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Abstract 
Motion correspondence is a fundamental problem in computer vision and many other disciplines. This article 
describes statistical data association techniques originally developed in the context of target tracking and surveillance 
and now beginning to be used in dynamic motion analysis by the computer vision community. The Mahalanobis 
distance measure is first introduced before discussing the limitations of nearest neighbor algorithms. Then, the 
track-splitting, joint likelihood, multiple hypothesis algorithms are described, each method solving an increasing- 
ly more complicated optimization. Real-time constraints may prohibit the application of these optimal methods. 
The suboptimal joint probabilistic data association algorithm is therefore described. The advantages, limitations, 
and relationships between the approaches are discussed. 

1 Introduction 

Recently there has been significant interest in the 
analysis of image sequences for purposes of estimating 
camera motion, 3-D scene geometry, and optical flow, 
for example. Such analysis usually requires knowledge 
of frame-to-frame correspondences, that is, do two 
measurements taken at different times originate from 
the same geometric feature? This is the motion cor- 
respondence problem of computer vision. 

There are a number of reasons why motion cor- 
respondence is hard. Usually predictions are first made 
as to the expected locations of the current set of ob- 
jects of interest. These predictions are then matched 
to actual measurements. At this stage, ambiguities may 
arise. Predicitons may" not be supported by measure- 
ments-have these objects ceased to exist or were they 
simply occluded? There may be unexpected measure- 
ments-do these measurements originate from newly 
visible objects or are they spurious readings from noisy 
sensors? More than one measurement may match a 
predicted feature--which measurement is the correct 
one and what is the origin of the other measurements? 
Or a single measurement may match to more than one 
feature--which feature should the measurement be 

assigned to? Resolving these ambiguities is the essence 
of motion correspondence. 

Correspondence problems occur in a variety of di- 
verse domains, for example, in psychology, where it is 
called perceptual grouping [25], in biological [13] and 
computer vision, robotics, particle physics [18], molec- 
ular dynamics [18] and target tracking where it is re- 
ferred to as the data association problem. ~ The target 
tracking and surveillance community has extensively 
studied the motion correspondence problem [5] and a 
number of statistical data association techniques have 
been developed. These algorithms are now receiving 
wider attention, especially within the computer vision 
community; we review here several of these techniques. 

A first step toward the assignment of measurements 
to features is to estimate the likelihood of a measure- 
ment originating from a specific geometric feature. 
Section 2 briefly summarizes one such measure, the 
Mahalanobis distance, and discusses how measure- 
ments can be matched to predicted geometric features 
using a statistical validation test. The distance metric 
immediately suggests a solution to the correspondence 
problem based on assigning measurements to their 
closest geometric features. This nearest-neighbor ap- 
proach is discussed in section 3. 
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Nearest-neighbor algorithms usually perform badly 
since there is always a finite chance that the closest 
measurement is incorrect. However, this possibility is 
ignored since assignment decisions are based solely on 
the current image frame. More accurate decisions can 
be made by postponing decisions and examining the in- 
formation from several frames. A conceptually straight- 
foward approach is the track-splitting filter of section 
4 in which a t r a c k  t r ee  is formed, each branch denoting 
a different assignment of a measurement to a feature. 

The track-splitting filter may assign the same 
measurement to more than one geometric feature. This 
is not physically realistic. More reasonable, is that a 
measurement originates from only a single source 
feature. This disjointedness constraint is satisfied by 
the joint-likelihood algorithm described in section 5. 

As the image sequence progresses, some existing 
geometric features will exit the field of view and new 
geometric features will become visible. And all the 
while, spurious measurements will occasionally be 
reported by noisy sensors. Since the number of percep- 
tually relevant geometric features can change with time 
as objects enter and/or leave the camera's field of view, 
an algorithm is needed that is capable of initiating and 
terminating geometric features. These capabilities to- 
gether with the disjoint constraints are satisfied by the 
recursive multiple-hypothesis algorithm of section 6. 

Unfortunately, the track-splitting, joint-likelihood, 
and multiple-hypothesis algorithms all have exponen- 
tial complexity; and, while heuristics can be used to 
constrain the search space, large memory and computa- 
tional resource may still be required. For some applica- 
tions, these requirements cannot be met, because of 
real-time and/or cost constraints. Suboptimal approx- 
imations can be developed that have the advantage of 
fixed finite memory and computations. One such 
algorithm, the joint-probabilistic data-association filter, 
is described in section 7. Finally, the advantages and 
disadvantages of all the algorithms are discussed in sec- 
tion 8. 

2 The Mahalanobis Distance 

Consider the case in which n geometric features are 
being tracked and n measurements are found in the 
next image frame. In principle, any measurement vec- 
tor might have originated from any geometric feature 
and there are n 2 possible combinations of assignments. 
In practice, some measurements are more likely to 

originate from one track than another. A distance 
measure is therefore needed that quantifies this 
likelihood; the smaller the distance between a measure- 
ment and its predicted value, the more likely it is to 
have originated from it. 

If measurement zi(k) at time k is normally 
distributed about its predicted value i(k I k - 1), then 
a common distance measure is the Mahalanobis 
distance [15, 28]. 2 For Gaussian or normally 
distributed random variables, the probability density 
function is given by 

N[z;] a N[zi; i, Sl 
= ( 2 7 r ) - d / 2 1 S ( k ) l - 1 / 2  

exp ~-- l { [ z i ( k ) -  z ( k l k -  1)1' x 

× s - l ( k ) [ z i ( k )  - i ( k l k  - 1)]}1 (1) 

where S(k) represents the covariance of the error 
estimate [zi(k) - i ( k [ k  - 1)] and d is the dimension 
of the measurement vector z(k). Contours of constant 
probability density are defined by 

N[zi] = ( 2 ~ r ) - d / 2 1 S ( k > l  - ~/= 

x exp - ~ {[z~(k) - i ( k l k  - 1)1' 

> ( s - l ( k ) [ z i ( k )  - i ( k l k  - 1)1}~ ~ C  (2) 

or equivalently by 

[zi(k) - i ( k l k  - 1 ) ] r S ( k ) - l [ z ~ ( k )  - i ( k l k  - 1)] (3) 

= v T ( k ) S ( k ) - l v i ( k )  

= . /  

where vi (k  ) is termed the innovation or error. The left 
side of equation (3) is called the Mahalanobis distance 
and can be considered to be a generalization of the 
Euclidean distance which accounts for the relative 
uncertainties in the innovation, vi(k). 3 The locus of 
points of given Mahalanobis distance, is a d-dimen- 
sional ellipse, where d is the dimension of the measure- 
ment vector zi(k) and is illustrated in figure 1 for two 
dimensions. 

