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Abstract. The Galerkin method, together with a second order time discretization,
is applied to the periodic initial value problem for

%%‘ ( — (a(x)u,),) + (f(x, w)), =o0.

Here f(x, -) may be highly nonlinear, but a certain cancellation effect is assumed
for [f(x, u),u. Optimal order error estimates in L,, H,, and L, are derived for a
general class of piecewise polynomial spaces.

1. Introduction
Consider the intial value problem for u =u(x, #),

a7 (#—(@®u))+(f(x, w), =0, x€R, t>0, (1.1.2)
(%, 0) =y (%). (1.1.b)

We assume that a(+), f(-, ), and u,(+) are periodic of period 1, and that there
exists a positive constant ¢ such that

a{xy=c¢, «x€R. (1.2)

In Section 2, Assumptions 2.1-2.3, we list further conditions on «, f, and «,.
These conditions will in particular ensure the existence of a periodic solution
of (1.1) which is sufficiently smooth for our analysis, cf. Theorem 1.1 and Lemma
2.4,

We seek an approximate solution of (1.1) in a piecewise polynomial spline
space SA(4), defined as follows: Let 0=1x,<x; <---<%,=1 be a partition of
[0, 1], and let A denote such a partition extended periodically to the real line.
Let m and u be integers with 0 =m <u —1, and

Sk (4) ={feC™(R): f periodic, and f is a polynomial

1.
of degree <u —1 on each subinterval of 4}. (13)

The parameter p will be fixed for the rest of this paper.

Let
h=, max (& —%_y).
If the functions a and f are complicated, we use an interpolation process
v~I (v) €SE(A)
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into a piecewise polynomial space S% (), not necessarily the same as that where
the solution is sought, to evaluate certain integrals below. Assumptions con-
cerning this interpolation process are made in Section 2. These assumptions are
restrictive, but not impractical.

We apply a Galerkin procedure, combined with a second order discretization
procedure in the time variable, to Eq. (1.1.a) in weak form,

A, ) +F(u,v) =0, veH, (1.1.0)"
where
A(w,9) = fwv-+a(xw,u, (14)
and '
F(o,0) =~ [1(5. w)o, (t.5)

Let % denote steplength in time. We seek U €S%(4), (U™ (+) ~u(+, nk)), by the
rule

AL V) Fn vy =0, Vessa). (1.6)
Here
AW, V) =WV +1@WY, @)
and '
FW, V)=~ J1(H W)V (19)

It is assumed that U® and U! are given in S%,(4).

We note that the integrals occurring in (1.6) involve only piecewise poly-
nomials. In our analysis we assume that the integrals are evaluated exactly,
and that the resulting system of linear equations for the coefficients of U**+!
in a suitable basis for S% (4) is solved exactly at each step.

We have the following main result. For notation, see (2.1), (2.2}, and (2.4)
for the function spaces involved, and (4.1) for E(f), the elliptic projection of f
along A.

Theorem 1.1. Assume that Assumptions 2.1, 2.2, and 2.3 hold. Let T>0 be
given, and U°, U? such that |U°— U, =o0(1) as &, k—0.

Then there exist constants

hy=ho [T, | U= U}, |U°fy, | U]
and
c=c[T, [U°)y, [U*|y, |ulwg w10, |l o, 1]
such that for k< hy, nk<T,
[U*—u (-, nk)|; Sc{|U° —E (o) |y +| U* — E (w(-, &) +5* + 5"},

1=0, 1.
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A method of calculating U° and U! is given in Section 5. In the special case
of Hermite cubics on a uniform mesh, an easier way of calculating U°, (the
evaluation of U! requires no additional coding once (1.6) is coded), is given in
the Appendix, (joint work with Jim Douglas Jr. and Todd Dupont). In Section 6
is derived an optimal order error estimate in the maximum norm.

The methods used in this paper are similar to those used for parabolic problems
in e.g. Wheeler [15]. Galerkin methods have been applied to equations similar
to (1.1.a), so called pseudoparabolic equations, in Ford [8], where an H, estimate
was derived, and in Nassif [12]. The present paper allows stronger nonlinearities
than those treated in [8]; in [12] only linear problems were considered.

