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Abstract. We consider an infinite horizon discounted optimal control prob- 
lem and its time discretized approximation, and study the rate of convergence 
of the approximate solutions to the value function of the original problem. In 
particular we prove the rate is of order 1 as the discretization step tends to 
zero, provided a semiconcavity assumption is satisfied. We also characterize 
the limit of the optimal controls for the approximate problems within the 
framework of the theory of relaxed controls. 

1. Introduction 

The dynamic programming method shows that the value function of an optimal 
control problem for ordinary differential equations satisfies, provided it is smooth, 
a nonlinear first order partial differential equation of Hamilton-Jacobi type, the 
Bellman equation (see, e.g., Fleming-Rishel [14]). And, on the other hand, the 
existence of a smooth solution of the Bellman equation often enables us to find an 
optimal feedback control (see [14] or Lee-Markus [18]). 

However, this procedure can seldom be implemented in practice. Indeed, 
simple problems are known whose value functions have discontinuities in their 
partial derivatives, and examples show also that the Bellman equation may not 
have a C 1 solution, due to its fully nonlinear character. Moreover, the synthesis 
procedure requires regularity of the feedback control, too. 

This discussion reveals that, in order to make the dynamic programming 
method rigorous, two main questions should be answered: 

(i) In which weak sense does the value function of an optimal control 
problem satisfy the corresponding Bellman equation? 

(ii) In what way can we construct an optimal control or a minimizing 
sequence based upon the information of such a weak solution? 

*This work was done while the authors were visiting members of The Department of Mathe- 
matics of The University of Maryland at College Park. 
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A major achievement concerning the first question is the observation, due to 
P. L. Lions [19], that under quite general conditions the value function is 
characterized as the (unique) viscosity solution of the associated Bellman equa- 
tion. See Crandall-Lions [8], Crandall-Evans-Lions [7] for the definition of and 
uniqueness results for viscosity solutions. 

In a previous paper [2] one of the authors proposed an approximation 
method of the viscosity solution of the Bellman equation associated with the 
infinite horizon problem with discounting. The interpretation of the solutions of 
the approximate problems as value functions of some discrete time control 
problems allows us to construct a minimizing sequence of piecewise constant 
controls for the original problem. See Hrustalev [16] for other results in this 
direction, and see also Capuzzo Dolcetta-Matzeu [4, 5], Capuzzo Dolcetta- 
Matzeu-Menaldi [6] for a similar approach to the stopping time and the switching 
problems. 

The purpose of this paper is to study the rate at which the approximate 
solutions considered in [2] converge to the exact solution as the discretization step 
h tends to zero and to characterize the limit of the optimal controls for the 
approximate problems within the framework of the theory of relaxed control 
problems (see Berkovitz [1], Warga [24], and [18]). 

The next section contains the precise statement of the infinite horizon control 
problem with discounting and its Bellman equation, with relevant matters from 
[2, 7, 19] about viscosity solutions and their approximations. In Sect. 3 we show 
that the rate of convergence of approximate solutions to the exact solution is of 
order Z assuming the exact solution is HOlder continuous with exponent 

2 '  
0 < 3' < 1. The proof is a modification of the method introduced for difference 
approximations of Hamilton-Jacobi equations by [9]. The result in the case 3' = 1 
is due to Souganidis [21], where general approximation theorems for Hamilton- 
Jacobi equations are proved. In Sect. 4 the particular structure of the Bellman 
equations is used to prove, using both PDE and control theory methods, that the 
convergence rate is of order 1, provided a semiconcavity assumption is satisfied. 
These results can be seen as a natural development of earlier work of CuUum [10, 
11] and Malanowski [20], where similar approximations have been considered 
under rather restrictive convexity assumptions. See [9, 19, 21, 22], for related 
topics. Finally, in Sect. 5, we show that the optimal controls and the correspond- 
ing states of the approximate problems converge, in a suitable sense, to an 
optimal relaxed control and the corresponding relaxed response. 

The authors wish to thank Professor L. C. Evans for his interest in this work. 
They also wish to thank Professor F. Murat for useful discussions on the subject 
of Sect. 5. 

2. Optimal Control Problems 

We will be concerned here with the infinite horizon discounted optimal control 
problem (see [14]); this is the problem of finding 

V ( x )  - y ( y ( x , s ) , a ( s ) ) e - X ~ a s  fo rx  ~ R ' .  (2.1) 
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Here ~¢denotes the set of all measurable functions of [0, + oo[ to a given compact 
subset A of R m, f :  R " ×  A ~ R is a given function and )~ is a given positive 
constant. The vector y(s)  = y(x ,  s) and the control a in (2.1) are related by the 
state equation 

YJ~(s)= = x, s > 0 , }  (2.2) 

where g: R" × A ~ R" is continuous and satisfies 

)g(x, a) - g (x ' ,  a)l < Llx  - x ' l ,  Ig(x,  a)J < M (2.3) 

for all x , x ' ~ R  ~, a c A  and for some constants L, M. The mapping y: R " ×  
[0, + oo[ ~ R" is called the response or the state corresponding to a. The constant 
7~ represents the discount factor and the function f determines the running cost. We 
assume f is continuous on R" × A and satisfies 

I f (x ,  a) - f ( x ' ,  a)[ < M i x  - x'[,  I f (x ,  a)[ < M 

for a l lx ,  x ' ~ R " ,  a ~ A .  (2.4) 

