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1. I n t r o d u c t i o n  

This article extends the main result of  Thistle and Wonham (1994a), which has potential 
applications in supervisory control, in the synthesis of  "reactive" systems, and in decision 
procedures for propositional modal logics. 

Some of  the basic results of supervisory control theory 1 have recently been extended to the 
setting of  infinite-string formal languages (co-languages) and the associated finite automata 
(co-automata). 2 Such extension not only admits natural modelling of nonterminating pro- 
cesses (by allowing explicit representation of  infinite event streams), but also increases the 
scope of  the theory and establishes connections between control synthesis for discrete event 
systems and the verification and synthesis of computer systems. Indeed, co-languages and 
co-automata are standard tools for the analysis and design of  computer systems (Manna and 
Pnueli 1992, Vardi 1991, Kurshan 1988, Thomas 1990) and have already found application 
in control (Varaiya 1993). 

Discrete event systems (DES) are modelled in supervisory control theory as controlled 
generators of  formal languages. Desired closed-loop behaviour is typically specified by 
requiring the language generated 3 under control to lie within some prespecified range, in 
the sense of  set inclusion. In other words, the language generated by the controlled DES 
is required to be included in some "maximal legal language" and in turn to contain some 
"minimal acceptable language" (Ramadge and Wonham 1987). In the original finite-string 
case, such language inclusions allow the specification of  so-called "safety" properties, 
which, roughly speaking, assert that some given (undesirable) condition must never obtain 
(Lamport 1977). On the other hand, "liveness" properties, which state roughly that some 
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(desirable) condition must eventually obtain (Lamport 1977), cannot be expressed through 
finite-string language inclusions. Indeed, safety properties have been formally defined 
in Alpern and Schneider (1985) as representing restrictions on finite event streams, while 
(pure) liveness properties have been defined as placing no conditions on finite event streams 
but rather restricting the set of infinite event sequences. The infinite-string extension thus 
allows the expression of certain properties of asymptotic behaviour that the finite-string 
theory does not. 

This increased expressiveness necessitates a strengthening of the controllability prop- 
erty of the original theory (Ramadge and Wonham 1987). An appropriate property--co- 
controllability--is defined in Thistle and Wonham (1994b). 4 As in the finite-string case, a 
key step in infinite-string supervisor synthesis is the computation of the supremal control- 
lable sublanguage of the legal language. If the discrete event system (DES) to be controlled 
and the maximal legal language are both represented by finite automata on infinite strings 
(co-automata), then the supremal co-controllable sublanguage can be found by computing 
the controllability subset of a controlled automaton. 

The controllability subset can be defined as the set of states from which the w-automaton 
can be controlled to generate only strings satisfying its acceptance condition. This accep- 
tance condition is based on the set of states visited infinitely often in the course of the 
generation of an infinite string. 5 It is possible to restrict attention without loss of generality 
to a special form of acceptance condition: all formal languages accepted by w-automata-- 
the so-called co-regular languages--are accepted by finite, deterministic automata equipped 
with Rabin acceptance conditions (see section 2 for a definition). 

The computation of the controllability subset of a deterministic Rabin automaton is dis- 
cussed in Thistle and Wonham (1994a). This problem is formally equivalent to the solution 
of Church's problem (Church 1963, Btichi and Landweber 1969), a well-known automa- 
ton synthesis problem that has recently been proposed as a paradigm for the synthesis of 
"reactive" systems (Pnueli and Rosner 1989a, Pnueli and Rosner 1989b). Another equiv- 
alent problem is that of deciding the emptiness of the set of infinite trees accepted by a 
Rabin tree automaton (Rabin 1972, Hossley and Rackoff 1972, Emerson and Jutla 1988). 
This last problem is central to deciding satisfiability of propositional modal logics and 
monadic second-order theories (Emerson 1990, Rabin 1969). Like those of Pnueli and 
Rosner (1989a) and Emerson and Jutla (1988), the solution of Thistle and Wonham (1994a) 
matches the best known upper bounds on computational complexity, and is in fact essentially 
optimal in this respect. 

As shown in Thistle and Wonham (1994b), the computation of controllability subsets 
allows effective supervisor synthesis in the presence of liveness specifications. The present 
article extends the result of Thistle and Wonham (1994a) to allow the use of liveness 
properties not only in specification but also in modelling. Liveness properties--and in 
particular so-called "fairness properties" (Francez 1986)--play an important role in the 
modelling of concurrency. For example, in the absence of precise information on the 
relative "speeds" of a collection of asynchronous subsystems, it is often desirable to assume 
that events occur infinitely often in each subsystem; indeed, Ramadge (1989) introduced 
deterministic Biichi automata to capture such a fairness condition in the supervisory control 
of "product systems." 
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Systems modelled by deterministic Biichi automata have also been considered in Kumar 
et al. (1992) and Young et al. (1992). Such automata recognize only a proper subset of the 
co-regular languages, and do not allow the expression of certain useful fairness properties. 6 
The present article allows the use of the more powerful deterministic Rabin automata. 

In particular, this article deals with the computation of the controllability subset of a 
finite, deterministic automaton equipped with two Rabin conditions, one representing a 
specification (as in Thistle and Wonham 1994a) and the other representing a modelling 
assumption that might, for example, capture fairness properties. The controllability subset 
is here defined as the set of all states from which the automaton can be controlled so 
that any infinite event sequence that is consistent with the control action and satisfies the 
modelling assumption also satisfies the specification. To rule out trivial solutions, we require 
the "deadlock-freedom" condition that any finite event string generated by the controlled 
system extend to an infinite string that is also generated by the controlled system. This 
generalization of the problem of Thistle and Wonham (1994a) is similar to an extension of 
Church's problem that was proposed in Abadi et al. (1989) (for the synthesis of reactive 
systems under fairness assumptions) but not solved by direct construction. Another similar 
problem is considered in Wong-Toi and Dill (1991), but there the requirement of deadlock- 
freedom is dropped, effectively reducing the problem to that of Church. 

The solution presented here extends that of Thistle and Wonham (1994a); 7 it features a 
fixpoint characterization of the controllability subset based on the fixpoint calculus approach 
of Emerson and Jutla (1988), and methods of induction on the structure of automata inspired 
by those of Rabin (1972). The problem is formally defined in the following section. The 
monotone operators employed in the fixpoint representation are introduced in section 3. 
Structural operations on automata that facilitate the induction are defined in section 4. The 
fixpoint representation of the controllability subset is established in section 5 and in section 6 
the computational complexity of the method is analyzed. The definitions and results are 
illustrated by a simple example in section 7. Related work is discussed in section 8. The 
proof of the main result is provided in the appendix; proofs of intermediate results are 
available in the addendum (Thistle 1994a). 

A preliminary version of the main result was outlined in Thistle (1992). 

