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Abstract. In this paper, we present a generalization of the Hessian matrix to 
C L1 functions, i.e., to functions whose gradient mapping is locally Lipschitz. 
This type of function arises quite naturally in nonlinear analysis and optimi- 
zation. First the properties of the generalized Hessian matrix are investigated 
and then some calculus rules are given. In particular, a second-order Taylor 
expansion of a C 1'1 function is derived. This allows us to get second-order 
optimality conditions for nonlinearly constrained mathematical programming 
problems with C ~'~ data. 

1. Introduction 

Characterizing optimal solutions by means of second-order conditions has been a 
problem of continuing interest in the theory of mathematical programming. Most 
studies in this area are related to nonlinearly constrained problems with twice 
continuously differentiable data. However, in the recent past, some attempts have 
been made to enlarge this framework of study. Indeed, in order to get deeper 
results for problems with nondifferentiable data it is necessary to refine the 
first-order conditions, and a way to do this is to use some second-order informa- 
tion. The need of second-order information also appears in the point of view of 
numerical algorithms. Until now most works done in this direction have consisted 
in generalizing the classical second-order directional derivative for various classes 
of nondifferentiable functions; see [3, 4] and the references quoted therein. 

In this paper the approach is quite different. The idea is to replace the 
Hessian matrix by a set of matrices. This has been done for the class of all C 1'1 
functions, that is, for the class of all functions which are continuously differentia- 
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ble and whose gradient mapping is locally Lipschitz. The set of matrices is called 
the generalized Hessian matrix and is defined as the generalized derivative of the 
vector-valued gradient mapping. At first sight it might appear that the difference 
between C 1'1 functions and C 2 functions is not significant. In fact, the class of all 
C 1'1 functions plays an important role and must receive the attention. Many 
problems from nonlinear analysis and optimization give rise to C 1'1 functions 
without hoping to get C 2 functions. For example this situation can occur when a 
penalty strategy is used for solving a constrained nonlinear programming prob- 
lem. The penalty function [max{f,0}] 2 is necessarily a C 1'1 function even if f is 
C 2. Another example concerns variational inequalities. It is known that some 
problems of this type give rise to solutions which are C ~'1 and for which it is 
hopeless to get more regularity; see, for example, [17, Ch. 4]. 

Defining the generalized Hessian matrix as the Clarke generalized derivative 
of the gradient mapping seems to be quite natural. This idea was suggested by 
Hiriart-Urruty [11, Ch. 8] as a first attempt for solving second-order problems 
with non-C 2 data. Araya and Gormaz [1, Ch. 3] followed this suggestion and 
derived second-order sufficient conditions for problems with C t'l data. 

In this paper our aim is to study more extensively the properties of the 
generalized Hessian matrix and to derive second-order necessary conditions for 
C 1'1 problems. In this context, some recent results concerning the generalized 
derivative of a vector-valued locally Lipschitz function [14] have been revealed to 
be very useful. The paper is divided into three sections. In Sect. 2, the generalized 
Hessian matrix is defined and its properties are investigated. Then a few examples 
where C 1'1 functions arise in optimization or nonlinear analysis, are developed 
and finally some calculus rules and a second-order Taylor expansion of a C 1'1 
function are given. Sect. 3 is devoted to second-order optimality conditions for 
problems with C 1'1 data. 

To conclude this introduction we would like to mention the recent work of 
Ioffe [16] on C 1'1 problems, although his main concern has been the semi-infinite 
programming. 

2. The Generalized Hessian Matrix for C 1,1 Functions 

In this paper, R P will be the vector space of real p-tuples with the usual inner 
product denoted by (., .). The component functions of F:  R P --* • q are indicated 
by fx . . . . .  fq and F(x) is assumed to be represented by the column vector 
( f l (x )  . . . . .  fq(X)) T. When F is differentiable at x, the matrix representation of 
F'(x) with respect to the canonical bases of R p and R q is given by the so-called 
Jacobian matrix denoted throughout by JF(x). In the particular case where F = f 
is real-valued, instead of a representation of f ' (x )  by a row vector, we shall use 
the column vector f ' ( x ) r  which is the gradient of f at x and is denoted by v f ( x ) .  
If the mapping xTf itself is differentiable at x, the matrix representation of f " ( x )  
is given by the so-called Hessian matrix denoted here by V 2f(x). 