The function V: R" ~ R defined by (2.1) is called the value function of the control 
problem. For x ~ R" and a ~ d ,  we set 

J ( x , a )  = y ( x , s ) , a ( s ) ) e - X S d s ,  

where y is the response to a. 
It is known that under the assumptions made above, the value function V 

satisfies 

M 
[ V(x)[ < -X-' IV(x) - V(x')[ _< C[x - x'[ v (2.5) 

for all x, x '  ~ R ", where C is a constant depending on y and y = 1 if ~ > L, y -- -~ 

if )~ < L and y is an arbitrary number less than I if ~ = L. Moreover, u = V is the 
unique bounded uniformly continuous viscosity solution of the Bellman equation 

max { 7~u(x) -  g (x ,  a ) . D u ( x ) - f ( x ,  a) )  = 0 
a E A  

for x ~ R".  (2.6) 

0 0 )  . . . . .  
o . ° ,  Here D = Ox 1 ' Ox, and denotes the inner product in R Uniqueness 

is a consequence of Crandall-Lions [8, Thin. II.2]. For a proof of these facts, see 
[181. 

For convenience, we recall here the definition of a viscosity solution of (2.6) 
following [7] (see also [8]). A continuous function u on R" is called a viscosity 
solution of (2.6) provided for every cp ~ Cx(R ") the following holds: if x 0 is a local 
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maximum point of u - % 

max { ~ U ( X o ) - g ( x o , a ) . D e p ( X o ) -  f ( x o , a ) )  < O, 
a ~ A  

and if x 1 is a local minimum point of u - % 

max ( ) tu(x l ) -g(x l ,a) .Dcp(Xx)-  f (x l ,  a)) > O. 
a ~ A  

Let h be a positive number, and consider this approximate problem of (2.6): 

max { Uh(X)--(1-- ~h)Uh(X -J- h g ( x , a ) ) - h f ( x , a )  ) = 0 
a ~ A  

(2.6) h 

for x ~ R " .  It has been proved in [2] that if h < 1 / ~  then (2.6)h has a unique 
bounded continuous solution u h and that { u h } converges locally uniformly in R n 
as h ~ 0 ÷ to the unique bounded uniformly continuous viscosity solution of (2.6). 
The following representation formula has been also demonstrated in [2]; 

uh(x) = inf  Jh(x,a) foreveryx ~ R".  (2 .7 )  
a E ~ ¢  h 

In this formula, ~¢h denotes the subset of ~¢ consisting of all controls which take 
constant values on each interval [kh, (k  + 1)h[, k = 0 ,1 , . . . ,  and 

oo 

Jh(x, a) = h ~_, f ( y h ( x ,  k ) ,  a ( k h ) ) ( 1 -  Xh) k, 
k = O  

where the sequence (yh(x,  k)} is determined by the recursion 

Yh(X,O) = X, Yh(X,k +l) = yh(x,k)+ hg(yh(X,k),a(kh)), 

k = 0 , 1  . . . . .  (2.8)  

Moreover, the solution u h of (2.6)h satisfies 

M 
Juh(x)J < - ~ ,  l u h ( x ) -  uh(x')J < C[x - x'] v (2.9) 

for all x, x ' ~  R", h ~ ]0 , l /X[ ,  where C is a constant depending on 3', but not on 
h, and " /=1 if k > L, V = k / L  if k < L and ,{ is an arbitrary number in ]0,1[ if 

= L. One can find also in [2] a proof of the estimates (2.9) except the HtSlder 
estimate of u h in the case X < L: this is proved by using the formula (2.7) and 
Lemma 4.1 below. 

It will be useful in what follows to consider the piecewise constant extension 
~h(X, ") to [0, + O0[ of the mapping: s ~ Yh(X, s / h )  defined on {khlk  = 0,1,2 . . . .  ). 
It is defined by 

yh (x , s )  = y h ( x , [ s / h ] ) ,  
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where [s/h] denotes the largest integer which is less than or equal to s / h .  As a 
simple consequence of the Gronwall inequality we have 

[ y ( x , s ) -  ph(x,s) [  < Mhe Ls (2.10) 

for all s >_ 0, x ~ R" and a ~ ~h,  where y and Yh are the solutions of (2.2) and 
(2.8), respectively. 

3. Rate of Convergence (I) 

The following theorem is proved by using a simple modification of the method in 
[9]. 

Theorem 3.1. Assume (2.3), (2.4), and let u,u h ~ B U C ( R ' )  be the viscosity 
solution of (2.6) and the solution of (2.6)h, respectively. Let y ~ ]0,1] be a HOlder 
exponent of u. Then 

suplu - uh[ < Ch r/2 (3.1) 
R" 

for each h E ]0, l / h [ ,  where C > 0 is a constant. 
Recalling (2.5), we have immediately 

Corollary 3.1. Under the assumptions of Thm. 3.1, the following estimates hoM for 
some constants C > 0 (which may depend on ~, in the case (3.3)). 

s u p l u -  Uhl < Ch 1/2 / fh  > L; (3.2) 
N" 

suplu - uhl <_ Ch v/2 forany'r < 1 / fh  = L; (3.3) 
R n 

s u P l u  - Uhl <-- Ch x/2L i fh  < L. (3.4) 
R n 

Remark 3.1. The above estimate (3.2) is due to Souganidis [21], where the same 
estimate is obtained for more general Hamilton-Jacobi equations. Our contribu- 
tion here is the estimates (3.3) and (3.4). 

