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Abstract. The Farkas-Minkowski systems are characterized through a 
convex cone associated to the system, and some sufficient conditions are 
given that guarantee the mentioned property. The role of such systems in 
semi-infinite programming is studied in the linear case by means of the 
duality, and, in the nonlinear case, in connection with optimality conditions. 
In the last case the property appears as a constraint qualification. 

1. Introduction 

Let {a'tx~flt , tE T} be a linear infinite system in R n. We will suppose in the next 
two sections that this system is consistent. Two systems are equivalent if they 
have the same solutions. [a] p ~ n+l The relation a x=fl ,  with associated vector fl E R , is a consequence 

relation of the system if every solution of it satisfies the relation. 
The consistent system {a~x>flt, t E T }  satisfies the property of Farkas-  

Minkowski (F-M) if every consequence relation of the system is a consequence of 
a finite subsystem. 

The system t[a'x>--Rt - - t " t ,  t E T }  is canonically closed (CC) if the following 
conditions hold: 

(1) There is an algebraic interior point, i.e., for some x ° E R  n, 

a't x° > Bit, for all t E T. 

(2) There is a function at: T o  ]0, + oo[ such that the set 

{[1 } at •t ' t E T is compact. 
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Symmetric definitions are to be considered for a system of type {a~x<=flt, 
tET) .  

The convex cone of generalized positive finite sequences will be denoted by 
R(+r): N(+r)={a: T-~N + / a t = 0 ,  Vt~T--T~, T~ finite set}. 

Given a nonempty set C CN p, <C> denotes the convex hull of C, and K(C) 
the convex cone generated by C. 

[yy+] o By.f  we represent a vector in N "+1 with)5= , y E N  , Y,+1 N. 
' 1 

Concepts and notation about functions are to be found in [ 11 ]. 

2. Characterization of Consequence Relations 

The well-known generalized Farkas lemma--which establishes that "a'x>=O is a 
consequent relation of { a~x >= 0, t E T } if, and only if, a ~ J~(at, t E T ) " - -  allows 
us to characterize the consequence relations of a consistent nonhomogeneous 
linear system. 

{[a,] < } The convex cone generated by ~t ' 7t = fit, t E T will be denoted by K~. 

Theorem 2.1. a'x>=fl is a consequence relation of the consistent system {a~x>-_flt, 
[ a ]  tET) if, and only if, fl EK C. 

Proof Let [~ ]  EKe. Then 

= l i m  6 ' (~k i = 1  ' k L k = ] ~ k '  3',k ' 

Xk>O,  , ET,]t%<flt,,i=l,= ..., r k , r k E N .  

If x ° is a solution of the system, then a~ x°--Tt >-a~ x° - f l t  >-0. Hence b'kx ° -  
k i  k i - -  k i  ~c i - -  

~k>_--0, k =  1,2 . . . . .  Then a'x°-fl>-O. This means that a'x># is a consequence 
of the system. 

We suppose now that a'x>fl is a consequence relation of (a~x>=flt, tET} .  
] [xx+  ] > 0 (I) is consequent of the following system First, we prove that [ a '  fl i -- 

in R"+I:  

{[a~ yt][xX+,]_>0,  yt<=flt, t E T }  (II). 

For this purpose it is enough to prove that the solutions of the latter system of the 
form 

[ - 1 ] ' [ 1 ]  and [ 0 ] '  

are solutions of the relation (I). 
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If [ - - 1 ]  is a solution of (II), then a~Yc-/3t>=O, for all tCT. In such case 

a'ff>=/3, i.e., [a ' /3][_1]>_--0. 

I f [ 1  ] is a solution of (II), thena~Yc+/3t-r>:O, for aU (t,r) ~T×N.  This is 
a contradiction. 

I f [ 0  ] isasolutionof(II),thismeansthata'tYc>:O, f ° r a l l t E T . L e t x ° b e a  
solution of (a~x>/3t, tE T). Clearly, x ° + ? ~  is a solution of the last system, for 

all X>O. Hence, a'(x°+ XYc)>:/3, VX>O. Therefore, a'Yc>=O, i.e., [ O ] satisfies (I ). 

BythegeneralizedFarkaslemma[afl]EK([aT~),yt<=flt, t ~ T ) .  [] 
This result can also be deduced from Theorem 2 of K. Fan [3]. 

