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Abstract. The Galerkin method, together with a second order time discretization, 
is applied to the periodic initial value problem for 

8 
at (" - (a(x) ~x)x) + (/(x, u)L =o .  

Here / ( x ,  .) may be highly nonlinear, but a certain cancellation effect is assumed 
for f l ( x ,  u)xu. Optimal order error estimates in L,, //1, and Loo are derived for a 
general class of pieeewise polynomial spaces. 

1. Introduction 

Consider the intial value problem for u ~ u  (x, t), 

?-  (u-(a(x)u~)x)+(l(x,u))~=0, x~R, t>0, 0.t.a) at 

u (x, 0) = u  o (x). ( t . t .b) 

We assume tha t  a( . ) ,  / ( . ,  y), and u0(.) are periodic of period t, and tha t  there 
exists a positive constant  c such tha t  

a(x)  ~_~c, x E R .  (1.2) 

In  Section 2, Assumptions 2A-2.3, we list fur ther  conditions on a, /, and u 0. 
These conditions will in particular ensure the existence of a periodic solution 
of (t .1) which is sufficiently smooth for our analysis, cf. Theorem t A and Lemma 
2.t.  

We seek an approximate solution of (1.t) in a piecewise polynomial spline 
space S~(/I), defined as follows: Let  O - - X o < X a < . - .  < x  n = I  be a partit ion of 
[0, t] ,  and let A denote such a part i t ion extended periodically to  the real line. 
Let  m a n d / ,  be integers with 0 =<m < / z -  t,  and 

S~ (A) = {/EC m (R): / periodic, and ] is a polynomial 
(t .3) 

of d e g r e e - - _ p -  1 on each subinterval of A}. 

The parameter  p will be fixed for the rest of this paper. 

Let  
h =  m a x  (x~- -  xi_x) .  

i f f i l ,  . . . ,  N 

If  the functions a and / are complicated, we use an interpolation process 
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290 L. Wahlbin 

into a piecewise polynomial space S~ (A), not necessarily the same as that  where 
the solution is sought, to evaluate certain integrals below. Assumptions con- 
cerning this interpolation process are made in Section 2. These assumptions are 
restrictive, but not impractical. 

We apply a Galerkin procedure, combined with a second order discretization 
procedure in the time variable, to Eq. (l .l.a) in weak form, 

where 

and 

A (u,, v) + F ( u ,  v) = 0 ,  (t .t .a)' 

Here 

and 

1 

F(w, v) = --fl(x, w)v,,. (1.5) 
o 

Let k denote steplength in time. We seek U"ES~(A), (Un(.),-..~u(., nk)), by the 
role 

.~(U,,+l-U,,-121, , V)+ff(U", V)--0,  Vr (t.6) 

l 

.~ (W, IO = IWV + I (a)W, V,, (1.7) 
0 

1 

I;(W, V)=- - f I ( / ( x ,  W) )V,. (1.8) 
0 

It  is assumed that  U ~ and U x are given in S~(A). 
We note that the integrals occurring in (1.6) involve only piecewise poly- 

nomials. In our analysis we assume that the integrals are evaluated exactly, 
and that  the resulting system of linear equations for the coefficients of U "+1 
in a suitable basis for S~ (A) is solved exactly at each step. 

We have the following main result. For notation, see (2A), (2.2), and (2.4) 
for the function spaces involved, and (4.t) for E(f), the elliptic projection of / 
along A. 

Theorem 1.1. Assume that  Assumptions 2A, 2.2, and 2.3 hold. Let T > 0  be 
given, and U ~ U x such that  [[U~ Ua][1 = o ( t  ) as h, k-+0. 

Then there exist constants 

h o = h o [T, [l v ~  U~ [[x, [[ U~ llx, U vx [tx] 

and 

c = c [ T ,  II U~ II talk, I1" II,','m T,, I1" II,,,'; c.-.., 
such that  for h ~ h o, n k _~ T, 

II v "  - , , ,  ( . ,  ,, k)II, -~ ~ {ll v~  - ~ (,,o)[k + II u ,  - E (,, (., k))lk + k '  + h " - ' } ,  
i =O, I. 