Repeated measurements of the same geometric 
feature cluster about the predicted mean value. The 
distribution of measurements is densest about the 
predicted value and monotonically decreases with in- 
creasing distance from the mean value, as depicted in 
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Fig. L Contours of equal Mahalanobis distance in two dimensions. 
The shading represents the probability density function of 
measurements about their predicted value. The darker the region, 
the more likely a measurement is to be found there. 

figure 1. What is the probability that the next measure- 
ment will have a Mahalanobis distance less than or 
equal to 3,? That is, that the measurement will fall within 
the ellipsoidal validation volume V defined by 

~'k(3,) ~ {z : [z(k> - ~ ( k l k  - 1) ] '  
S-l(k)[z(k) - i ( k l k  - 1)] < 3,}. (4) 

It can be shown that the Mahalanobis distance is chi- 
squared distributed with number of degrees of freedom 
equal to the dimension n z of the measurement vector. 
The probability that the distance is less than the 
parameter 3' can therefore be obtained from X 2 

distribution tables. For example, if  the measurement 
vector is two dimensional, n z = 2, and a validation or 
search volume is to be established in which there is a 
95 % probability of finding the measurement,  that is, 
P(z(k + 1) ~ ~'(3')) = 0.95, then 3" is set to 3" = 5.99. 
Conversely, i f  a measurement fails the inequality test 
of  equation (4) then there is a 5 % or  less chance that 
it is associated with the geometric feature. 

The validation volume V excludes measurements 
with low probabilities o f  assignment, thereby reduc- 
ing the combinatorics of  the correspondence problem. 
For example, figure 2 depicts a situation in which we 
have two known geometric features (T 1 and T2). The 
ellipses depict the validation volume around each 
feature. Four new measurements (zl(k) . . . . .  z4(k)) are 
obtained at t ime k. Ambiguity arises here because the 
measurement z2(k) falls inside the validation volume 
of both features. However, measurement z4(k ) can be 
ignored for the purposes of  tracking features T 1 and T2, 

Z3~z 2 
Ii, 

Fig. 2. Predicted target locations and elliptical validation regions for 
a situation with two known geometric features (T 1 and 7"2) and four 
new measurements [Zl(k), z2(k), z3(k), z4(k)]. 

since it falls outside the validation regions of  both 
features. The validation volume also provides an atten- 
tion focusing capability; only the volume V associated 
with each track need be examined for measurements. 

The validation of m measurements to n geometric 
features can take O(mn) time. Surprisingly, this gating 
procedure can become the principal computational 
bottleneck in tracking large numbers of targets 
(geometric features) [32] because even if only one 
measurement validates to each geometric feature, each 
measurement must still be checked against all other 
features. For scalar~valued measurements, one can im- 
agine first sorting the predictions and then performing 
a binary search to locate geometric features that validate 
to a measurement,  thereby reducing the time to O(m 
log n). The problem is somewhat more difficult for n z 
dimensional measurements, but Uhlmann et al. [29, 
30, 12] have recently shown how to efficiently imple- 
ment the validation gate procedure using multidimen- 
sional binary trees in O(mnO-V"z)). An alternative 
technique, described by Zhang and Faugeras [32] is to 
partition the measurement space into buckets [23]. A 
measurement then need only be validated with those 
geometric features that fall inside buckets in the vicinity 
of the measurement. The key ideas are that, on average, 
the number of  geometric features intersecting a bucket 
is much smaller than the total number of  features and 
the computation of  the buckets is linear in the number 
of geometric features. Finally Orr et al. [22] suggest 
calculating an approximation to the Mahalanobis 
distance, actually a lower bound, that avoids the com- 
putationally expensive matrix inversion. Only if this 
lower bound exceeds the threshold 3, does the actually 
Mahalanobis distance need to be computed. 
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In an ideal environment, only a single measurement 
would validate to each of the geometric features and 
the data association problem would be solved. This sim- 
ple solution has been applied to the data association 
problem, notably in the work of Ayache and Faugeras 
[1]. However, later work by Deriche and Faugeras [14] 
revealed that simple validation was not sufficient. In 
fact, multiple measurements will, from time to time, 
fall inside the validation volume of a geometric feature 
in all but the most benign environments. When multi- 
ple measurements are validated to a geometric feature, 
a decision must be taken as to which of the measure- 
ments to assign to the track. An obvious solution is 
assign each measurement to its closest track based on 
the Mahalanobis distance. This nearest neighbor solu- 
tion is discussed next. 

used to track a geometric feature, then a misassigned 
measurement may cause the filter to converge slowly 
or even fail to converge. Consequently, while the nearest 
neighbor algorithm is simple to implement, users 
should beware! 

The nearest-neighbor algorithm makes assignment 
decisions based solely on the current image frame. 
However, much more information is available by exam- 
ining subsequent images. Significantly better corre- 
spondences can therefore be achieved by postponing 
the decision process in the hope that future measure- 
ments will clarify current ambiguities. The earliest such 
algorithm to attempt this was the track-splitting filter 
described next. 