Throughout, the differentiability is always understood in the sense of Fr6chet. 
Hence, for example, V 2f(x) is a symmetric matrix whenever it is defined. 
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2.1. Definition of oef for C 1"1 Functions f 

Let O be a nonempty open subset of RP; we denote by C1'1(O) the class of all 
real-valued functions f which are differentiable on O and whose gradient (map- 
ping) v f  is locally Lipschitz on 0 (i.e., satisfies a Lipschitz property in a 
neighborhood of each point x 0 ~ 0). v f  is therefore differentiable almost every- 
where on O so that its generalized derivative (or generalized Jacobian matrix) in 
Clarke's sense [8] can be defined everywhere on O. This is precisely the generalized 
Hessian matrix o f f  whose exact definition comes as follows: 

Definition 2.1. Let f ~ Cm(O) and let x 0 ~ O. The generalized Hessian matrix 
o f f  at x 0, denoted by 02f(Xo), is the set of matrices defined as the convex hull of 
the set 

{MI3 x i ---, x 0 with f twice differentiable at x i and v = f ( x , )  -o M}.  
The space of p × p matrices is topologized by taking a matricial norm II1.111 

on it. By construction itself, 02f(xo) is a nonempty compact convex set of 
symmetric matrices which reduces to {~72f(Xo)} whenever xTf is strictly (or 
strongly) differentiable at x 0 (see [19, p. 71] for the definition). 

Example 2.1. Let g: • c R P ~ R be twice continuously differentiable on 0 
(g ~ C2(0)) and consider f defined on 0 as 

f ( x )  = [ g + ( x ) ]  2 w h e r e g + ( x )  = m a x { g ( x ) , 0 } .  

Clearly f ~ C 1'1 (O) and it is easy to check that, for all x 0 ~ O, 

{ {2g(xo)V2g(xo)+2Vg(Xo)Vg(xo) T } 

OV(Xo) = {o) 

{ 2 a V g ( x 0 ) V g  (x0) Yla ~ [0,11 ) 

if g( Xo) > O, 

if g( Xo ) < O, 

if g (x0)  = 0. 

The properties of Ozf are derived from those of the generalized derivative for 
vector-valued mappings (see [8, 14] and references therein); let us recall the two 
basic properties which will be of constant use in the sequel: 

(P1)- The set-valued mapping x -~ OZf(x) is locally bounded, that is to say: 
there exists a neighborhood V of x 0 and a constant K such that 

sup{lllMIII IM ~ 02f(x), x ~ V} <~ K; 

(/'2)- ozf is an upper-semicontinuous (or closed) set-valued mapping in the 
following sense: if x ,  ~ x 0 and if 3'/, ~ M o with M n ~ O2f(Xn) for all n, then 
M o ~ 02f(Xo). 

The use of 02f(Xo) will often arise by means of the collection of images 
OZf(xo)u = {MuIM ~ OZf(xo)} for all u ~ R p. The bivariate function 

(u,v) ~ R p XR p ~ max( (Mu, v)lM ~ 02f(xo)}  (2.1) 
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is what Hiriart-Urruty called elsewhere [14] the support bifunction of O2f(xo); we 
shall denote it here by f°°(x0;  u, v). Clearly, f°°(x0;  u, v) is symmetric in u and v 
and plays the role of a generalized second-order directional derivative for f at x 0. 
The next result supplies an analytic formulation of f°°(x0;  u, v) in terms of the 
gradient mapping ~Tf. 