The basic idea of the proof of Thm. 3.1 is same as [21]; and so we only sketch 
the argument here. 

Outline of proof. For 0 < e < 1, define function 

fiE(x) = _ xe 2 fo rx  ~ a ' .  (3.5) 

If 0 < h < l / h ,  we set 

ep(x, y )  = Uh(X)-- u ( y ) +  flE(x-- y ) f o r ( x , y )  ~ R ' × R "  
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in ~2n such that 

cP(xx, Yx) > supcp - 8. 
R2n 

Choose ~ ~ C~°(R 2") so that 

~(X1, Yx) = 1, 0 < ~ < 1, ID~ I < 1, 

and for 0 < 8 < 1, set 

I. Capuzzo Dolcetta and H. Ishii 

Since u and u h are bounded on R ' ,  for each ~ > 0 there exists a point (xl, Yl) 

qJ (x ,y)  = c p ( x , y ) + 6 + ( x , y )  f o r ( x , y )  ~ m 2+. 

Clearly, + takes its maximum at a point (Xo, Y0) in supp ~. That is 

qJ(xo,Yo) > qJ(x ,y)  f o r a n ( x , y )  ~ R 2". (3.6) 

Note tha ty  + - +(Xo, y)  attains its minimum a t y  o. Hence, by the definition of a 
viscosity solution of (2.6), 

XU(yo)+ g ( y o , a * ) ' ( D B + ( X o - Y o ) - 6 D y + ( X o , Y o ) ) - f ( y o , a * )  > 0 (3.7) 

for some a* ~ A. 
By (2.6)h , we have 

u j , ( X o ) - ( 1 - X h ) u h ( x o + h g ( x o , a * ) ) - h f ( x o , a *  ) < O. 

Use the inequality (3.6), with x = x o + hg(xo, a*) and y = Yo, to cancel the term 
uh(x o + hg(xo, a*)) and obtain 

2h 
hu h ( x o) + (1 - Xh ) g( xo, a* ). Dfl~( x o - Yo) - -~ - Ig  (Xo, a*)l 2 

- 8 l g ( x o , a * ) l -  f ( x o , a *  ) <_ O. (3.8) 

2x 
Subtracting (3.7) from (3.8) and taking (2.3), (2.4), and that Dill(x) = - - -  

E 2 
into account, we get 

[ - h[xo-Yo ,  h ] Uh(Xo)--U(yO) <_ C Ixo--Yol+ Ix° Y012+ + + 2 8 M .  /?2 t?2 

(3.9) 

(C denotes various positive constants here and in the remaining part of the 
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proof.) Now we observe that if we choose x = y = x 0 in (3.6) we obtain 

1 
~-~[x0 - yo[ 2 < CIxo - Yol v + 8 l x o  - Y0l. 

Since e, 8 < 1, from this we have 

2 
[Xo - Y0[ -< Ce2-~"  (3.10) 

where C is independent of e, 8, h. Thus, from (3.9) and (3.10) 

[ 2  23, 23'-2 h ] 
Uh(Xo)--U(Yo)  <_ C e ~ - v + e a - r + h e ~ - - V  + 7 + 8  . 

Assuming h < l a n d  taking e = h (2-~')/4 in the above, we have 

uh(Xo) - U(yo) < C(h  ~72 + 8). (3.11) 

From (3.6) with y = x, we have 

uh(x)- uCx) <_ uh(xo)- U(yo) + 8, 

and so, from (3.11), 

u h ( x ) - u ( x )  < C ( h V / 2 + 8 )  f o r a l l x  e R". 

Since 8 ~ ]0,1[ is arbitrary, we thus have 

uh(x  ) - u ( x )  < Ch ~/2 f o r a l l x  ~ R  n. 

To prove the inequality u ( x ) -  uh(x ) < Ch ~/2, i.e., to complete the proof, it is 
enough to set tO(x, y)  = u ( x ) -  uh(y)+ fl+(x - y )  and to proceed as above. [] 

4. Rate of Convergence (II) 

Let us begin this section by showing that the interpretation of the viscosity 
solution of (2.6) as the value function of (2.1) and the representation formula (2.7) 
for u h allow us to improve the estimate (3.1) from one side. We need the following 

l_emma 4.1. Let ~p be a measurable function on [0, + oo[ such that 

0 < ep(t) <_ m i n { A e S ' , C } ,  t > 0 (4.1) 

for some positive constants A < C and B. Let ~ be a positive constant. Then 

fo+°°ep( t )e-Xt  dt < KA ° (4.2) 
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for some constant K depending on o, where 

o = 1  

o is an arbitrary number in ]0,1[ /fX = 

o = X / B  i f X  < 

(4.3) 

Proof. From the assumption (4.1), 

fo+~ep(t)e-Xtdt < A foTe(B-X)tdt + C f ~ e  Xtdt 

holds for any 0 < T < + ~ .  A direct computation of the integrals on the right 
hand side with the choices T = + ~  if ~ > B ,  T = I / M o g C / A  if h = B ,  and 
T = I / B l o g C / A  if X < B gives 

fo ~eP(t)e-Xtdt < 

A 
i f ~ > B ,  

~ - B  

A + ~ log if X = B, 

Ax/B ( 1 1 )  ff-L-~_ ~ + -~ C 1-x/B i f X < B .  