4 The Track-Splitting Filter 

3 Nearest Neighbor 

The simplest suboptimal data-association algorithm is 
the nearest-neighbor algorithm. This assumes that each 
measurement originates from the closest corresponding 
feature, where closest is usually defined using the 
Mahalanobis distance. The attraction of this algorithm 
is its simplicity, both conceptually and computation- 
ally. Examples of nearest neighbor use include Crowley 
et al. [11] and Deriche and Faugeras [14]. 

For nearest neighbor correspondences, there is 
always a finite chance that the association is incorrect 
and this can lead to serious effects as noted by Bar- 
Shalom and Fortmann [5], Zhang and Faugeras [32] 
and Uhlmann [31]. In mrticular, if a Kalman filter is 

zI(1)Q 

zI(2)Q 
Y 

zI(3<Q/ zl(4) 

{./ 
z2 (4) 

The track-splitting filter was originally proposed by 
Smith and Buechler [27] and more recently Zhang and 
Faugeras [32] have used the approach for dynamic 
motion analysis. Figure 3a, b illustrates the principle 
involved. A single geometric feature of interest is be- 
ing tracked, when at time k = 4 two measurements are 
found inside its validation region. Rather than arbitrar- 
ily assign the closest measurement to the track, a tree 
is formed as shown in figure 3b. The two branches de- 
note the alternative assignments of the two measure- 
ments to the track. No assignment decision is made at 
this stage. Instead, decisions are postponed until addi- 
tional measurements have been gathered to either sup- 
port or refute earlier assignments. The implicit assump- 
tion is that ambiguities at time k are resolved by future 
measurements. 

Track Tree 

I zl (i) 

I zl (2) 

~l (3) 

zl (4)g • z2(4) 

Fig. 3. At iteration 4, two measurements validate to the track. The corresponding track tree forms two branches, one representing the assign- 
ment of measurement z1(4 ) and the other representing the assignment of z2(4) to the track. 
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Track trees can very quickly become very large due 
to simple combinatorial explosion. It is therefore im- 
perative that some measure of the likelihood of an 
assignment be made so that unlikely hypotheses, that 
is, branches, can be deleted from the track tree. This 
likelihood measure is derived next, and is then used 
to guide the pruning of the track tree which is critical 
to any practical implementation of the approach. Possi- 
ble pruning strategies are discussed in section 4.2. 

4.1 Track Likelihoods 

A track is defined to be a sequence of measurements 
that are all assumed to originate from the same 
geometric feature. The correspondence problem is then 
to assign the right measurements to the right tracks. 
In each track tree, there are as many tracks as there 
are paths from leaf nodes to root. Consider one such 
track, l, and denote by 0 ~'t the event that the sequence 
of assignments 

zk,l £x {Zi,,l(1 ) . . . . .  Zik,l(k) } (5) 

from time 1 to k originate from the same geometric 
feature l. 

The likelihood of the event 0 k't is the joint prob- 
ability density function 4 

k 

r(Ok'l) = I ' I  P[Zij,l(J) l z j -1 ,  ok'l] (6) 
j=l 

where Z j denotes all measurements up to and in- 
cluding time j .  I f  the Gaussian assumptions of section 
2 are made, equation (6) becomes 

k 
r(Oka) = 1-I (2rr)-d/2lS(J)l-1/2 

j=l 

x exp - ~ .= Pij,t(j)S~(j)Pij,l(J-) (7) 

The modified log-likelihood function, X l for track l, 
is then defined as 

I 1 Xl(k ) a__ - 2  log n~=ll2*sO)l -~/2 
k 

= Z 
j=l 

= X(k - 1) + vi'k,l(k)Sg,}(k)vie,l(k) (8) 

the latter formula allowing the modified log-likelihood 
to be recursively calculated. The modified log- 
likelihood is simply the sum of the Mahalanobis 
distances of all the measurements assigned to track I. 
Thus, rather than assign the measurement that is cur- 
rently closest as in the nearest neighborhood algorithm, 
the sequence of measurements that minimize the total 
Mahalanobis distance over some interval is selected. 

The modified log-likelihood function provides a 
figure of merit  for a particular node in the track tree, 
some measurement sequences being more likely than 
others. The cost of calculating the modified log- 
likelihood is low, especially since the second term is 
calculated as part  of the Mahalanobis test and any 
associated Kalman filtering. Nevertheless, the track tree 
may generate a very large number of possible tracks, 
each one of which needs associated memory  and com- 
putational resources. 

4.2 Pruning the Track Tree 

The only way to contain the computation and memory 
requirements is to delete unlikely nodes and branches 
from the track tree. There are many possible pruning 
strategies, including: 

1. Deleting unlikely tracks. This may be accomplished 
by comparing the modified log-likelihood function 
X(k), which has a X 2 distribution with number of 
degrees of freedom kn z with a threshold ot obtained 
from the X 2 tables in a manner similar to that for 
the validation gate procedure of section 2. Care must 
be taken in applying this test to tracks with long 
histories because the modified log-likelihood be- 
comes dominated by old measurements and responds 
very slowly to new ones. This problem can be 
alleviated by using a sliding window or fading decay 
term. 

2. Merging track nodes. I f  the state estimates of  two 
or more track nodes are similar, it is likely that they 
represent the same track. This occurs, for example, 
when a track splits into two tracks and then both 
tracks validate identical subsequent measurements. 

3. Only keeping the most likely M tracks. For com- 
putational reasons it is often desirable to fix an upper 
limit on the size of a track tree. Consequently, if, 
after deleting unlikely tracks and merging similar 
track nodes, the number of  leaf nodes exceeds the 
upper limit M, a further level of pruning may be 
applied. 
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The merging of track nodes is necessary because 
tracks may share measurements. This is physically 
unrealistic. More reasonable, is that a measurement 
originates from only a single source feature, for exam- 
pie, a single measurement might originate from either 
a wall or corner feature but not from both. The mo- 
tion correspondence now becomes one of partitioning 
measurements into disjoint tracks (or sets). Disjoint- 
ness is also a common constraint in human vision, 
where in stereo correspondence it is called uniqueness 
[20] and in motion correspondence it is called the 
element-integrity principle [13]. It may also be 
reasonable to assume that a geometric feature gives rise 
to only a single measurement vector within a time 
frame. The track-splitting algorithm cannot cope with 
these constraints and, instead, a joint-likelihood integer- 
programming algorithm must be used. 