Theorem 2.1 [14, Thm. 2.1]. Let f E C1,1((9) and x o ~ (9. Then 

f ° ° (x0 ;  u, v) = limsup 
X ----~ X o  

~ 0  + 

( v y ( x  + Xu), v) - ( v f ( x ) ,  v) 

for all (u, v) ~ R p ×R  p. 
As for example, if f is like in Ex. 2.1, 

f°°(x0; u,o) = 2 [ ( v g ( x 0 ) , u ) ( v g ( X o ) , V ) ]  + 

when g(Xo) = O. 

2.2. Examples Giving Rise to C 1'1 Functions 

In several areas of differential analysis or optimization, C 1'1 functions arise quite 
naturally. Some examples will be detailed below. Clearly, the properties of 02f are 
inherited from those of v 2 f ( x i )  at the points where the latter exists. 

A set 5Pof matrices will be said to satisfy a matricial property (~r) if all the 
matrices M ~ 5~satisfy (rr). 

Example 2.2. C 1'1 c o n v e x  functions. Let O be a convex open set and consider 
f ~ cl ' l((9). f is  known to be convex on 0 i f  and only if ~Tfis a monotone mapping 
on O. Translated in terms of OZf(x), we get the following: 

• f is convex on 0 if and only if 02f(x) is positive semidefinite for all x ~ 0; 
• a sufficient condition for f to be strictly convex on (9 is that 02f(x) be 

positive definite for all x ~ (9. 
In the first result, an equivalent condition evidently is that ~TZf(x) be 

positive semidefinite whenever f is twice-differentiable at x ~ O. As for the second 
result, the sufficient condition can be refined in the same way as it is done for C 2 
functions ([6], [21, pp. 152-153]). The proofs are, like in the twice-differentiable 
case, based on second-order Taylor expansions (cf. 2.3 for details). 

Since a convex function is C 1 on (9 whenever it is differentiable on (9, the 
local Lipschitz property on v f  is a mild requirement on such a function. A 
classical example of a differentiable convex function f which is not C 1'1 on R is 
f ( x )  = Ixl 3/z 

Example 2.3. Primitive functions of the proximal mapping. Let f : R  p 
( - o o ,  + oo] be a lower-semicontinuous convex function which is not identically 
equal to + oo. The unique point where the function u ~ f ( u ) +  ½11 x - u l[ 2 achieves 
its minimum value is called the "proximal point of x relative to f "  and denoted 
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by proxfx. Among the main properties of the proximal mapping proxf (for a 
thorough account of these facts, see Moreau's pithy paper [18]), there is one which 
is of particular importance and which says that proxy is a gradient mapping 
satisfying 

I lproxyx - p r o x f x ' l l  ~< IIx - x ' l l ,  x , x '  ~ Rp. 

Moreau gave a detailed account of the relations between proxfx and proxy.x (i.e., 
relative to the conjugate function f* ) .  In particular, he proved that the convex 
function 

q,: x ~ ~ ( x )  = lllproxfxll2 + f*(proxy.x) 

= ½[llxtl 2 -  I I x -  p r o x y x l l q  - f(proxyx) (2 .2)  

is differentiable on all of R P with 

V ~ ( x )  = proxfx, x ~ R p. (2.3) 

Thus ~ is a C 1'1 convex function to which we refer as the primitive function of 
proxy. As a consequence, we observe that the ~n defined by 

~ , (x )  = inf (f(u)+~l-~.llx-ull21, x E R p, (2.4) 
uENPL /~tl j 

yield a sequence of C 1'1 convex functions since, following (2.2) and (2.3), 

VeOn(X) 1 ( x - - ~ )  ~ Of(~) x ~ nP 
n 

where ~ is the unique solution of the minimization problem (2.4). It is a classical 
result that the ~, converge pointwise to f [5]. 