The assertion follows immediately from these inequalities. [] 

Theorem 4.1. Assume (2.3), (2.4), and let u h, u • BUC(R")  be, respectively, the 
solution of (2.6)h and the viscosity solution of (2.6). Then the following estimate holds 
for some constant C > 0 depending on o: 

s u p ( u -  uh) <_ Ch °, (4.4) 
Rn 

where o =1 i f  X > L ,  o is an arbitrary number in ]0,1[ if X = L,  and o = X / L  if 
~ < L .  

Proof. 

Uh(X ) = inf J h ( x , a ) ,  
a e ,~Z h 

Using the representations 

u(x)  = inf J(x ,a) ,  
a E ~  

we see that 

u ( x ) - U h ( X  ) <_ inf J ( x , a ) -  inf Jh(X,a) 
a e . %  a e ~ h 

_< sup IJ(x.~)- J,(x.~)l. 
a e ~ ¢  h 

(4.5) 
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We fix a ~ d h, and compute that 

[ J ( x , a ) -  Jh(x,a)l <- fo°~lf(Y(X,s),a(s))  - f (Yh(X,S) ,a(s) ) fe-X 'ds  

+ f0~lf(~h(X, s) ,  a ( s ) )  I [e -x" -- e-aX['/hih[ ds (4.6) 

where 0 = 0(?~, h) is given by 

= - ~-~ log(1 - ) ~ h ) .  0 

Then assumption (2.4) and (2.10) yield 

[ f (y(x ,  s), a(s)) - f ( yh (x ,  s), a(s))[  < rain( M2he£' ,ZM }, 

and therefore, by Lemma 4.1, 

fo~l f (y(x ,  s), a(s)) - f (Yh(x ,  s), a(s))le-X'ds <_ Kh ° (4.7) 

for some K > 0. On the other hand, we have 

f0~lf(Ph (x,  s) ,  a(s))[  [e -x '  - e-°Xts/h]h[ ds 

< M [Xs - OX[s/h]hlmax(e-X' ,e  -°x" } ds 

_< MX(I1 - OI + h)fo~(s + 1)max{ e -x ' ,  e -°x" } ds. (4.8) 

Combining (4.5), (4.6), (4.7), and (4.8), and using the fact that 

8 - 1  )~ 
lim = 

h_~o + h 2 '  

we conclude (4.4). [] 
Our aim is now to obtain similar upper bounds for sup(u h - u). As we shall 

R ~ 
see in Thm. 4.2 below, this is possible provided the approximate solutions u h 
satisfy the following condition: 

Uh(X + Z)--2Uh(X)+ Uh(X--Z ) < CIz[ 1+¢ (4.9) 

for some ~- ~ ]0,1] and all x, z ~ R", where C is a constant independent of h. For 
T = 1 this amounts to the (uniform) semiconcavity of u h. Such a condition has 
been widely used in the study of nonlinear first order partial differential equa- 
tions (see [12, 16, 17, 19]). 



170 I. Capuzzo Dolcetta and H. Ishii 

Theorem 4.2. Assume (2.3), (2.4), (4.9), and X > L. Then, for some positive 
constant C, the following estimate holds: 

1 
sup(uh--U ) < Ch" foral lh  ~ 1 0 , ~ [ ,  (4.10) 
R n 

where Uh, U ~ BUC(R")  are the solution of (2.6)h and the viscosity solution of (2.6), 
respectively. 

The proof of the theorem requires a technical lemma which we state betow. 

Lemma 4.2. Let v: R" ~ R  satisfy 

v ( x + z ) - 2 v ( x ) +  v ( x - z )  < Clzl 1+" (4.11) 

for all x, z ~ R" and some • ~ ]0,1], and 

v(O) = O, l imsup v(x) x--,o - ~  < O. (4.12) 

Then 

C 
v ( x )  <_ 2(2, 1)[x[l+" f o r x  ~ N ' .  (4.13) 

Proof. Let ~ v~ 0 be an arbitrary point in R n and k a nonnegative integer. Apply 
(4.11) with x = ~ / 2  k+l, z --- - ~ / 2  k+l to obtain that 

v 2-;;-; 

We have used here that v (0) = 0. From this, by induction, one can see that for all 
k --- 0,1,2, . . . ,  

2-k >"  2 k 2 k "2 2"--1 

Hence, 

lim sup ~ >__ lim sup 
~ - ~ o  , , ~ - . + ~  [f i_[  

2 k 

> lim 2 ~ [ v ( ~ )  
-- k ~ + ~  ~ [ 2 k 

C ~ 1+~2~--2- ' (k-1)]  
2k l~  " iT-Z_ i ] 
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and therefore, taking (4.12) into account, 

1 (  2,) > ~ v(x) -C1~11+" 0 
- 2 1 + ,  2 " - 1  " 

171 

Proof of Thm. 4.2. Let fl~ be the function defined by (3.6), and choose ~ 
C~(R 2") as in the proof of Thm. 3.1 so that 0 < ~ _< 1, [D~[ _< 1 and the function ~p 
on R 2" defined by 