1 

A (w, v) =fwv +a(x)w~vz, (t.4) 
0 
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A method of calculating U ~ and U 1 is given in Section 5. In the special case 
of Hermite cubics on a uniform mesh, an easier way of calculating U ~ (the 
evaluation of U 1 requires no additional coding once (t.6) is coded), is given in 
the Appendix, (joint work with J im Douglas Jr. and Todd Dupont). In Section 6 
is derived an optimal order error estimate in the maximum norm. 

The methods used in this paper are similar to those used for parabolic problems 
in e.g. Wheeler [t 5]. Galerkin methods have been applied to equations similar 
to (t .t .a), so called pseudoparabolic equations, in Ford [8], where an H 1 estimate 
was derived, and in Nassif [t2]. The present paper allows stronger nonlinearities 
than those treated in [8] ; in [12] only linear problems were considered. 

The idea of using interpolants to evaluate integrals is due to Douglas-Dupont 
[4]. Instead of this, numerical quadrature could be applied, cf. e.g. Fix [7]. 

We conclude this introduction with a numerical example. Consider the equa- 
tion (cf. [1]) 

_ t  (u -~u.x) + (u +/gu*)x = o  
0t 

with ~ and fl positive constants. For a ----fl =0.1,  for instance, this equation has 
a 7-periodic travelling wave solution u(x, t )=vo(x - - s t  ) where s= t .093857  ... 
and 

vo(y) = t.33t645 ... +w(0.492t41 ... �9 y)~ 

with w the canoidal function w(z)----cn(z, 0.314542 ...). The notation for the 
canoidal function is as ill [9] (and the numerical procedures of that  paper were 
used in the computations reported below). For the existence of such a travelling 
wave solution, and for the evaluation of the different parameters involved, see 
[to, Art. 253]. Taking u(x, 0)=Vo(X ) the procedure (t.6) was applied in the 
following slightly varied form (<1, g> = f~ / (x)g (x) dx in this example) 

U"+* -- U " - I  
2k , V > + 0 t <  (U"+I--U'-')2h x, Vx> 

< U'+I+U"-I > 
- o  2 , ~  +(o-t)<u",v.>-/9<(u"),,v.>=o 

where 0 < 0 ~ t. The reason for this variation is as follows: as a and/9 tend to 
zero, the method (t .6), i.e., the above with 6 = 0 ,  reduces to 

< U"+~-U"-* > 
2k ,V -<U",V.>=o 

which is not necessarily stable. On the other hand, if 0 tends to t as ~ and/9 tend 
to zero, the limiting scheme is stable. Hence, for small a and/9, the varied proce- 
dure with 0 > 0  may  conceivably have better  stability properties than (1.6). 
The analysis for the varied scheme is almost the same as for (t.6), and the results 
are the same. 

The space of Hermite cubics S~(/I) with A a uniform partition of [0, 7] into 
M subintervals of equal length was used, and the integrations involved performed 
exactly. The parameter  0 was taken as 1/3, U~ was the Hermite interpolant of 
v 0 (cf. the Appendix) and U 1 was evaluated by  the obvious modification of (5.2) 
below. We give a few results of the numerical calculations. The solution was 

20* 
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ca lcu la ted  for 0 ~ t  < 4 0 ,  a n d  to o b t a i n  an  a p p r o x i m a t i o n  to t he  error i n  the  
m a x i m u m  norm,  the  error  was  e v a l u a t e d  a t  t = 4 0  for x = (integer) �9 0.1. 

