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Abstract 

A method is proposed for allowing for the effects of population differentiation, and other factors, in forensic 
inference based on DNA profiles. Much current forensic practice ignores, for example, the effects of coancestry 
and inappropriate databases and is consequently systematically biased against defendants. Problems with the 
'product rule' for forensic identification have been highlighted by several authors, but important aspects of the 
problems are not widely appreciated. This arises in part because the match probability has often been confused 
with the relative frequency of the profile. Further, the analogous problems in paternity cases have received little 
attention. The proposed method is derived under general assumptions about the underlying population genetic 
processes. Probabilities relevant to forensic inference are expressed in terms of a single parameter whose values 
can be chosen to reflect the specific circumstances. The method is currently used in some UK courts and has 
important advantages over the 'Ceiling Principle' method, which has been criticized on a number of grounds. 

1. Introduction 

The genetic composition of human populations varies 
because of, among other factors, their differing evo- 
lutionary histories and patterns of dispersal and inter- 
breeding. The magnitude of the effect of this genetic 
differentiation on the forensic evaluation of DNA pro- 
file evidence is controversial. It is the practice of many 
forensic scientists to ignore coancestry except, pos- 
sibly, in cases where genetically isolated populations 
or close relatives are clearly involved. Some authors 
argue, however, that uncertainty about possible lev- 
els of differentiation may invalidate such an approach 
(Lewontin & Hartl, 1991; Krane et al., 1992). Others 
take the view that typical levels of differentiation are 
sufficiently small that they may routinely be neglected 
(Chakraborty & Kidd, 1991; Roeder, 1994). 

We argue for an intermediate position: even small 
levels of genetic differentiation can be important and 
the effect should not be ignored. To do so would unfair- 
ly overstate the strength of the evidence against the 
defendant and the error could be crucial in some cas- 

es, such as those involving partial profiles or large 
numbers of possible culprits, many of whom share the 
defendant's ethnic background. However, the foren- 
sic use of DNA profiles need not be invalidated as a 
consequence. One approach to allowing for popula- 
tion differentiation, the 'Ceiling Principle', has been 
proposed by the US National Research Council (NRC) 
(DNA Technology in Forensic Science, Natl. Acad. 
Press, Washington D.C., 1992). The principle has been 
widely criticized (Robertson & Vignaux, 1992; Devlin, 
Risch & Roeder, 1993; Morton, 1993a; Weir, 1993a). 
In particular, the principle is inflexible and cannot be 
adjusted to the circumstances of a particular case, in 
part because it incorporates the view that the defen- 
dant's ethnicity is irrelevant to inference. We propose 
a method for quantifying the effect of genetic differ- 
entiation in terms of a single parameter, which can 
often be interpreted in terms of coancestry. Debates 
about the effect of population heterogeneity in partic- 
ular cases can thus be simplified to a discussion of val- 
ues for the parameter appropriate to the circumstances. 
Our proposed method has previously been described 



(Balding & NiChols, 1994) and is currently used in 
some UK courts. Here, we develop the justification 
for the method and extend its application to paternity 
testing. The use of DNA profile evidence when incest 
is alleged in paternity cases is becoming increasing- 
ly common and the proposed method is particularly 
appropriate in such cases. 

2. Key issues in forensic inference 

Although the literature on forensic identification using 
DNA profile evidence is now extensive, many funda- 
mental statistical issues are still not widely appreciat- 
ed. B aiding and Donnelly (1995) consider the forensic 
identification inference problem in a general setting 
and their analysis clarifies several issues. In particu- 
lar, they show that the weight of evidence against the 
defendant depends on, for each possible perpetrator 
other than the defendant, the ratio of the likelihood of 
the DNA profile data if he were the culprit, to its likeli- 
hood if the defendant were the culprit. These likelihood 
ratios should then be summed by the jury, weighted by 
their probability, based on the non-DNA evidence, that 
each possible culprit is the true culprit. 

To facilitate the discussion, it is common to make 
four simplifying assumptions: 

1. that the crime sample DNA is that of the culprit; 
2. that matches are unequivocal; 
3. that if the defendant were the culprit then the defen- 

dant and crime sample DNA profiles would be cer- 
tain to match; and 

4. the fact that the defendant's DNA profile was inves- 
tigated is not, in itself, informative about his/her 
profile. 

These assumptions are not valid in general, but they 
allow us to focus on other important issues and devia- 
tions from them can be addressed within the framework 
discussed here. See Balding and Donnelly (1995) for 
further discussion. 

Under these four assumptions, each likelihood ratio 
is simply the conditional probability that the possible 
culprit has the profile given that the defendant has it, 
that is, the 'match probability'. Note that the match 
probability may also be formulated in terms of the 
probability that the defendant has the profile condition- 
al on the event that the alternative culprit has it, but we 
find the former definition to be more convenient. 

