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Abstract. The simulation of high-speed telecommunication systems such as ATM (Asynchronous Transfer 
Mode) networks has generally required excessively long run times. This paper reviews alternative approaches 
using parallelism to speed up simulations of discrete event systems, and telecommunication networks in particular. 
Subsequently, a new simulation method is introduced for the fast parallel simulation of a common network element, 
namely, a work-conserving finite capacity statistical multiplexer of bursty ON/OFF sources arriving on input links 
of equal peak rate. The primary performance measure of interest is the cell loss ratio, due to buffer overflows. 
The proposed method is based on two principal techniques: (1) the derivation of low-level (cell level) statistics 
from a higher level (burst level) simulation and (2) parallel execution of the burst level simulation program. For 
the latter, a time-division parallel simulation method is used where simulations operating at different intervals 
of simulated time are executed concurrently on different processors. Both techniques contribute to the overall 
speedup. Furthermore, these techniques support simulations that are driven by traces of actual network traffic 
(trace-driven simulation), in addition to standard models for source traffic. An analysis of this technique is 
described, indicating that it offers excellent potential for delivering good performance. Measurements of an 
implementation running on a 32 processor KSR-2 multiprocessor demonstrate that, for certain model parameter 
settings, the simulator is able to simulate up to 10 billion cell arrivals per second of wallclock time. 

Keywords: time-parallel simulation, asynchronous transfer mode networks, burst-level simulation, statistical 
multiplexer, cell loss ratio, broadband integrated services digital network 

1. I n t r o d u c t i o n  

In recent  years, an effort for standardization of high-speed te lecommunica t ion  networks 

has been underway. The need for new standards and technologies is especially p ronounced  

in l ight of  a wide variety of applications ranging from low speed data transfers to high 
quali ty high-defini t ion television (HDTV) distribution. The diversity of  traffic sources has 
a direct impact  on the design of high-speed networks as well  as on their expected perfor- 
mance.  Tradit ional  traffic assumptions,  e.g., Poisson arrival streams, are not appl icable  at 

the ATM cell level. Thus,  the analytical  approach to performance mode l ing  is general ly  
numer ica l ly  intensive and often approximate.  Further, the approximate analyt ical  models  

require validation that is performed traditionally by simulations.  In any case, s imula t ion  
is an indispensable  tool when it comes to testing the performance of  a system over a wide 
variety of  traffic loads and scenarios. 

However,  s imulat ions  of  high-speed networks require relatively long execution times. 
This is especially true if we are interested in the collection of  statistics over several min-  
utes of  real t ime operation. Collect ing statistics over such long intervals is necessary in 

asynchronous  transfer mode (ATM) networks because the dynamics  of  the system are not  
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captured in short intervals. Connections may last several minutes, or perhaps hours. Hence, 
if we wish to collect meaningful statistics for the time scale of typical connections, time 
intervals of similar time scale (minutes to hours) must be simulated. Moreover, the con- 
veyed data unit (the cell 1) is very small, so several thousand such cells can be conveyed on 
a single high-speed link in one second. For example, in one second of real time operation 
of a 155 Mbps ATM link, nearly three hundred thousand cells may arrive, depending on 
how heavily the link is loaded. Since each arrival corresponds to an event in a traditional 
cell level simulation, at least as many events will have to be processed. 

The stringent Quality of Service (QoS) objectives associated with ATM networks also 
result in longer simulation runs. QoS objectives for cell loss on an ATM connection are 
frequently described in terms of a cell loss ratio or cell loss probability. The cell loss 
probability for high-speed Broadband-ISDN can be of the order of 10 -9. In other words, 
on the average, one in every 109 cells is lost, mainly due to buffer overflows. In order to 
calculate the cell losses with a sufficiently good confidence interval, we need to simulate 
the system for a large number of events (cell arrivals), many times 109. The cell losses 
are so-called rare events, and the interval between cell losses is very long. Suppose we 
consider the same 155 Mbps ATM link we mentioned before under heavy load. Then, one 
loss in 109 arrivals is actually an event every 45 minutes of real time. Actually, as many 
authors have observed, losses are clustered in bursts, but even under this assumption we 
must be able to simulate more than 45 minutes of system operation in order to encounter 
several occurrences of interesting events, i.e., cell losses. Such simulations may take days 
to complete. 

The general network of interest consists of two types of elements (see Figure 1), mul- 
tiplexers and switches/cross-connects. A multiplexer collects traffic from a number of 
incoming (low speed) links and transmits the aggregate traffic on an outgoing (high speed) 
link. Switches/cross-connects are used primarily for routing the traffic by diverting traffic 
that enters from the input links to one (or more) of the output links. Within a switch/cross- 
connect, it is also possible to have a form of (de-)multiplexing (e.g., an incoming link's 
traffic is split into two separate outgoing links, or the traffic from two incoming links merged 
into one outgoing link). Hence, the simulation of multiplexers is a vital and central issue 
in high-speed network design. Both multiplexers and cross-connects have finite buffers, so 
we expect cell losses to occur when these network elements are overloaded. 

Here, we will focus attention on the simulation of multiplexers under bursty arrivals 
from several input streams. The most common and widely accepted model for a bursty 
traffic source is the so-called ON/OFF model. This model originates from the early days 
of analysis related to the silent and active intervals for voice activity (Gruber 1982). The 
source can be in one of two states, "ON" or "OFF." When in the ON state, it generates 
cell arrivals. We will assume that in the "ON" state, one cell is generated per time slot, as 
shown in Figure 2(a). Figure 2(b) and (c) illustrate two other possible ON/OFF sources, 
differing only on the arrival structure during the "ON" state. In all cases, cells arrive in time 
slots. 

The ATM cells are the product of the segmentation of larger packets. In its simplest form, 
the segmentation of a packet generates a sequence of cells. This sequence of cells can be 
represented by an ON period. Since currently there exists no information as to how the 
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Figure 11 Typical network elements, (a) multiplexer and (b) switch/cross-connect. 
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Figure 2. ON/OFF source, (a) with one arrival per slot in the ON state, (b) one arrival every 3 slots in the ON state 
and (c) random (geometric cell interarrival time) arrivals in the ON state. 

segmentation might affect the shape of the generated cell burst, we assume back-to-back 
arrivals as depicted in Figure 2(a). This selection also represents the worst case traffic for 
the multiplexer with respect to congestion and cell loss behavior compared to the other 
alternatives where arrivals do not occur back-to-back. 