Approximate error in the maximum norm for t = 40 

M\k 0.05 0.025 0.0125 0.00625 0.003125 
4 -- 9.1 X 10 -a 9.0 X 10 -s 9.0 • 10 -~ 9.0 • t0 -s 
8 1.8 • to -a 9.3 • 10 -4 7.2 • t0 -4 7.6 x 10 -4 7.7 • lo -4 

16 t.3 • t0 -a 3.5 • t0 -4 1.1 • 10 -4 6.3 • 10 -5 5.5 • t0 -~ 

a n d  

L e t t i n g  e (k, M)  deno te  the  c o m p u t e d  m a x i m a l  error  

log,  (e (0.025,4)/e (0.00625,8)),--,3.6, 

log2 ( ~ (0.0125,4)/e (0.003125,8) ) ~ 3.5, 

log z (e (0.05,8)/e (0.0125,t 6)) ,~  4.0, 

log 2 (e (0.025,8)/e (0.00625,t6)) ~-~ 3.9, 

a t  t = 4 0 ,  we h a v e  

log, (e(O.O125,8)/e(O.O03125,16) ),~3.7. 

The  resu l t s  to  be es tab l i shed  below (see in  p a r t i c u l a r  the  Append ix )  show t h a t  
for M suff ic ien t ly  large the  error  in  t h e  m a x i m u m  n o r m  is less t h a n  C (k' + M-*).  

The author  thanks  J. Bona,  J. Douglas Jr. an d  T. Dupont  for useful conversations 
concerning the conten t  of this paper. 

2. Notation, General Assumptions, and Preliminary Lemmas 

Notation. The  le t te rs  c, C, a n d  G will deno te  cons t an t s ,  not  necessar i ly  the  
same a t  each occurrence  un less  subindiced.  Square  bracke ts  wil l  be u s e d  to ind ica t e  
the  essent ia l  dependence  for these  cons tan t s ,  e.g. C [T].  

Le t  H j  (Wi ~176 deno te  the  rea l  Sobolev  space of func t ions  which h a v e  i de r iva -  
t ives  in  L ,  local ly  (in ~ ) ,  a n d  are per iodic  of pe r iod  t .  Let  

1 

(~ ,  v ) - - f  ~ v  
a n d  o 

Ilvil;---H~lf", = d ~ '  d . ,  o j 

os~sj ~ R  ~ ( x )  �9 (2.2) 

W e  n o t e  t h a t  t he re  exists  a c o n s t a n t  C such t h a t  for v EH a, 

II~ I1,,,r ~ c I1~ I1~. (2.3) 

F o r  g ~ g ( x ,  t), le t  l ~ p ~  T) be t h e  closure of smooth  func t i ons  i n  t i n t o  H i 

in  the  n o r m  
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For k given, put  
g"(.) =g(., nk), 

and 
#+~ - -~ -~  

~kg~ = -2k " 

Also, with .4 as in (1.7), let 

tl llz (2.5) 

Assumptions/or the Problem (t.1) 
Recall that  b* is fixed, cf. (t.3). 

Assumption 2.1. The function a (x) E Wt, ~~ and there exists a positive constant e 
such that  

a(x) >c, x~e.  (t.2) 
M 

Assumption 2.2. Given an integer 0 =<fl ~/*, ~ [ ( . ,  y) EtCh_ a, and there 
exists a continuous function G Eft, Y] such that  

eat 

Furthermore, with F(w, v} =--flo[(x, W)V,, there exists a constant C such that 
for yaH1, 

<c(a +ll [Ik). (2.6) 
Assumption 2.8. uoEH ~. 
In connection with Assumption 2.2, we note that since 

x 

/(x, w(x) )=w(x) f l'y(x, w(x),)dT:-Ft(x, o), 
0 

F(w, v) is well-defined for w, vEH1, by (2.3)- The condition (2.6) does not follow 
from the other assumptions. 

Lemma 2.1. Let T > 0  be given, and assume that  Assumptions 2.t-2.3 hold. 
Then the problem (t.I) has a periodic solution u in Wo~176 TJnWs~176 T). 

A proof, using the approach of converting (IA.a) to an integral equation, 
will appear in [2]. The lemma can also be proved using the method of Faedo- 
Galerkin, cf. [I 1, Chapitre 1 ]. The crucial assumption is (2.6), which allows us 
to obtain a priori bounds in L~, and thus handle the nonlinear term. 