Many authors ignore the conditioning on the 
observed profile and take the match probability to be 
equivalent to the relative frequency of the defendant's 

profile in some population. This use of profile frequen- 
cies in place of the match probability is inappropriate 
for several reasons. The concept of 'match' clearly 
involves two profiles, not one, and there seems no log- 
ical framework for linking profile frequencies with the 
issue of the defendant's guilt or innocence, which is 
the crucial issue in court. In particular, it is unclear 
how to allow coherently for the possibility that the 
culprit is related to the defendant, or shares ancestry 
through common origin in a subpopulation. Perhaps 
most importantly, there seems no logical framework 
for combining the DNA evidence, quantified by a pro- 
file frequency, with the non-DNA evidence. 

Correct definition of the match probability clarifies 
much of the current debate. A general discussion of 
'reference populations' can be avoided and neither is it 
necessary to consider hypothetical 'random' selections 
of suspects. Crucially, a coherent framework becomes 
available for incorporating the effects of shared ances- 
try, on both recent and evolutionary timescales. Since 
match probabilities are conditional probabilities, they 
cannot be estimated directly from database relative fre- 
quencies. Correlations in profile possession must be 
explicitly modelled in terms of population genetic the- 
ory in addition to the available data. Consequently, 
the ethnicities of both defendant and possible culprits 
are relevant to inference. Some authorities ignore cor- 
relations in profile possession and, instead, use 'con- 
servative' estimates of relative frequencies. The Ceil- 
ing Principle, for example, is based on this approach. 
However unless the correlations are specifically taken 
into account, it is impossible to assess what level of 
'conservativeness' is appropriate. 

Some of the current debate concerning population 
differentiation focusses on statistical tests of hypothe- 
ses of independence in forensic databases (Geisser & 
Johnson, 1993; Weir, 1993b). The tests are complicat- 
ed by the experimental difficulties involving apparent 
homozygotes. It is, in any case, difficult in princi- 
ple to draw conclusions relevant to forensic inference 
from the outcomes of such tests. Population differ- 
entiation indubitably exists, the question of interest 
concerns the magnitude of its effect on match proba- 
bilities. Failure to reject a null hypothesis of no differ- 
entiation reflects some combination of insufficient, or 
inappropriate, data, low power against the alternatives 
of interest and small magnitude of effect. Such tests 
are thus not directly helpful in forensic inference. We 
propose parameter estimation, both point and interval, 
as an alternative to hypothesis testing. 



3. Likelihood ratios for identification and 
paternity 

3.1 Identification 
We consider single-locus DNA profiles, one taken from 
a crime sample and one from a defendant, and make 
the four assumptions listed in Section 2. The match 
probability then depends on a number of factors. In 
particular, it is affected by the possibility that the 
individuals have matching DNA profile bands through 
shared inheritance from a common ancestor. For some 
possible culprits, the amount of ancestry shared with 
the defendant is largely known. This can occur, for 
example, when the defendant's close relatives are pos- 
sible culprits. (Note that 'possible culprits' is taken 
to include all individuals not excluded by the non- 
DNA evidence, not merely those on whom suspicion 
falls for good reason (Lempert, 1991).) More gener- 
ally, the amount of shared ancestry between defen- 
dant and possible culprit will be unknown. Frequently, 
however, many possible culprits will have features in 
common with the defendant (Lempert, 1991), such as 
similar physical description or location of residence, 
and hence defendant and possible culprit may plau- 
sibly have a large level of shared ancestry compared 
with two 'random' individuals. 

In addition to shared ancestry, the match probabil- 
ity is also affected by uncertainty about relative fre- 
quencies of bands. Such uncertainty occurs because 
forensic databases are rarely exactly appropriate for 
the possible culprits in a specific crime. They typical- 
ly are unplanned samples from large, heterogeneous 
racial groups which are subject to sampling and other 
sources of error. 

Balding and Nichols (1994) proposed the follow- 
ing formulae for Pr(AAIAA) and Pr(ABIAB ), the 
single-locus match probabilities for possible culprits 
not known to be close relatives of the defendant in, 
respectively, the homozygote and heterozygote cas- 
es: 

Pr(AAIAA ) = (2F + (1-F)pA)(3F + (1--F)pA) 
(1 + F)(1 + 2F)  

(1) 

Pr(ABIAB) = 2 ( F  + (1-F)pA)(F + ( 1 - F ) p . )  
(1 + F)(1 + 2F)  

(2) 

in which PA and PB denote the relative frequencies 
of alleles A and B in the population from which the 

database is drawn, in principle that most appropriate 
for the possible culprit under consideration. In practice, 
the homozygote case is complicated by the fact that, 
because of experimental difficulties, some heterozy- 
gotes may be incorrectly classified as homozygotes. 
Balding and Nichols (1994) give match probabilities 
which take this difficulty into account, as well as exten- 
sions of (1) and (2) to the case that the possible culprit 
under consideration is known to be a close relative of 
the defendant. 