If f is the indicator function +Q of a (nonempty) closed convex set Q (i.e., 
~ko(x) = 0 if x ~ Q, + ~ if not), proxy is nothing else than the projection 
mapping PQ. According to (2.2), the primitive function of PO is defined as 

x , ( x )  = 1[,x,2- 4(x)]. 
The elements M of 02CO(x) (or equivalently those of 02d~(x)) enjoy some 
elementary properties which do not depend on Q. Clearly 

02 , (x )  = Ip -loq2d~(x), x ~E. ~p, 

and since both q, and d~ are convex, we have that 

0 <~ (Mh, h) <~ Ilhll 2, h ~ R p, 

M [ x -  PQ(x)] = 0 ,  
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whatever M ~ 02~(x). Although it is, as a general rule, difficult to calculate 
02q~(x) explicitly, the main properties of the M E 02q~(x) can be derived from the 
properties of the projection mapping PQ. The question whether q~ might be C 2 on 
0 = R p \ Q  (hence 02gO(x) = { vzq~(x)} for all x ~ 0)  has been settled by Holmes 
[15] and, more recently, by Fitzpatrick and Phelps [9]. They proved that, to secure 
that q~ is C 2 on O, it is (almost) necessary and certainly sufficient to assume that 
the boundary of Q is C 2. 

Example 2.4. Augmented Lagrangians. Consider the following minimization 
problem: 

Minimizefo(x ) over all x ~ a p such t ha t f l ( x  ) ~ O,...,fm(x ) ~ O. (P) 

Letting r denote a positive parameter, the augmented Lagrangian L~ (see [20] and 
references therein) is defined on R P × R m as 

1 ~ ([Yi +2rL(x)l + }2 L~(x ,y)  = fo(x)+-4-;r - y i ,  
i=1  

X ~ R P ,  y E g~ m. 

(2.5) 

From the general theory of duality which yields L r as a particular Lagrangian, we 
know that Lr(X,.) is concave and also that Lr(., y)  is convex whenever (P) is a 
convex minimization problem. By stating y = 0 in (2.5), we observe that 

Lr(X,O ) = fo(X)'~- r k [ff-i (x)]  2 
i=1  

is the ordinary penalized version of problem (P). L r is differentiable everywhere 
on R p × R "  with 

m 

VxLr(x ,y) - - -  V fo(x )+ Y'~ [yj+2rfj(x)] + v f j ( x ) ,  
j = l  

OLr "x f f ~ y / ( , y )  = max{f~(x) ,~ rY/} ,  i =  l ..... m. 

When thef~ are C 2 on R p, L r is C 1'1 o n  R p+'~ and estimates of the generalized 
Hessian matrices a2xxLr(X, y), 3~yLr(X, y), 32L~(x, y) of Zr( .  , y),  L r ( X  , .)  and 
Lr(. , .) evaluated at x, y, and (x, y), respectively, along the surfaces defined by the 
equations Yi + 2rf~(x)= 0, are provided by the rules we shall display in the next 
paragraph. 

The dual problem to (P) corresponding to L r is by definition 

Maximize gr(Y) o v e r  R m, where gr(Y) = inf Lr(X, y).  (Dr) 
xER p 

In the convex case with r > 0, g, is again a C 1'1 concave function [20, Thm. 14] 
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with the following uniform Lipschitz property on Vgr 

1 Rm" 
II Vgr(Y) -- Vgr(Y')ll ~ TrllY -- Y'll, Y, Y' ~ 

2.3. Calculus Rules on aef 

Chain rules. Let F = ( f l  . . . . .  fq)T: ~)CR p ...~R q be a (vector-valued) function 
with each component f~ ~ Cm(0 ) .  Assuming that q): 0 ' c  R q -'-> R is C 1'1 o n  an 
open set 0 '  containing F(0) ,  it is clear that the composed function q, o F is C t,~ 
on 0. A general estimate of 02(@ o F)(xo)U, u ~ R p, in terms of the a2fi(Xo)U, 
a2q)(F(xo)) and JF(xo)  can be derived via inequalities between generalized 
second-order directional derivatives (cf. Thm. 2.1). The next result gives such an 
inequality. 