Assumptions and Results/or the Interpolation Process 
We begin by  stating exactly the approximation theoretic properties of S~(A) 

(and S~(~/) that  we need. 

Lemma 2.2. There exists a constant C independent of A, such that given 
vEH,, t <--_v<--<_l~, (yEWs~176 there exists XES~(A) such that  

i---o, (2.7) 

I1,,- xllw  -< (2.8) 
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Proo/. The result (2.8) is proved in [3]. The same construction of X yields 
(2.7) for v----/~. For t ---<v</,, (2.7) follows by  mollifying v, and constructing X 
for the mollified function. 

For the spline space S~ (A) and its associated linear interpolation process I, 
we assume that  I acts as the identity on S~(A), and that  there exists a constant C 
such that  

IIZ (v)Ilw ~ ~ Ctlv [I.: ~, (2.9) 

IIZ(v) I1o ~ C (1[~'11o +hilt'Ill)- (2.~0) 
In practice, these conditions restrict the interpolation process to using only 
values of the function v, i.e., not values of derivatives. For simplicity, we consider 
the same interpolation process for evaluating A and F. The restrictions (of which 
only (2.10) is essential since (2.9) in practice "follows" from (2.10)) pertain to 
the interpolation process used for evaluating F. 

Lemma 2.3. There exists a constant C such that  

IlZ(v)-vllo_-<Ch'llvL 1___~__<~, (2.1t) 

IIZ(v)-vllw~ <=ch~llvllw~. (2.12) 

Proo[. Let X be as in (2.7). Since I(X) =X ,  we obtain from (2AO), 

11I ( v )  - v Iio = Ilz (~ - x )  + ( x  - ~)IIo 

< c(ll~ - X l l o  +hl lv  -X l l l )  < ch'll~lE. 
This  proves (2.14); (2.12) is proved similarly using (2.8) and (2.9). 

The next four lemmas give the properties of .~ and ff tha t  will be used later. 

Lemma 2.4. There exists a constant C such that  for v, wEH1, 

I~ (~, ,) - A  (~, v) l < Ch"ll~lll II" II,- 
Proo[. This is immediate from the definitions (t.4) and (1.7), using (2.12) and 

Assumption 2.4. 

Lemma 2.5. There exist positive constants c I and h I such that  for h ~ h  1, and 
v EH 1, 

Cl 1 II v [11 --< II ~ II~ --- Cl ~'/)[11" 

Proo[. This follows from (2.5), Lemma 2.4 and Assumption 2.4. 

Lemma 2.6. There exists a function G 1 such that  

IF(w, v ) - ~  (~, v) l____c, Cllwll,3 w l l 4 ,  1 __<~__<~. 
Proo/. We have by (2A4) 

1 

IF(w, v)-if(w, v)[ =1 f (t(x, w) -I(l(x,  w))) v,I 
0 

< II/(~, ~') - z (/(~, ~))  I1o II ~ II, 
=< c h, Ill (~, ~)II, II ~ I1~. 
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Using (2.3) and Assumption 2.2, we find that  II/(x, ~)II, can be bounded in terms 
of II~lt,. 

Lemma 2.7. There exists a function G 2 such tha t  

_-<G, [11~1111, I1~,111] I1~ II, (11~, - ~',11o + hll~, - w, ll,). 
P r o @  We have 

1 

I~ (~,. , : ) - P  (~,  v ) l - - I / z  ( / (x .~ , , ) - / (x ,  w~)) ~,1 
0 

__< c (ll/(x, ,,,1) - / ( x .  ,,:,.)Iio + l ,  II/(~, ~:,) - t ( x ,  w,)II1)II,,Ik. 
Since 

1 

I (x, ~ , )  - i (~, ~ )  = (~, - ~ , )  I f ' ,  (~,  ~, + ~ ( ~  - ~ i ) )  a ~, 
0 

the desired estimate obtains. 