Two distinct justifications for (1) and (2) are given 
in Sections 4.1 and 4.2. Equation (2) differs slightly 
from that originally proposed by the authors (Nichols 
& Balding 1991), which employed an approximation 
ignoring certain higher order correlations described in 
Section 4. 

The parameter F in (1) and (2) may be interpret- 
ed as measuring the degree of uncertainty about PA 
as an estimate of the match probability for a single A 
allele. The case F = 0  corresponds to certainty so that 
the single-locus match probabilities are exactly p2 and 
2pAPB, which, withpa and PB replaced by sample rel- 
ative frequencies, are the values used in the so-called 
'product rule'. Absolute certainty is unrealistic in prac- 
tice and thus the product rule consistently overstates the 
strength of the evidence against the defendant (unless 
PA+PB >_ 2/3, which never arises for most typing 
systems). For realistic values of F,  the effect can be 
important (Balding & Nichols, 1994). 

In many cases, shared ancestry between defendant 
and possible culprit on an evolutionary timescale may 
be considered the most important source of uncertain- 
ty, in which case F may be approximately the same 
as Wright's ['ST. Estimates of FST are often based on 
populations which are geographically closely spaced. 
In the forensic context, however, it is of interest to com- 
pare broad racial groups with subpopulations at vary- 
ing levels of stratification. At traditional loci, collations 
of allele frequency estimates for disparate human pop- 
ulations are available. A recent survey (Cavalli-Sforza 
& Piazza, 1993) reports FST estimates among Euro- 
peans with a median of 0.8% while the 90th percentile 
is about 2.8%. The corresponding values are 2.7% 
and 14% among Africans and 4.3% and 12% among 
Asians. These results may not be directly relevant to 
forensic inference, since such meta-studies encompass 
differing methodologies, sampling may concentrate on 
unusual populations and the loci surveyed may be sub- 
ject to geographically-varying selection. In addition, 
mutation rates at the these loci are typically much low- 



er than at the VNTR loci currently used in forensic 
work. 

More directly relevant, in view of moves to intro- 
duce short tandem repeat (STR) loci for forensic work, 
is the differentiation reported at two of the three loci 
examined in a sample of ethnic groups classified as 
Greek Cypriot, Gujarati, Northern European and Pak- 
istani (Wall et al., 1993). Some loci show little dif- 
ferentiation within the broad racial groups (European 
or Asian), others show dramatic differences. There 
are a variety of plausible explanations for the differ- 
ences between loci. M. Greenhalgh (pers. comm.) has 
implemented accurate automatic sequencer technolo- 
gy to overcome technical problems with the F13A1 
locus and reports substantial differentiation between 
Gujarati and Pakistani populations (Fig. 1). The data 
of Wall et al. (1993) from other loci show more marked 
differentiation within both major ethnic groups. This 
greater differentiation could be a consequence of a vari- 
ety of processes. Geographically-varying selection on 
the gene containing the STR-bearing intron, or a linked 
locus, could cause allele frequencies to diverge. Muta- 
tion can produce either greater differentiation or, con- 
versely, convergence in allele frequencies depending 
on the mechanism. It thus seems plausible that the vari- 
ation within broad racial groups varies from locus to 
locus, but that the more variable STR loci show at least 
as much differentiation as traditional loci. 

Appropriate surveys are not yet available at the 
VNTR loci which predominate in current forensic 
work. Direct estimation of FST from forensic databas- 
es is hampered by, among other factors, sensitivity to 
assumptions about apparent homozygotes and the ill- 
defined sampling frame of the databases. In addition, 
the ethnic origin of individuals in databases is often 
not known in sufficient detail to permit the investi- 
gation of population differentiation at the finer levels 
of stratification which may be appropriate for forensic 
inference. Reliable estimates will require substantial 
surveys of individuals of known ethnicity at varying 
levels of stratification. The preliminary evidence which 
is available suggests that FST at VNTR loci may typi- 
cally be smaller than at traditional loci, which is plausi- 
ble in view of the higher mutation rates, and that values 
may differ substantially from locus to locus. Morton 
(1993b) gave average point estimates of around 0.1% 
for US Caucasians and 1% for US Blacks. Because of 
the difficulties discussed above, and below, the val- 
ues appropriate for forensic inference are likely to be 
substantially larger. 
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Fig. ]. L i k e l i h o o d  curves fo r  F s T  measunng  the d i f fe ren t ia t ion  

at the STR loci CD4 and FI3A1. For each locus the differentiation 
of a Cypriot sample from a North European database (C-N) and 
a Gujarati sample from a Pakistani (G-P) database is shown. At 
the origin ( f  = 0) the highest pair of curves relate to the FI3AI 
locus, and the lowest to CD4. Within each pair the G-P curve is 
higher (at f = 0). The CD4 data are from Wall et aL, (1993) and the 
F13A1 data from M. Greenhalgh (unpublished). Sample sizes for the 
Pakistani, North European, Gujaratl and Greek Cypriot populations 
were 186, 58, 66, 50 (F13A1) and 50, 88, 44, 80 (CD4). The y-axis 
is scaled so that the curves can be directly interpreted as posterior 
densities with respect to a uniform prior for FST. 