5 Joint-Likelihood Integer Programming 

The joint-likelihood method developed by Morefield 
[21] produces disjoint measurement partitions so that 
a measurement is assigned to a single unique geometric 
feature. Morefield's algorithm is a batch process that 
is formulated as a wdl-known integer-programming 
problem [26]. The basic idea is to first group measure- 
ments into feasible tracks. This set of tracks is not 
necessarily disjoint, and a subset of disjoint tracks must 
therefore be selected. However, there are many such 
legal sets, and so a search is performed to find the best 
set of disjoint tracks. A joint-likelihood measure is used 
to quantify which set of tracks is best. 

A set of disjoint tracks, also called an hypothesis 
or world model, is denoted O~ and defined by 

O~ = {Zk'li}/=0 (9) 

where Z k'li represents the set of measurements 
assigned to track li and the set Z ~'l denotes spurious 
measurements or false alarms. That is, measurements 
are either categorized as originating from geometric 
features in the environment or else are considered 
spurious due to noise. The first stage of the algorithm 
is track feasibility construction, in which sequences of 
measurements are grouped into feasible tracks that are 
reasonable to incorporate into an hypothesis. Track 
feasibility can be tested in the same manner as the track- 
splitting algorithm. This is more efficient than first 
forming a hypothesis, O/k, and then checking the 
feasibility of its tracks, Z k'li , since the same track may 

appear in more than one hypothesis. The set, .7, of 
feasible tracks contain r tracks but these tracks are not 
all disjoint. 

Next, a hypothesis O~ must select a set of disjoint 
tracks from the feasible set .7, and the likelihood of 
the hypothesis must be calculated. Just as the track- 
splitting filter calculated the likelihood of a track, 
Morefield estimates the joint likelihood of a partition, 
Ok, that is, a set of disjoint tracks. If q~ denotes the set 
of all feasible partitions, then the joint-likelihood 
method finds the most likely partition, that is, 

max p [zk l  O/k] (10) 
0 ~  

The fundamental assumption in the derivation of the 
linear programming formulation is that the data in each 
track are independent, so that equation (10) becomes 

I 

max I I p  [ Zk'ti I o~] (11) 
okE¢I , i=0 

Any hypothesis O/k can be represented by a binary 
vector p of length r, the ith element of p being unity 
if track i belongs to hypothesis 0~. Each hypothesis, 
O, can then be evaluated using a linear functional e'p 
where the ith component of e is the contribution of track 
Z k'i to p[Z k ] O]. The r-dimensional vector, c, is de- 
fined as 

A {~kk, 1 ~kk,r} , (12) 
C ~ , . . . ,  

where ~k,j is the log-likelihood ratio of track j.  It is 
defined as 

~k'J = - - l ° g  I P[zk'J ' 0'] 1 
p[Z~J I all false] 

= log p[Z ~'j I 0~] + Nj log W ~ (13) 

where Nj is the number of measurements in the se- 
quence Z k'j and V is the surveillance volume or field 
of view of the camera. 

Finally, the constraint that all tracks in a legal par- 
tition should be disjoint must be imposed. Different 
feasible partition sets, O~, may have a different 
number, / ,  of partitions/tracks, but for any feasible set 
of partitions, all measurements are accounted for, that 
is, 

I 
z k =  U Zk'li (14) 

l~=o 
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and the partitions of a hypothesis are disjoint 

zk'i A zk'; = ~ ¥i ~ j (15) 

so that a measurement originates from only one 
geometric feature. 

In order to impose the disjointness constraint of 
equation (15), a binary vector xI 't of dimension N = 
dim (Z g) the total number of observed measurements 
is defined for each track I. A nonzero element in the 
ith position of 'I 't indicates that this measurement has 
been assigned to track 1. Equation (15) can now be 
rewritten as 

xIri -I- xI -tj __~ 1 i ~ j ,  9i,  xltj fi O k (16) 

where 1 is a vector of l's and both tracks are included 
in the same hypothesis. To form a complete set of ine- 
qualities, the matrix A, 

A A (xit 1 . . . .  , XItr) (17) 

is formed, so that equation (16) becomes 

Ap < 1 (18) 

The above results allow the joint-likelihood data- 
association problem to be formulated as 

rain c 'p subject to Ap -< 1 and p binary (19) 

This is a very well-studied optimization problem. 
Known as the set-packing problem, it is of considerable 
importance in many diverse fields. Salkin [26] provides 
a good review of the topic. The set-packing problem 
is known to be NP-complete [17]. However, because 
of its importance, standard packages do exist to solve 
it. Morefield also notes that a significant reduction in 
computation can be achieved if the problem can be 
reduced to L subproblems each of which have no data 
points in common. Such a situation arises in the track- 
ing of two or more geometric features that are spatially 
separated from one another, that is, their validation 
volumes do not overlap. 

The main disadvantage of the joint-likelihood ap- 
proach is that it is a batch process. An on-line re.cur- 
sive formulation is possible, but the performance of on- 
line set-packing algorithms can be significantly worse 
than batch techniques. A second problem is that the 
initiation and termination of geometric features is not 
explicitly handled by the algorithm, but is performed 
instead by the track feasibility stage. I f  the number of 
perceptually relevant geometric features changes with 
time as objects enter and/or leave the camera's field of 

view, then an algorithm is needed that is capable of in- 
itiating and terminating geometric features. These prob- 
lems are addressed by the multiple-hypothesis algorittun 
of Reid [24]. 