~bCx, y )  = UhCx ) -  uCy) + fl+(X-- y) + 6+(X, y) 

attains its maximum at some point (Xo, Yo) ~ R2", i.e., 

~P(xo, Yo) >__ ~p(x,y) for all (x,  y )  ~ R z'. (4.14) 

Since y ~ - ~P(x0, y)  attains its minimum at Y0 and u is the viscosity solution of 
(2.6), we have 

?~u(yo)+ g(yo,a*) . (Dfl~(xo-  Yo)-SDy~(Xo, Yo)) -  f (Yo,a*)  > 0 

for some a* ~ A. 
Now we consider the function 

v(x)  = u h (x o + x) - uh(xo) + ( D ~ ( x  o - yo)+  6Dx~(Xo, yo)). x 

on R ' .  It is easy to see that 

v(x + z ) - 2 v ( x ) +  o ( x - z )  = Uh(Xo + X + Z)--2Uh(Xo + X ) 

+ u (xo + x -  z) ,  v(o)  = o. 

It is easily checked also that 

v(x)  = ~b(Xo + X, Yo)-  ~P(xo, Yo) + fl~(Xo- Yo) -  fl~(Xo + X -  Yo) 

+ Dfl~(Xo - Yo).x + 6(~(x o, Yo)- ~(Xo + x, yo)+ Dx~(Xo, yo).X), 

and hence, by (4.14), 

lim sup v(x)  
Ixl--'0 ~ < 0. 

By virtue of (4.9), we thus find that v satisfies the assumptions of Lemma 4.2 and 
SO, 

C ii+r Uh(X o + X) -- Uh(Xo) +(Dfl~(x o - yo)-6Dx~(Xo, Yo))'x <_ 2 ( 2 " - 1 )  Ix 

(4.15) 

This proves (4.13). [] 
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for all x ~ R". Choose now x = hg(x o, a*) in the above to obtain 

Uh(Xo + hg(xo,a*)) < Uh(Xo)- hg(xo,a*).(Dfl~(Xo- Yo) 

+ 6Dx~(Xo, Yo)) + Clg(xo, a*)l x+¢hx+'- 

From this and the equation (2.6)h with x = x o it follows that 

Uh(Xo)--(I-- Xh)[Uh(Xo)-hg(xo,a*) '(Dfl~(Xo- Yo) 

+ 8Dx~(Xo, yo))+Clg(xo,a*)ll+'h 1+,] - hf(xo,a* ) <_ O. 

(4.16) 

This inequality combined with (4.15) yields 

X(Uh(Xo)--U(Yo)) <-- (g (Yo ,a*) -g (xo ,a*) ) 'V f l~ (Xo-  Yo) 

+ 6( " Dx~(xo, Yo)'g(xo,a*) 

- Dy~(Xo, Yo)'g(Yo,a*))+ f (xo,  a* ) 

- f ( Y o ,  a*)+ Xhg(xo,a*) 

• (Dfi~(Xo, Yo) + ~Dx~(Xo, Yo)) + Clg(xo, a*)l l+ 'h ' '  

Taking (2.3) and (2.4) into account, the above inequality gives 

1 
Uh(Xo) -- u(Yo) < -~ [[Dfl~(Xo - Yo)I(Llxo - Yo[ + XhM)+ ~M(2+ Xh) 

+ Mlxo - Yo[ + CMI+'h'], 

2x 
or, recalling that Dill(x) e2 , 

Uh(X°)--u(Y°)--<C[ I1°-~°1~ ~ h l X ° - ~ ° l T + ] x ° - ~ ° l + h ~ + ~ ] "  (4"17) 

As in the proof of Thm. 3.1 (especially, the proof of (3.11)), we have 

I xo - Yol -< C e 2 -  

We have used here that u is Lipschitz continuous on R" under the assumption 
)t > L. Hence, from (4.17), 

Uh(XO)-- U(Yo) <-- C(e2 + h + h¢ + 8). 
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Choosing e = h 1/2, we get 

Uh(Xo)--U(yO) <_ C(h~+~).  

As in the proof of Thm. 3.1 we have 

173 

(4.18) 

Uh(X)--U(X ) <_ Uh(Xo)--U(yO)+8 fo ra l l x  ~ R n. 

This combined with (4.18) proves the theorem since 8 is arbitrary. [] 
The next lemma provides a sufficient condition for (4.9) to be satisfied. 

Lemma 4.3. Assume (2.3), (2.4), and 

[g(x + z, a) - 2 g ( x ,  a) + g(x  - z, a)[ _< Mlz] 1+~ (4.19) 

f ( x  + z , a ) -  2 f ( x , a )  + f ( x -  z, a) < Mlz[ 1+" (4.20) 

for all x, z ~ R ", a ~ A, and some .r ~ ]0,1]. Then, for some C > 0 independent of 
h ~ ]O,1/h[, 

(CIz l  1+" i f?~>( l+ ' r )L ,  

Uh(X+Z)--2Uh(X)+ uh(x - - z )  < ~Clzl ~/L if?~< (1+ ~ ' ) t ,  (4.21) 

~Clz[ (l+r)° i f 2 t = ( l + ' r ) L ,  

for all x, z ~ R", where o is an arbitrary number in ]0,1[. 