Morton (1992) proposed the use of formulae due to 
Yasuda (1968) which agree with (1) and (2) up to terms 
in F.  Ignoring terms of order F 2 is reasonable when 
F is small compared with PA and PB, such as occurs 
with most traditional loci, but is often not appropriate 
for VNTR data. 

Equations (1) and (2) deal with the single-locus 
case. In principle, it is not reasonable to assume inde- 
pendence across loci because of a sequential effect 
similar to that described by Donnelly (1995). If, as is 
usually the case, there is some uncertainty about the 
amount of shared ancestry between defendant and pos- 
sible culprit, each successive single-locus match makes 
a higher level of shared ancestry more plausible, and 
hence a subsequent match is somewhat less surprising 
than the first. This feature of forensic inference differs 
from the usual use of FsT in population genetics. The 
effect can in principle be accounted for by regarding 
F in equations (1) and (2) as having a distribution of 
possible values. Final single-locus match probabilities 
should then be obtained by integration with respect to 
this distribution. Four-locus match probabilities based 
on (1) and (2) involve powers of F up to order eight 
and the upper tail of the distribution will thus have a 
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Fig. 2. (a) Match probabilities (log10) for four-locus, all-heterozygote profiles when the possible culprit under consideration is not known to 
be a relative of the defendant. The straight line y = x gives the result of the unmodified product rule, which corresponds to F = 0. The upper 
set of three curves is for F ----- 5%, the lower set is for F = 1%. Within each set of three curves, the middle curve represents the modified match 
probabilities based on (2), the higher and lower curves represent, respectively, the approximations of Nichols and Balding (1991) and Morton 
(1992). The four pairs of allele frequencies are (c~, 2c~), (9c~, 5c~), (6a, 8c~) and (7c~, 7c~) for 0.01 < c~ < 0.03. (b) Likelihood ratios (logm) 
for four-locus profiles when the alternative father under consideration is not known to be a relative of the alleged father and the genotypes of 
mother, child and alleged father at each locus are of the form AB, BC and CD. From lower to higher, the three lines represent the likelihood 
ratio with, respectively, F = 0, F = 1% and F = 5%. The frequencies of the child's paternal alleles at the four loci are o~, 9c~, 6c~, and 7a for 
0.01 < a, < 0.03. 

large influence on the resulting match probability. This 
effect may be approximately accounted for by using an 
'effective'  value of  F in the upper tail of  the distribu- 

tion. 
As an illustration, suppose that F has probabil i ty 

density proport ional  to ( l - f )  l~176 at F = f ,  so that 
the mean and standard deviation of  F are both near 
1% while the median is close to 0.7%. The shape of  
this distribution is chosen to reflect a high probabil i ty 
that the amount of  shared ancestry between defendant 
and possible  culprit, and hence F ,  is small and a small 
probabil i ty  for F to be large. Ignoring this distribution 
and wrongly assuming that F = 1% leads to a three- 

fold error in the match probabil i ty  for a four-locus, 
al l-heterozygote profile with p = 5% for each band. 
When p = 1%, the error is 34-fold. The appropriate 
'effective '  values of  F are, respectively, 1.9% and 
2.7%. Point estimates of the mean or median of FST 
are thus not directly relevant to forensic inference. 

Figure 2(a) illustrates the effect of  allowing for real- 
istic levels of populat ion differentiation. For a range 
of  four-locus, al l-heterozygote profiles, it compares 
match probabil i t ies  calculated using the product rule 
with those obtained from (1) and (2), and two approx- 
imations (Nichols & Balding, 1991; Morton, 1992), 
when F takes values 1% and 5%. With F = 5%, 
the product  rule can understate the appropriate match 

probabil i ty by two orders of magnitude which can be 

important, especially in cases involving little or no 
evidence other than the DNA profiles. Balding and 
Donnelly (1995) show that a small match probabil i ty  
does not necessarily provide convincing proof  of  guilt  
and thus a change of  one or two orders of  magnitude, 
even in a very small match probability, can be crucial 
in some cases. 