6 Multiple-Hypothesis Algorithm 

Track initiation and termination are important 
capabilities for motion-correspondence algorithms. 
After all, it is seldom the case that all relevant geometric 
features are known a priori and are present from the 
start to finish of the motion sequence. More usually, 
as the camera moves, new areas of an object or the en- 
vironment come into view and new geometric features 
must be initiated to model and track them. Similarly, 
track termination is important to handle features that 
leave the field of view of the sensor, for example. The 
multiple-hypothesis filter, originally developed by Reid 
[24] provides these capabilities. Most recently, Cox and 
Leonard [8] have demonstrated its utility in the con- 
text of building and maintaining a map of a mobile 
robot's environment. The interested reader is also 
directed to Cox and Leonard [9] for a discussion of un- 
supervised learning and the motion-correspondence 
problem. 

Figure 4 outlines the basic operation of the 
algorithm. An iteration begins with the set of current 
hypotheses from iteration (k - 1). Each hypothesis 
(leaf) contains a set of active tracks, and becomes a 
parent hypothesis node in the current iteration. Each 
hypothesis provides an interpretation of all past 
measurements consisting of a collection of disjoint 
tracks. Predictions are made as to the expected loca- 
tion of measurements and these predictions are matched 
to actual measurements using the Mahalanobis distance. 
Each measurement may either (1) belong to a previously 
known geometric feature or (2) be the start of a new 
geometric feature or (3) be a false alarm. In addition, 
for geometric features that are not assigned 
measurements, there is the possibility of (4) deletion 
of the geometric feature. This situation may arise when 
a learned feature such as a stationary desk, is moved 
to a new position. The resulting enumeration of associa- 
tions, described in section 6.1, produces a set of children 
(events) for each parent node, extending the depth of 
the tree by another level. Associated with each new leaf 
is a probability whose computation is described in sec- 
tion 6.2. In the final step of the iteration, the tree is 
pruned to remove unlikely correspondences. 
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Iypotheses at time k - ~  n~l~,, ~ Hypotheses at time k 
1 7 - - - - 7 1  

t 
lypothesis Managemen~ 

(pruning, merging) / 

For Each Hypothesis O~ -1] 
Generate Predictions J l 

Hypothesis Generation 

~ z ( k )  
I Observed Features 

Feature Extraction 

l 
Raw Sensor Data 

Fig. 4. Outline of the multiple-hypothesis algorithm. 

6.1 Hypothesis Generation 

A particular global hypothesis at time k is defined by 
O k. Let Okm(-~ denote the parent hypothesis from which 
Ok is derived, and Om(k ) denote the specific set of 
assumed assignments that map k-1 {Ore(/) , Z(k)} to Ok. 
That is, Ore(k) is a set of assignments of the origins of 
all measurements received at time k with all the geo- 
metric features postulated by the parent hypothesis, 

k-1 Ore(O, at time k. The event Of(k) based on the current 
measurements is defined to consist of r measurements 
from known geometric features, v measurements from 
new geometric features, th false alarms and X deleted (or 
obsolete) geometric features from the parent hypothesis. 

A set of current assignments or events Or(k) can be 
generated by first creating a hypothesis matrix in which 
known geometric features are represented by the col- 
umns of the matrix and the current measurements by 
the rows. A nonzero element at matrix position ci, j 
denotes that measurement zi(k) is contained in the 
validation region of geometric feature tj. In addition 
to the total number, T, of known geometric features 
postulated by a hypothesis, the hypothesis matrix has 
appended to it a column 0 denoting false alarms and 
a column T + 1 denoting new geometric features. The 
situation depicted in figure 2 is represented by the 
hypothesis matrix shown in figure 5. 

The two constraints that (1) a measurement originates 
from only one source feature and (2) a geometric 

f~ = 

TF T1 T2 TN 

1 1 0 1 z1(k) 

I I 1 1 z2(k) 

I 0 1 1 z3(k) 

Fig. 5. Hypothesis matrix for the situation depicted in figure 2. 

feature has at most one associated measurement per 
iteration can be imposed by restricting an assignment 
matrix to have only a single nonzero value in any row 
or column, except for the first and last columns since 
any number of measurements might be false alarms or 
new geometric features. Figure 5 therefore concisely 
represents the ambiguities that are present in figure 2. 

Hypothesis generation is then performed by pick- 
ing one unit per row and one unit per column except 
for columns TF and TN as illustrated in figure 5. 
Enumeration of all legal sets of assignments, Or(k), is 
straightforward [33] and is followed by the calculation 
of the probability of each new hypothesis. 

6.2 Probability Calculations 

The new hypothesis at time k, Ok is made up of the 
current set of assignments (also called an event), Or(k), 
and a previous hypothesis, k-1 Om(0 based on measure- 
ments up to and including time k - 1, that is, 

O k k-1 = {Om(/) , Ol(k)} (20) 

The probability of an hypothesis, P{OklZ k} can be 
calculated using Bayes' rule, so that 

P{OklZ = e {o#), o57o 11z(k), z 

lp[Z(k)lOt(k) k-1 z k - 1 ]  = Om(/) , 

× P{O,(k)lOkmTL z 
k-1 k-1 × P{Om(0 ]Z } (21) 

where c is a normalization constant. The last term of 
P{Om(01Z }, represents the probabil- this equation, k-1 k-1 

ity of the parent global hypothesis and is therefore avail- 
able from the previous iteration. The remaining two 
terms may be evaluated as follows. 
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The second factor of equation (21) is obtained by 
combining results from [5] and [19] to yield 

P{Ol(k)lOkm~d, zg-1} O!v! = I, ZF(O)t.~N(P ) 
mk! 