2. Control of  Automata 

We first introduce some standard notation for formal languages. If Z is a finite alphabet 
then ~3" represents the set of finite strings over E, plus the empty string, denoted by 1; 
E ~~ represents the set of (countably) infinite words over E and E ~  denotes Z* U I] '~ A 
language is a subset of E ~ - - i n  particular, an co-language is a subset of E~o. A finite string 
k 6 E* is aprefix of v E ~ if it is an initial substring of v; we write k < v, or k < v i fk  
is a proper initial substring, let pre(L) denote the set of all prefixes of strings belonging to 
a language L _c E ~. 

We consider automata of the form 

J[ = ( ~ ,  X, 3, y0, {(gp, Ip) : p E P}, {(Rq, lq) : q E Q}, C) 
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where: 

�9 ~ is a finite alphabet of event symbols; 

�9 X is a finite state set; 

�9 ~ : E • X .~ 2 x is a transition function; 

�9 x0 ~ X is an initial state; 

�9 {(Rp, It,) : p ~ P}, f(Rq, Iq) : q ~ Q} are families of  pairs of  subsets of  X, each 
family determining a Rabin recognition condition; and 

�9 C ___ 2 z is a family of controlpatterns. 

A p a t h  on fl, of  a string o ~ I~ ~ is a total map zr : pre({v}) > X such that 

zr(1) = x0 & Yk ~ pre({o}), rr ~ E : krr ~ pre({v}) ~ zr(kcr) ~ ~(rr, rr(k)) 

Thus a path associates a state trajectory with a string in a manner consistent with the 
transition function. 

Note that this state trajectory begins with the initial state; in order to discuss trajectories 
beginning at another state x ~ X, let ~4x denote the automaton obtained by replacing the 
initial state x0 with x. 

The recurrence set of a path rr on a string s ~ ~o~ is f2jr :=  {x ~ X : I z r - ' ( x ) l  - -  co}; 
in other words, the recurrence set is the set of  states that recur infinitely often along the 
corresponding state trajectory. 

For either family of state subset pairs { (Rr, It) : r ~ R }, we say that a path Jr is recognized 
according to that family if there exists r E R s.t. fair N Rr ~ 0 and fan ___ Ir. Thus a 
path is recognized if for some r ~ R, the subset Rr is visited infinitely often along the 
corresponding state trajectory, and the subset Ir almost always. Restriction to this form of 
recognition condition entails no loss of generality in the sense that all m-languages that can 
be represented by finite automata (the so-called co-regular languages) can be represented by 
deterministic, finite Robin automata employing conditions of this form (Thomas 1990). 

This report is concerned exclusively with deterministic automata (for which t~(o, x)j < 
1, 'v'o- ~ E,  x ~ X); we shall therefore consider ~ as a partial function 8 : I3 x X ~ X, 
writing 8(rr, x)! to signify that the map ~ is defined for the pair (rr, x). 8 Furthermore, we 
shall extend all such transition functions to partial functions 8 : E* x X ~ X in the usual 
manner: 

(1 ,x)  ~ x 

(ktr, x) ~ 8(cr, 8(k, x)), for all k e E*, rr ~ ~ s.t. 8(k, x) and ~(rr, ~(k, x)) are defined. 

Note that a string has at most one path on a deterministic automaton. 
The condition corresponding to the first family of  state subset pairs, {(R e, Ie) : p ~ P}, 

will be viewed (as in Thistle and Wonham I994a) as a specification; hence any string s ~ I3 ~ 
having a palh that is recognized according to this family will be said to be accepted by A. 
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The second family of  state subsets (which is absent from earlier studies) will be used to 
represent modelling assumptions relating to the asymptotic behaviour of  the uncontrolled 
automaton: any string s 6 E '~ having a path that is not recognized according to this family 
will be said to be generated by A. 9 Arty finite string k 6 E* that has a path on ..4 is also 
said to be generated by ,,4. 

The last component of  the automaton represents a control mechanism. Feedback is 
modelled by partial functions f : E* �9 > C, interpreted as mapping the sequence of  past 
events to a corresponding control action. Formally, we say that a string v 6 E ~ is generated 
b y A u n d e r f :  E* > Ci f thereexis t sapa thr r  : pre({v}) ~ X such that for all prefixes 
k~r of  v, cr E f (k ) ;  if v ~ E~ we also require that Jr not be recognized according to the 
second family of  state subsets. In order for this definition to make physical sense we shall 
restrict attention to maps satisfying the following condition: f : E* > C is said to be 
complete if for every k c E* for which f ( k )  is defined, and every cr c f ( k ) ,  f(kcr) is also 
defined. 

The main result of  the article provides a fixpoint representation of the set of  states from 
which a deterministic automaton ..4 can be controlled in deadlock-free fashion so that all 
infinite strings generated by the controlled automaton are also accepted by the automaton: 

Definition 2.1. Let .A = (E, X, ~, Xo, {(Rp, Ip) : p ~ P}, {(Rq, [q) : q ~ Q}, C). Its 
controllability subset F-4 c_ X is the set of  all states x c X for which there exists a complete 
map f : E* > C such that 

i. every s 6 E ~ generated by r under f is accepted by r and 

ii. for any k 6 E* generated by .Ax under f ,  there exists t 6 E ~~ such that kt is accepted 
by Ax under f .  

3. The Inverse Dynamics and Reachability Operators 

We shall characterize F "a _ X as a certain fixpoint of  the following monotone operator: 

Definition3.1. Let .A = ( E , X , & x o , { ( R p ,  lv) : p ~ P},{(Rq, lq) : q ~ Q},C)  b e a  
deterministic automaton. Its inverse dynamics operator is given by 

0 -4 : 2 x > 2 x 

X'  ~ {x ~ X : (3I" e C)[(Wr ~ r ) a ( m  x) ~ X'  & (3or ~ r)~(cr, x)!]} 

For any X' c X, O-4(X t) is the set of  all states in which the automaton can be controlled 
so that its next state belongs to X'. 

The subset F-4 is indeed one of the fixpoints of  0-4: 

PROPOSITION 3.2 Let ..4 be a deterministic automaton. Then 

F-4 = O-4( F A) 
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We shall characterize F "4 uniquely with the aid of the fixpoint calculus employed in 
Thistle and Wonham (1992, 1994a), whereby for any expression ~b(Xi) containing the 
variable X1,/zXL. qS(Xt) (resp. vX1.  q~(X1) denotes the least (resp. greatest) XI c X (in 
the sense of set inclusion) such that X1 = qS(Xl). The existence of such fixpoints will 
follow from monotonicity properties of the expressions q~(.) that we shall employ. (See the 
addendum (Thistle 1994a) for some preliminary results from fixpoint theory, and refer to 
Thistle and Wonham (1994a) for control interpretations of some simple fixpoint calculus 
formulas.) 

For the time being we use the fixpoint notation to extend 0 A to the following operator: 

Definition 3.3. Let ,,4 be a deterministic automaton. The teachabil i ty  operator  of .,4 is 
given by 

p~a : 2 x > 2 x 

XI ~ /,iX2" [X 1 I..J 0r 

Thus p A  maps any subset X1 to its reachability subset--the set of all states from which 
,A can be controlled to reach Xa c X in zero or more transitions. 