Theorem 2.2. Let x o ~ O. Then for all u, v in R e, we have that 

( ,o F)°°(x0; u, v) .< E F(xo))f?°(Xo; u, v) 
i=1 

+ q)0O(F(x0); JF(xo)U,  JF(xo)V)" (2.6) 

Equality holds whenever either fi ~ C2( d)) for all i, or dp ~ C2(d9 ') and q =1. 
Since f°°(x0;  u, v) is by definition the support function of 02f(xo) u in the v 

direction, we deduce the following from the theorem above: 

q a,/, 
O2(q~or)(xo)U c Y" ~-~7,, (r (xo))Ozf i (Xo)U 

i=1 v y i  

+ JF(xo)rO2q~(r (xo) )Jr (xo)U (2.7) 

for all u ~ R e. Equality holds if all the f/ are C 2 on 0. However, the above 
inclusion, although it holds true for all u ~ R v, does not allow us to derive an 
inclusion between the sets of matrices! See the discussion in that respect in [14, 
Sect. II]. 

Before proving Thin. 2.2, let us illustrate the foregoing results with the aid of 
some examples. 

Example 2.5. Let F:  R v ~ R q be a linear mapping represented as F(x)  = Ax  for 
a certain q × p matrix A. Then 

(q) o A)°°(Xo; u, v) = q)°°(Axo; Au, Av)  

for all u, v ~ R e, and 

a2( @ o A)(Xo)U = ArO2q,( Axo)Au  

for all u ~ R P. 
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Example 2.6. Let (~:Rq----~R be a linear form defined by ~ ( y ) =  (a, y )  for a 
certain a ~ R q. Then 

q 

O2(<a, F>)(Xo)U c ~., a, O2f~(xo)u 
i=1  

for all u ~ R P. 

Example 2. 7. Let f ~ C 1'1 ((9) and let q~ c C 2 ( I , )  with f((9) included in the open 
interval I '  of R. For such a case, we have claimed in Thm. 2.2 that 

(d? o f)°°(Xo; u,v) = ~'(f(Xo))f°°(Xo; u,v) 

+ ¢ '( / (Xo))(v/(Xo),  u) (vf(xo) ,  ~) 

for all u, v in R P. Therefore 

02(~o f )(Xo) u = qj(f(Xo))O2f(Xo)U + ¢/ , ( f (Xo))Vf(Xo) r v f ( x o )  u 

for all u ~ R P. 

Proof of Thm. 2.2. Let A ,a(u, v) be defined in a neighborhood of x 0 ~ (9 as 

Axx(u ,v  ) = ( V ( q ~ ° F ) ( x + X u ) , v ) - ( V ( q ~ ° F ) ( x ) ,  v> 
, 

Since V(~ o F)(x)  = JF(x)rVep(F(x)) for all x c (9, we have that 

ax ,~(u ,  o) = 
([ JF(x  + )~u)- JF(x)ITvdp( F(x  + ~.u)), v> 

( JF(x ) r [  V ~ ( F ( x  + )~u))- v ~ ( F ( x ) ) ] ,  v) 
+ (2.S) 

F has been assumed to be C 1 on (9. Therefore, 

F(x  + )~u) = F(x)  + hJF(xo)U + )re(x, 2t). 

In this development as in the sequel, e(x, )~) will denote generically an expression 
such that 

lim e(x,X)  = O. 
X --~ X o  

X ---~ O + 

Now, since V~ is Lipschitz in a neighborhood of F(x0), we have that 

V~b(F(x + )~u)) = V~b(F(x)+ )~JF( xo)u ) + )~e( x, )~ ). 
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Due to this expansion and to the Lipschitz property of JF around x0, the second 
expression occurring in the development (2.8) can be rewritten as 

( V ~ , ( F ( x ) +  XJF(xo)u ) -  Vd~(F(x)), JF(xo)V ) 
X v ~(x, X). 