I - I  (P~)~t( 1 - ptD)l-~'(Ptx)x'(1 - Ptx)l-xt (22) 
t 

where ~F(~) ans ~N(V) are the prior probability mass 
functions (pmfs) of the number of false measurements 
and new geometric features, P~ and P~ are the prob- 
abilities of detection and termination (deletion) of track 
t and 6t and Xt are indicator variables defined by 

1 if geometric feature t 
6t zx (in k-1 = Omo ) is detected at time k 

0 otherwise (23) 

zx (10  if geometric feature t 
Xt (in k-1 = Om(/)) is deleted at time k 

otherwise (24) 

To determine the first term on the right hand side 
of equation (21), it is assumed that a measurement 
zi(k) has a Gaussian probability density function (pdf) 

N,, = N[ze(k)] ~ N[z~(k); i~(klk - 1), Sti(k)] 

= 12~.S,i(k) l -  1/2 
1 

x exp ~ {[z(k) - "~(klk - 1)1' {S'i(k)} -1 

[z(k) - i(klk - 1)]} (25) 

if it is associated with geometric feature ti, where 
zi(klk - 1) denotes the predicted measurement for 
geometric feature t i and St/(k) is the associated innova- 
tion covariance. If the measurement is a false alarm, 
then its pdf is assumed uniform in the observation 
volume, V. The probability of a new geometric feature 
is also taken to be uniform with pdf V-1. 5 Under these 
assumptions, we have that 

p[Z(k)lOl(k), Omo,k-1 Zk-1] 
mk 

= H {Nti[zi(k)]}riV-(1-ri) 
i=1 

m k 
= V-4~-v H [Nti{zi(k)]} ri (26) 

i=1 

where r i is an indicator variable defined as 

zx ( i  zi(k) c a m e f r o m a  
ri = known geometric feature 

otherwise (27) 

and v and ~b are the total number of new geometric 
features and false alarms respectively. 

Substituting equations (26) and (22) into equation 
(21) yields the final expression for the conditional prob- 
ability of an association hypothesis 

m k 
e{o~lzk} 1 ~b!v! - lZF(4OIZN(V) V-~-~ r I  {Nti[zi(k)]} ~i 

c m k i=1 

x ( ~ t  (ptD)6t(l - ptD)l-6t(ptx)Xt(l - Px)l-xt ~ 

× p{ok~IJZ k-l} (28) 

If the number of false alarms and new features are 
assumed to be Poisson distributed 6 with densities XF 
and XN, respectively, then equation (28) reduces to 

m k 
1 X~v;k~ H {Nti[zi(k)]} r~ p{OkmlZ ~} = c-- 7 

i=1 

X ~I~t (PtD)~t(x - PtD)l-~St(Ptx)xt(1- ptx)l-xt ~ 

k-1 k-1 X P{Om(/)I z } (29)  

The probability of each hypothesis can be used to guide 
a pruning strategy described next. 

6 3 Implementation 

The multiple-hypothesis approach has exponential com- 
plexity. Consequently, heuristic pruning strategies must 
be applied to contain the growth of the hypothesis tree. 
Several implementation issues are worthy of mention. 

First, just as with the joint-likelihood approach, the 
same track may appear in more than one hypothesis. 
Rather than replicate common tracks over all such 
hypotheses and incurring the corresponding computa- 
tional and storage overheads, a separate track tree is 
formed [19]. Each hypothesis then contains pointers 
to nodes in the track tree as illustrated in figure 6. Each 
set represents a different permutation of track leaf nodes 
from different track trees, i.e., the global hypotheses 
enforce the assumptions of disjoint partitions. The track 
tree provides considerable savings and is discussed in 
detail by Kurien [19]. 

6.3.1 Spatially Disjoint Cluster. A considerable 
reduction in the combinatorics can be achieved by real- 
izing that it is not necessary to form a single global 
hypothesis tree containing tracks that do not have any 
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Fig.  6 The track and hypothesis trees. 

common measurements. Instead, tracks can be parti- 
tioned into separate clusters as proposed by Reid 
[24] .7 Tracks within each cluster share common mea- 
surements whereas tracks in different clusters do not. 
A separate hypothesis tree is grown for each spatially 
disjoint cluster and consequently, the combinatorial 
problem associated with forming global hypotheses is 
significantly reduced. 

Of course, each new set of measurements must be 
checked to determine whether a measurement is shared 
(falls in the validation region) between two or more 
clusters. If  so, these clusters must be merged. Simi- 
larly, a cluster containing two or more geometric 
features that do not share common measurements may 
be split. 

6.3.2 Pruning. Pruning is essential to any practical 
implementation of this algorithm. Pruning is based on 
a combination of an "N-scan-back" algorithm [19] and 
a simple lower limit probability threshold. The N-scan- 
back algorithm assumes that any ambiguity at time k 
is resolved by time k + N. Then, if hypothesis ok at 
time k has q children, the sum of the probabilities of 
the leaf nodes is calculated for each of the q branches. 
Whichever branch has the greatest probability is re- 
tained and all other branches are pruned. The result 
is an irrevocable decision regarding the assignment of 
measurements to tracks based on looking ahead N time 
steps. Consequently, below the decision node there is 
a tree of depth N while above the decision node the 
tree has degenerated into a simple list of assignments, 
as illustrated in figure (7). It is clearly computationally 
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Fig .  7. An hypothesis tree after N-scan-back" pruning. 

k+N 

advantageous to set N as small as possible. Research 
suggests that very good results can be obtained for N 
= 3 [8, 9] and even N = 2 [19] can provide near op- 
timum solutions in some circumstances. Nevertheless, 
after N-scan-back pruning the number of leaf nodes can 
still be high. A second phase of pruning removes all 
nodes whose probability is less than a lower limit, say 
0.01, so that at the end of each iteration there are at 
most 100 hypotheses. 