3.2 Paternity 

The principles which lead to (1) and (2) can be extend- 
ed to allow for uncertainty, including that due to possi-  
ble shared ancestry, in paternity testing. Suppose that 

we have single-locus DNA profiles for each of  moth- 
er, child and alleged father. Evaluating the probabil-  
ity that the alleged father is the true father requires, 
for every other possible father, the ratio of  the likeli- 
hood of  the observed DNA profiles if  he were the true 
father to their l ikelihood if the alleged father were the 
true father. These l ikelihood ratios each depend on the 
amount of shared ancestry among the mother, alleged 
father and alternative possible father. I f  the alterna- 
tive father under consideration is not directly related to 
either the mother or the alleged father, but has a sim- 
ilar level of shared ancestry with both of them, then, 
under assumptions analogous to those which led to (1) 
and (2), the single-locus l ikel ihood ratios for the pos- 



Table 1. Single-locus likelihood ratios for paternity when the mother's genotype is 
AB. Blank entries indicate that the alleged father is excluded. 

Alleged Child 
Father AA AB AC 

AA 3F'I'(1--F)pA 4F+(1--P)(P~+Pl:I) 
l + 3 F  1+3F 

AB 9 ( 2F+(1-F)pA ~ 4Fq'(1--F)fPA-}-P1:d) 
- \ l+3F  ] I+3F 

AC 2 { 2F'I'(1-F)pA'~ 2 {3~']'(1--F)(PAJ'Pl3)'~ 2 (F+(I--F)pc 
\ 1+3/;" ] \ 1+3/;' / \ 1-t-3_, w / 

CC 2F+(1-F)pc 
1-]-3F 

CD 2 { F+(1--F)pc ) 
"k 1-{-3F 

Table 2. Single-locus likelihood ratios for paternity when 
the mother's genotype is AA. Blank entries indicate that 
the alleged father is excluded. 

Alleged Child 
Father AA AB 

AA 4F"{ ' (I-  F)PA 
l + 3 F  

{3F+(1--F]pA ] 2 ( 2F+(I-F)pB ] 
AB 2 \ l + 3 F  ] k l+3F  ] 

BB 2F+(  1 -  F )pB 
l+3F  

( v+(1--F)ps 
BC - \ l+3F  ) 

sible observed genotypes are given in Tables 1 and 2. 
If  the alternative father has substantial shared ancestry 
with either mother or alleged father but not both, then 
I + F  may be more appropriate in the denominator of 
the likelihood ratio, in place of 1 + 3 F .  The difference 
will, however, usually be unimportant. 

Most current practice employs the values in Tables 
1 and 2 but with F = 0, corresponding to no shared 
ancestry and complete certainty about band relative 
frequencies. An inappropriate assumption of certain- 
ty thus leads, for realistic values of the parameters, 
to an overstatement of the probability that the alleged 
father is the true father. The magnitude of the over- 
statement for a four-locus profile is illustrated in Figure 
2(b). With F = 5%, ignoring uncertainty can lead to 
an order of magnitude overstatement of the likelihood 
ratio. 

Finally, we consider the case that the alternative 
father under consideration is known to be a close rel- 
ative of the alleged father (but the DNA profile of the 

former is not available). Let r denote the probability 
that an allele drawn from the alternative father matches 
one of the alleged father's alleles at that locus through 
inheritance from the known ancestors, so that r -- 1/2 
when they are brothers and r = 1/4 for either uncle- 
nephew or half-brothers. The selection of an allele from 
the alternative father is exactly equivalent to selecting 
with probability r an allele from the alleged father and 
with probability 1 - r  an allele from an apparently unre- 
lated person, typically in the same subpopulation. The 
single-locus likelihood ratio is thus 

r + ( 1 - r ) L R ,  (3) 

where L R  denotes the appropriate value from Tables 
1 or2. 

4. Derivation of likelihood ratios 

If two individuals are drawn from a randomly-mating 
subpopulation then, when the subpopulation frequen- 
cies are known, the probability of observing any four 
specified alleles can be expressed in terms of the prod- 
uct of the corresponding frequencies. For example, two 
A A  homozygotes are observed with probability/34, 
where/SA is the subpopulation frequency of A alleles, 
while two A B  heterozygotes are observed with proba- 
bility 4/52/32 (the constant 4 occurs because of the two 
possible orderings of each of the two A B  pairs). When 
the subpopulation frequencies are unknown, the prob- 
ability is given by the expectation of the product. The 



probabilities given at (1) and (2) can thus be expressed 
in the form 

Pr(AAIAA) - E(/54) 
E ( ~ )  (4) 

Pr(ABIAB ) = 2 E(l?~tl3~) (5) 

The expectations in (4) and (5) must be based on 
a model for the evolution of the population at each 
locus. The evolution of VNTR loci is complicated and 
traditional population genetic models may not accu- 
rately describe their behaviour (Harding, 1992; Jef- 
freys et al., 1994). Here, we formulate expressions for 
moments such as (4) and (5) which are valid under a 
range of evolutionary models. We develop justifica- 
tions for these expressions using two approaches, the 
first based directly on a specific evolutionary model 
and the second using more general statistical argu- 
ments. 