4. Automaton Structure 

To facilitate structural induction we bring in operations that potentially reduce either the 
number of state subset pairs associated with an automaton or the number of "live" states as 
defined by Rabin (1972). 

Let A = (Z, X, ~, x0, {(Rp, Ip) : p E P},  {(Rq, lq) : q E Q}). The set of live states of 
A is given by 

L(A) := {x E X : (3cr 6 E) S(cr, x) 7 ~ x} 

In other words, a state is live if other states can be reached from it. An approximate opposite 
to liveness is "degeneracy." A state x E X is degenerate if there are transitions leaving x 
but all of them simply lead back to x; more precisely, x 6 X is degenerate if 

3 c ~ e E :  ~(cr, x ) ! & W E ~ : 3 ( c r ,  x ) = x  

The set of degenerate states of .4 is denoted by D(A). The subsets L (..4) and D(A) are of 
course disjoint but L(.A) U D(A) may be a proper subset of X; indeed, L(.A) U D(.A) = 
[x E X : (3c~ ~ Z)~(c~, x)!}. 

For any x E X, X' _c X and p E P, we generalize the operations employed in Thistle 
and Wonham (1992, 1994a) to automata ..4 = (I2, X ,  8 , xo, { ( Rp, Ip ) : p ~ P } , { ( Rq , Iq ) : 
q C Q }, C); the resulting operations potentially reduce the complexity of .4 as measured 
by [L(A)I and IPOQI: 
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self-looping of a subset: .A(~---~ X') ::- (Z, X, 3', x0, {(R~, I~) : p E P}, {(Rq, Iq)  : q E 
Q}, C), where 

x' if x' E X' 

,V(cr, x') = ,~(cr, x') otherwise 

' = R p U X ' & I p = I p U X ' ,  Y p E P  & R e 

restriction to a subset: AfX'  := (Z, X, 6', :co, {(R~, lfi) 
Q}, C), where 

{ 8(cr, x') i fx '  E X' t3{x0} 

3'(~r, x') = x r otherwise 
, f & Rp = Rp A X'  & Ip = lp A X' ,  V p E P 

: p 6 P},{(Rq, lq) : q 

exclusion of a pair: For r E P 0  Q, AJ r is obtained by restricting ..4 to the subset/r U D(.A) 
and deleting the pair (Rr, Ir). 

Self-looping of a subset X' ~ X turns every x c X J into a degenerate state and ensures 
that the singleton {x} satisfies the acceptance criterion. On the other hand, restriction to a 
subset X' _ X turns all other states into degenerate states that do not satisfy the acceptance 
condition. Finally, exclusion of a pair indexed by p 6 P restricts the automaton to the 
subset 11) LI D(A) and, provided IP[ > 1, eliminates the pair (Rp, Ip). All three of these 
operations potentially reduce the number of live states while the third potentially reduces 
the number of pairs in the acceptance condition. 

Without loss of generality, we shall henceforth assume that for all c~ c Z, x, x' E X, 
6(a, x)! & ~(a, x')! ~ x = x'. (That is, distinct transitions carry distinct event symbols.) 
This allows us to bring in the operation (7r X') for X' _ X, whereby the family C of 
control patterns is replaced by 

CIA(7~ x')~ 

:= (r'  _ r~ : (~r  ~ C)[F \ {a ~ r~ : (3x c X)[~(~r, x) E p'~(X')]} _C F' __ r]} 

In other words, A(Tz~ X t) is the automaton obtained from .4 by allowing the disablement 
of events that take A into states belonging to X ' or from which .A can be controlled to 
reach X r. 

We further assume that ~A has the special form 

(~3, X, 3, xo, {(Rp, It) ) : p ~ {0}�9 {(Rq, Iq) : q ~ {I}uQ}, C) 

where 0, 1 r PUQ and where 

R0 c D(.A) f3 I0 & 11 _~ L(A) U Rt 
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We now define 

A(+X ~) to be the automaton obtained from .A by replacing (R1, 11) with (RI U X', I1 U X'). 

Note that the special form of Jt is preserved by all of the above operations, with the exception 
of the exclusion of either (R0, Io) or (R1, 11). 

Some of the effects of these operations on the controllability subset F -4 are summarized 
in the following result: 

PROPOSITION 4.1 Let .A = (I], X,  3, xo, {(Rp, Iv) : p ~ P}, {(Rq, Iq) : q ~ Q}, C) and 
suppose x ~ X, X'  c_ X and r ~ PUQ. Then 

(a) 
(b) 
(c) 
(d) 

F A n D(.A) = [Upee(Rp n Ip) N D(A)] U R0 
F "a U X r c F A(~X') 

FAt  x' c F A O X'  
FAJ r c_ F A N (Ir U D(A) )  

Proposition 4.1 is similar to proposition 4.1 of Thistle and Wonham (1994a). Part (a) 
says that the degenerate states that belong to the controllability subset are exactly those that 
belong to R0 or to Rp n It,, for some p ~ P. Part (b) states that self-looping of a state 
subset enlarges the controllability subset (by turning the self-looped states into degenerate 
states where the acceptance criterion is satisfied). Part (c) says that restriction to a state 
subset shrinks the controllability subset (by creating degenerate states that fail to satisfy the 
acceptance criterion). Finally, part (d) asserts that exclusion of a state-subset pair (Rr, It) 
from a Rabin recognition condition shrinks the controllability subset (by strengthening the 
recognition condition and restricting the automaton to lr U D(.A)). 

5. Fixpoint Characterization of F • 

We can now write down a fixpoint characterization of the controllability subset: 

Definition 5.1. Let .4 = ( ~ , X , ~ , x o , { ( R p ,  lp) : p c {O}OP},{(Rq, lq) : q 
{ 1 }0 Q}, C) be an automaton of the special form described above. Then 

where, for any such automaton Jl and any p ~ P, q ~ Q and X1 _ X, 

Cp-A(Xl) := vX  2. [0"4(C "4('-+XIu(X2nRp))Jp) NIp] 

& CqA(XI) := CA~x,~+Rqn~q~Jv 

(The existence of this fixpoint follows by induction on IPfJQI from Proposition 5.2 (a) 
& (c) below.) 
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This representation of the controllability subset generalizes that of Thistle and Wonham 
(1994a) by treating the liveness assumption represented by the second family {(Rq, Iq) : 
q E { 1 }0 Q } of state subset pairs as, in effect, affording greater control over the automaton. 
In particular, since A is assumed not to generate any strings that visit R1 infinitely often, 
we must have F A = vXo. F'4(7~x~ is, the controllability subset must be the 
largest subset X0 from which the automaton can be controlled to the satisfaction of its 
specification under the assumption that any transitions leading to p 'a(X o M RI) can be 
disabled. Indeed, by forcing the automaton to visit X0 n R1 every time an undesired 
transition to pA (X0 N R1) occurs, one can ensure that such undesired transitions will occur 
only finitely often along any trajectory generated by the controlled automaton. Furthermore, 
in computing F "a(7~x~ one may neglect transitions that lead to states already known 
to belong to FA--thus F A = vXo. F A(~x~ = vXo. #X1.  F A(7~xtu(X~ These 
observations motivate the use of the operation (TZ~ X1 U (X0 n R1)) with X0 quantified by 
v and X1 by #. 