In particular, for a given ON period of a source, the maximum traffic load that can arrive 
at the multiplexer during this period is when arrivals occur back-to-back. The cell loss ratio 
is dependent on the utilization of the input links, but this utilization is dependent on the load 
during the ON periods (for the same OFF periods) of the sources. Hence, the worst cell 
loss ratio is anticipated for the maximum utilization corresponding to the maximum arrivals 
during the ON period. Therefore the worst case corresponds to back-to-back arrivals during 
the ON period. 

We formulate the simulation problem as follows: consider the simulation of a finite buffer 
statistical multiplexer receiving constant size packet (cell) arrivals from a number of bursty 
sources. A cell arriving at a full queue is lost (i.e., dropped). The bursty sources are 
described as ON/OFF sources. The service time received at the multiplexer is deterministic 
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Fig,re 3. Space-time diagram depicting simulated time on the horizontal axis, and state variables on the vertical 
axis. (a) approach exploiting space-parallelism. (b) approach exploiting time-parallelism. 

and the service discipline is first-come-first-serve (FCFS). The measures of interest are the 
average utilization and the cell loss probability. Our objective is to dramatically reduce the 
simulation time for such multiplexers. Ultimately, we will consider the simulation of feed- 
forward networks of multiplexers and switches, however, this paper will only be concerned 
with the simulation of a single multiplexer. 

In the next section we review techniques for using parallel computers to speed up the 
execution of discrete event simulations. Our approach is based on the exploitation of the 
specific arrival processes, as presented in section 3, where we also present results concerning 
the speedup that may be expected using this technique. In section 4 we develop the parallel 
simulation algorithm and present its performance. Finally, we conclude (section 5) by 
speculating on the possible use and extensions of the new method. 

2. Review of Parallel Discrete Event Simulation Techniques 

One may view a simulation as a computation that must compute the values of certain state 
variables across simulated time. The state variables capture the state of the system, e.g., the 
number of cells waiting for service in a simulation of a multiplexer. Changes in the state 
of the system occur at discrete points in simulated time, e.g., when a new cell is generated 
by a source. This so-called space-time view of the simulation (Bagrodia et al. 1991) is 
depicted in Figure 3 using a two-dimensional graph, where the vertical axis represents the 
state variables, and the horizontal axis represents simulated time. The goal of the simulation 
program is to "fill in" the graph by computing the values of each of the state variables across 
simulated time. A parallel simulator attempts to use multiple processors that simultaneously 
"fill in" different portions of the space-time graph. 

In Figure 3(a) the graph is divided into horizontal "strips," with a logicalprocess (or LP) 
responsible for the computation within each strip. This space-parallel decomposition of 
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the simulation can be viewed as partitioning the system being modeled into a collection 
of subsystems, and assigning a logical process to simulate each one. For instance, in a 
simulation of a network of multiplexers, each LP might model a single multiplexer. 

An alternative approach called the time-parallel method partitions the space-time graph 
into vertical strips as shown in Figure 3(b) and assigns a separate processor to each strip. 
The simulated time axis is divided into intervals [7"1, T2], IT2, ~ ]  . . . . .  IT/., T/+I] . . . .  with 
processor i assigned the task of computing the portion of the space-time graph within the 
interval [T/, T/+l]. 

In the following we provide a brief introduction to space- and time-parallel simulation 
techniques. This is followed by a more detailed examination of new techniques using time- 
parallel simulation to simulate statistical multiplexers in asynchronous transfer mode (ATM) 
telecommunication networks. This paper is only concerned with the use of parallelism to 
speed up the execution of a single execution of the simulation program. Another useful 
form of parallel execution is to perform multiple, independent executions of the simulator 
on different processors, e.g., to reduce variance of output statistics or to examine different 
parameter settings. Such approaches offer clear benefits when they can be applied, but are 
beyond the scope of the present discussion. 

2.1. Space-Parallel Simulation 

Space-parallel simulation has been widely studied in the context of general purpose parallel 
simulation software. A central issue of space-parallel simulation is the so-called synchro- 
nization problem. Each logical process must process incoming events in timestamp order, 
or events in the simulated future might affect those in the past. The constraint that each 
LP must process events in timestamp order is referred to as the local causality constraint. 
The synchronization algorithm must ensure adherence to this constraint. Two classes of 
synchronization algorithms have been proposed to accomplish this. Conservative algo- 
rithms guarantee that events within an LP are never processed out of timestamp order, i.e., 
synchronization errors never occur. Optimistic algorithms allow synchronization errors to 
occur, but provide a mechanism to recover. 

The principal task of any conservative simulation algorithm is to determine when it is 
"safe" to process an event, i.e., when an LP has received and processed all events containing a 
smaller timestamp. A variety of techniques have been proposed. Early algorithms focused 
on attacking deadlock problems that arise when LPs block because they are unable to 
identify safe events. Algorithms based on deadlock avoidance (Chandy and Misra 1979) 
and deadlock detection and recovery (Chandy and Misra 1981) were developed. A variety 
of techniques have since been proposed for identifying safe events (Fujimoto 1990, Nicel 
and Fujimoto 1995). 

A number of optimistic methods have also been proposed. Jefferson's Time Warp mech- 
anism (Jefferson 1985) is the most widely known. It operates by detecting out-of-order 
execution of events and recovering using rollback. Other methods using techniques such as 
time windows (Sokol et al. 1988), memory management (Akyildiz et al. 1992) or preventing 
transmission of messages that may later be rolled back (Dickens and Reynolds 1990), among 
others (Fujimoto 1990), have been proposed. In addition to general purpose simulation 
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algorithms, space-parallelism may be applied to problem specific algorithms. Applications 
include switching networks (Gaujal et al. 1993), and queueing networks (Heidelberger and 
Nicol 1993). 

2.2. Time-Parallel Simulation 

Recently, time-parallel simulation methods have received considerable attention for attack- 
ing specific simulation problems with well-defined objectives, e.g., measuring the loss rate 
of a finite capacity queue. Recall that time-parallel algorithms divide the simulated time 
axis into intervals, and assign each interval to a different processor (see Figure 3(b)). This 
allows for massively parallel execution because simulations often span long periods of 
simulated time. 

A central question that must be addressed by time-parallel simulators is ensuring the states 
computed at the "boundaries" of the time intervals "match." Specifically, it is clear that the 
state computed at the end of the interval [T/_z, T/] must match the state at the beginning 
of interval [T/, T/+I]. Thus, this approach relies on being able to perform the simulation 
corresponding to the ith interval Without first completing the simulations of the preceding 
(i - 1, i - 2 . . . .  1) intervals. 