3. Systems of Farkas-Minkowski 

It is clear that the system (a~x>/3t, tET}  is a F-M system if, and only if, 

{ a~x>:/3t, t E T  
0'x >___ - 1 (trivial constraint) 

is a F-M system. The last one will be called "extended system." 
We shall denote by/¢¢ the convex cone associated, according to section 2, to 

the extended system. This cone allows us to give a characterization of the F-M 
systems. 

Theorem 3.1. The system (a~x>:/3t, tET)  satisfies the property of F-M if, and 
only if, I¢~ is closed. 

Proof. To simplify the proof, we will assume that {a~x>-flt, tET)  contains the 
trivial constraint 0'x > - 1 .  Hence, /¢c=Kc. If Kc is closed and a'x>=fl is a 

consequence relation, then [ ~ ] ~ Kc (Theorem 2.1), and we can write: 

= hi Yt, ' Tt ,=~. , , ,  t i E T ,  hi>0,/== 1,...,r 
i=1 

We can choose r<n+l ,  by applying Caratheodory's theorem. With a new 
application of Theorem 2.1, we conclude that a'x>/3 is a consequence of the 
finite subsystem { a't,x> /3t , i= 1,..., r }. 

Let us now suppose t~at the system satisfies the F-M property, being a'x>-_/3 
a consequence relation of the system. Then a'x >/3 will be a consequence of a 
finite subsystem (a~x>/3t,, i=  1,..., r}. Theorem 2.1 gives 

[~] ~ [ ] [at~] [ ~] 
= a i / / 3 t / + X  _ , t i ~ T ,  a i~O , i = 1  .... , r ,  X ~ 0 .  

i=1 
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Let us assume a~ :~0. Then 

at ~ ] 

This proves that K~ is closed. 
Note that K c C / ~  C K  c. Furthermore, 

[] 

The condition K c is closed" can be reformulated in the following way: "K¢ 
contains all its boundary points except, perhaps, the points of the half-line 

Infact ,  l e t x b e a b o u n d a r y p o i n t o f K c ,  x f ~ K { [ _ ~ ] } . S i n c e I ( c i s c l o s e d  

and K c C / ~ ,  x ~ k~. Hence, x ~ K~. Conversely, 

Corollary 3.1.1. I f  the consistent system (a~x~flt, t ~ T }  satisfies one of the 
following conditions, then it is a F-M system: 

(i) K c is closed. 

} (ii) K fit ' t ~ T is closed. 

(iii) The system is canonically closed. [a] (iv) T is a compact convex set in R m, at and fit are linear functions and Tfq Ker fit 

(v) T is a finitely generated cone in R m and a t, fit are homogeneous linear functions. 

Proof 
(i) It follows immediately from K C C/(c CK~. 
(ii) We will prove that k~ is closed. ([a,] } For the sake of brevity we represent the cone K fit ' t E T by M. Let x be 

x=limx~,withx~EI£~,r=l,2,....Wecanwritex~=y~+~ r _ l ] , y  , _ 

r = l , 2  . . . .  If (~} is not bounded, there is a subsequence {~k} such that 
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limXrk= +°°.But l--1--xr*= -~kYrk+[_~] and {xrk} isbounded. Hence[ 

1 r - -  -~y k E M C K  c. This means that 1 is a consequent relation of the system, 

i.e., it is not consistent. 
Since {X r} is bounded, there is a subsequence (X r~ } such that lim Xr*--X °. The 

equality x~=y'~+X~*[ 01] gives x = y ° + X °  [ ~] , fo r somey°EM,  i .e. ,xEkc. 

{[a,] } (iii) Let ~t Bt ' t ~ T be compact, a t>0,  tET,  with an algebraic interior {[ o] 
point. By a well-known property of cones (c.f. [6], p. 203), K a t 8, ' t E T = M  

is a closed cone and (ii) holds. 
A known property of compact-convex sets (c.f. [12], p. 79) shows that M is 

closed if (iv) holds, while, assuming (v), M is a finitely generated cone. [] 
Condition (ii) of Corollary 3.1.1 is given in [4], where M is called the 

"moment cone" of the system. Condition (iii) is exactly the nonhomogeneous 
theorem of Haar (see [1]). 