As for the first expression in (2.8), for the same reasons as above, we note that 

[ JF(x + •u)- JF(x)] Tv~( F(x + Xu)) 

= E . ( F ( x o ) ) [ v f i ( x + X u ) - V f i ( x ) l + X e ( x , X ) "  
i=1 

As a result, 

q O~ (F(xo)) VL(x  + X u ) -  v f / ( x )  

i=1 

( Vep(F(x)+ XJF(xo)U ) - Vep(F(x)), JF(xo)V ) + 

+ e(x, ~). (2.9) 

Now, since (~ o F)°°(x0; u, v) is equal to 

limsup Ax,x(u, v) 
X --~ X 0 

X-,0 + 

(Thm. 2.2), one readily gets the inequality (2.6) from (2.9). If all the f, are C 2, or if 
is C 2 and q = 1, one of the two main expressions in (2.9) actually has a limit 

when x --, x 0 and 2~ ~ 0 +. Whence the announced equalities. [] 

Second-order Taylor Expansion. Let I be an open interval containing [0,1] and 
let ~ ~ C1'1(I). Then, a classical argument yields that 

~(1) -  ~(0) -  q,'(0) ~ ½02O(t) (2.10) 

for some t ~ ]0,1[. By using the chain rule displayed in Ex. 2.5, one immediately 
gets the next second-order expansion of f :  

Theorem 2.3. Let f ~ C1'1(0) and let [a, b] c (9. Then there exist c ~ ]a, b[ and 
M C ~ 02f(c) such that 

f (b)  = f ( a ) + ( v f ( a ) , b - a ) +  l ( M c ( b - a ) , b - a } .  (2.11) 
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3. Second-Order Optimality Conditions for C 1'1 Problems 

In this section, our aim is to present second-order necessary conditions for a point 
x o to be an optimal solution of a mathematical programming problem with C 1'1 
data. In particular W e show how to replace the Hessian matrix of the Lagrangian 
function when it is not defined. 

3.1. Necessary Conditions for Unconstrained Problems 

We consider the following problem: 

Minimizef (x)  over all x ~ (9 (U) 

where (9 is an open subset of R p and f a C 1'1 function on 0. For this problem the 
second-order necessary conditions are given in the theorem below. 

Theorem 3.1. Let x o ~ (9 be a local minimum for problem (U). Then for each 
d ~ R p, there exists a matrix A ~ 02f(x0) such that CAd, d) >~ O. 

Proof Let d ~ R e be fixed and consider the sequence { xg } k >/1 where x k = x 0 
1 

+ ~ d. Without loss of generality we can suppose that x k ~ 0 for each k. Then the 

second-order Taylor expansion (Thin. 2.3) o f f  in a neighborhood of x 0 becomes: 

1 2+ f ( xk )  = f(Xo) + -k ( v f ( X o ) ,  d) + (A~d, d)  (3.1) 

where k >/1, A k ~ 02f(~k) and xk ~ ]x0, xk[. 
Now, x 0 being a local minimum, the gradient v f ( x 0 )  is identically zero and 

f (xo) ~ f(Xk) for each k. Hence it follows from (3.1) that 

(Akd, d)  >1 0 for each k. (3.2) 

On the other hand, as 02fis locally bounded (Sect. 2, (P1)), the sequence (A~ }k is 
bounded and thus has a subsequence which converges. Let A be the limit of this 
subsequence. By the upper-semicontinuity of OEf (Sect. 2, (P2)), this matrix 
A ~ 0 2 f ( x o ) .  Moreover, taking the limit in (3.2) gives CAd, d) >10. [] 

Remark 3.1. In Thm. 3.1 it is only assured that there exists a matrix A c 02f(xo) 
such that CAd, d)>10. In general this inequality cannot be extended to each 
matrix A ~ 02f(Xo) as illustrated by the following example. Let f :  R ~ R be 
defined by 

f ( x )  = flxlq~(t) dt (3.3) 
Jo 

where 

qJ(t) = 1 2t2 +t2s in l / t  i f t > 0 ,  
0 i f t  - 0 .  
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The function ~ has been chosen to satisfy the inequality q, ( t)  >/t 2. So f ( x )  >/I x 13/3 
for each x ~ R and as f(0)  = 0 it is clear that 0 is a local minimum of f .  Moreover 
02f(0) = [ - 1 ,  +1] and consequently (Ad, d)  7~ 0 for each A ~ 02f(0). 