3. Stability in H 1 of the Galerkin Process 

Throughout  this section it is understood tha t  h ~ ha, so tha t  the conclusion 
of Lemma 2.5 holds. We shall show tha t  the H~-norm of the approximate solution 
is bounded as h, k tend to zero. 

Let 
ei = U i - -  U i - t ,  i = 1, 2 . . . .  

We start  with a preliminary result: 

Lemma 3.1. Let  c I be as in Lemma 2.5, and G2[., .] as in Lemma 2.7. There 
exists a function cz [- ] such tha t  

j - -1  

II ~ Jk ---- ~ (lle' II~ + k ~ [II ~ Ik]l" H (~ + 2 k ~,*a, [II v'111, II v ' - '  Ik]). I=I 
P r o @  Let, with c~. defined below, 

~, = II ~' IIz + k c~ [11 u~ lk], (3.~) 
b, = 2 k c,~O, [11V'll,, II V ' - '  I1,]. (3.21 

Consider first the c a s e / ' = 2  (i----I is trivial). Let  n----I and V = # - - e  1 in (t.6), 
and  note tha t  U s -  U ~ = e * + e k  Using Lemma 2.7 with w, = 0  it follows tha t  

118l~1]~ --lie1 [[~ - -  _F (U 1, e $ - -e  1) ~G~ [11U'II,, O]II U' lh Ill~'lt, + I1~'11,). 2k 

Hence, with this defining c2, 

Assume now inductively tha t  
i - -1  

I / l lz  ~ ~ I I  (~ + b,). (3.3) 
/=1  
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Write (t .6) at  two adjacent time levels, and put V = d  +1 - - e  i-1. We then obtain 

II J+l l [~  - II d - 1 1 ~  = _ ( f f  (U ' ,  d +1 - d - l )  _ f f  ( u i - 1 ,  d + l  _ d - l ) )  
2k 

-<_ clc~ Ill Ur It u~-I II13 Ildll~ (ll,;+l h- + IId-q~-), 
or  

I1~+111~ --< II,;-'h- +b;U~;lle. 
By the induction hypothesis (3-3) we then have 

i--1 

IId+q~" <=~ H 0 +b,)(  . . . . .  )] __< ~ /z /  (~ +b,), 
l =1  I +bi-~ + bi t=1 

and (3-5) is proven. The result of the lemma is now immediate. 

We can now prove the stability result: 

Lemma 3.2. Let T > O  be given, and assume that  Ileq~--o0) a~ h, k-~0. 
Then there exist h o and c a, 

ho----ho [r, Ileqi, llV%, U fxll~], 

such that  for h ~ h  o, nk  <= T, 

Pro@ We first note, taking v = l ,  w = v  = U n in Lemma 2.6, and using (2.6) 
that  

I f  (U n, Un) [ ~ C (~ -Jr-II uelll~~) --~ hCl [11 U))[[1] I1 Vnlll �9 

Let V = U "+1 + U "-1 in (1.6). Then 

2k I_~ (u-, u ~+1 + u--l)  [ 
] P  ( v " ,  u "+~ - u ~ - ( u " -  u " - l )  I 

+ ~ (~ + II u"ll'a ~) + 2hcl Ell u%]  I[ u%.  
By Lemma 2.6 with w~ ~ 0 ,  

If (v  ~, .e "+I - e~)l -~ c~ Eli u n I11, ol .  I[ u-111 (ll,n+1 It, + 11 ~ 111). 
Hence we obtain, this defining G, and % 

)) u ' + 1 ) ~  - fl v ' - '  f i  
2k ~c,[II u%] (ll,'+ql + l[,% +h) +c,O +llU"ll~), 

or, in the notation of (%t), (3.2), by  Lemma 3.t, 

l)u'+1fi - )ru'- ' f i  <c,~llu% ] (2~ H (i +bj) +h)  
2k 

+~,0  +tl u'lt~-). 
(3.4) 
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With c5 k < t, c5 to be specified later, and c, = max (11UoIIz, II U'IIz), we assume 
by induction that  