Because of the "state-matching" problem, time-parallel simulation is really more of a 
methodology for developing massively parallel algorithms for specific simulation problems 
than a general approach for executing arbitrary discrete-event simulation models on parallel 
computers. Time-parallel algorithms are currently not as robust as space-parallel approaches 
because they rely on specific properties of the system being modeled, e.g., specification of 
the system's behavior as recurrence equations and/or a relatively simple state descriptor. 
This approach is currently limited to a handful of important applications, e.g., queueing 
networks, Petri nets, and cache memories. General purpose parallel methods using Space- 
parallel simulations offer greater flexibility and wider applicability, but concurrency is 
limited to the number of logical processes. In some cases, both time and space-parallelism 
can be used (Gaujal et al. 1993). 

One approach to solving the state matching problem is to have each processor "guess" 
the initial state of its simulation, and then simulate the system based on this guessed initial 
state (Lin and Lazowska 199t). In general, the initial state will not match the final state of 
the previous interval. After the interval simulators have completed, a "fix-up" computation 
is performed to account for the fact that the wrong initial state was used. This might be 
performed, for instance, by simply repeating the simulation, using the final state computed 
in the previous interval as the new initial state. This "fix-up" process is repeated until the 
initial state of each interval matches the final state of the previous interval. In the worst 
case, N such iterations are required when there are N simulators. However, if the final state 
of each interval simulator is seldom dependent on the initial state, far fewer iterations will 
be needed. In (Heidelberger and Stone 1990), the above approach is proposed to simulate 
cache memories using a least-recently-used replacement policy. This approach is effective 
for this application because the final state of the cache is not heavily dependent on the 
cache's initial state. The time-parallel approach has also been used to simulate G/D/1/k 
queues in (Lin 1993, Wang and Abrams 1992). In both cases, fix-up phases are required 
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even though the state-matching is not necessarily exact (e.g., the residual service time may 
be ignored or assumed to be the maximum possible value). 

Here, we use a variation on this technique where we use a precomputation phase to identify 
points in simulated time where the state of the system is known. Specifically, we identify 
time periods that are guaranteed to produce an overflow (full queue) or underflow (empty 
queue). Because the state of the system, namely, the number of occupied buffers in the 
queue, is known at these points in simulated time, independent simulations can be begun 
starting at these points in simulated time. This eliminates the need for a fix-up computation. 

Another approach to time-parallel simulation is described in (Greenberg et al. 1991). Here, 
a queueing network simulation is expressed as a set of recurrence equations that are then 
solved using well-known parallel prefix algorithms. The parallel prefix computation en- 
ables the state of the system at various points in simulated time to be computed concurrently. 
Another approach also based on recurrence equations is described in (Baccelli and Canales 
1993) for simulating timed Petri nets. New massively parallel algorithms for less tractable 
recurrence equations were developed for trace-driven cache simulations (Nicol et al. 1992), 
and for circuit-switched communication networks (Eick et al. 1993, Gaujal et al. 1993). Am- 
mar and Deng also use a related approach for simulating Petri nets (Ammar and Deng 1992). 

2.3. Other Techniques 

Rare event simulations and in particular buffer overflows in high-speed networks, require 
particularly lengthy simulations. Simulations of this type can be accelerated using a number 
of techniques based on importance sampling (Cottrell et al. 1983, Frater 1992, Parekh and 
Walrand 1989). Typically, in importance sampling, the distributions describing in analytical 
terms the original system are manipulated in order to derive a new set of distributions. 
By replacing the original distributions by the new in the simulated system, the events of 
interest become more frequent. Thus, the simulation time requirements are decreased. 
The probability of the rare events in the original system is derived from the estimated 
probability of the modified system multiplied by the likelihood ratio which relates the 
probability of the sample paths of the two system settings. Thus, results of the simulation 
can be readily converted into performance results of the original system. Recent extensions 
(Chang et al. 1992) use the concept of effective bandwidths (Gu6rin et al. 1991) in the 
context of accelerations, and these extensions have been applied to accelerate the simulation 
of networks with tree-based topologies. 

Importance sampling includes an overhead in selecting the distribution transformation 
that leads to the largest possible speedup and in establishing the likelihood ratio. At the 
same time, it necessitates the analytical description of the source traffic which is not always 
possible. In particular, recent findings in the area of source characterization (Leland et al. 
1993) suggest a fractal nature for the traffic process and reject commonly held beliefs on the 
analytical nature of traffic. Consequently, one important goal is to develop efficient parallel 
simulation techniques for trace-driven simulations, i.e., simulations driven by traces of 
actual network traffic, so no particular assumptions on the nature of source traffic are needed. 

Finally, the parallel simulations of continuous time Markov chains using uniformization, 
as described (Heidelberger and Nicol 1993), is not applicable to the systems we consider 
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because it is not possible to define a Markov chain that exactly describes the system under 
investigation. At the same time, the construction of a Markov chain description for the 
system implies that numerical methods can also be applied for the solution of the stationary 
distribution of the system. Hence, the task of simulating the Markov chain may not be more 
efficient than solving it numerically in certain instances. 

3. Exploiting the Structure of the Arrival Process 

We now return to the problem of simulating statistical multiplexers and present a new 
approach to accelerating and parallelizing such simulations with particular emphasis on the 
fast generation of estimates for the cell loss ratio (CLR). The key assumptions that allow 
the development of the scheme are the following: 

�9 The multiplexer is fed by a number of links with the same peak rate. 

�9 The output link rate is an integer multiple of the input link rate. 

�9 The service discipline is work-conserving (typically FCFS). 

�9 The source arrivals occur back-to-back during the ON period. 

All of the above assumptions are reasonable for an actual ATM multiplexer environment. 
If we focus on the structure of the arrival process, we can identify one potential source 

of speedup. Namely, for the sake of generating cell loss statistics, it is not necessary to 
generate the individual cell arrival instances, but rather, use the concept of a "burst" and 
generate "burst" arrivals instead. We will call this simulation a burst-level simulation as 
opposed to the (traditional) cell-level simulation. Since bursts (i.e., aggregations of cells) 
are simulated instead of individual cells, we can expect significant simulation speedups. 
The more cells in a simulated burst, the better the overall efficiency compared to a traditional 
cell-level simulation. 