The idea of using interpolants to evaluate integrals is due to Douglas-Dupont
[4]. Instead of this, numerical quadrature could be applied, cf. e.g. Fix [7].

We conclude this introduction with a numerical example. Consider the equa-
tion (cf. [1])

-% (u —'auxx) + (u +ﬁu2)x =0

with « and g positive constants. For « =8 =0.1, for instance, this equation has
a 7-periodic travelling wave solution (x,{) =vy(x —st) where s=1.093857...
and

U (y) =1.331645 ... +w(0.492141 ... - ¥)?

with w» the canoidal function w(z) =c#n(z, 0.314542...). The notation for the
canoidal function is as in [9] (and the numerical procedures of that paper were
used in the computations reported below). For the existence of such a traveiling
wave solution, and for the evaluation of the different parameters involved, see
[10, Art.253]. Taking #(x, 0) =v,(x) the procedure (1.6) was applied in the
following slightly varied form (<f, g> = f§ f()g(x)dx in this example)

—Un— +1 __ [Jn—

Un+r . Un—1 .
—0 (T V) (0 —1) U B — LU B =0
‘where 0 <6 <1. The reason for this variation is as follows: as « and g tend to
zero, the method (1.6), i.e., the above with 8 =0, reduces to

< Un+l — n—1

which is not necessarily stable. On the other hand, if 0 tends to 1 as « and § tend
to zero, the limiting scheme is stable. Hence, for small « and §, the varied proce-
dure with 6>0 may conceivably have better stability properties than (1.6).
The analysis for the varied scheme is almost the same as for (1.6), and the results
are the same.

The space of Hermite cubics S1(4) with 4 a uniform partition of [0, 7] into
M subintervals of equal length was used, and the integrations involved performed
exactly. The parameter § was taken as 1/3, U°® was the Hermite interpolant of
v, (cf. the Appendix) and U! was evaluated by the obvious modification of (5.2)
below. We give a few results of the numerical calculations. The solution was

20*
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calculated for 0 <¢=40, and to obtain an approximation to the error in the
maximum norm, the error was evaluated at ¢ =40 for x = (integer) - 0.1.

Approximate error in the maximum norm for ¢ = 40

MN\k 0.0% 0.025 0.0125 0.00625 0.003125
4 - 9.4 X 108 9.0 X 1073 9.0 X 1073 9.0 X 10~3
8 1.8 x 1073 9.3 X 107* 7.2 X 1074 7.6 x 107* 7.7 X 10~

16 1.3 X 1078 3.5 X 107¢ 1.1 x 1074 6.3 X 1078 5.5 %x 1078

Letting £(k, M) denote the computed maximal error at {=40, we have

log, (£(0.025,4)/£(0.00625,8) ) ~3.6,

log, (£(0.0125,4)/¢(0.003125,8) ) ~3.5,

log, (£(0.05,8)/¢(0.0125,16)) ~ 4.0,

log, (£(0.025,8)/£(0.00625,46)) ~3.9,
and

log, (£(0.0125,8)/¢(0.003125,16)) ~3.7.

The results to be established below (see in particular the Appendix) show that
for M sufficiently large the error in the maximum norm is less than C (k% 4 M-4).

The author thanks J. Bona, J. Douglas Jr. and T. Dupont for useful conversations
concerning the content of this paper.

2. Notation, General Assumptions, and Preliminary Lemmas

Notation. The letters ¢, C, and G will denote constants, not necessarily the
same at each occurrence unless subindiced. Square brackets will be used to indicate
the essential dependence for these constants, e.g. C[T].