[I v i lh  - --< c, exp (cdk), (3.5) 
Then 

j < n .  

n k ~ T .  h (t +bi) <=G,[T, % c6], 
i=1 

Inserting into (3.4) we obtain, assuming c 6 ~ t, 

II u~§ __< II u--~ll~- + 2 k ~ ( 2  ~ , ~  + h ) + 2 k c , ( ~  +11 u~l[~ -) 
< c~ exp (2nkcs) �9 (e -~ah + 2 k  Gs(2 G4a 1 +h) +4kc4) 

f2 c4 t =<C** exp (2nkcs) . (t + 2kc6 ~ ~-  + ~ [c, exp (c, T)]. 

C__L~ ~ t 
Hence, taking e.g., c 5 such that 2 c~ -2-' the induction step will work provided h 

and ax=Ilell~-+kcz[llU~Ul ] are small enough, i.e. provided h an4 k are small 
enough. For fixed T, the restriction on k is automatically removed. 

This proves (3.5), and concludes the proof of the lemma. 

4. Error Estimates in H 1 and H o 

Let Z = Z ( x ,  t) denote the elliptic projection of u(x,  t) along A, Z( . ,  t ) =  
E ( . ( . ,  t))~S~(~),  defined by 

A (Z, V) = A  (u, V), V~S~(A) .  (4.1) 

Here u is the solution to (t.t). Let 

~" = U" -- Z n, 

~* = u ~ --Z". 

We note that by Taylor expansion around t = n k we have 

~ (u" - -  (a (x) ~',),) + (/(x, . ' ) ) .  = n~,  (4.2) 
where 

The following lemma summarizes the results we need for the elliptic pro- 
jection: 

Lemma 4.1. There exists a constant c such that  for n k <= T, 

sup M,_-<~h~-'ll,IJw~(,,, ~), i=o,  t ,  (4.4) 
O<j~n 

sup Uz;IG <==llullw~(,,,,T), (4.5) 
O<j<n 

sup II ~,z*t~ -~ c I1~ liar (-,, T). (4.6) 
O~j~_n 
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Proo/. See e.g. [t3, 14]. 

We now start  to derive the error estimates. We obtain from (t .6) and (4.2), 

(~,~", v) = ~  (~ v", v) -~(~,z" ,  v) 

= - ~ ( u " .  v) - -A (~ku", V) + A  (akZ", V) -- ff(~kZ", V) 

=--P(U", V)+F(u", V)+A (~kZ", V)---~(OhZ", V)+(R., V) 
={--P(U", V)+P(u", V)} +{F(u", V)--P(.", V)} 

+ { A  OkZ", V)--2(,SkZ", V)} + ( R . ,  V). 

Let V =~.+a +~. -x .  We use Lemma 2.7 to estimate the first term on the right, 
Lemma 2.6 with v = p  for the second, Lemma 2.4 and (4.6) for the third, and 
(4.3) for the last term. We obtain 

M~ "+' I1~ - l ie"-'  It~ 
2k <{G2 [[I U"[I,, [[u"lll] (11 U" - - , %  +hll U" - u"[[i) 

+ ca HI-" I~3 h~ + c h" I1" Uwr ~H,, ~ 

+Ck~ II~II~Z ~,,,, T,} (lle"+'[~ + IIr Ila), 
or, using that  U " - - u  ~ = ~ " - - ~  and (4.4), 

IIg'+all~ - IIr <c{ll~"llo +hltr + I1r +hllr 2k 

+ h" (Ca [11" IIA + I1" IIw~ <-,, r,) + k* II ~ Ilwm r r)} 

< ~ {ll~"tlz +h" +k'L 2 

c, = ~, E sup U u% II-I1~ c-., ~, II-II~z ~-,, ~]. 
ik<T 

Hence 

II~"+Xll~ +ll~"llz ---- 0 +c~k)(llr + II~"-~llz) + c,k(h~ +k~) 
and it follows that  

I1r =<~,(lle~ +llcXll, +k" +h"), ~ k  Z T, (4.7) 

c 8 = c 8 I T ,  sup II V~ll,, II" Ilwm ~"., T), It" Ilwm ~",, T,]. (4.8) 
ik~_T 

By (4.4) we obtain 

IIU"--~"ll,<~{ll/ollx+ll~all,+k~+h.-'L nk<=T, i = 0 ,  I (4.9) 

where the constant has the same dependence as in (4.8). 