To illustrate this point, consider the case of a single bursty source. Suppose also that 
arrivals of cells during the ON period occur at the rate of one per cell slot. One way of 
describing the arrivals that occurred during an ON interval is to generate all individual cell 
arrivals during the interval. Another way, is to generate a burst descriptor of the form 
{si, di)s where si describes the state as either ON or OFF and di is the actual length of 
the interval during which the source is in state si. The intervals of one source alternate 
between ON and OFE Consequently, each (ON, di)s corresponds to di consecutive cell 
arrivals while (OFF, di)s corresponds to di consecutive empty (no cell arrival) slots. 

Consider now the case of a multiplexer fed by a number of such sources. To simplify our 
analysis we will use the following notation: 

�9 Q(ti): Queue length at the multiplexer at time ti. 

�9 S(ti): Number of cells serviced up to time ti. 

�9 L(ti): Number of cells lost up to time ti. 
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�9 ti: Time point at which a change in the number of active (ON) sources occurs. 

�9 3i: Time interval between ti-1 and ti, during which the number of active sources is 
constant. 

�9 ai: The number of sources active during time interval 6i. 

t K: The multiplexer buffer size. 

�9 C: The output link capacity. 

All the above quantities are integers. Because the size of cells is fixed, time can be 
expressed as integer multiple of the cell transmission time. Hence, time is discretized. The 
integer capacity C of the outgoing link expresses the number of cells that can be transmitted 
on the output link in time equal to a single cell transmission time on an input link. The 
queue length is observed at input link cell transmission epochs. Since an input link cell 
transmission epoch coincides with the C-th output link cell transmission epoch, i.e., with the 
termination of every C-th service epoch, there is no residual service to be accounted when 
the queue length observation is made. Hence, the state of the system is totally captured by 
the queue length. 

Note that similarly to the individual source burst descriptor (si, d i ) s ,  the burst descriptor 
of the aggregate arrivals can be represented as a sequence of (aj, 3j)Ms tuples, where ai 

and 3i are according to the definitions we presented. During an interval where the number 
of active sources is less than C, no increase of the queue size can occur and hence there will 
be no cell loss. We will call such an interval an underload interval. The definition of the 
overload interval is similar. That is, an underload interval is when ai <_ C and an overload 
when ai > C. One may notice that Q(ti),  S(ti)  and L(t i )  are cell level statistics yet, as 
stated earlier, the simulation is performed at the burst level. Therefore, a key question is 
determining the cell level statistics from the burst level simulation. We address this question 
next. 

Queue Length: During an overload, a queue fills at a rate ai - -  C until it exceeds K. 
Conversely, during an underload, the queue may decrease or even empty with a rate C - ai. 

Thus: 

min{Q( t i_ l )  + (a i - C)~i, K} a i > C 

Q(ti)  = max{Q( t i_ l )  - ( C -  ai)6i,O} ai < C 
(1) 

Serviced Cells: While in overload, service is provided at a rate of C. However, during 
underload two things happen. First, none of the incoming cells is lost. Second, some of the 
capacity can be used to clear the queue that had built up previously. It may even be the case 
that the entire backlog in the queue is cleared and the queue becomes, eventually, empty. 
Hence: 

S(ti)  = [ S( t i_l)  + C3i a i  > C (2) [ S( t i - l )  + ai6i + Q( t i - l )  - Q(ti)  ai < C 

Lost Cells: The number of lost cells does not increase so long as the system is in 
underload. When in overload, the number of lost cells may increase. The excess cells are 
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Figure 4. Example evolution of the multiplexer system demonstrating use of the defined notation. 

received with a rate ai -- C. Of them K - Q(t i -~)  can be accommodated in the space 
remaining in the queue. The rest are lost. Therefore: 

L ( t i - l )  + max{(ai - C)(~ i - -  ( K  - Q( t i -1) ) ,  0} ai > C (3) 
L( t i )  = L( t i -1)  ai <_ C 

It is straightforward to extract the utilization and the cell loss ratio from the above quan- 
tities. The utilization is the fraction of serviced cells over the available cells on the output 
link (the latter is easily calculated as C times the sum of the cell slot times on the input 
links). The cell ratio is the fraction of lost cells over the total number of  cells serviced 
or lost. Figure 4 demonstrates use of defined notation over a sample path of  the system 
evolution. As an example, consider the first tuple (2, 17)Ms of the trace in Figure 4, that 
is, 8i = 17 and ai = 2. Thus, the descriptor (ai, 6 i )A4s  represents 2 x 17 = 34 individual 
cell arrivals. We only need one update of  equations (1-3) for simulating time which in a 
traditional simulation would require generation of 34 individual arrivals. 

Three observations can be made at this point: 

�9 The recurrences are not restricted to FCFS but to any work-conserving scheduling 
discipline where the queue size is enough to describe the state of  the system. In 
this sense, e.g., a non-preemptive LCFS is also represented by the same recurrences, 
although its use in communication networks is limited. 

�9 Despite their similarity to fluid approximation, the recurrences are exact because the 
arrivals during each period represented by an  (aj,  ~j}3A,9 descriptor are deterministic 
and with the given deterministic rate of  ai per input link slot time. Hence, the per- 
(aj, 3j).M,~ description of arrivals is not a fluid approximation. 
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Besides cell loss ratio, other statistics can also be derived including the delay and queue 
length distributions as seen by the aggregate traffic and the number of cells lost back- 
to-back. The first two can be calculated because the state of the queue is known while 
the last (cells lost back-to-back) can be calculated based on the observation that losses 
are always clustered together for certain overflow burst descriptors, as the definition 
of L(ti) indicates. For the sake of brevity we limit the discussion to the estimation 
of the cell loss ratio which is our primary interest. Note that it is not necessary that 
all performance measures of interest are calculated using recurrences. The presented 
recurrences simply facilitate the fast generation of cell loss ratio estimates. 

Using equations (1-3), we can collect the values necessary for the estimation of the cell 
loss ratio without actually having to simulate each individual cell arrival. However, there is 
still need to generate the description of traffic arrivals in a certain format. That is, we need 
to generate tuples of the form <aj, aj)Ms. The simulation algorithm (still sequential) can 
then be split into two logical parts: 

1. Generation of the (aj, 3j)Ms tuples from the (si, di)s tuples. 

2. Updates of the queue length, serviced cells and lost cells using equations (1-3). 

Note that in the proposed method, simulated time "jumps" forward from ti to ti+l. In this 
sense, the algorithm is not much different from any other simulation where a global clock 
is used. However, instead of scheduling the cell arrival events we schedule the events that 
describe changes of the number of active sources. The processing for every such event is the 
calculation of equations (1-3) using a single (aj, r that corresponds to the event. Also 
note that the generation of the (a j, aj)M8 tuples from the (si, di)s tuples is straightforward 
since ai represents the minimum residual time to the next state change of the N sources. 
Therefore, it involves finding the minimum of N values 2. Figure 4 indicates the fact that all 
ti's are actually the time points where the intervals defined by the {si, di )s tuples terminate. 