Proof From (2.7) it follows that 

Uh(X + Z)--2Uh(X ) + Uh(X-- Z) 

< sup [ J h ( x + z , a ) - - 2 J h ( x , a ) + J h ( X - - Z , a ) ] .  (4.22) 
a e  d h 

Fix a ~ ~¢h" We observe that 

oo 

J h ( x + z , a ) - - E J h ( X , a ) +  Jh(x - - z ,  ct) = h ~_~ Ak(1- )~h)  k, (4.23) 
k = 0  

where, denoting a k = o~(kh),  

A k = f ( y h ( x , k ) + ( y h ( X +  z , k ) - - Y h ( X , k ) ) , a k ) - - 2 f ( Y h ( X , k ) , a k )  

+ f ( Y h ( x , k ) - - ( y h ( x  + z , k ) - - y h ( x , k ) ) , a k )  

+ f ( y h ( x - z , k ) , a ~ ) - f ( Y h ( x , k ) - - ( Y h ( X  + z , k ) - - Y h ( X , k ) ) , a k ) .  

The assumptions (4.19) and (4.20) yield 

A k < MlYh(X + z, k)  - Yh(X, k)[ 1+" 

+ MlYh(X + z, k) - 2 y h ( x ,  k)  + Yh(X -- z, k)[. (4.24) 
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Now it is easy to see that 

lyh(x + z , k ) - -  yh(x,k)l  < ( l+ Zh)~lzl fo rk  = 0 ,1 ,2 , . . . .  

On the other hand we have 

lYh(X + z, k)  - 2Yh(X, k) + Yh(X -- z, k)l 

_< M h ( l +  Lh) k-1 _-_1 [zll+, 
(1+ Lh) - 1  

Indeed, using (2.3), (4.19), and (4.25), we have 

lYh(X + Z,k + l ) - -2Yh(X,k  + l )+  Yh(X-- z , k  + l)l 

< (1+ Lh)lYh(X + z, k) --2Yh(X, k) + Yh(X -- Z, k)l 

+Mh( l+Lh)( l+~)k lz [ l+~  fo rk  = 0,1,2 . . . . .  

By induction, it follows from these inequalities that (4.26) holds. 
Let us define now a step function cp: R ~ R by 

¢p(t) = min{4M, Mlz]l+~[(l + Lh)O+~)[t/h]+ M h ( l +  Lh )[t/h] 1 

X (1+ L h ) ' - I  ' 

and constants 0 = O(h), ;, = ;,(h) by 

e -°xh = 1 -  )~h, e "Lh = 1+ Lh. 

Note that 

0 > 1 ,  0 < p < 1 ,  l im 0 = l im u = 1 .  
h ---} 0 + h - - . 0  + 

From (4.23)-(4.26) it follows that 

Sh(x + z, a) - 2Jh(x, a) - Jh(x -- Z, a) 
o0 

<_ h E  (kh)e -°xkh <- e  (t)e-X'dt. 
k = O  

A simple computation shows that 

cp(t) <_ min(4M, MlzlX+'(l+ M-~-leLO+')t~ 
":~'L ] )" 

(4.25) 

for k = 0,1,2 . . . . .  (4.26) 

(4.27) 
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Therefore, applying Lemma 4.1 to the integral ~( t )e -Xtd t  and recalling 
(4.22), we obtain the estimate (4.21). [] 

Let us state a theorem which summarizes the principal results of this section. 

Theorem 4.3. Assume (2.3), (2.4), (4.19), and (4.20). Let u h, u ~ BUC(~")  be 
the solution of (2.6)h and the viscosity solution of (2.6), respectively. Then the 
following estimates hoM for all h ~ ]0, l / h [ :  

( Ch • 

sup[u - uhl < ~Ch x/L-1 
R" o 

i fh > (1+ 

i fL  < h < (1+ 

i fh = (1 + 

(4.28) 

where o is an arbitrary number in ]0,1[ and the letter C denotes constants depending 
on the choice of o. 

Proof The estimates (4.28) are straightforward consequences of Thm. 4.2, 
Lemma 4.3, and Thm. 4.1. [] 

As a consequence of (4.28), the convergence of u h to u is of order 1 if g and f 
satisfy (4.19), (4.20) with z = 1, respectively, and h > 2L. The next example shows 
that this result is optimal. 

Example 4.1. Let n =1 and A consist of a one point, i.e., A = {a}. Let g(-,  a) 
and f ( . ,  a) be C~ functions on R such that g(x,  a) = - x and f ( x ,  a) = x for 
0 _< x _< 1. It is clear that g and f satisfy (4.19) and (4.20), respectively. It is also 
easy to check by the representations of solutions of (2.6)h and (2.6) that their 
solutions are given, respectively, by 

x and u ( x )  = x Uh(X) = l + h - h h  1+----~ on[0 ,1 ] .  