4.1 Genetical derivation 
To specify fully the expected frequencies of pairs 
of diploid genotypes would require nine parameters 
(Cockerham, 1971). It is clearly not feasible to esti- 
mate all these parameters for each of the possible cul- 
prits relevant to a particular case. Here we specify a 
genetic model under which each of the nine parameters, 
and hence the expected frequencies, can be expressed 
in terms of a single parameter. The model is reasonably 
general and the simplification to a single, readily inter- 
preted parameter is very helpful in a court environment, 
in which the use of more complicated, multi-parameter 
models may be inappropriate. 

We consider a randomly-mating subpopulation, 
partly isolated from a large population, in which migra- 
tion and mutation events occur independently and at 
constant rates. We write O/(2N) for the sum of the two 
rates, where N denotes the subpopulation size (number 
of alleles). The probability F that two alleles are iden- 
tical by descent (ibd) through an ancestor in the same 
subpopulation is simply the probability that, in trac- 
ing back the two lineages, an immigration or mutation 
event does not occur prior to the lineages coalescing in 
a common ancestor. Coalescences occur independent- 
ly of migrations and mutations at rate 1IN while the 
total rate at which mutations or migrations occur on 
the two lineages is O/N and thus we have 

F - 1 / N  _ 1 
1/N + O/N 1 + O" 

The probability that two alleles drawn from the sub- 
population are both type A is given by the familiar 
formula (Crow & Kimura, 1970) 

Pr(AA) = E(/5~) = FTrA + (1--F)Tr2A, (6) 

in which we introduce 7rA for the probability that a 
migration or mutation event produces an allele of type 
A. The first term in (6) is the probability that the two 
alleles are ibd and the most recent common ancestor 
was of type A, while the second term gives the proba- 
bility that the two alleles are not ibd and are, in effect, 
the results of independent draws from a mechanism 
which generates A alleles with probability 7rA. If the 
subpopulations are in equilibrium, the value of 7rA is 
naturally estimated by PA, the population relative fre- 
quency of A alleles, and henceforth we replace 71" A with 
PA. The probability that the two alleles are distinct, of 
types A and/3 say, is 

Pr(ZB) = 2E(~A/SB) = 2(1--F)pAPB. 

Consider next E(/53), the probability that three alle- 
les chosen randomly from the subpopulation are all of 
type A. Tracing the three lineages backward in time, 
the rate at which any two coalesce is 3/N, while the 
total rate at which mutations or migrations occur on 
the three lineages is 30/(2N). The probability that the 
first event is a coalescence is then 

3/N 2 2! 7 
3IN + 30/(2N) 2 + 0 1 + F 

Continuing backwards in time, the two remaining lin- 
eages coalesce prior to a mutation or migration event 
with probability F. The probability that all three alleles" 
are ibd is thus 2F2/(l+F). Similarly, it can be seen 
that the probabilities that precisely one and zero pairs of 
alleles are ibd are, respectively, 3 F ( 1 - F ) / ( 1 - t - F )  and 
(1-F)2/(I+F). The probability that all three alleles 
are of type A is given by the above terms multiplied 
by the probability that a type A allele is generated at 
each mutation or migration event, and hence 

2 r 2  2 3 F ( 1 - F )  ( l - F )  2 
E(fiA) : P a . i ~ + p  A 3  1 - ~  +P3A l + F  

= PA (F+pA(1 -F) ) (2F+pa(1 -F) ) .  
l + F "  

(7) 

Extending this argument to arbitrary numbers of alleles 
leads to recursive formulae of the following form: 

~ r + l  ~ s  ~ t  - u  ~ r  ~ s  ~ t  
E(PA PBPcPD) = E(PAPBPcPD) 

rF-I-pA(1-F) 
x 1 + (r+s+t+u-1)FJ ' (8) 



10 

for all integers r, s,t ,  u >_ O. Similar formulae apply 
for more than four distinct alleles. Note that equation 
(6) is valid for F corresponding to shared ancestry 
either through known ancestors, such as parents and 
grandparents, or on an evolutionary timescale. In gen- 
eral, however, the derivation of (8) is only valid when 
F has the latter interpretation. Shared ancestry through 
known relatives is discussed by Balding and Nichols 
(1994). 