3.1. Expected Performance of the Technique 

Before getting into the specifics of the approach and in particular the way to generate 
(aj, 3 j ) ~ s ,  we will comment on its expected performance. An indication of the perfor- 
mance for the proposed method is the average 3i. The larger the average 3i, the longer 
the average time interval represented by a single (aj, 3j)34s tuple. That is, the larger the 
average 3i, the more time we "compress" by using the burst-level simulation approach. We 
need to execute equations (1-3) only once for each tuple. 

Note however, that 3i is not the speedup over a cell-level simulation. Moreover, the actual 
speedup is also related to the value of ai. In fact, an (a j, ~j)Ms tuple is equivalent to ai • ~i 
individual cell arrivals. Hence, a more comprehensive performance measure is the average 
value of the product ai • fii, representing the average number of cell arrivals "compressed" 
in one tuple. The resulting performance index (which we will call the compression) is 
more closely related to the speedup over a traditional event-list based simulation. Indeed, 
in traditional simulations the execution time is proportional to the number of processed 
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events. The compression we introduce represents the average number of events in the 
traditional simulation that correspond to the processing of only one event in the proposed 
method. An exact analytical prediction of the actual speedup over a traditional simulation 
is difficult to derive since the simulation methods involve different costs for processing the 
events (event list management and updates of the event counts in the cell-level simulation, 
state transition event management and updates of the related equations in the burst-level 
simulation) hence a break-even point exists that is dependent on the different constant costs. 

We base both the construction of the aggregate traffic description, (aj, 8j}Ms, and the 
derivation of the potential performance of the scheme, on the construction of an underlying 
DTMC. First, we define the stochastic process that represents an individual source process. 
Suppose that we are given N identical ON/OFF sources where a source remains in the ON 
state with probability 1 - p or changes to the OFF state with probability p. Similarly, a 
source remains in the OFF state with probability 1 - q or changes to the ON state with 
probability q. Let the average sojourn time (in slots) in the ON state and the OFF state be 
respectively E[ON] and E[OFF]. Then, obviously E[ON] = ( I / p )  and E[OFF] = ( I /q) .  

In the second step, we define the Markov chain which describes the aggregate activity 
of all N sources. Fortunately, the state space of the Markov chain is not of size 2 N as 
one would expect because the ON and OFF states of all the sources are identical. It is 
sufficient to define an N + 1 state Markov chain where the meaning of state i is that exactly 
i sources are in the ON state (the rest N - i being in the OFF state). Assume now that 
we are given a DTMC, as the one defined above, with non-zero transition probabilities 
from a state to itself. We can construct a new DTMC without transition probabilities 
from a state to itself by setting for each i the probability Pi,i to zero (i.e., not allowing 
transitions from a state to itself) and normalizing for each state i all the probabilities 
Pi.j (i ~ j) such that their sum over all j ' s  is one. We now define a new experiment 
whereby we follow a sample path on the new DTMC and where in every state i we produce 
a sojourn time from a geometric distribution with parameter Pi.i. What we can accomplish 
with this transformation is instead of generating a sample path on the original DTMC of 
the form, say " . . . ,  1, 1, 2, 2, 2, 2, 3, !, 2, 2, 5 . . . .  ", we can use the new DTMC and the 
independent geometric distributions to produce equivalently the same trace in the form 
" . . . ,  1(2), 2(4), 3(1), 1(1), 2(2), 5(1) . . . .  ". The number in parentheses is the number of 
subsequent time units that we stay in the same state. The two experiments are equivalent, 
in the sense that they can be used interchangeably to denote the same process. However, 
the latter DTMC reflects directly the sequence of (aj, ~j)A4s tuples. Indeed, subsequent 
values of the ai's are the states visited by subsequent transitions of the new DTMC, while 
the 3i's are the sojourn times sampled from the geometric distribution corresponding to the 
current state 3. 

First, the calculation of the transition probabilities of the underlying DTMC is necessary. 
Let the state space of the DTMC be indexed from 0 to N where the index of the state stands 
for the number of active sources. We can identify three cases: 

�9 transitions from a state k to itself (0 < k < N): 

min(k'N-k)(k)(N--k)(1--p)k-X(l--q)N-~-XpXqX (4) 

x=0  
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�9 transitions from a state i (0 < i < N) to a state k (0 < k < N) where i < k (i.e., 
increase of  active sources): 

min(i,N-k) 

x=0 

( i ) (  N - i x  k - i + x )  ( 1 - p ) i - x ( l ' q ) N - ~ - x p x q k - i + x  (5) 

�9 transitions from a state i (0 < i _< N) to a state k (0 < k < N) where i > k (i.e., 
decrease of  active sources): 

mJ.n(k.N-i) ( 

x=0 

i i _ k + x ) ( N x i ) ( 1 - - p ) k - x ( 1 - - q ) N - i - X p i - k + X q  x (6) 

Notice that the sum in equation (4) (similarly for equations 5 and 6) is required to account 
for all possible combinations of sources that "flip" from the ON state to the OFF state and 
vice versa without changing the total number of  ON sources (cf. Figure 5). Moreover: 

Pr{k active sources (cumulatively) for I cell times} = (Pk*.k)/-l(1 -- Ps = p~(l) (7) 

Thus, the average sojourn time in state i will be: 

E[in state i] = - -  (8) 
1 - P/.*i 

At this point we can use the method we described earlier to construct a new DTMC from 
the DTMC that we have just defined by separating the transitions from a state to itself and 
normalizing the remaining probabilities for each state. That is, the new DTMC is defined 
by the transition probabilities: 

e:tr i,k 
Pi.k - ~N_0 /r P*'i,t k # i (9) 

Evidently, Pi.i = 0 u 
This DTMC will drive the generation of the ai's based on a trajectory using the Pi.k's 

while the 8i's will be sampled from the distribution of equation (7). Moreover, the new 
DTMC will have a steady state distribution, say Jr. Thus the steady state probability of  
being in state i will be zri. Consequently, it follows that the average value of the product 
a i X ~i is: 

N 
x 

compression = E[ai x 8i] = 
x=0 1 - P*x.x zrx (lo) 

The two parameters that control the compression (expressed as cells per tuple) are the 
number of  sources N and the average sojourn in the active state E[ON]. 4 Figures 6 and 
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Figure 5. System evolution where at time t' the total number of active sources does not change although the 
sources that are active change. That is, at the same time that source 4 becomes idle, source 2 becomes active. 