Therefore, 

lim lUh(X)--u(x)l x fo rx  ~ [0,1]. 
h--,o + h ( l + h )  / 

5. Convergence of Optimal Controls 

We show first how the approximate equation (2.6)h allows us to synthetize, by 
standard dynamic programming, an optimal control a~ ~ ~¢h for the discrete time 
control problem 

inf Jh(x,  a). (5.1) 
a ~  h 
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Let u h be the unique bounded continuous solution of (2.6)h. There exists a 
function a~': R" -* A such that for all x ~ R ' ,  

Uh(X)-(1-hh)Uh(X+hg(x,a'~(x)))-hf(x,a'~(x)) = 0 .  (5.2) 

Define then y~'(x, k), k - 0,1,2, . . . ,  by 

y~(x,O) =x, ) (5.3) 
y~(x,k +l)= y~(x,k)+hg(y~(x,k),a~(y~(x,k))) fork>_0,  

and a~': [0, + ~ [  ~ A by 

a~(t) = a~(y~(x,[t/h])) f o r t  >__ 0. (5.4) 

It is clear that a~' E ~¢h and by (5.2) that the identities 

Uh(X ) = (1-Xh)~Uh(y~(x,k)) 
k - 1  

+h ~_~ f(y~(x,j),a~(y~(x,j)))(1-hh) j 
j = O  

hold for k ---1, 2 . . . . .  Since Uh is bounded, this yields 

u h ( x )  = (5.5) 

and hence, by (2.7), 

Jh(X,a~) = inf 4(x,a). (5.6) 
a ~  h 

As a consequence of the results in the previous section, we have 

lim 4(x,a"g) = inf J(x,a). (5.7) 
h ~ , O  + a ~ . a ¢  

It can be proved also that { a~' } forms a minimizing sequence for the problem 
(2.1), that is, 

lim J(x,a'~) = inf J(x,a) (5.8) 
h - * 0  + a ~ d  

(see [2] and also the estimate of (4.6) in the proof of Thm. 4.1). 
We now turn our attention to the behavior of the controls a~' and the 

corresponding responses as h ~ 0 +. It is well-known that a minimizing sequence 
may have no limit in any classical sense due to a highly oscillatory behavior (see 
[18, p. 265], for example). 

It is therefore natural to set the problem in the general framework of relaxed 
controls. We denote by rid(A) the space of Radon measures on A. Identifying 
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~ [ (A)  and C(A)*, the dual space of the space C(A) of all continuous functions 
on A, we may endow ~#(A) with the weak star topology of C(A)*. 

Following Warga [24] (see also Lee-Markus [18]), we call a relaxed control for 
the problem (2.1) any measurable mapping/~: [0, + o0[ ~ ~g(A) such tha t /~ ,  the 
value of / t  at s, is a probability measure for almost every s ~ [0, + oo[. We denote 
by ,~¢r the class of all relaxed controls for the problem (2.1). Note that any 
classical control a ~ ~¢ can be identified with the relaxed control /~:  s ~/~(~), 
where 6 a denotes the Dirac measure concentrated at a. A mapping y: R n x  
[0, + o0[ ---' R n is a relaxed response to/~ ~ ~¢r if for all x ~ R n and t > 0, 

y ( x , t )  = x + fo t fag(y (x , s ) ,a )d#s (a )ds  (5.9) 

Let us introduce now the relaxation of the problem (2.1), i.e., the problem of 
finding 

Vr(x) - inf f (y (x , s ) ,a)e-XSdl~s(a)ds .  (5.10) 
~ d  r 

We write 

Jr(x,].l,) = f ( y ( x , s ) , a )e -X*d#~(a )ds  for/* ~ a l l  

The main tool in what follows is the next lemma, where this observation is 
crucial: L~(0, T; ~ ( A ) ) ,  with T >  0, is the dual space of LI(0, T; C(A)), under 
the duality 

(l~,op) = foTfA~p(t,a)dt~t(a)dt 

for cp ~ Li(0, T; C(A)),/~ ~ L°°(0, T; og(A)). This is a special case of the general 
theorem [13, Thm. 8.18.2]. 

Lemma 5.1. The convex set 

is sequentially compact in L°°(0, T; JC'(A)) with the weak star topology. 
A proof of this fact may be found in [24]. However, we give here a proof of 

Lemma 5.1 for the reader's convenience. 

Proof Let {/~(~) }T=i be any sequence in d~.. Since 

fA dl4k)(a) = 1  fo ra . e . t  c [0, T] and k = 1 , 2  . . . . .  
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{/z (k) } is bounded in L°°(0, T; ~ ( A ) ) .  The standard compactness theorem thus 
asserts that there exist a subsequence of {/~(k) ) (which we denote again by {/~(k) )) 
and/~* ~ L~(0, T; ~g(A)) such that/~(k) ~ # ,  weakly star as k ~ oo. In view of 
the duality between LI(0, T; C(A)) and L°°(0, T; ~ ' (A)) ,  this amounts to 

lim foTfA~P(t,a)dl~k)(a)dt = foTfAep(t,a)dlx*(a)dt 
k -'* oo 

(5.11) 

for all cp ~ D(0,  T; C(A)). 
To prove that /~* is a probability measure on A for a.a. t ~ [0, T], let 

CPl~Ll(0, T)  and ¢pzEC(A) satisfy cpi>_0 for i = 1 , 2  and plug ~p(t ,a)= 
cpl(t)cp2(a ) into (5.11), We then find 

fo~i(t)jA~p2(a)dlz*(a)dt > O, 

which implies that/~* > 0 a.e. Next take q0(t, a) = q01(t).l, with any qh ~ Li( O, T) 
in (5.11), to see that 

forCpi(t) fadlx*(a)dt = for~pi(t)dt. 