Every closed convex set in R" can be represented through a linear system 
which satisfies (i) and (ii). In fact, let S be a nonempty dosed convex set and 

T =  { [ ~ ]  ER"+'/a'x>--_fl, V x E S } .  Then {a'x>--_fl,[afl]ET} satisfies (i) 

and (ii) by Theorem 2.1. 
The three sentences "Kc is closed," "/(~ is dosed," and "M is closed" are 

independent, as the following examples prove: 
In (tx>-e-t, t e l0 ,  + oo[} (i) holds and (ii) does not. 
In ( tx~ 1, tE[1,2]} (ii) holds and (i) does not. 
Condition (v) of Corollary 3.1,1, "T  is a finitely generated cone," can not be 

substituted by "T  is a closed convex cone," as the following counterexample 
proves: 

Let T=K I ×K 2 where K 2 =K((0,  - 1,0)'} and 

K, = ( (Xpcos 0, h, - X ( I  + psen0 )) ' /h>=0, pC [0, l l, OE [-~r ,  It[ ). 

Let a t = (t I + t4, t2 4- t 5)', fit = t3 + t6, t ~ T C R 6. Kl and K 2 a re  dosed convex 
cones. So is T. But M = K  1 + K  2 is not closed. Furthermore, I~c=Kc=M and 
{a'tx>flt, t ~T}  is not a F-M system. 

Finally it is curious to observe that the very strong condition "the system has 
a finite equivalent system" is even not sufficient to guarantee the property of 
F-M, as the following example shows: 

( tx>l ,  tE]l ,2]}  and ( x > l } a r e e q u i v a l e n t .  

While the second system is, obviously, a F-M system, the first is not. 
Similar results can be easily established by setting < instead of ->_, and 

conversely, in sections 2 and 3. 
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4. The Farkas-Minkowski Systems in Linear Semi-Infinite Programming 

In this section we prove the perfect duality theorem ([9], [10], and [4]) by means of 
Theorem 2.1. Its particularization, when the system of constraints for the primal 
program is a F-M one, constitutes the Haar's duality theorem for the consistent 
case ([2]). 

The perfect dual programs are established as follows: 

Primal program ( PP ) 

Min c' x 
s.t. a~x>~t, t E T  

Dual program ( DP ) 

Max Yn + l 
s.t. f ~ K ~ ,  y = c  

Theorem 4.1. Programs PP and DP are in perfect duality, because: 
(I) I f  one program is consistent and has finite value, the other is also consistent, 

and 
(II) I f  both programs are consistent, both have the same finite value. 

Proof 
(I) Let us suppose DP consistent and with finite value. Let f0  E R , + I  such 

that )70 ~K¢, y0 =c.  If PP is inconsistent, the following system has no solution: 

{ a'tx + ~tx.+l>=O, t E  T } .  

Xn+ 1 < 0  

>-0 is a consequence relation of the system (a~x+fl tXn+l~O , Therefore xn+ 1 - 
t ~ T),  and, by the generalized Farkas lemma, 

it is easy to see that, for all ~ >0,  )70+)~[~] are feasible points for DP. However, 

the objective function of DP is not bounded from above over this half-line. Hence 
PP is consistent. 

Let now PP be consistent and let a ~ R  be its value. The relation c'x>=a is 
obviously a consequence of the system t~a'x>t~t =_,.~, t ~ T } ,  and, by Theorem 2.1, 

c ] belongs to ~'c, which proves that DP is consistent. [o 
(II) If both programs are consistent, it is easy to prove that c'x>yn+ l, being x 

and f =  Yn+l feasible points for PP and DP, respectively (""weak duality"). As 

c ] E/~¢ for a= in f .  PP. Consequently, a=supr .  DP. [] we have already shown, [ a 

Corollary 4.1.1. I f  the system of constraints for the PP in Haar' s duality satisfies 
the F-M property, the PP is consistent, and: (I) inf. P P =  - ~ if, and only if, DP is 
not consistent. (II) inf. PP> - ~ if, and only if, DP is consistent and inf. P P =  
max. DP. 
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Proof. The dual problems of Haar's duality 

P P  D P  

Min. c'x  Max.  ~ Xt~, 
t~T 

s . t . a ' x > B ,  = , s.t. E Xtat=c,(~kt)t~T~N(T+ )" 
t~T 

are equivalent to the following pair: 

P P  D P  

Min. c'x  Max. - /~+  ~ Xtfl t 
tET 

s.t. a ; x ~ B t  , t E T  s.t. 2 ~tat=c,(~kt) teTER(T+), l  z~O. 
O'x > - - 1. t~T 

As has already been said, the~extended system of constraints for the P P  is 
also a F-M one, being k c closed. D P  can be rewritten as follows: 

Max. Y,+I 

s.t.)7~/(c, y-- c. 