The rest of the expression for C A has an interpretation similar to that of the fixpoint 
characterization of Thistle and Wonham (1994a). For ,A to be suitably controlled, it must 
be forced eventually to reach R0, or eventually to reach Ir for some r ~ P@Q, and remain 
within that subset, satisfying the acceptance condition. For any automaton A, the term 
O~4(Xo U R0) represents the set of states from which A can be controlled to reach X1 U R0 in 
a single transition; for r e POQ,  the term Cr A (X1) represents the set of states x ~ Ir from 
which .4 can be controlled to remain within Ir U D(A) and generate only strings accepted 
by .Ax, or eventually to reach the subset Xl. It follows that the expression for C ~4 indeed 
denotes the controllability subset. (Note that Cp A and Cq A are defined in terms of subsets 

C A' only for automata ,4' with fewer state subset pairs than A, so C A is well defined.) 
Before proving formally that C ~4 = F ~4 (Theorem 5.3 below), we state some properties 

of C -a. 

PROPOSITION 5.2 Let r be a deterministic automaton o f  the form assumed in section 4. 
Suppose X / c X. Then 

(a) 

(b) 

(c) 
(d) 

(e) 
(f) 

(g) 
(h) 

If  ,A' is obtained from ,A by replacing C with C' DD_ C, then C A" DD_ C A, 

C A n D ( A )  = [Upep(Rp NIp) n D(A)] U Ro 

C A(~x ' )  ~ C A U X'  
C A ( ~ x ' ) = C  A .~ ". X ' c C  A 

CAt x' C C A n X ~ 

Vr ~ P O Q  : C "A]r C C A n [Ir U D(A)] 

Xz c_ c A ,, CA(~  x') = C A 
C A = vXo. C A(c*X~ =- vXo. t~X1. C A(~x~U(x~ 
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(i) Yq E Q : C A n [1 d D(.4) D C A(+RqNlq)jq 
O) c A oA(CA) 

(k) Yp E P : 
L(.4) c It2 & X' D CA(~x'nRpnle) N Rp N I r 

~. CA(c--"X'ARpAIp)~P = cA(c---~X'ARpNIp) 

(!) Yp E P : 
L(.4) C_ Ip ~, C A = vX 2. OA(C 'A(~*X2NRpNI,)) 

Proof: See the addendum (Thistle 1994a). �9 

Proposition 5.2 generalizes proposition 6.2 of Thistle and Wonham (1994a), and shows 
that the fixpoint C A has many properties that one would expect of the controllability subset 
F A, including those of proposition 4.1. Part (a) says that strengthening the controllability 
mechanism enlarges C A. Part (b) states that a degenerate state belongs to C A if and only 
if looping infinitely through that state alone satisfies the acceptance condition of .4--this 
is the counterpart of proposition 4.1 (a). 

Part (c) is the counterpart of proposition 4.1 (b); it says that self-looping enlarges C A. 
On the other hand, part (d) says that the self-looping of states already belonging to C A does 
not enlarge the fixpoint C A. 

Part (e) asserts that restriction shrinks C A, just as it does F A (cf. proposition 4.1 (c)), while 
Part (f) says that exclusion of a state subset pair has a similar effect (see proposition 4.1 (d)). 

Part (g) says that if execution of a transition would allow the system to be controlled 
into the fixpoint C A, then allowing the disablement of that transition does not enlarge the 
fixpoint. Part (h) captures the following property of the controllability subset: if from 
any element of a given state subset X0, one can control the automaton either to satisfy its 
acceptance condition or to enter X0 N R1, then (by repeating this process as necessary) one 
can control the automaton from any initial state in X0 to the satisfaction of its acceptance 
condition. 

Part (i) reflects the evident fact that if--under the additional liveness assumption that A 
not visit Rq n lq infinitely often--one can control the automaton to remain within lq U D (.4) 
and satisfy its acceptance condition, then one can suitably control the automaton under the 
unaltered liveness assumption. 

Part (j) simply asserts that the fixpoint C A, like the controllability subset, is a fixpoint of 
0 ̀ 4" 

Part (k) captures the fact that if all live states belong to some lp, and if from all states 
of some subset X2 one can control the automaton either to satisfy its acceptance condition 
or eventually to enter X2 n Rp NIp, then (by repeating as necessary) one can control the 
automaton from any initial state in X2 to the satisfaction of its acceptance condition. 

Given these properties of the fixpoint C A we are now ready to prove that it equals the 
controllability subset F-a: 
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THEOREM 5.3 Let r be an automaton of the special form assumed in section 4. Then 

F A = C A 

Proof: See the appendix. �9 

The proof generalizes that of proposition 6.1 of Thistle and Wonham (1994a). The 
inclusion (_)  is the more straightforward: on the basis of the definition of the fixpoint 
we construct a suitable feedback map. Here we exploit the fact that greatest fixpoints 
correspond roughly to control-invariant subsets and least fixpoints to "control-reachability" 
subsets, from which the automaton can be controlled eventually to enter some given state 
subset. 

In contrast to that of Thistle and Wonham (1994a), this feedback map cannot be repre- 
sented as a state feedback control for the automaton .,4: an extra bit of information must 
first be added to the automaton state. Indeed the controller consists of two state feedback 
controls for ,,4. One of these is based on the assumption represented by the operation 
(7 c~ X1 U (X0 n R1)) that transitions leading to pA(X1 t3 (Xo fq R1)) can be disabled. This 
controller forces satisfaction of the acceptance condition as long as the assumption is vio- 
lated only finitely often. Whenever this assumption is violated, the second state feedback 
map is applied, and forces the automaton into the subset Xl U (Xo A Rj ). In this way, the 
assumption can only be violated finitely often without violating the liveness assumption 
represented by the second Rabin condition. An extra bit of memory must be added to the 
state of the automaton to indicate which feedback map should apply at any given point in 
the system's evolution. 

The inclusion ( c )  is proved by structural induction--in particular, by induction on the 
number of live states. The general form of the argument is based on that of Rabin (1972). 

6. Complexity Analysis 

The fixpoint characterization allows straightforward computation of the controllability sub- 
set (and of a suitable controller, i fC A is nonempty) by iteration of the appropriate monotone 
operators (see Thistle and Wonham 1994a, Thistle 1994a). In this section, we show that this 
algorithm is essentially optimal in computational complexity: namely, though the problem 
of deciding membership in the controllability subset is NP-complete, our method of com- 
putation is polynomial in the number of states of the automaton, and exponential only in 
the total number of state subset pairs. The proofs are similar to those of the corresponding 
results of Thistle and Wonham (1994a), and are omitted. 