7 demonstrate the influence of the average sojourn E[ON] and of the number of sources 
N respectively on the compression. Figure 8 presents a three-dimensional view of the 
analytical results concerning the compression. As expected, the compression is decreasing 
for an increasing number of sources or for an increasing average ON sojourn time. 

4. Para l le l i zat ion  of  the M e t h o d  

One of the problems with parallelizing the presented method is the need to calculate equa- 
tions (1-3). These equations contain a strong dependence on the queue length calculated 
in the previous iteration. However, an approach similar to (Greenberg et al. 1991) cannot 
be used because we would have to discriminate 5 between overload and underload periods 
when calculating the recurrences. Thus, two operators (defining a semi-ring as (Greenberg 
et al. 1991) assumes) are not sufficient to describe the finite buffer queue. Therefore, we 
can consider that equations (1-3) are calculated sequentially. 

In order to include the parallelism, we can turn to a form of time-division (time-parallel) 
simulation based on the following observations: Assume a multiplexer is fed with an arrival 
stream represented as a sequence of (aj, ~j)A4s tuples, then there exist two well-defined 
types of events for a buffer size K multiplexer: 

G u a r a n t e e d  Overflow. This is a point in time (for convenience identified at a state 
transition epoch, using the definitions we introduced) where we can guarantee that the 
queue length is K at end of the tuple's period. The way to identify this point is to look 
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Figure 6. Influence of the average active period, E[ON], in cell times on the compression. 

for an (aj, 3j)M$ tuple where ai > C and ~i > K/(ai - C). That is, the system is 
in overload for sufficiently long to guaranlee that even an empty buffer will become 
full before the next state transition (i.e., the next tuple). Consequently, an independent 
simulation can begin immediately after the tuple that guarantees buffer overflow because 
the system (the number of  active sources and the length of  the queue) are known. The 
simulation starting at this point can use the accurate assumption that the initial buffer 
occupancy is K. The probability to find an (ai, 3j).M,s tuple that causes a guaranteed 
overflow is: 

Po,.er: ~ yrj 1-- ~ p~(k) 
j = C + I  k=0 

(11) 

Guaranteed Underflow. This is a point in time where we can guarantee that the queue 
length is zero. The way to identify this point is to search for an (a), 3 j )Ms tuple where 
ai < C and 3 > K/(C - a i ) .  That is, the system is in underload long enough to 
guarantee that even a full buffer will be empty by the end of  the interval (in time for the 
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Figure 7. Influence of the number of sources, N, on the compression. 

next tuple). Hence, an independent simulation can begin immediately after the tuple 
that guarantees underflow of the buffer. This simulation can assume accurately that the 
initial buffer occupancy is zero. The probability to find a tuple that causes a guaranteed 
underflow is: 

c l ( Kj cj  ) 
j=l  

(12) 

As a consequence, the guaranteed overflow and underflow (a), 6j)Ms tuples can be used 
as the points defining the intervals of the time division simulation. Their identification 
(from the cumulative descriptors) is trivial to parallelize; we simply split the sequence of 
cumulative descriptors to all available processors and each processor tries to locate the 
tuples conforming to the rules we presented. The method seems promising but an extensive 
validation is required to support its effectiveness. First, we must ensure that there are a 
sufficient number of  time division points, as this indicates the amount of  parallelism that 
can be exploited. To illustrate the case of  guaranteed overflow/underflow we provide a 
table of  the pover and punder values for a simulation of a multiplexer with 10 bursty sources 
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Figure 8. A three-dimensional view of the expected average compression under different E[ON] sojourn times 
and number of sources. 

with mean active period of 100 cells and mean inactive period of 200 cells for different link 
capacities and buffer sizes: 

C K Pover punder PTD 

6 5 0.012426 0.768843 0.781269 
6 10 0.008455 0.664632 0.673087 
6 20 0.004088 0.518076 0.522164 
3 5 0.324936 0.225882 0.843012 
3 10 0.250769 0.178151 0.428920 
3 20 0.158550 0.115765 0.274315 

The resulting probability to generate a time division point is the sum of the two independent 
events to generate a guaranteed overflow or a guaranteed underflow tuple. That is: 

PTD = Pover + Punder (13) 

In practice, there will usually be many guaranteed underflows because multiplexers are 
designed to have few overflows under anticipated traffic patterns. In the following we 
will describe p r o  as a percentage and will call it the time division density. It will denote 
the portion of the generated tuples that can be used as time division points because they 
represent either guaranteed overflow or guaranteed underflow points. It is also important to 
note that a very small time division density (e.g., as low as 0.1%) is sufficient for effective 
use of our method. Under most configurations, this density is exceeded by several orders 
of magnitude. To illustrate the point, consider an LP with a tuple trace of approximately 
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500000 tuples (such a trace is not unreasonable since it typically requires only two to three 
Megabytes of memory). Then with a time division density of .01%, we can expect on the 
average 50 such time division points in the tuple trace. We can thus achieve up to 50-fold 
parallelism. 

The interval between two consecutive time division points can be very short when the 
time division density is high. In this case, it may not be efficient to allocate a processor 
for the execution of each interval. That is, the cost of starting a time division simulation 
between two time division points that are very close together may exceed the benefit of 
parallel execution. Consequently, it is preferable to run time division simulations that span 
over a number of successive time division points. In general, if the simulation is rich in 
time division points, one would only utilize enough of these points to execute a separate 
simulation on each available processor. In this case, the selection of time division points 
would be made to balance the workload among the available processors. In the case of the 
implementation we present, we do not use a sophisticated load-balancing scheme. Each LP 
generates a string of (aj, 6 j ) ~ s  tuples and starts simulating from the first (aj, ~j).Ms that is 
detected as a guaranteed overflow or underflow. Hence, the reader should take into account 
that better performance may be possible if elaborate, albeit complex, load balancing is used. 

The time division density is not only influenced by the active sojourn times and the number 
of sources, but also the link capacity and the multiplexer buffer as well. In Figure 9, the 
dependence of the time division density on the buffer size is indicated for different buffer 
sizes. Note that the ratio of buffer size to average burst length plays a vital role in the cell 
loss probability which is the central objective of our simulations. 