Hence PP and D P  are in perfect duality and we finish by applying Theorem 4.1. 
[] 

5. Systems of Farkas-Minkowski in Nonlinear Semi-Infinite Programming 

The well-known theory of the Lagrangian saddle points in nonlinear program- 
rning can be extended through suitable generalization of the concepts. The 
sufficient condition for optimum point is completely general, while to obtain 
necessary conditions we must introduce new hypotheses related with the property 
of F-M. 

Let us consider the general problem of SIP, called P: 

Min. {q)(x 
S = (xeC/f,(x)>-0,  t e r } ,  

where C c R" is the supporting set of the functions and T is an infinite set. 
The Lagrangian function associated with the problem is: 

q,(x,X) = X x,/ , (x),  
tET 

x ~ C,X ~ R  (r). 

As in the finite case, (~, X) will be a saddle point for q/(x, X) if a/(2, X)<_a/(2, X) 
<='I~(x, X), for all x ~ C  and hER(+ r). 



302 M.A.  Goberna, M. A. L6pez, and J. Pastor 

Theorem 5.1. I f  (:~, X ) E C × R ~  ) is a saddle point for ',I'(x, )Q, then Y is an 
optimal solution of P. 

Proof For every t-@ T we define ~ ~ R 4 ) such that 

= I X'' tv~[ 
X, LX,-+l, t=7 

and, by the condition of saddle point, ft-(:~)<0. This proves that Y is a feasible 
point. Obviously ~ Xtft(Y)<0, which combined with the condition of saddle 

t ~ T  

point for ;~----0 gives ~ Xtft(ff)=0 (condition of complementarity). Then, if 
t E T  

x S, [] 
t E T  

In order to obtain a converse theorem, we have to impose restrictions to the 
functions. From now on, we shall suppose, by reasons of simplicity, that C = R" 
in problem P. 

The Constraint Qualification Q 

The system ( f t (x)=0,  t~  T) satisfies the constraint qualification Q if the linear 
system ( f t ( y )+~ ' (x -y )~O,  (t, y ) ~ T × R " ,  ~@0ft(y)) is a F-M system, where 
Oft(y ) denotes the subdifferential o f f  in y. 

Obviously, if ft is convex and differentiable in y, 0ft(y)=(~Tft(y)}. More 
particularly, if the constraints of problem P are linear functions, i.e., f t=a~x-~t ,  
then Q holds if, and only if, (a;x<-Bt, t E T }  satisfies the property of Farkas- 
Minkowski. 

We must emphasize that the linear problem plays a more crucial role in 
semi-infinite programming than in finite programming, because a wide class of 
SIP problems can be reformulated as a linear ones (See [5].) 

Theorem 5.2. I f  (1) all the functions of problem P are convex, and (2) the 
constraint qualification_Q holds, then, if ff is an optimum solution of P, there is some 
)~ ER(r+ ) such that (~,)~ ) is a saddle point of ~(x ,  )Q. 

Proof Let S be the set of solutions of the system 

{ftCy)+~'(x--y)<=O, (t, y ) ~ T × m " , ~ O f t C y ) } .  

Note that the convexity of f guarantees that 0f(y) :~  ~ ,  for all y E R n. We shall 
prove first that S = S. 

Let x ° ES. Then f t (x°)~0,  VtET ,  and given y E R  n, ~G0ft(y), we have 
O>ft(x°)>-_fft(y)+~'(x°-y), i.e., x ° ES. Conversely, given x ° ES, we consider 
some of the linear inequalities, corresponding to t E T and x °, ft(x o)+ ~ ' ( x -  x °) 
<=0. Then f t (x° )<0  for all tET ,  and hence x ° ~ S .  Consequently, the system 
above is a linear representation of S, which satisfies the F-M property. 
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Since ~ is an optimum solution of Min. ~p(x) on S, there is a subgradient 
~ 0 ¢ p ( ~ )  such that ~ ' ( x - 2 ) > 0 ,  for all x ~ S .  In other words, the relation 
- ~ ' x  < - ~ ' ~  is a consequence of the system, and there are parameters X~>0, 
i =  1 . . . . .  q , / z>0 ,  such that 

q[ , 
-- ~ = i ~ l  Xi ~i ' .y i -- f t i (yi  ) L/zJ 

Ix] Multiplying by - 1 ' we have for any x E R n 

- ~ ' x  + ~'~ = 
q q 

X , [ f t , ( y i ) + ~ i ' ( x - y ' ) ] - I ~  <= ~ X i [ f t , ( Y ) + l ; i ' ( x - Y ) ]  • 
i=1  i----1 