It would be interesting to characterize the largest subclass of C ~,1 functions 
for which the necessary optimality conditions can be written: 

min (Ad, d) >1 0 for eachd.  (3.4) 
.4 ~. 02f(Xo) 

This is the case for the functions described in Ex. 2.1. Indeed for each x 0 ~ R p 
such that g(Xo)= 0 (and x o is then a minimum of f )  the generalized Hessian 
a2f(x0) is a subset of the set of symmetric positive semidefinite matrices. At this 
time it appears that the characterization of the class of functions satisfying (3.4) 
remains an open question. 

Remark 3.2. As (3.4) is not true in general, the set ~ ¢ ( d ) =  (A 
02f(Xo)l (Ad, d )  >/0), i.e., the maximal subset of 02f(Xo) satisfying (Ad, d) >1 O, 
depends on d. This can be illustrated by the following example. Let g: R 2 ~ R be 
defined by g(x, y) = f ( x )+  f ( y )  where f is the function considered in (3.3). It is 
easy to see that x 0 = (0,0) is a minimum of g and that, for d = (d 1, d2), 

~¢(d)  = 0 I - l ~ < a ~ < l ' - l < ~ f l ~ l ' c t d 2 + f l d 2 > ~ O  " 

Then d((1,0))v~ ~¢((0,1)). Moreover, for this example the set [ " ) ~ ( d )  is non- 
empty, d 

In general, however, it is not sure that the set N~C(d)  is nonempty. For 
d 

one-dimensional problems it is obvious. For the other cases the question remains 
open. 

3.2. Necessary Conditions for Constrained Problems 

We now consider the following constrained problem: 

minimize f ( x )  

s.t. gi(x) <<, O, i = l , . . . , m ,  

hj(x)  = O, j = l  . . . .  ,n,  

(c) 

where the functions f ,  gi, i =1  . . . .  ,m, and hj, j =1 . . . . .  n, are C 1'1 functions on 
Rp. 

Let x 0 be a local minimum for problem (C). The functions f ,  gi, and h i being 
C 1 functions, there exists a vector (h0,?~ 1 . . . . .  hm,~l . . . .  ,/~n) in R n+"+l  not 
identically zero such that the following condition, known as the Fritz-John 
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Necessary Condition, 

n 

~t0Vf(x0)+ ~ XiVgi(xo)+ Y'~ I~yVhj(xo) --- O, 
i=1 j =1 f 

~o>~0, ~i>~O and ~igi(xo)=O f o r i = l  . . . . .  m, 

(F J) 

is satisfied. 
Now if we want the multiplier ~o to be positive then an additional regularity 

hypothesis, called a constraint qualification, must be assumed. We denote by (H1) 
any constraint qualification. So, under (Ht), the Fritz-John's Condition becomes: 
There exists a vector (hl, . . . ,hm, lh . . . . .  /~,) in R m+" such that the following 
condition: 

vf(xo)+ E x,vg,(Xo)+ .jvhj(xo) = o, 
i =1 j = l  

~i>~0 and ~igi(xo)=O f o r i = l  . . . . .  m, 

(KT) 

is satisfied. It is the Kuhn-Tucker Optimality Condition. The linear independence 
of the vectors Vgi(xo), i ~ I(xo), vhj(x0) ,  j = l , . . . , n ,  where I(xo) = { i[gi(xo) 
= 0}, is an example of Condition (//1). 

From now on, we assume that (HI) is satisfied. So there exists at least one 
Kuhn-Tucker multiplier (h,/~). Then, to get second-order necessary conditions, 
we associate to each multiplier h = (~1 . . . . .  X,,) the set G(h)  defined as follows: 

gi(X) = 0 for i such that )k i > 0 

G(X) = ~xlgi(x)<<. O f o r i s u c h t h a t h / = O  

[ lh j ( x )=O for al l j  

(3.5) 

and we denote by T x the Bouligand tangent cone to G(X) at x 0. If we denote by 
L(x,  ~, ~) the usual Lagrangian function 

m 

L(x ,  X, I~) = f ( x )  + ~_, ~tigi(x ) + ~ I~jhj(x) 
i =1 j = l  

(3.6) 

and by 02x~L(xo, ~, i~) the generalized Hessian matrix of L(. ,  X,/~) at x 0, then the 
second-order necessary conditions can be expressed as follows: 

Theorem 3.2. Let x o be a local minimum of problem (C) and let ( H1) be assumed. 
Then for each Kuhn-Tucker multiplier vector (?t, i~) and for each d ~ T x, there exists 

2 a matrix A ~ O~xL(X o, ?% I~) such that (Ad, d) >i O. 