7 The Joint-Probabilistic Data-Association 
Algorithm 

The main problem with the three previous approaches 
is their exponential complexity, which can demand large 
computation and memory resources even if significant 
pruning is applied. Whether such demands can be met 
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depends very much on the application, for example, 
the level of ambiguity present, the computational time 
involved in a single cycle from time k to k + 1 can 
vary significantly, depending on the level of ambiguity 
and the corresponding sizes of the trees, can be very 
problematic in some real-time situations. There is 
therefore a need for simpler, albeit suboptimal, data- 
association algorithms. 

A class of suboptimal algorithms exist that requires 
almost fixed computational resources per cycle. The 
joint probabilistic data association algorithm weights 
all measurements with all tracks. The weights repre- 
sent the probability that measurement zi(k) originated 
from geometric feature l. Hence the term probabilistic 
data association. The original probabilistic data- 
association filter (PDAF) assumed the existence of only 
a single target whose track has been initialized [6]. The 
joint-probabilistic data-association filter (JPDAF) [16] 
extended this to a fixed known number of targets and 
is described below. These are strong assumptions, but 
acceptable in some situations. Most recently, the 
JPDAF has been further enhanced to deal with the case 
of a track splitting into two component tracks [4]. 

Consider a cluster of T tracks as defined in the 
cluster partitioning of the multiple-hypothesis filter, sec- 
tion (6.3.1). At time k, Z(k) = {zl(k ) . . . . .  Zm~} 
measurements are detected in the combined validation 
regions of these tracks. Let i t denote the predicted 
measurement value from track l and Pi,t the associated 
innovation due to measurement z i. The JPDA 
associates all measurements with each track to form 
a combined weighted innovation given by 

mk 
1~t = Z ~Pi,l (30) 

i=1 

where/51 is the posterior probability that measurement 
i originated from geometric feature l and /3~ is the 
probability that none of the measurements originated 
from feature l. The weighted innovation is then applied 
in the standard Kalman filter update equations for each 
track l. 

In order to determine/3[ it is necessary to determine 
the probability that measurement z i originated from 
feature l. To do this, a hypothesis matrix is constructed 
for each track and sets of assignments, 0t, are 
generated, assuming as before that a measurement 
originates from only a single feature and that a feature 
generates only a single measurement. Then the innova- 
tion weightings/3~ are defined by 

I i  = 1, . . . , m  k 
t3i, l ~= ~ P[Ol(k) l Zklri,t(O) (31) 

0 = 0,1 . . . . .  T 

where the indicator variable ri,l(O) is unity if measure- 
ment zi(k) is associated with track l in the assignment 
Ol(k) and zero otherwise. 

The conditional probability of the joint association 
event Ol(k) is 

P(Oz(k) I Z k) = P[Ot(k) I Z(k), Z k-l] (32) 

- lP[Z(k) I Or(k), Zk-1]p[Ot(k)] (33) 

where c is a normalization constant. The pdf is given by 

mk 
p[Z(k) [ Ol(k), Z k-l] = r I  p[zi(k) I Ol(k), Z k-l] (34) 

i=1 

Assuming a normal distribution for measurements 
associated to tracks and a uniform distribution in the 
field of view (surveillance volume) V for measurements 
not assigned to tracks, then 

p[zi(k) [ Or(k), Z k-l] 

= ~Nl[zi(k)] if ri,l[Ol(k)] = 1 

L V -1 i f  "ri,l[Ol(k)] = 0 

Thus equation (34) becomes 

(35) 

m k 
p[Z(k) I Ol(k), zk-1]  = V-4~[Ot(k)l H {Nt[zi(k)]} r[Ot(k)l 

i=1 

(36/ 

where ~b[0t(k)] is the total number of false alarms pre- 
sent in the specific assignment event Of(k). 

For[mann et al. show that the probability of the 
assignments, 01(k), is given by 

T ~v 
PtOt(k)] = - -~, .~(6)  r I  (P~l~,( 1 - p~t  '-~, 

t=l 

(37) 

assuming each event equally likely. P~ is the probabil- 
ity of detection of geometric feature l, tXF(~b) is the 
prior PMF of the number of false measurements and 
6 t is an indicator variable that is unity if a measure- 
ment is assigned to a track l in the event Ol(k) and zero 
otherwise. 
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Combining equations (34) and (37) into equation 
(32) yields 

p[Ol(k) IZ~ ] _ 1 OI c rnkl I~F(q~)V-¢ 
m k T 

H {Nl[zj(k)]} rj H (P~)~'(1 - pID)I-~SI ( 3 8 )  

j=l 1=1 

There are two versions of the JPDA depending on 
the assumed model for the false measurements,/ze(~). 
The parametric JPDA assumes a Poisson distribution 
while the nonparametric JPDA assumes a uniform 
distribution. 

Chang and Aggarwal [7] have applied the JPDA to 
the problem of 3-D structure reconstruction from an 
ego motion sequence. Good performance can be 
achieved with this filter and the filter is becoming in- 
creasingly popular within the air traffic control com- 
munity [2]. The principal limitation of the JPDA is its 
inability to perform track initiation and deletion. Since 
the JPDA algorithm is designed for the restricted case 
in which a known number of geometric features are to 
be tracked, serious errors can arise if the number of 
geometric features should change. However, recently 
there has been progress toward supplementing the JPDA 
with these capabilities [3], including combining the 
JPDA with a version of the multiple-hypothesis filter 
for track formation [2] and a version of the JPDA that 
can track an object that "splits" into two targets [4]. 

8 Conclusion 

Although the data-association problem can sometimes 
be significantly reduced if the sampling rate of the sen- 
sors can be increased and/or the sensor's motion be- 
tween sampling intervals can be restricted, ultimately 
some ambiguity in motion correspondences is unavoid- 
able, especially in dynamic environments. Resolving 
motion correspondences is a very difficult problem 
which has received significant attention within the 
surveillance and target-tracking community. Here, we 
have reviewed several statistical data association tech- 
niques developed by the target-tracking community but 
having applicability to computer vision. 