But ~iEOft,(Yi) means that f t , ( y i ) + ~ i ' ( x - y i ) < f t , ( x )  and therefore ~'~<= 
q 

~'x+ ~, Xift,(x ), for all x E R ' .  Similarly, q~(~)+~ ' (x -~ )<rp (x ) ,  which com- 
i = l  q 

bined with the above inequality gives qo(x)+ ~, X/ft,(x)>_-rp(~), for all x E R  n. 
i=1 

Since ~ is a feasible point, we have 

• (~) + E x,f,(~) <_- r(~),  v x  ~ W+ ~ 
tET 

Defining X E R (+r) as 

= ~Xi, t=t~ 
Xt Lo, t__/=ti, i= 1 .. . .  ,q, 

we obtain 

• (~) + E xtf,(~) <-- r (~)  <= r(x)  + E X,ft(x), 
t~T t~T 

for all h~R(+  r) and for all x E R  n. The specification of the double inequality for 
x = ~  and ~ = h  gives ~ ~ t f t (~ )=0 ,  which completes the proof. [] 

t~T 
A more operative result can be obtained for differentiable constraints. The 

proof of the first part is based on the fact that the constraint qualification Q 
holds. We need a previous lemma, in which S b denotes the set of boundary points 
of S. 

Lemma 5.3. Let S C R "  be a closed convex set and (c~x<-6t, t ~ T }  a system such 
that: (I) every point of S is a solution; (II) there is a x° ~ S such that c~x° < 8 t, t E T; 
and (III) given any y E S  b, there is some t E T  such that c~y=6 t. Then S : { x E  
R"/c;x<-a,, t~r). 
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Proof. Let us suppose z ~ S  such that z satisfies the system. If we consider the 
segment between x ° and z, there is only one X E ]0,1[ such that X z + (1 - X ) x  ° = y  
E S  b. We choose t-E T such that c;-)7=8t~ Nevertheless c;-x°<Siand c;-z<Sr, and 
therefore c;-)7<8t~ This means that every solution of the system belongs to S. [] 

Theorem 5.4. I f ( I )  T E R  m is a compact set, (II) all the functions of problem P are 
convex, (III) the constraints are differentiable and the functions ft( x ) and x7 ft( x ) 
are continuous in both variables, and (IV) there is a point x ° such that ft( x°)<O for 
all t E T, then, if  ff is an optimum solution of P, there is some X E R (~) such that 
(E, X) is a saddle point of '~( x, ~ ). 

Proof For the demonstration we distinguish two steps, assuming in the first one, 
(i), S is a compact set. 

(i) We shall prove that Q holds. 
Let us observe first that s b = { y E S / f t ( y ) = O  for some t E T } .  In fact, if 

x E S  b, there is a sequence (x r} in R" ~ S  such that l imxr--x .  Let t ~ E T b e  such 
r 

that ft ,(x~)>0. Since T is compact, there is a subsequence {t ~k} such that 
l i m t ~ k = t ° E T .  By continuity, fo(x)>=O. But x E S  and hence ft0(x)=0. Con- 

k 

versely, if y E S  and f , ( y )=0 ,  gET, w e  define yr=xOq- (~-~  } ( y - x ° ) ,  r =  
1 1 1  \ 

1,2 . . . . .  Since f t (x° )<0  and f, is convex, f t (y r )>0 .  Then yr E R "  ~ S ,  r= 1,2 . . . .  
! 

and l imy~=y,  i . e . , y E S  b. 
r 

We can prove now that the following system is a linear representation of S: 

{ f t ( y ) +  v f t ( y ) ' ( x - - y ) < O ,  (t,  y ) E T × S b } .  