Proo] o/Theorem 1.1. By Lemma 3.2, U n is bounded in H 1 for h <=ho, nk ~ T, 
the bound depending on tlU% and IIUq, Hence the theorem follows from (4.9). 

5. A Method of Calculating U ~ and U 1 

We shall give a general method for finding U ~ and U 1, close to the elliptic 
projections of u o and u( . ,  k) respectively. 
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In  addition to the general assumptions of Section 2, we assume in this section 
tha t  

Uo EHu+v 
Let  U ~ be given by  the rule 

1 1 

.~(U ~ V)= f I(uo) V + f I(a(%).)V .. V~S~(A), (5.t) 
0 0 

and U 1 by  

"~'( U1-U~ , V)+ff(U ~ V)-----0, VESt(A). (5.2) 

Using the same techniques as in Section 4, it is easy to prove tha t  

11~% <=chUlluollu+l, 
where c only depends on a, and that  

[I ~I]11 -- c (h. + k2) + II t ~ II1, (5.3) 

where c ---- c [11 u0 I11, II % I1., 11" IIwz ~-,,~3. 
T a k i n g  V = U 1 - -  U ~ in (5.2) we see tha t  

If u ,  _ U0[ll < c  Ill UOlla3 k. 

Combining those results with Theorem t.1 the following theorem obtains: 

Theorem flA. Assume tha t  Assumptions 2.1 and 2.2. hold, and that  uoEHu+ v 
Let  T > O  be given, and let U ~ and U 1 be given by  (5.t) and (5.2). 

Then there exist constants h 0 and c, 

h. = h  o [Z, [/%llu+x] 
and 

such tha t  for h --__ ho, n k _--< T, 

IlU"--u(.,.k)ll,_-<~(k2 +h"-'), i = o , t .  

6. Opt imal  Order Error E s t i m a t e s  in  M a x i m u m  N o r m  

We assume in this section tha t  the partit ions A considered are quasiuniform, 
i.e., t ha t  there exists a constant c such tha t  

h<=c min (xi--xi_l). (6.t) 
i = 1 ,  . . . ,  N 

We have the following result for the error in the elliptic projection, cf. (4.t). 

Lemma 6.1. Assume that  (6.1) holds. Then there exists a constant  C such tha t  

IIv - - E  (v)Ilw~ ---- C h~ lip II~x. 
Proo/. The proof of this will appear in [5]. For  m = 0 ,  i.e., continuous piece- 

wise polynomials, the result holds without  the assumption of quasiuniformicity, 
see [16]. 
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Let 
sup llu(.,t/llw , 

O < t ~ T  

and let W~(W~, T) denote the corresponding space. We have the following 
variant of Theorem 5A. 

Theorem 6.1. Assume that  the hypotheses of Theorem 5.1 hold, that (6.t) 
holds, and that the solution of (1.1) belongs to W ~  (W~,, T). 

Then there exist constants h o and c, 

such that  for h ~ h o, nk <= T, 

[I U~ - -  ~ (', ~ k)[[w~ _<-- c (k ~ + h~). 

Proo/. By  (4.7) and (2.3) we have 

Hence Lemma 6.t gives 

Remark 6.t.The solution will belongto W~ (W~, T) if it belongs to W~ (Hu+a, T). 
Using Lemma 2.t, conditions which guarantee this are easily found in terms of 
a , / ,  and u o. 

Appendix 
Joint work with Jim Douglas Jr. and Todd Dupont 

We shall prove that in the case of Hermite cubics on a uniform mesh, the 
Hermite interpolant is close to the elliptic projection. Hence if U ~ is chosen as 
the Hermite interpolant of u o, and U 1 according to (5.2), the optimal orders of 
convergence in H o, H 1 and L~ are retained provided u o is smooth enough (see 
(A.t), (5.3), and the proof of Theorem 6.t). 