Equations (1) and (2) follow from (4), (5) and (8). 
The formulae of Tables 1 and 2 also follow from (8). 
For example, consider the case that mother, child, and 
alleged father's genotypes are, respectively, AB,  AC, 
and CD. If the alleged father were the true father then 
the conditional probability of the child's genotype, giv- 
en the parent's genotypes, would be simply 1/4. Fur- 
ther, the parent's genotypes represent outcomes A, B, 
C and D in four draws from the subpopulation and thus 
have likelihood E(pA/3BPC/3D). The the joint likeli- 
hood is therefore E(pA~B/3CPD)/4. If the alternative 
father were the true father then the likelihood of the 
child's maternal allele, given the mother's genotype, is 
1/2 and we have, under this hypothesis, observed two 
C alleles, one from the alleged father and one from 
the true father. The joint likelihood in this case is thus 
E(~A~B/32c!SD)/2. Substituting from (8), the ratio of 
these joint likelihoods gives 

( F + ( 1 - F ) p c ~  
2 \  -173--F J ' 

as given in Table 1. 
Note that the moments (8) are exactly those which 

follow from assuming that (#A , PB, PC, PD , 1--/3A-- 
/3B--/3C--/3D) is jointly Dirichlet distributed with 
parameter vector 

( OpA--1, 0pt3--1, Opc--1, OpD--1, 

O(1--pA--pB--pC--PD)-- 1), (9) 

and 0 = ( 1 - F ) / F .  Although our derivation does not 
start from the Dirichlet assumption, it would in any 
case be a natural family of distributions to consider for 
modelling uncertainty about relative frequencies. 

4.2 Statistical derivation 
Equation (6) was interpreted in terms of a specific evo- 
lutionary model which may not be accurate for VNTR 
loci. However, it follows from the results of Lind- 
ley (1990) that equation (6) is more general than the 
above derivation suggests. Sufficient conditions for (6) 
are that/3A = PA whenever PA is either zero or one 

and that both the expectation and variance of/3 A giv- 
en PA, PB, PC,... ,  are twice differentiable functions of 
PA and do not depend on PB, PC, .... In addition to (6), 
it follows immediately from these assumptions that 

E(ffAIPA,PB, P C , . . . )  = E(pA IPA) : PZ. 

We henceforth suppress the explicit conditioning in 
the moments and write, for example, E(/SA) in place 
of E(/gA [PA ). 

We now extend Lindley's argument to derive (8) 
for r+s+t+u _< 4. In addition to the assumptions 
in the previous paragraph, we require that the third, 
fourth and fifth moments of/3A are each sufficient- 
ly differentiable functions of PA. Further, we assume 
that joint moments of/3A and t313 are differentiable 
functions of PA and PB, and similarly for more com- 
plicated joint moments up to order five. Finally, we 
assume that the even and odd central moments of/3A 
are functions ofpA which are, respectively, symmetric 
and anti-symmetric about PA = 1/2. This assump- 
tion is natural because of the arbitrary labelling of the 
alleles. 

Let h(pA ) = E( (pA--pA )3). Then 

h (PA +PB +Pc +PD ) --= 

h(pAWpB+PC) + h(pA-t-pBWPD) 

+ h (PA +Pc +PD ) + h (PB-}-PC +PD ) 

--h(pA +PB) -- h(pA +PC) -- h(pA +PD ) 

- h(pB + p c )  - h(p  +pD) - h(pc +pD) 

+h(pa)  + h(pB) + h(pc) + h(pD). (10) 

Since, by the assumptions above, no term on the RHS 
of (10) is a function of each ofpA, PB, PC and PD, we 
have 

04 
04 h(pA+PB+pC+PD) = 0---~ah(pA) = 0, 

0pA0pB0pC0PD 

so that h(pA) is a polynomial of degree three in PA. 
The boundary conditions imply that this polynomial 
has roots at 0 and 1 and hence PA and (1--pA) are 
both factors. By symmetry, the third factor must be 
(l--2pA) and hence 

h(pA) = ~pA(1--pA)(1--2pa), (11) 

for some constant ~. Expanding (11) and substituting 
from (6) we obtain 

E(/5 3) = t~pA + 3 ( F - ~ ) p  2 + ( 1 - 3 F + 2 ~ ) p  3. 

In order to assign the value of t~, we note that 

00E(~3)pit IpA=0 = '~" (12) 



The LHS can be interpreted as the probability that 
three alleles are of the same type in the limit as the 
number of distinct alleles increases and the relative 
frequency of mutation to each allele vanishes in an 
isolated randomly-mating population. Thus ~ should 
agree with the value for the probability that three ran- 
dom alleles are of the same type given by the Ewens 
Sampling Formula (Ewens, 1979, equation (3.76)) for 
the infinite alleles model (in which every mutation is 
to a distinct type). This gives ~ = 2 F 2 / ( l + F )  and (7) 
follows. 