This shows that fA dl~*(a) = 1 a.e. and thus completes the proof. [] 

Proposition 5.1, Assume (2.3) and (2.4). Then 

Vr(X) = V(X) forallx ~ g~". (5.12) 

Proof We will show that W satisfies the Bellman equation (2.6) in the viscosity 
sense. To do so, we let 

A = (/~l/~ is a Radon probability measure on A } 

and set 

f (x,~) =fAf(x,a)d~(a ), ~,(x, Iz) = fAg(x, a) dl~(a) 

for x ~ R n, ]~ ~ /~. Then the relaxed response y to/~ e ~¢r satisfies 

f0 t y(x,t)  = x +  ~,(y(x,s),l~s)ds fo rx  o R "  and t > 0, 

and (5.10) can be written as 

f o  00 ^ Vr(X) = inf f(y(x,s),lXs)e-XSds. 
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Moreover, by (2.3) and (2.4), we have 

I~(x, tx)- ~(x',tx)l-< L I x -  x'l, I~(x,t~)l-< M, 
If(x,t~)- f(x',t~)l <- M i x -  x'l, If(x,t~)l-< M 

for all x, x '  ~ R ",/x ~ .4. Note here that, regarding .4 as a subset of C(A)*, A is 
metrizable, convex, and compact with the weak star topology of C(A)* (see [24, 
Thm. IV.1.4]). Thus, by [19, Prop. 1.1 and Thm. 1.10], we find that V r is bounded, 
HOlder continuous on R" and u = V r solves the Bellman equation 

m a x ( X u ( x ) - ~ ( x ,  I Q . D u ( x ) - f ( x . # ) }  = 0 i n R "  (5.13) 
g~A 

in the viscosity sense. 
For x, p ~ R", we have 

max. { - #,(x, t t ) ' p -  f ( x , # )  ) 
I x ~ A  

>_ m a x { - # , ( x , ~ a ) ' p -  f ( x ,~a) )  
a ~ A  

= m a x ( - g ( x ,  a l . p - f ( x , a ) ) .  
a ~ A  

On the other hand, 

- g ( x , # ) . p  - f ( x , # )  = f A ( - g ( x , a ) ,  p - f ( x , a ) ) d t ~ ( a )  

<- fA max ( - g ( x ' b ) ' p -  dl~(a) 

= m a x ( - g ( x , a ) . p - f ( x , a ) )  
a ~ A  

for x, p ~ R", # ~ A. Therefore, we have 

max ( - ~ ( x ,# ) . p  - f ( x , # ) )  = max { - g(x,  a) .p - f ( x ,  a)) 
i t ~ A  a ~ A  

for all x, p ~ R" and so, (5.13) is identical to (2.6). The identity (5.12) is a direct 
consequence of the uniqueness of the bounded, uniformly continuous viscosity 
solution of (2.6) (see [8, Thin. 11.2]). [] 

We are in a position to state the main result of this section. 

Theorem 5.1. Assume (2.3), (2.4), and let a~ be the function defined by (5.4). 
Then, for any x ~ R  n, there exist a sequence { h ( p ) ) p ~  of positive numbers 
conoerging to zero, #* E ~¢r, and y*: [0, + oo[ ~ R n such that 

#~t(e) --, #* in L°~(O, T; ~¢¢(A)) weakly star, i.e., 

T , T 
fo ~P(t'ah(e)(t))dt ~ fo fA ~( t 'a )d l~*(a)dt  (5.14) 
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for all cp ~ LI(0, T; C( A)) and T > O, 

Yhp) (x ,  t) ~ y*( t )  uniformly on any compact 

subset of [0, + oo[, and 

s(x,<~.)-~ s'(x,~*) 

as p --, + oo. In addition, 

y * ( t )  = x + g(y*(s), a) d.,*(a) ds 

Jr(x,.*) = W(X). 

I. Capuzzo Dolcetta and H. Ishii 

(5.15) 

(5.16) 

for t >_ O, (5.17) 

(5.18) 

Proof. In view of Lemma 5.1, we can select a sequence ( h(p)}p=~ with h(p )  > 0 
so that  h(p )  ~ 0 as p ~ + oo and (5.14) holds. Let  yp: [0, + oo[ ~ R n be the 
response to a~(p), i.e., the solution of (2.2) with a = a~(p). Since g is bounded,  
( yp ) is a uniformly bounded  and equicontinuous family of functions on [0, T]  for 
each T > 0. Therefore,  choosing a subsequence if necessary, we may assume that 
(yp)  converges to some cont inuous funct ion y*  uniformly on any compact  subset 
of [0, + oo[. By the weak star convergence of t~ ~p),  we have 

fo 'g(y*(s)''%)(s)) ds fo'f~ -~ g ( y * ( s ) , a ) d l ~ * ( a ) d s f o r t  >__ O. 

Hence,  using the first assumption of (2.3) we can send p ~ + ~ in 

yp (x , t )  = x + g (yp (x , s ) , a~ (p ) ( s ) )d s  f o r t  _> 0, 

to obtain (5.17), i.e., 

y*( t )  x + f/fA = g ( y * ( s ) , a ) d l ~ * ( a ) d s  f o r t  >_ 0. 

Similarly, we see that  (5.16) holds. The  identi ty (5.18) follows f rom (5.16), (5.8) 
and (5.12). [] 
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