Figure 10 describes the dependency of the time division density on the fraction of sources 
that the link capacity represents. That is, to achieve multiplexing, the capacity of the output 
link is a fraction of the aggregate capacity of the incoming links. This fraction plays a role 
on how fast/slow the buffer can be emptied/filled during underload/overload. 

A three-dimensional plot of the TD density relative to the buffer size and the ratio of 
capacity over the number of sources is given in Figure 11. Note that the dip present in 
Figure 11 and, more pronounced, in Figure 10 near a C/N ratio of .33 is due to the fact that 
the sources remain active for approximately one third of the time. This is an artifact of the 
assumption that the average idle time is twice the active time. At this point, the average rate 
of traffic entering the multiplexer exactly matches the output link capacity, so the number 
of guaranteed overflow and underflow points is diminished. As noted earlier, in practice, 
one would expect most multiplexers to operate far to the right of this point so that overflows 
seldom occur. 

An obvious benefit of the parallelization technique we have described is that the time- 
division simulation can be performed without any need for a second "fix-up" stage. It is 
enough to accumulate separately the statistics of each time-division simulation partition 
and then calculate the overall statistics at the end of the simulations. Summarizing, the 
steps needed to perform a parallel simulation of a bursty source multiplexer are: 

1. Generation of the (aj, 6i)Ms tuples. 

2. Identification of the guaranteed overflow/underflow points. 
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Figure 9, Dependence of time division density on the buffer size, K. The number of traffic sources, N, is 50 and 
the link capacity, C, is 35. 

3. Time-division simulation between the guaranteed overflow/underflow points. 

4. Calculation of overall statistics from the independent time-division runs. 

The second and third steps are parallelizable. The last step may be inherently sequential but 
fortunately it is not the dominant part of the algorithm's execution time. Next, we discuss 
the parallelization of the first step for the case of source models specified as discrete-time 
Markov chains. 

4.1. Parallel Generation of (a j ,  6i}~s Tuples 

The generation of a sequence of (aj, 3 j ) ~ s  tuples may, in general, be accomplished by 
simulating the behavior of each source on a separate processor (we assume the sources are 
independent) and using a parallel merge operation to combine the separate streams. This 
approach is trivially extended to perform simulations based on traces of source behavior. 
Here, we describe an alternative approach for the case where each source's behavior is 
specified by a two state Markov chain. This approach involves the generation of subse- 
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quent state transitions in the Discrete Time Markov Chain discussed earlier. Consequently, 
the problem becomes the parallel generation of state transitions of the DTMC. Although 
methods such as the PUCS (Heidelberger and Nicol 1993) simulation have been developed 
to deal with the parallel simulation of Markov chains, they are more likely to be used in 
the simulation of large queuing systems where the decomposition of the state space can 
aid the parallelism. However, PUCS implies communication overheads. We would like to 
(ideally) avoid these communication/synchronization costs. In order to avoid communica- 
tion/synchronization costs, the following property of the Markov Chain can be exploited: 
For the specific DTMC in our problem, all states are recurrent. That is, any state will be 
visited an infinite number of times. Therefore, if we start simulating state transitions from 
a state, we can be sure that sooner or later we will end up in the same state again. 

The above observation offers an interesting opportunity for a regeneration-based paral- 
lelization. Suppose we wish to simulate the state transitions of the DTMC for a sufficiently 
long time. In our case, we need to generate a string of tuples of the form (aj, ~j).AdS. 
Generating the ai part is not an issue since it can be generated by sampling a geometric 
random variable as equation (7) indicates, provided we know the number of active sources 
ai. Generating ai is the actual issue. However, successive ai's are the trace of the state 
transitions occurring in the DTMC. 

Assume we have k logical processes, then we can assign a specific state of the DTMC 
(say a) as the state from which, and back to which, each LP produces a sample path of 
the DTMC. That is, each LP starts simulation of the DTMC from state a and it stops the 
generation when it returns back to a. Since all LPs use the same state as beginning and 
end of the traces they generate, there is no problem of "matching" the states when the 
traces produced by different LPs are put together, i.e., assumed to be concatenated in time. 
Figure 12 illustrates the operation of the different LPs. 

The selection of the a with the highest steady state probability is beneficial if for each 
sample path we allow many recurrences back to a. That is, we can fix a maximum number 
of tuples L that we wish to produce for each logical process and then we use as a the state 
with highest ha. We then generate this maximum number of tuples beginning from one 
with state a. It is possible that this generated trace will not end at a. In that case, we discard 
the part of the trace from the last recurrence to a to the end of the trace. Since the average 
time between recurrences of a is I/Jra, the average length (in tuples) of the trace we discard 
is less than 1/tea. The remaining trace begins at a and ends with a state from which we will 
transit back to a and can thus be used to achieve parallelism. This approach is similar to 
the one used in (Wang and Abrams 1992) for the temporal decomposition using recurrent 
states. 

We note that the restriction, L, on the number of tuples generated for the trajectory 
of the DTMC, may result to serious problems to the accuracy of the DTMC simulation 
because there exists a correlation between the L and the maximum possible length of 
sample trajectory between the selected recurrent state. By setting a "short" L, we may in 
fact severely misrepresent the dynamics of the DTMC. For this reason, we take an approach 
suggested in (Heidelberger 1988), and we enforce on each LP to complete at least one 

complete regeneration (from a back to a) even if this entails exceeding the limit on the 
recorded trajectory, L. In practice, a large value of L, implies that this exception is rarely 



136 RICHARD M. FUJIMOTO, IOANIS NIKOLAIDIS, AND C. ANTHONY COOPER 

LP 1 LP 2 

<6,17> MS 
<7,26>MS 
<5,7>MS 
<4,9> MS 
<2,21 >US 
<5,12>MS 
<7,22>MS 
<6,15>MS 
<7,4>MB 

[--<6,10> 
(D Ms 
-o I <7,29> 

1 < 8 , 5 >  Ms ~ ' -4 /  Ms 

<6,37> 
<4,50> ~s 
<3,17 ~s 
<2,18>~ 
<1,5>Ms 

__<7,66>Ms 
<6,28> S 
<7,11 >MS 
<5,4>MS 
<2,9>MS 
<4,10>MS 
<3,16>MS 

Figure 12. Example of sample paths produced from the LPs with N = 10, a = 6 and L = 12 indicating the 
truncated (discarded sequences) after the last recurrence to a (including the last visit to a). 