Let S be the set of solutions of the last system. By convexity, S C S. 
Applying the axiom of choice we can choose for every y ~ S  b an index 

t (y)  E T such that ft(y)(y) = 0. 
Since S C {x E R "/ft(yl(Y) + V ft(y)(Y)'(X - -y )< O, y E sb),  if we prove that S 

is the set of solutions of this subsystem, then S = S. But (ft(y)(Y) + V f t (y)(y) ' (x-  
y)<=O, y E S  b} satisfies all the assumptions of Lemma 5.3. The linear system 
{ v f t ( y ) ' x < = v f t ( y ) ' y - f t ( y ) ,  ( t , y ) E T × S  b} is a linear representation of S 
which is canonically closed: TXS b is a compact set and, consequently, the 
following is also a compact set in R" +l .  

v f t C Y ) ' Y - - f t ( Y )  ' 

furthermore 

ftCY) + xT f t C Y ) ' ( x ° - Y )  < f t (x°)  < O, (t ,  y )  E T ×  S 6. 

The property of Farkas-Minkowski is guaranteed by Corollary 3.1.1. 
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We conclude the first step by proving that Q holds. In fact, the system 
{ f t (y )+  xTft(y)'(x-y)<=O, (t, y ) E T × R " }  is a F-M system since it is obtained 
by addition of consequent relations to a F-M system. We must consider that, by 
convexity, both systems have S as the set of solutions. Theorem 5.2 can be 
applied to obtain the intended result. 

(ii) Let us now assume that S is not bounded. We define a new problem ff by 
addition of a constraint to problem P in such a way that ~ remains an optimum 
solution of ft. We shall distinguish the elements of the new problem of those of P 
through the sign ~ .  Let t o be a point of R m~ T. We define T=  TU {to}, which is 
a compact set in R m. 

We associate to t o the constraint 

f,o(x ) = x'x -- 2 x'ff + ~'~ - p 2 <= 0, 

with P > d(Y, x 0 ) arbitrarily chosen. Consequently S = { x ~ R "/f, (x)  < 0, t ~/~ } = 
{x~S/llx-Y~ll<=p} is a compact set. The p rob lem/ ;  satisfies all the conditions 
of this theorem (i) since d(to, T ) > 0 .  Then, there is some X~R(+ r) such that 

E E X,ft(x)+Xt0f, o(X), 
t E T  t ~ T  

for all }`@R@, and for all x E R " .  
Obviously, the constraint fto(x)<=O is not active in ~. Hence, the condition of 

complementarity implies Xto=0. We obtain qo(~)<=¢p(x)+ ~ Xtft(x), for all 
t E T  

xEg~", while cp(~)+ ~ }`tft(~)<=qv(~) for all }`~R(+ r) since ~ is a feasible point. 
_ t E T  

This means that (if, }`) is a saddle point of q (x ,  X). [] 

Example. Let us consider the problem P: Minq~(x), subject to 

(xl)2+(x2)2--2xl+Z(t--3)x2+(~tz--2t+l)<=O, t ~ [0,31 

with 

~ ( x ) - - I  (x2)2+2x2 ,  x2>-0 

t 2X 2 , x 2 < 0 ,  

The point Y=(1,0)  satisfies all the conditions of Theorem 5.4, choosing, for 
instance, x°=( l ,½) .  Our purpose is to find out }`ER(+ r) such that (~,X) is a 
saddle point. 

The condition of complementarity 2 Y',(-~ t 2 -  2 t ) = 0  gives X,=0 for all 
t ~ T  

tE]0,3]. 
The "right" condition of saddle point gives for x2>=0, 3},o-1<=0, and for 

x=<0,  3}` o -  1 >=0. It can be shown that X, defined as 

1, / = 0  

LO, t ~ 0 '  

is the only one (in R(+ r)) satisfying the requested condition. 
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The property of F-M is not only involved in the theory of nonlinear SIP 
through the constraint qualification Q, but also in connection with some useful 
concepts, such as those of "regular point" and a "Kuhn-Tucker type" condition. 

Corollary 5.4.1. I f  the conditions of Theorem 5.4 hold and ¢p( x ) is differentiable in 
~, which is an optimum solution of problem P, then there are nonnegative real 
numbers h i and indices t i E T, i= 1 ..... r such that 

v~0(~) + ~ x, vf,,(~)=~ 
i=1  

(K-T condition in SIP). 