Let H;(W™) denote the real Sobolev space of functions which have j deriva-
tives in L, locally (in %), and are periodic of period 1. Let

{w, v) =f1wv
0

and
div  div \ |
loli={vlu= (0 ;K% 747>) ’ (2)
Jolv== 3 sup| () | (22)
0=t=<j z€R ax
We note that there exists a constant C such that for v€H,,
lolwe =Clol (23)

For g ==g(x, t), let W°(H;, T) be the closure of smooth functions in ¢ into H;
in the norm

2 D, (2.4)

lelwpen= 2,

osisjo<i<T
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For % given, put
g (-)=g(+, nk),
and
+1__ o1
b= E
Also, with 4 as in (1.7), let

loli = (v, o). (235)

Assumptions for the Problem (1.1)
Recall that p is fixed, cf. (1.3).
Assumption 2.1. The function a (x) €W, and there exists a positive constant ¢
such that
a(x)y=c¢, x€R (1.2)

Assumption 2.2. Given an integer 0SB =y, 7y p f(+, y)eWZ,, and there
exists a continuous function G [§, y] such that

2o 9wz, =618,

Furthermore, with F (w, v) = — [3f(x, W)¥,, there exists a constant C such that
for veH,,

[F(, v)| £C( +|v|&)- (2.6)

Assumption 2.3. u,€H,.
In connection with Assumption 2.2, we note that since

f(x, w(x)) =w(x)0ff;(x, w(x)7v)dr +f(x, 0),

F(w, v) is well-defined for w, v€H,, by (2.3). The condition (2.6} does not follow
from the other assumptions.

Lemma 2.1. Let T >0 be given, and assume that Assumptions 2.1-2.3 hold.
Then the problem (1.1) has a periodic solution # in W°(H,, T) nW;*(H,, T).

A proof, using the approach of converting (1.1.a) to an integral equation,
will appear in [2]. The lemma can also be proved using the method of Faedo-
Galerkin, cf. [11, Chapitre 1]. The crucial assumption is (2.6), which allows us
to obtain a priori bounds in L, and thus handle the nonlinear term.

Assumptions and Results for the Interpolation Process

We begin by stating exactly the approximation theoretic properties of S% (4)
(and S%(4)) that we need.

Lemma 2.2. There exists a constant C independent of 4, such that given
veH,, 1 Sv=<pu, (veW,?), there exists X €S, (4) such that

|[v =X} =< Ch|v],, j=0,1, (2.7)
o — X Jws < C*folwz. (28)
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Proof. The result (2.8) is proved in [3]. The same construction of X yields
(2.7) for y=yu. For 1 v <<y, (2.7) follows by mollifying v, and constructing X
for the mollified function.

For the spline space S&(4) and its associated linear interpolation process I,
we assume that I acts as the identity on S%(A), and that there exists a constant C
such that

@) |w> = Clv]w, (2.9)

1@ =Clofo -+ Ao - (2.10)

In practice, these conditions restrict the interpolation process to using only
values of the function v, i.e., not values of derivatives. For simplicity, we consider
the same interpolation process for evaluating 4 and F. The restrictions (of which
only (2.10) is essential since (2.9) in practice ““follows” from (2.10)) pertain to
the interpolation process used for evaluating F.

Lemma 2.3. There exists a constant C such that
(@) —vfo=CH|v|,, 1=v=u, (2.11)
17() =olwe = Ch*|o|wg-. (2.12)
Proof. Let X be as in (2.7). Since I (X) =X, we obtain from (2.10),
I1(w) —olo=]7(v —X) 4 (X —2) o
SC(lo =X+l —X[p) =C# o}

This proves (2.11); (2.12) is proved similarly using (2.8) and (2.9).
The next four lemmas give the properties of 4 and F that will be used later.

Lemma 2.4. There exists a constant C such that for v, weH,,
|4 (w, v) — 4 (w, v)| S CH*|w]y o],

Proof. This is immediate from the definitions (1.4) and (1.7}, using (2.12) and
Assumption 2.1.

Lemma 2.5. There exist positive constants ¢, and #, such that for # <%,, and
vEH,,
ot loh =lvli=alvlh

Proof. This follows from (2.5), Lemma 2.4 and Assumption 2.1.
Lemma 2.6. There exists a function G, such that
IF(w,9) —F (,)| <G, [Jwl) loh,  1=r=p
Proof. We have by (2.11)
1P, ) —F @, )] =] (165, ) ~ 15, )

<|f(x, w) —I(f(x @)oo}
SCR |t (x, w)l ok
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Using (2.3) and Assumption 2.2, we find that ||f(x, »)], can be bounded in terms
of |w],

Lemma 2.7. There exists a function G, such that
lIN; (wy, v) —F (ws, v)|
=Gyl [wehl v h (les —wslo + 2wy —wafy)-

Proof. We have
|ﬁ(w1’ wz: I —lfI( (,2) —f(x, wz))'”xl

S C(IF(x, wy) —f(x, wo) |o +A ] (x, wy) —F (%, wo) o) [0 -
Since

1
F(x, @) —f(x, w,) = (0, "wz)dff;(x: w +r(w2——w1))d1,

the desired estimate obtains.