THEOREM 6.1 The problem of deciding membership in the controllability subset F A of a 
deterministic automaton ,,4 is NP-complete. 

THEOREM 6.2 Thecontrotlabilitysubsetofanautomatonofthespecialformassumedabove 
can be computed in time O(kl(mn)3m), where k & the size of the alphabet, I is the number 
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of control patterns, m is the total number of state subset pairs used to define the acceptance 
conditions and n is the number of states. 

7. Example 

Consider a version of the example of Thistle and Wonham (1994a) that includes a second 
Rabin recognition condition representing a liveness assumption. 

The automaton .A = (E, X, 3, {(Rp, Ip) : p c {0}0P}, {(Rq, Iq) : q E {1}UQ}, C) is 
pictured in figure 1. The index set P is {a, 3}, and Q is {y}. The subset pairs (R~, I~) = 
({4}, {1, 2, 3, 4}) and (Rt~,//3) = ({-4}, {-1, -2 ,  - 3 , - 4 } )  are represented by the pairs 
of dotted and dashed boxes; the pair (R• I• = ({-1, 0, 1}, {-1, 0, 1}) is represented 
by the solid box. The pairs (R0, I0) and (R1, 11) both equal (0, X). We have omitted 
event symbols from the diagram for clarity--according to our assumptions, each transition 
carries a distinct event symbol. The family of control patterns is the collection of all subsets 
that contain all event symbols corresponding to arcs without slashes across them. Arcs 
with slashes thus represent "controllable" events; those without represent "uncontrollable 
events." 

The controllability subset is computed by nested iteration according to the fixpoint char- 
acterization. We begin by setting X0 = X and X1 = 0 and computing 

OA(r U Ro) U U C,A(~)(O) 
r~POQ 

= U I)X2. [OA(C A(c---~X2MRp)jp) n Ip] U C A(+Rvntv))I• 
peP 

The automaton ,AG-+ R~)J ce is pictured in figure 2. By Proposition 5.2 (b), the state - 1  
does not belong to the controllability subset, and therefore, by Proposition 5.2 (j), neither 
does state 1; hence the controllability subset of A(r Re)Jot is {2, 3, 4}. Since this subset 
contains R~, it is in fact the greatest fixpoint I)X2. [0r "A(~'~X2ARa)~vt) n Ia]. The automaton 
,A(+R• n l• y has the empty set as its first family of accepting pairs. It is easy to see that 
its controllability subset is therefore empty. 

Iterating on X1, we next compute 

0A(7~X1)(X|) U Up~P vX2. [ OA(7r XO(c-+ X1U(X2NRp))jp) n Ip] U C A(7r X1)(~--~ X1)(+RyAIv)IY 

with X1 = {-4, -3 ,  -2 ,  2, 3, 4} (by symmetry). 
The automaton .A(7r Xl) (r X1 U R~)Ja is shown in figure 3. Again, by Proposition 5.2 

(b) & (j), states - 1 and 1 do not belong to the controllability subset. Thus the controllability 
subset is X1 itself, by Proposition 5.2 (b). As this subset contains R,~, X1 is the largest 
fixpoint 13X2. [OA(7~ xI) ( C ~4(7r xl)(`--''X'U(x2nR~))ja) n I,~]. 

The automaton A(7r X1)(r Xl) (+Ry n l~,)Jy is shown in figure 4. In this case the 
states - 1, 0, 1 are added to the controllability subset, owing to the first term in the fixpoint 
characterization (since Rl = {--1, 0, 1 } for this automaton). 

In the next step of the iteration on Xl, XI is set equal to {-4, -3 ,  -2 ,  -1 ,  0, 1, 2, 3, 4}, 
yielding the fixpoint X \ {-6, 6}. Since R1 = 0, setting X0 to X \ {-6, 6} does not 
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Figure 1. Automaton ,,4. 

affect the result, so X \ {-6, 6} in fact represents the controllability subset. As expected, 
this controllability subset differs from that of the example of Thistle and Wonham (1994a), 
owing to the liveness assumption represented by (R~, I v), without which the states - 1, 0, 1 
do not belong to C A . 

8. Conclus ion 

We have extended the methods of Thistle and Wonham (1992, 1994a) and Thistle (1991), to 
provide a fixpoint characterization of the controllability subset of an automaton whose spec- 
ifications and liveness assumptions are both represented by Rabin recognition conditions.l~ 
This result allows for straightforward computation of the controllability subset and for the 
effective synthesis of suitable supervisors. 

The approach of Thistle and Wonham (1992, 1994a) draws heavily on earlier solutions to 
Church's automaton synthesis problem and the emptiness problem for automata on infinite 
trees, u In particular, it synthesizes some of the methods of Rabin (1972) and Emerson and 
Jutla (1988). The problem solved in the present report represents an extended version of 
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Figure 2. Simplified automaton A(~+ R~)] c~ 

Church's problem that allows for liveness assumptions concerning the "exosystem" with 
which the system under synthesis is to interact. Such an extension was proposed but not 
constructively solved in Abadi et at. (1989). The recent solutions to Church's problem 
given in Emerson and Jutla (1988) and Pnueli and Rosner (198%) do not appear readily 
to admit such an extension. A synthesis problem for concurrent systems under ~o-regular 
specifications and modelling assumptions was presented in Wong-Toi and Dill (1991) but 
this formulation lacks the notion of deadlock freedom implicit in our definition of the 
controllability subset, and as a consequence reduces to Church's problem, A version of 
the tree automaton emptiness problem that incorporates fairness assumptions was solved in 
Courcoubetis et al. (1986) and applied to the satisfiability of branching-time temporal logic 
formulas in transition structures equipped with Rabin fairness conditions. The application 
of this emptiness problem to control synthesis is a topic for research. 

A central result connected with Church's problem and the emptiness problem is a so- 
called "small model theorem" (Emerson 1985) that states that if solutions exist then there 
exists a solution represented by a finite graph embedded in the transition structure of the 
given automaton. Under the control formulation, this result means that from any state 
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Figure 3. Simplified automaton .A(7~ X])(~--~ X1 U R~)J~, for X1 = {-4,  -3, -2, 2, 3, 4}. (The two pairs of 
dotted and dashed boxes represent a single state subset pair.) 

in the controllability subset, the automaton can be controlled to the satisfaction of its 
acceptance condition by state feedback alone. The theorem is proved by direct construction 
in Thistle and Wonham (1994a). In the extended problem formulated in the present report, 
this particular small model theorem fails; however, the proof of Theorem 5.3 shows that, 
beyond the information contained in the state of the automaton, only one additional bit of 
information is needed for control (specifically, to establish priorities between the two Rabin 
conditions). 