An assumption common to all the reviewed 
algorithms is that measurements are normally 
distributed about their predicted values. In this case, 
the Mahalanobis distance can be used to quantify the 
likelihood that a measurement originated from a 

specific geometric feature and a validation region can 
be defined within which a measurement will be found 
with some specified probability. The validation region 
or gate serves two purposes. First, it provides an at- 
tention focusing capability. Second, it significantly 
reduces the assignment combinatorics by not consider- 
ing measurements that fall outside of the validation 
volume of a track. 

The Mahalanobis distance suggests an obvious solu- 
tion to the motion correspondence problem, the nearest- 
neighbor algorithm. Unfortunately, there is always a 
finite chance that such an assignment is incorrect, 
which can have serious affects on the performance of 
the Kalman filter. The nearest-neighbor algorithm 
makes assignment decisions based solely on the cur- 
rent image frame, but much more information is 
available by postponing assignment decisions and ex- 
amining subsequent images. The track-splitting, joint- 
likelihood and multiple-hypothesis algorithms all ex- 
ploit some form of look-ahead capability, but all three 
algorithms have exponential complexity. 

The track-splitting algorithm is the simplest of the 
three. However, it allows measurements to be shared 
between tracks, which does not represent the physics 
of the imaging process. The joint-likelihood algorithm 
improves on the track-splitting filter by enforcing dis- 
joint partitions of the measurements, that is, a measure- 
ment can originate from only a single geometric feature. 
The principal criticisms of the joint-likelihood approach 
are that it is a batch rather than recursive procedure 
and, like the track-splitting algorithm before it, there 
is no explicit modeling of when to initiate a new track 
or terminate an existing track. These disadvantages are 
overcome in the multiple-hypothesis algorithm, a recur- 
sive algorithm that provides the capabilities of track in- 
itiation and termination. An efficient implementation 
of the multiple-hypothesis algorithm involves creating 
a list of track trees, as with the track-spliCing algorithm, 
and a set of hypothesis trees, each hypothesis pointing 
to a set of disjoint track tree nodes. The multiple- 
hypothesis algorithm is therefore somewhat more com- 
plicated than track-splitting, but avoids many of the 
heuristics needed by the latter to deal with initiation, 
termination, and merging of tracks. Consequently, 
while the initial cost of implementing the multiple 
hypothesis may be high, this is more than offset by its 
significantly better performance. 

Of course, not all applications require solution to 
the general-purpose motion correspondence problem. 
Further, suboptimal algorithms may be needed to meet 
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rea l - t ime  cons t ra in ts .  T h e  jo in t -p robab i l i s t i c  data-  

associat ion filter is one  such a lgor i thm and  is appl icable  

to s i tuat ions  in  w h i c h  the  n u m b e r  o f  targets  to b e  

t racked  is k n o w n  a p r io r i .  T he  J P D A F  ass igns  all 

m e a s u r e m e n t s  to all t racks ,  we igh t ing  each  measu re -  

m e n t  b a s e d  on  an  es t ima te  of  the  p robab i l i t y  tha t  the  

m e a s u r e m e n t  be longs  to the  t rack.  T h e  or ig ina l  J P D A  

a lgor i thm suffered f rom a n  inabil i ty  to init iate or  delete  

t racks,  bu t  t he re  has  b e e n  s ign i f ican t  r ecen t  work  to 

address  this  l imi ta t ion .  

T h e  c h o i c e  of  w h i c h  stat ist ical  da ta -assoc ia t ion  

a lgo r i thm to use  depends  s t rongly  on  the  pa r t i cu la r  ap-  

p l ica t ion:  for  example ,  is the  n u m b e r  of  g e o m e t r i c  

fea tures  to b e  t racked  k n o w n  a p r i o r i  or  is au tomat i c  

t rack  in i t i a t ion  and  de l e t i on  n e c e s s a r y  and  wha t  real -  

t ime  const ra in ts  mus t  b e  met?  Current ly ,  the  cho ice  ap- 

pears  to b e  b e t w e e n  s o m e  fo rm of  h y b r i d  J P D A  algor-  

i t h m  that  offers  be t t e r  r ea l - t ime  capabi l i t ies  and  the  

mu l t i p l e -hypo thes i s  f i l ter  w h i c h  has  supe r seded  the  

t rack-sp l i t t ing  and  jo in t - l i ke l i hood  m e t h o d s  and  pro-  

vides  super io r  t rack  in i t ia t ion  and  de le t ion  capabi l i t ies  

w h i c h  may b e  cr i t ical  in  d y n a m i c  env i ronmen t s .  
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No~s 

1. Strictly, the term temporal data association should be used to dis- 
tinguish motion correspondence from the static data association 
problem in which pixels in a single image must be partitioned 
into perceptually relevant groups. In the latter case, there is no 
explicit ordering of the measurements, except for the arbitrary 
ordering imposed by the sampling lattice. Temporal data- 
association techniques can sometimes be applied to the static case, 
as in the work of Cox et al. [10]. 

2. The term ~,(i I J) should be read as "the estimate of the vector 
x at time step i given all observations up to time step j." 

3. The prediction "~i(k + 1 [ k) and innovation covariance S(k + 1) 
are precisely what is calculated using the Kalman filter. It is there- 
fore often convenient to associate a Kalman filter with every 
geometric feature, the state vector representing the position and 
velocity of the associated feature. 

4. Equation (6) assumes that a measurement for a track/geometric 
feature is present at each iteration, i.e., that a measurement is 
always found inside the validation region of each track. However, 
the algorithm can be modified to deal with detection probabilities 
of less than unity. 

5. Intuitively, the choice of uniform pdf's for false alarms and new 
features seems less justifiable for robotic applications than for tradi- 
tional radar and underwater sonar hacking applications. The impact 
of these assumptions needs further investigation. 

6. Uniform distributions can also be easily accommodated. 
7. This spatial partitioning is also common to Morefield's joint like- 

lihood integer programming scheme. 
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