin x3 = 12. (5.2) 

Equat ion  (5.2) has the ( approx imate )  solut ion in K ((2'4)'(~)) 

X 3 = 0.1183 

and,  since the point  ~, given by 

= (0.1634, 0, 0.1183, 0) 

verifies the condi t ions 

c , ( ~ )  < o, c2(:~) > o, c4(:~) > o, 

£ is the unique  solut ion ( that  we can calculate  with the app rox ima t ion  that  we 
wish) of  the var ia t ional  inequality.  For  the sake o f  brevity we omit  to repor t  the 
other  example  of  [4, p. 19] and the other  examples  with 32 nodes  and  m a n y  
routes (see [3, p. 12]). 

6. The Computational Procedure 

We consider  the var ia t ional  inequali ty (2.3) and  we show how our  a lgor i thm can 
be imp lemen ted  by a computer .  7 We can run th rough  the fol lowing steps: 

(1) Look  whether  the system 

F ( H ) - - 0  (6.1) 

has solutions in / ( ;  every solut ion of  (6.1) is a solut ion of  (2.3). 
(2) (i) Cons ider  the faces /~(r,O), r =  l +  1 , . . . ,  m and the restrictions F ('°) 

o f  F over  the faces (see (2.9)) and  look whether  the systems 

r ( ' ° ) )  = 0 (6.2) 

have solutions in /~(r,O). 
I f  (6.2) has solutions /~(,,o) check whether  it results in 

F , ( H  (r'°)) > O. (6.3) 

When  inequali ty (6.3) is verified, /~(r,O) is a solut ion of  (2.3). 
We also consider  the faces /~(o,j), 1 - j < - l ,  and the restrictions 

F (°'~) of  F over/~(o,~) (see (2.9)), and  look whether  the systems 

F(°'J)(/~ (°J)) = 0 (6.4) 

7 We do not assume that F is strictly monotone; hence, we can have more than one solution. If 
the hypothesis of strict monotonicity holds we have at most one solution and, hence, in this case, if 
we find a solution the procedure ends. 
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(ii) 

have solutions in/~(o,~) and check whether it results for the eventual 
solutions /~(oo) 

F,j (/-) (°°)) -< 0 (6.5) 

(see (2.7) for the meaning o f / j ) .  When inequality (6.5) is verified, 
~(od) is solution of  (2.3). 
In this step we consider faces of  the type/~(s,,~,o),/~((,).(~)),/~(o.j,o,) 
(the values assumed by s~, s2, r,j~ ,J2 are evident) and the restrictions 
F (~,'~2'°), F ((~)'(j)', F (°'j,°~) and verify whether the systems 

r(~,,~,°)(/q (~,,~,°)) = 0, r((r)'(J))(H ((r)'(j))) = 0, r ( / q  (°a,,j~)) = 0 

have solutions and whether it results for the eventual solutions 

0, 

for the first system, 

r r ( /-)  ((r)'(j))) --> 0, 

if ~0rO = 0, or 

F6 (H((r)'(J))) --< 0, 

> o (6.6) 

rtj( i2I ((r),(j))) <_ o (6.7) 

F r ( / ~  ((r)'(j))) - Ftj( IT-I ((r)'(j))) >- 0 (6.8) 

if ¢,o = 1 for the second system, 

Fli (/~ (0'jl'j2)) ~ 0, F/2(/~ (O'jl 'J2)) ~.~ 0 (6.9) 

for the third system. In the affirmative case we have obtained solutions 
of  (2.3). 

The successive steps are evident and we so reach them (m - l)th step in which 
the faces are vertexes and the procedure has ended. 
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