Other synthesis methods proposed in the control literature allow for less general classes 
of models and specifications. Ramadge and Golaszewski (Ramadge 1989, Golaszewski 
and Ramadge 1988) consider only safety specifications. The work of Kumar et al. (1992) is 
similar in this respect. Young, Spanjol and Garg consider systems modelled by deterministic 
Btichi automata and subject to the language property of finite stabilizability (Young et al. 
1992). 

The study of different classes of models and specifications of infinite behaviour, with 
regard to the tradeoff between generality and computational complexity, is a current topic 
of research. Indeed, in Thistle and Malham6 (1994), automata are equipped with liveness 
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Figure 4. Simplified automaton ,A(7r XI)( ~---~ XI)(+R v A ly)J Y, for XI = { -4 , -3 , -2 ,  2, 3, 4} (R1 = 
{- 1, o, 1}). 

assumptions in the form of state fairness  conditions (Courcoubetis et al. 1986), which 
state that any state transition that is infinitely often enabled (not only according to the 
automaton's transition structure, but also according to the action of the controller) must 
eventually occur. This decouples the control problem, allowing each disjunct in the Rabin 
acceptance condition to be considered separately; as a consequence, the controllability 
subset becomes polynomial-time computable. Yet this form of liveness assumption seems 
a natural one, especially as it is contingent on the action of the controller. 

Appendix 

A1. Proof of Theorem 5.3 

We first establish F A c C A, proceeding by induction on the number of live states of 
.4 = (Z, X, 8 , Xo, { ( Rp, Ip ) : p c {0}0P}, {(Rq, Iq ) : q ~ {1}0Q}, C) (Rabin 1972, This- 
tle and Wonham 1994a), and on the size of the index set Q. 
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Note that 

F ~t M D(A) 

= [LJp~p(Rp N Ip) 71D(,A)] U Ro (Prop. 4.1 (a)) 

= C A A D ( A )  (Prop. 5.2 (b)) 

It thus suffices to show that F "a A L(.A) c C A. 
I f A  contains no live states then the result holds vacuously. For the induction step, suppose 

x ~ F "a A L ( A )  and assume that the result holds for all automata with fewer live states than 
.A or with a smaller index set Q. We shall prove that x 6 C A. By assumption, there exists 
some map f �9 E* ~ C satisfying both clauses of definition 2.1. Consider the following 
comprehensively exhaustive set of cases: 

(a) there exists a live state x '  6 X such that, for all U 6 E* generated by Ax under f ,  
~(k', x) ~ x';  

(b) for some pair of live states x ' ,  x" E X, there exists k' 6 ~* generated by Ax under f 
such that 3(U, x) -- x'  and for all k" 6 ~* generated by Ax under f such that k' < k", 
~(k", x) ~ x"; 

(c) for all pairs of live states x' ,  x" E X, and every U E E* generated by Ax under f such 
that 6(k', x)  = x', there exists k" ~ Z* generated by .A~ under f such that k' < k" and 
6(k", x) = x". 

In case (a) we have 

x E F At(• 

c_ CAr(X\tx'}) (ind. hyp.) 

_c C A (Prop. 5.2 (e)) 

Similarly, for case (b) we have 

x '  E C A 

Thus, 

x E F A 

F "a~x'~ (Prop. 4.1 (b)) 

c_ C A(~x') (ind. hyp.) 

= C A (Prop. 5.2 (d)) 

In case (c), there exists a string s E E ~ having a path n on .Ax under f such that 
~n = L(.A). It follows that one of the following three cases holds: 

i. for some p c P, L(.A) _c Ip &L(A) M Rp ~ ~; 

ii. for some q E Q, L(.A) c_ Iq &L(.A) n Rq r 0; 
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iii. L ( A )  n R1 ~ 0. 

For case i, we have for any x "  �9 L(.4), 

x "~ �9 F "A 

= O'A(F "A) (Prop. 3.3.2) 

O'A(F "A(~-~'L('A)ARp)) (Prop. 4.1 (b)) 

C o'A(c'A(c-+L('A)NRp )) (ind. hyp.) 

Thus 

L(.4) c_ PX2. 0"A(C'A(~-rX2ARt'NIp )) 

= CA 

For case ii we have 

X �9 F "A(+Rqnlq)jq 

C "A(+Rqnlq)jq (ind. hyp.) 

c C "A (Prop. 5.2 (i)) 

(Prop. 5.2 (1)) 

This completes the induction, and establishes the containment F "A _ C "A. 
For the reverse inclusion, let 

.4 = ( ~ ,  X, 3, x0, {(Rt,, It,) : p �9 {0}LAP}, {(Rq, Iq) : q �9 {1}UQ}, C) 

be an automaton of the special form assumed above. For any x �9 C "A we shall construct, 
by induction on [PUQ[, a feedback map f satisfying definition 2.1. We first define some 
state feedback maps on C "A. 

By definition, we have 

C "A : :  [J,X 1. [O'A(7/'>XlU(C'AARI))(XI U RO) 

U Upcp[PX2. [O'A(TL"XIU(C"4NRI))(C "A(Tz~'XIU(C~4NRI))(c-->XIU(X2NRp))jp) n Ip]] 
U Uq~Q C'A(7~XIU(C'4NR1))(~--~X1)(+RqAIq)Jq] 

Finally, consider case iii. By definition of F "A there exists a string s r e E ~ and a path Jr' 
of  s '  on -4x under f such that f2~, O Rp 5~ 0 and S2~r, c It, , for some p e P. It follows 
that there exists a feedback map f '  for A(7~ L(-4) N Rl)x satisfying both clauses of  the 
definition o f F  .A(7~L(A~nRO such that no finite strings generated by -4(7 ~ L(-4)NR1)x under 
f t  but not belonging to pre(s ')  visit states that belong to L(-4) N R~. If  we assume without 
loss of  generality that case (i) does not hold then we also have either S%r, n L (.4) = 0 or 
f2~r,C+L(.4). It follows that case (a) or case (b) must hold for the feedback map f '  and the 
automaton .4(7c> L ( A )  n R1) x. Thus x e C "A(7~L('A)nRI). Since this argument holds for 
arbitrary x �9 L (-4) ___ F.A, we have 

L(-4) c vXo. C "A(7~'x~ 

= C "A (Prop. 5.2 (h)) 
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This fixpoint is the least upper bound of the nondecreasing sequence Co A ___ C1A c_ C2 A c 

�9 � 9  defined by 

Co ~ : = 0  
Ci~ | := O~A(TL~Ci~AU(C'A'ORI))(C# U Ro) 

u Up~p[vx2. [O'a(C+c#u(c~n'~'~)(C'a(C~c~u(c~nR')X~c,Au(x~nR, mlp) n Ip]] 

U UqEa C'A(7#Ci'AU(C'4(qRI))(~--~'C~)(+Rqfqlq)]q 

---- c'Ai+I.0 U Up~P C'Ai+l.p u Uq~Q Ci+lA ,q 

where, 

C "4 O'a(r u Ro) i+1,0 : ~  

and for any p e P, 

C "A "-- pX 2. [oA(7~C~U(C'4nR~))(cA(~C~U(CJtnRO)(~C;4u(X2nRP))lP) VI Ip] i + l , p  I 

= OA(7~Ci~'U(CAnR'))(CA(Tc>Ci'AU(CAOR1))(~e'CiAU(C~I,P RRp))'jp) ['-'t Ip 

and for any q 6 Q, 

C.A CA(TL>Ci'AU(CAnRI))(c---~Ci'A)(+Rqnlq)Iq 
i+l,q :~ 

For the sake of brevity we shall let A[i, p] stand for .4({-> C# U (C A F1 RI))(~-+ Ci A U 
.4 (Ci+Lp F1Rp))J p and A[i, q] for A ( ~  C/A U (C A F1 RO)(r CiA)(+Rq F11q)Jq. 