(if ever) used. In our experience, with runs ranging from a few minutes to several days, a 
call to this exception, i.e., extending the generated trace beyond L tuples in order to generate 
at least one complete recurrence path from a back to a, has not been observed yet. 

A block diagram of the successive parallel stages for the simulation of a statistical mul- 
tiplexer, including the parallel generation of the tuples, is shown in Figure 13. 

4.2. Parallel Implementation 

An implementation of the proposed algorithm on a 32 processor KSR 2 multiprocessor has 
been completed. Each processor generates its own trace of tuples independently of each 
other. All traces start from the same recurrence point of the underlying DTMC, the one with 
the highest steady state probability. While the generation of the tuple trace is performed, 
the first time division point is located. Upon termination of the tuple generation (back to a 
tuple with active sources corresponding to the recurrence point), the simulation using the 
tuples and the recurrence equations can begin. The simulation can cover the trace from 
the first time division point until the end of the tuple trace. However, the part of the trace 
before the first time division point (called the preamble) cannot be simulated before the 
simulation of the previous segment (with the exception of its preamble) is completed and 
an initial state regarding the queue length can be provided to the current segment. After 
receiving this initial state, the preamble simulation is run and the statistics updated. Finally, 
all processors synchronize together at a barrier after their individual simulations have ended 
in order to collect their individual results and report the statistics. A new iteration of the 
entire algorithm can then begin. A number of optimizations are possible, including, but 
not limited to, keeping processors busy using a suitable load-balancing scheme and not 
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Figure 13. Successive parallel stages for the simulation of statistical multiplexers. 

synchronizing them at a barrier. However, the objective of this implementation was to 
indicate the achievable speedup without much sophistication in the actual coding of the 
algorithm. Thus, load balancing and low-level synchronization techniques, other than 
barrier synchronization, were not considered. 

The difficult part of a comparison with a sequential event-list algorithm is to set a com- 
mon ground that does not give unfair advantage to the parallel algorithm. Hence, several 
optimizations were performed in the sequential code, including total disregard for departure 
events (since they are not essential for the statistics we gather, they were omitted with suit- 
able coding) and minimization of the required random number generator invocations. The 
measure of comparison is the number of cell arrivals processed per unit of time (second). 
Since the parallel simulation has no cell arrivals, we use the information in the tuples to 
find the equivalent number of cell arrivals represented by a tuple. 

Figure 14 presents four different experiments that were used to test the simulator effi- 
ciency. The last two columns ("Speed") is the simulation speed in terms of thousands of 
simulated cell arrivals per second of real time on a 1 and a 32 processor configuration. 
The single processor performance represents essentially the benefit from using the com- 
pression, ioe., burst-level simulation alone, without the introduction of parallelism. Note 
that the time-parallel simulation we use achieves linear speedup with respect to available 
processors when there exist no fix-up phases, as is the case in our technique. Hence, e.g., 
for experiment D, a speed of about ten billion cell arrivals per second was observed on 
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N E[ON] C K Speed (1) Speed (32) 

A 5 10 3 10 402 12528 
B 10 100 7 100 3415 106330 
C 50 1000 35 1000 29611 859935 
D 10 10000 6 3000 323344 10077840 

Figure 14. Four experiments (A, B, C, and D) and the simulation speed (in thousands of cell arrivals processed 
per second) on a 1 and a 32 processor configuration. N is the number of ON/OFF sources, E[ON] is the average 
ON (burst) length, C is the relative output link speed of the multiplexer and K is the buffer size of the multiplexer. 

a 32 processor configuration. Similarly a speed of  about twelve million cell arrivals per 
second was observed for a 32 processor configuration of  experiment A. Compared to these 
results, the highly optimized sequential simulation, in the best case, could process a max- 
imum of 140 thousand cell arrivals per second on a SUN Sparc 10 utilizing a splay-tree 
event list algorithm without other interfering user load. 

To illustrate the benefit of  estimating cell loss ratio with good confidence intervals, con- 
sider the example configuration B. The cell loss ratio was found to be 3.16 x 10 -5 within 
a range of  plus or minus 3.84% for an estimated confidence interval of  95% in just 72.4 
wallclock seconds of  32 processor execution time. 

5. Conclusions 

In this paper, we describe some of  the inherent challenges and opportunities of simulating 
cell muliplexers for ATM telecommunication systems under bursty traffic. The limited 
applicability of existing parallel simulation techniques lead us to the development of  a new 
technique. The technique presented herein combines burst-level simulation with parallel 
simulation to achieve significant overall reductions in the run times needed to study some 
practical applications in ATM telecommunication networks. The results indicate that indeed 
a better understanding of  the burst-level characteristics of  the sources can lead to substantial  
savings in simulation times. Note that the approach of separating the burst-level behavior 
has also been introduced in the framework of  analytical work in (Hui 1989) and is known 
as the hierarchical approach. 

It is interesting to further exploit the possibilities of  such an approach. Notably, the 
inclusion of  Constant Bit Rate (CBR) sources does not complicate the simulation approach 
since a CBR connection can be considered as reserving a fixed portion of the link bandwidth 
away from other connections. Currently, the mechanisms to support different arrival patterns 
in the ON state as well as the generalization to arbitrary multiplex hierarchies are under 
investigation, focusing on the extensions to topologies that are of practical interest. Some 
preliminary results to this extent have also been generated and they involve a tedious 
construction process for characterizing the departures from multiplexers while maintaining 
the concept of  guaranteed overflows and underflows for the sake of  parallelism. 
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Notes 

I. A cell is a 53 byte fixed size packet. 

2. In section 4.1 we restate the problem such that no calculation of the minimum residual time is needed. 

3. Observe, that to simplify our analysis, the 3i is redefined to account only for changes in the cumulative number 
of active sources (without regard for wh!ch sources are active). This redefinition simplifies considerably our 
analysis since we are interested only in the cumulative number of active sources in order to generate the 
(aj, t~j ) AA S tuple sequence. 

4. For the sake of simplicity, the mean ON interval is set to half the mean OFF interval--this is approximately 
consistent with certain voice traffic models. Hence, only one of the two intervals (namely, the E[ON]) need to 
be changed, since E[OFF] = 2 x E[ON]. 

5. Or, alternatively, introduce a new operator to take care of the related implicit "if" statement in the separation 
of overload and underload (a), 6j )A4s tuples. 
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