Proof. If (Y, X) is a saddle point of ~(x,  ~), then 

q0(~)+ Y, X,/,(~) <-q0(x)+ E x,/,(x), 
t E T  t E T  

for all x E R  n. 
Let us assume that Xt=0, tvLti, i = l , . . . , r .  Obviously the function 

r 

q0(x)+ ~, X~,f~(x) attains in 2 its minimum value on R n and, consequently, 
i=1  r 

v~(~)+ Y~ X, vft(~)=6. [] 
i = l  

The following concepts can be found in [6] and [8]. 
Let R n be the support set of the problem P, and f that of the index set 

corresponding to the active constraints in .~, where all the functions are supposed 
to be differentiable. 

We associate to the point ~ the following linear system: 

{ v f,(X)'h_-< 0, t ~ f  ) 

called "system of tangential constraints." 
It can be shown that every sequential tangent vector satisfies the system 

above; the converse is not always valid. Let H be the cone of tangent vectors. 
The point ~ is said to be regular if: 
(I) the set of solutions of thesystem of tangential constraints is H, and 
(II) the cone K( V ft(ff), tE  T} is closed. 

Theorem 5.5. The point ~ is regular if, and only if, the set of solutions of the 
system of tangential constraints is H, and such system satisfies the property of 
Farkas-Minkowski. 

Proof. The homogeneous system ( v f t ( ~ ) ' h < 0 ,  tET}  is a F-M system if, and 

only if Rc = K { [ V fto( X ) ], t E T, [ ~ ] } = K ( v ft( ~ ), t ~ T } × R + is closed, i.e., 

K( V ft(x), tET}  is closed. [] 
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By using the generalized Farkas lemma it is possible toprove directly that, if 
2 is a regular point and local minimum, then 3X~R~)  such that XTcp(E) 
+ ~, )%xTft(E)=O ([6], Theorem 11.1). 

t ~ T  
Let us associate to the point 2 three sets, being P and P0 cones: 

P : (h~R"/Vep(Y~)'h<:O, V ft(:~)'h<-0, t ~ T )  

Po : (hEP/Vep(E) 'h:O} 

T s :  { tE~ ' /V  f t (E ) ' h :0 ,  VhEP} 

In [8] the following statement is proved: P = (0} is a sufficient condition for E 
to be a local minimum (strict). 

A more direct proof can be given by means of Theorem 4.6.2 of [6]. 

Theorem 5.6. If the system of tangential constraints satisfies the property of 
Farkas-Minkowski and P= Po, then there is some ~ ~ R(r+ s) such that 

E x, 
t e  Ts 

Proof. If P=Po, the system (h' XTq~(E)<0, h'xTft(~)<-0, t~T}  has no solution. 
Then h ' [ - V  q0(2)]<0 is a consequence of the system { h ' v  ft(E)<0, t~T}.  By 
the generalized Farkas lemma, we have - x7 cp(2) ~ K{ x7 ft(2), t ~ T} = 
K{ x7 ft(E), t ~ T}, this equality being a consequence of the F-M property. Hence 
there is a h E R ~  ) such that -xTcp(2)= ~ htxTft(~ ) (i). If ht>O, t~T~Ts,  

t~T 
then for s o m e / ~ P ,  V ft(E)'/~<0. The product of the equality (i) by h gives a 
contradiction. This means that x7 ¢p(~)+ ~ ~t x7 ft(2)=0. [] 

t E T  s 

The system of tangential constraints is a F-M system either if the active 
constraints in ~ are finite or if E is a regular point. In the finite case this result is 
correctly given in [7], while in [8] a proof is proposed by means of the Motzkin's 
theorem of alternative, i.e., the same reasoning followed in [7], under the only 
assumption P=Po. The following counterexample shows that our condition is not 
superfluous, even in the case of E being a global optimum point. 

Counterexample, Let us consider the problem Minep(x)=xl+(x2) 2, 

subject toft(x ) --- tx, + t2x2 < 0, t E [-- 1, I]. 

The feasible set is S=  ((0, X2)/X2~0 }. 
Clearly ~=(0,0) is the minimum point of rp(x) over S. In this case T=[- -  1,_1] 

and P=Po=S. Nevertheless, if X v q0(y)+ '~, h t v ft(E)=0, for some h ER(+ r), 
t~T 
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[,] [0] i.e., X + ~ ~t t 2 = 0 ' we have ~ ?~tt 2 = 0 .  This means that ?~t=0, 

t ~ ]0, 1 ]. The first component gives finally that h = O. In fact, it can be shown that 
the system of tangential constraints is not a F-M system. 
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