It is convenient similarly to represent p A ( ( c A  U (C A 71 R1)) as the least upper bound of 
a nondecreasing sequence: 

pA(Ci'A U (C A V1RI)) 

:= # x >  [c~ u (C -an R~) U 0-a(X2)] 
oo ..4 

= U j = o  Pi+l.j 

where 

.a " -  c#  u (c A n RI) P i + I , 0  "--  

A ._  C i A U ( C A n R ~ ) U O A ( P i A + I j )  Pi+1,1+l " -  

F o r  any automaton .,4 = ( I] , X,  3, xo, { ( Rp, Ip ) : p e {0}0P}, { ( Rq, Iq ) : q ~ {1}0Q}, C), 
.4 .4 .At A we define a state feedback map ~i+1.o : Ci+l.o -+ C[.A(7~ C i U (C n R1))], so that for 

any x e Ci+1. o , A  there exists cre  %oA1.0(x) such that ~(cr, x) is defined, and for all such a,  
,~(a,x) e CiAURo . Similarly, define a map 7 tAi+l,p : Ci+l,p"4 ._..> C[,A(TL> ci .Au(cAfqR1))] ,  

A there exists a r ~0/A+l.p(x) such that a(a, x) is defined, and for so that for any x e Ci+l. p, 

all such a,  ~(c~,x) 6 C AF'p]. Finally, define amap X/A+14+1 : Pi+l.j+1 > C such that for 
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.4 (x) such that 3 (or, x) is defined, and for all such any x ~ Pi+l.j+l, there exists ~ 6 Xi+l,j+~ 
r a(cr, x )  E Pi+l,j. 

We now use these state feedback maps to construct the feedback map f ,  which will be 
represented in terms of a transition structure 

(E,  C-4 • {0, 1}, ~, (xo, 0)) 

and an accompanying state feedback map 

r : C-4 • {0, 1} > C 

(Roughly, r applies the maps -4 ~/+l.r to ensure acceptance under the assumption that 

undesired transitions of ..4 leading from states x ~ Ci-4+l to p-4(Ci-4 tO (C A M R1)) can be 
prevented. Occurrences of such undesired transitions are recorded by switching the second 
component of the state from 0 to 1; this causes the state feedback map to apply instead the 
maps )fi+l.j+l"4, driving .4 toward C/A U (C A N R0;  once this subset (or Ro) is reached, 
the second state component is switched back to 0. The end result is that along a given 
trajectory that satisfies the liveness assumption, undesired transitions occur only finitely 
often, so acceptance is ensured.) We leave it to the reader to verify that there does not in 
general exist a static controller (i.e. one that employs only feedback of the state o f . 4  itself) 
that applies suitable control. 

We define the state feedback map ~o-4 and the transition function ~ : ~r • (C A • {0, 1 }) 
C-4 • {0, i} by induction on IP@Q]. Choose an arbitrary total ordering of {0}UPOQ. 
Recalling the first of our state feedback maps, define the ~-rank of any state x c C-4 to be 

.4 . the least pair (i, r) in the lexicographic ordering of l~l • {0}@Pt3Q such that x ~ Ci+l. r, 
define the )f-rank of any x 6 C.4 to be the least pair (i, j )  in the lexicographic ordering of 
N • N such that x 6,0i-4+l,j+l. 

We first define ~p.4 and another map, 

~i-4 : Ci~+l X {0, l} > C[J4(7~ C/-4 U (C A n R1))] 

by simultaneous induction. Let x c C/A+1 and n 6 {0, 1}; let r be the least element of 
{0}0POQ such that x 6 C A Then i+l.r" 

{ (O-4[i'r](x, 11) i f r  ~ P & x f~ Rr or i f r  6 Q ; 

~b/A(x, n) = ~iA+l.r(x) otherwise; 

Now define r : C A • {0, l} 
)f-rank is (F, j ' ) ,  then 

C so that if the ~-rank of x 6 C A is (i, r)  and its 

�9 whenever n = 1 & 1' < i, ~0-a(x, n) = XFA+I,j%I(X, ?/); 

�9 and otherwise, ~o-4(x, n) ~ ~ ( x ,  n) and for all cr ~ ~o-4(x, n) \ ~bi-4(x, n), 3(cr, x) e 
p-4(cg u (c  A n RO). 
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Following the definition of ~o A, let the ~o-rank of any state (x, n) E C A • {0, 1 } be the 
A least i E N s.t. x E Ci+ 1, i fn  = 0, and the least i E N s.t. x E CiA+I tO pA(CiA U (C A M R1)) 

i fn  = 1. 
Next define the transition function 

• (C A x {O,1}) > C A x {O,1} (pfn) 

(a, ( x , n ) )  ~ (6(a ,x ) ,  OA(a, ( x ,n ) ) )  ('Ca e Z , x  e CA,  n e {0, 1} 

s.t. ~ (a, x) e C A) 

where the map rl A �9 ~ x (C A x {0, 1}) ----+ {0, 1} is defined inductively as follows: let i 
be the ~o-rank of (x, n); then 

OA(a, (X, n)) = 

i fS(a ,  x) 6 C/A U (C A N RI) U Ro, 

if 8(a, x)  ~( Ci A U (C A f l  R1) U Ro, 

and either cr ~ ~b/A(x, n) 

or both 

n = 1 & x ~ p A ( C :  U (C A f-1 R1)); 

If neither of the above conditions holds, the ~-rank of x is (i, r),  for some r ~ {0}0PO Q; 
then 

{o Ati'r](a, (x, n)) i f r  E P(-JQ; 

tl A ( a , ( x , n ) ) =  0 if r = 0 .  