The other third-order moments follow from (7). For 
example, 

03 03 
OpACgpBOpcE((PA+PB+PC)3) = 0--~-AE(/53) 

_ 6 ( l - F ) 2  . (13) 
I + F  

Expanding the LHS of (13), the only term which is a 
function of each of PA, PB and Pc, and hence does 
not vanish in the differentiation, is 6E(/SA/SB/SC) and 
thus 

03 E ( p A ~ B P C ) -  ( l - F ) 2  (14) 
OpA OpB Opc 1 +F 

Using (14) and the boundary conditions, it follows 
that 

( l - -F )  2 
E(pAPBPc) = I + F  PAPBPC. 

Turning now to fourth order moments, E((/SA -- 
pA) 4) can similarly be shown to be a polynomial of 
degree four in PA which, from the boundary conditions 
and symmetry, is of the form 

E((pA--PA) 4) = jOA(1--pA)(t~ q- ,~pA(1--pA)), 

for some constants ~ and A. Invoking again the Ewens 
Sampling Formula we have 

0 6F 3 
OpA E(/54)IpA=0 = ~; = ( I + F ) ( I + 2 F ) '  

To obtain a value for A, we argue as at (13) and (14) 
that 

1 0 4 0 4 
24 0p.~ E(/54 ) = OpA OpB Opc OpD E(fiAPBPCPD ) 

= ( l - - - F ) 3  (15)  

(I+F)(I+2F)' 
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the final expression being the probability that four 
randomly-drawn alleles are distinct in an infinite- 
alleles model. 

Similarly for fifth-order moments, we proceed from 
the observation that E((/TA--pA) 5) is a polynomial of 
degree five which, from the boundary conditions and 
symmetry, is of the form 

E((TjA--PA) 5) = pA(1--pA)(1--2pA)(~-}-ApA(1--pA)). 

We omit the further details. 

4.3 Discussion 
The substantive assumption in the derivation of Section 
4.2 is that, given PA, moments of/SA up to order five 
are conditionally independent of PB, PC, ..., and sim- 
ilarly for joint moments. If nothing were known about 
mutation, the value ofpB, for example, might be infor- 
mative about it and hence about/Sa. This dependence 
may, however, be unimportant given partial knowl- 
edge about mutation. Similarly, PB may be informative 
about the genealogy of the whole population, but this 
may also be unimportant for the very large population 
sizes of the major racial groups into which forensic 
databases are usually classified. 

Equations (1) and (2) are appropriate for a range 
of genetic typing systems. The most common such 
system, based on VNTR loci, is problematic because 
of their complicated evolution. For example, mutation 
events at VNTR loci frequently generate new alleles 
of a similar length to the progenitor allele (Jeffreys et 
al., 1988). This constraint on mutation seems to pro- 
duce patterns that persist over evolutionary time scales. 
Waye and Eng (1994) investigated a thalassaemia dele- 
tion linked to a VNTR locus. There was an atypical 
set of VNTR allele lengths on haplotypes that bore 
the deletion. These alleles were rare on other chromo- 
somes, and had a narrow distribution of lengths. Pre- 
sumably the newly arisen deletion (or one of its early 
descendants) bore a rare VNTR allele, and its present 
day descendants have a narrow range of lengths pro- 
duced by the subsequent mutations. 

Even the more general assumptions of Section 
4.2 may fail to encompass exactly the complicated 
behaviour of VNTR loci. In particular, as a conse- 
quence of the mutation process, the frequencies of alle- 
les of similar lengths are positively correlated (Nichols 
& Balding, 1991) and this effect is not accounted for 
in (2). When more detailed knowledge of VNTR evo- 
lution becomes available, it may prove possible to 
improve the proposed method to include such length 
dependent correlations, possibly by using only one 
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additional parameter. Given present knowledge, how- 
ever, we believe that the proposed method captures 
the primary effects of coancestry and other sources of 
uncertainty. In court, the single parameter has proved 
a common currency in which experts can attempt to 
quantify their disagreement. The calculations present- 
ed here have been used to assess the consequences for 
the evaluation of the DNA evidence. 
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Note added in proof 

Subsequent work (M. Greeniaalgh, pers. comm.) suggests that the data from the CD4 locus (Fig. 1) may be affected by laboratory error. Recent 
data continue to indicate different values of FaT" at different loci, in some cases showing as much variation as at traditional loci. 

Editor's comments 

The authors' work offers a sound approach to accommodating the effects of population structure, based on use of Wright's FsT'. Their equations 
1 and 2 are very convenient, and are good approximations to the exact results given by Weir (1994). As they point out, good estimates of FsT" 
are needed. The comments about the 'generally mixed' results of independence tests may be met, in part, by the paper of Maiste and Weir in 
this volume. The authors cite Krane et al. (1992) but had not seen the subsequent rebuttal by Budowle et al. (1994). The work of Wall et al. 
(1993) contained errors, as noted in Greenlaalgh et al. (1994). 