Proof. Let X, t~ and d be fixed. By definition of the tangent cone Ta, there exist 
sequences {a~} ~ 0 + and (dk} ---) d such that, for every k, x o + a~d~ ~ G(h). 
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Then, by (3.5) and (3.6), we have for every k, that 

L ( x  o + otkdl,, X,lx) = f ( x  o + otkdk). (3.7) 

On the other hand, by Thm. 2.3, the Lagrangian function admits a second-order 
Taylor expansion in a neighborhood of x0, namely, 

L(Xo + =  k VxL(Xo, 
1 2 + 7ak{agdl,, dl, ) (3.8) 

where k >11, Ag ~ 02:,L(xo + al, dk, ~, Ix), and % verifies 0 < ak< ag. But x 0 is a 
local minimum for problem (C) and thus the following relations 

vxL(Xo,X, )=o,/ 
f ( x o + Otkdk ) >~ f ( Xo ) for k sufficiently large ) 

(3.9) 

are satisfied. Then, gathering (3.8) and (3.9) gives: 

(./lkdk, dk) >t 0 for k sufficiently large. (3.10) 

Finally, as 02L is locally bounded (Sect. 2, (P1)), the sequence (A k } is bounded 
and thus has a subsequence, again denoted by { A k }, which converges to a matrix 
A. Now as {ak} ~ 0 + and (dk} ~ d, the sequence (x  o + %dk} converges to x o 
and, by the upper-semicontinuity of 02L (Sect. 2, (Pz)), the matrix A ~  
02x L (x o, h,/,). Passing to the limit in (3.10) gives the inequality (Ad, d ) > O. [] 

Remark 3.3. If ( H  x) is not assumed, then there exist A 0, ~1 . . . . .  ~ m, ~1 . . . . .  ~, not 
all zero satisfying the Fritz-John Condition and if the Lagrangian function is 
defined by 

m 

L(x ,  Xo, X,lx ) = )%f(x )+ E ~kigi(X) "a¢- ~ txjhj(x) 
i = 1  j = 1  

then a similar result can be obtained, namely, for each d c Tx, there exists a 
2 matrix A ~ O xxL( xo, 2%, ~, #) such that ( Ad, d) >10. 

One way to obtain a more tractable expression of the tangent cone T x is to 
express it in terms of the gradients of the functions & and hi. It is easy to see that 

(Vgi(Xo),d)=0 
d (Vg,(Xo),d).<0 

( v h j ( x o ) , d ) = O  

for i such that ~k i ~> 0 

for i such that )~i = 0 

for j  = l , . . . , n  

and gi(Xo) = 0}.  

But, in order to get the equality between these two sets, a second-order regularity 
condition must be imposed. Let (H2) be any condition of this type. It is well 
known that both (H1) and (H2) are satisfied if the following vectors 

Vgi(XO), i ~ I(Xo), vh j (xo)  , j = 1, . . . ,n ,  

are linearly independent (see, for example, [10, Sect. 7 and 10]). 
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Corol la ry  3.1. Let x o be a local minimum for problem ( C) and let ( H1) and (112) 
be assumed. Then for each multiplier ( ~, t~ ) and for each d such that 

( V g i ( x o ) , d ) = O  forisuchthathi>O, 

( ~gi(Xo)' d) ~ 0 for i such that h i = 0 and gi(Xo) = O, 

( v h j ( x o ) , d ) = O  f o r j = l , . . . , n ,  

2 there exists a matrix A ~ axxL(xo, ~, Ix) such that (Ad, d)  >10. 
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