We must show that for any x E X the map 

f :  E* >C 

s ~ ~p'a(~(s, (x, 0))) 

satisfies the requirements of definition 2.1. Note that by proposition 5.2 (j) we have, for 
any p 6 P,  

A C A (C "A[i'p] \ ( C :  1.3 (Ci+l, p N Rp))) (q Ip C i+l.p 

~ C Ati'p] f l  It, c Ci A U C A 
- -  i+l,p 

It follows by induction on IPOQI that for all (x, n) c C A x {0, 1}, i f a  E r n) then 
3(a, x) 6 c A - - t h u s  f is complete. We a lsohavethat i fa  E ~oA(x, n) andS(a, x) ~ RotoR1 
then the r of ~ (or, (x, n)) is no greater than that of (x, n) itself. Furthermore, i fx  6 C A 
has ~-rank (i, r)  and a E ~b~(x, n) then the ~p-rank of 6(a, x) is no greater than (i, r);  and 
if in addition r = 0 and 3(a, x) r R0 then the ~p-rank of 3(a, x) is strictly less than (i, r).  

A For ;(-rank we have the following: if the ;(-rank of x is (i, j )  and a 6 ;(i+l.j+l (x), then 
6(a, x) is of strictly lower ;(-rank than x. 

Let s E E ~ be any string generated by Ax under the feedback map f .  We must show 
that s is accepted by Ax. It follows from the above observation on ~o-rank that for all 
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sufficiently long prefixes k of s, the states ~(k, (x, 0)) all have the same ~0-rank, say i. By 
the observation on x-rank, we therefore have that for every sufficiently long prefix k of 
s, either the first component of ~(k(x, 0)) is not in p"4(CiA U (C A 71 R1)), or the second 
component of ~(k(x, 0)) is 0. It follows that cr 6 ~b~(~(k, (x, 0)) for all sufficiently long 
prefixes kcr ofs (where a ~ I~). But the result on 0-rank then implies that for all sufficiently 
long prefixes k of s the states 3(k, x) all have the same 0-rank, say (i, r). Suppose that 
r = 0: then the observation on 0-rank shows that ~(k, x) 6 Ro for sufficiently long k, so 
the result holds. If instead we have r ~ Q then the result holds by inductive assumption 
(by the definitions of~b ~t and t/A). Finally, i f r  c P, then 6(k, x) E / r  for sufficiently long 
k and either 8(k, x) E R,. for infinitely many k or, for all sufficiently long prefixes kr of s, 
cr E (p'A[i'r](~(k, (X, 0))). The result follows by inductive assumption. 

This proves that the map f satisfies clause i of definition 2.1. For clause ii we first 
show that for any (x, n) ~ C A x {0, 1} and any t 6 N~o such that t has a path on ,Ax, if 

6 ~p'a(~(k, (x, n))) for all prefixes kcr of t, then there exist infinitely many prefixes k of 
t such that the second component of ~(k, (x, n)) is 0. (In other words, we show that along 
any path through the state set C A x {0, 1} that is consistent with the feedback map (p.4 and 
the transition function ~, the second component of the state is infinitely often 0.) 

The proof is similar to that used to establish clause i. Suppose that the result fails for 
some t ~ Z ~ Then for all sufficiently long prefixes k, the states ~(k, (x, n)) all have the 
same ~0-rank, say i (by the above observation on r Furthermore, there must exist 
only finitely many prefixes k o f t  such that 6(k, x) ~ p'a(Ci'a U (C "A M Rz)) (this by the 
observation on x-rank and the definitions of )r and q~t). We therefore have that 

for all sufficiently long prefixes kcr, ~r ~ ~bFt(~(k, (x, n))). It follows by the observation 
on 0-rank that for all sufficiently long prefixes k, the respective states 8(k, x) have the 
same 0-rank, say (i, r). If r = 0 then by the definition of ~b/A the second component of 
~(k, (x, n)) is 0 for all sufficiently large k, a contradiction. If r ~ Q then the result holds 
by inductive assumption. Finally if r 6 P then by the definition of r/A we must have 
8(k, x) ~ ( C ~  N Rr) U Ro for only finitely many prefixes k; the result thus follows by 
inductive assumption. 

It now suffices to show that for any x' ~ C A there exists a string t ~ Z ~~ such that t is 
accepted by Ax, and for every prefix kv of t, ~ ~ ~o'a(~(k, (x', 0))). Strengthening the 
control action of ~b/~, define 

~ 4  : C A ~ 2 ~ 

{ ~A[i,r] 
x ~ O~1r(X~ 

i f r  6 P & x C R r o r i f r  ~ Q; 

otherwise 

where (i, r) is the 0-rank of x. By induction on IPOQI, we have for all x c C A and 
�9 ~ ' ( x )  that r~-4(c~, (x, 0)) = 0; and furthermore, t3 ~ ~ t ( x )  __ ~b~(x), where i is the .,4 least natural number such that x �9 Ci+ l . The result follows by the definition of ~p.a and by 

an induction similar to those performed above. 
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Notes 

1. See Ramadge and Wonham (1989) and Thistle (1994b) for surveys of this language-based theory of the control 
of discrete event systems. 

2. See for example Ramadge (1989), Kumar et al. (1992), Young et al. (1992), Thistle and Wonham (1994b). 

3. Or alternatively, the language marked. 

4. This controllability property is not to be confused with that of Ramadge (1989), which Kumar et al. (1992) 
also call m-controllability. The latter property characterizes achievable closed-loop behaviour, much as in the 
finite-string theory, but is not in general preserved under arbitrary unions, so that a language need not contain a 
supremal "o)-controllable" sublanguage; the former is a weaker property that is preserved under arbitrary unions 
and yet, when conjoined with a suitable closure property, still serves to characterize achievable closed-loop 
languages. 
See Thomas (1990) for a survey of the theory of automata on infinite objects, which has recently experienced 
a resurgence of research interest owing to its application to concurrent and reactive systems. 

See for example Courcoubetis et al. (1986). Any co-regular language is accepted by some nondeterministic 
Btichi automaton; known algorithms for the "determinization" of such an antomaton yield deterministic Rabin 
automata (McNaughton 1966, Safra 1988). 

7. It is worth noting that the approaches of Emerson and Jutla (1988), Pnueli and Rosner (1989a), and Hossley 
and Rackoff (1972) do not appear readily to admit extension to the present problem. 

8. As an anonymous reviewer has pointed out, the use of partial transition functions is technically unnecessary, but 
it is retained here for physical verisimilitude: intuitively, if 3 (or, x) is undefined, then the event a is "physically 
impossible" in state x. 

9. The reader may wish to think of this second family as defining a Streett recognition condition, obtained by 
negating the Rabin condition. The author is grateful to an anonymous reviewer for suggesting this remark. 

10. The special case where the liveness assumptions are represented by a Btichi recognition condition was con- 
sidered in Thistle and Wonham (1992) and Thistle (1991), where the fixpoint characterization of Thistle and 
Wonham (1994a) was extended through a generalization of the inverse dynamics operator. 

11. See Church (1963), Rabin (1972), Emerson and Jutla (1988), Pnueli and Rosner (1989a), Pnueli and Rosner 
(1989b). 

5. 

6. 
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