Consider S~(A), with A ={xi}~z, x~ =ih ,  h -1 = N E Z .  We introduce a basis 
{V i, Si}, i = t . . . . .  N, for this space; V i and S i are the periodic extensions of 
and S~, where ~ (x) = V (xh -1 --i) ,  Si (x) = S (xh -1 -- i), and 

0, y > l ,  or y < - - t ,  
V ( y ) = ~ ( y - - 1 ) * ( 2 y + t ) ,  0 < y = < l ,  

[(y + 1 ) * ( - - 2 y  +1) ,  - - t  < y ~ 0 ,  

[0, y > t ,  or y ~ - - 1 ,  
S(y) = l y ( y - - i ) L  0 < y < t ,  

[ y ( y  + t ) L  - - t  < y ~ 0 .  

The Hermite interpolant of a function u (x) is 

N 

I (u) = Y.u(ih) V i +u '  (ih) hS i. 
i = l  
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We shall prove t ha t  

Ilz (u) - -E (u)I~ __<ch'llu115. (A.a) 
I t  suffices to consider the case when 

1 

a (w, v) = f w v  +w.v., 
0 

see e.g. [5, Section 31. With  z = I ( u )  --E(u) we then have 

1 1 

tlzll~ =. f  (I (u) - ~ ) ~  + f (I (u) - u),~. (i.2) 
0 0 

I t  is well known tha t  I l l ( u ) -u ] [  o <=ch4JluH,, and. hence 

/ ( z  ( , ) - u ) z ]  __<oh, Itu II, II~llo-<-- ~o I1~ IIo* +oh'  Ilu I1,*. (A.3) 

To handle the second te rm in (A.2), we use the  fact (see e.g. [6, (3.48)]) tha t  
on (x i, xi+a) we have  

l(u) - u = {-(L + + LT+~ + R + + RT+ 1), (A.4) 
where 

and 

Let  

We have  

L+ (~) = ~ u("(x3 (~ -~)~ (x~+, -x)*, 

LT+~(x) = ~ !  u(~)(x~+~)(x - -  x y ( x ~ + ,  - -  x )L  

Xl+t  

R + (x) = f r~ + (x, t)(uc')(t) -- u(')(xi)) at, 
x/  

x i + l  

R~+ 1 (x) - ~ -  f r/~l (x, t) (u (') (t) - -  u {*) (xi+,)) dr, 
Xl 

~xrp(x , t )  <=ch'. 

N 

z = ~ a y i  +biSi. 
i = I  

1 N--I xi+t 

f (I (u) -- u).z. = �89 Z f (L~ + + Li-+x + R + + RT+l).z.. 
0 /~0 x~ 

Using (A.5) it follows tha t  

~ Z f ( i ,  + + R ; ; ~ ) ~  ~-~.-II~lt~+~h~ll.llL 
i = 0  x~ 

By computa t ion  we find t ha t  

Xf§ 

f (Lp) , , (~) ,=O,  any  ], 
Xl 

(A.5) 

(A.6) 
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and, with subscripts in terpreted modulo N if necessary, 

xl xC + I 
f + f = 0 .  

xi - x xl 

Inser t ing (A.3) and  (A.6) into (A.2) we hence obta in  

~ 1  xif+x ( bi(L~T1)x(Si)x +bi+l(Li+)x(Si+l)x)l 

=6h8[[gH~-~-ch 3 i~:  bi ( u(l, r x i +l) - u(4) (% i-1) ) [ " 
m 

I 

We next  note tha t  

f x~+, \�89 

and  that ,  due to the fact tha t  z is a piecewise polynomial,  

Xt+l 
lz'(x,)l*<=ch f Iz'l *. 

Since bi = hz' (xi), we obtain  from (A.7), 

which proves (AA). 

(A.7) 
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