3. Stability in H, of the Galerkin Process
Throughout this section it is understood that % <4;, so that the conclusion
of Lemma 2.5 holds. We shall show that the H;-norm of the approximate solution
is bounded as 4, % tend to zero.
Let
d=U U, j=1,2, ...

We start with a preliminary result:

Lemma 3.1. Let ¢; be as in Lemma 2.5, and G, [, +] as in Lemma 2.7. There
exists a function c,[-] such that

p

i—

leh < e etz +kea []UM D) 11_71 (1 +2keiGy [| U, U ).
Proof. Let, with c, defined below,
oy =|et|y +ke, [JU], (3-1)
by =2keiGy [| U, |U' ). (3-2)
Consider first the case § =2 (f =1 is trivial). Let =1 and V =¢2—e¢' in (1.6),
and note that U2 —U%=¢? ¢t Using Lemma 2.7 with w, =0 it follows that
"52"37“‘“31"% — F(UL 2 —e) <G, T o 2 1
A= — F (UL, &8 —el) <G, [| U |, 0] | U (e + e o)-

Hence, with this defining c,,
le*ls <letls +Eea[JU ]
Assume now inductively that

11z éalg (1+B). 3.3)



296 L. Wahlbin
Write (1.6) at two adjacent time levels, and put V =¢/** —¢/~. We then obtain
RT3 o i , ~ . .
"31 “A 2k“e IIA [ (F (U’, 61+1 __ey-—l) —F (Uy—-l’ e;+1 ——6’_1))
=aG U U R ek (e e +le= o),

Or . . .
1 e <1 e + il

By the induction hypothesis {3.3) we then have

I<a [T 0 +0)

and (3.3) is proven. The result of the lemma is now immediate.

o+ 0 S [T 0 4+8) (7 +3)

We can now prove the stability result:

Lemma 3.2. Let T>0 be given, and assume that |el}, =0(1) as A, k0.
Then there exist %, and c;,

ho=hy [T, "51"1: " Uo"l: " Ul"l]r
s =3[ T, |U°)y, | U]
such that for # <hy, nk < T,
U <cs

Proof. We first note, taking v =1, w =v=U" in Lemma 2.6, and using (2.6)
that
[F@", U] £COU+[U7) + 4G, (U] U}

Let V=U"*'4-U"'in (1.6). Then

1™ — 10"
2k

I Un Un+1+Un—1)l
|F U, yrtt—ut— (U — U Y)|
o(t +[U) +24G, (U U},

A

By Lemma 2.6 with w, =0,
|F (U™, e+ —e")| <Go U]y, 0] - [Uh (" +[e™)-
Hence we obtain, this defining G; and ¢,,

A+1)2  grn—142
T IR <6 qun 0 etk ) e+

or, in the notation of (3.1), (3.2), by Lemma 3.1,

L
2k

B <6iv" e 1_;[ (1 48 +7)
+ey (1 +{UF).
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With ¢; & <1, ¢ to be specified later, and cg =max (|
by induction that

|.£), we assume

Ul Scqexp (csik), §<m. (3.5)
Then

H (1+8) =G, [T,c5¢), nk=T.
1

i
Inserting into (3.4) we obtain, assuming cs=1,

105 |0k +22Gy(2Gaa +A) +2ke, (1 +[U )
<ciexp(2nkey) - (e 2% 42k Gy(2Gya, k) +4kc,)
<chexp(2nker) - (1 +2kcy {z e cis [csexp (5 T)] -

(2G,IT, ¢, ¢5] - & +h)}) -

Hence, taking e.g., ¢ such that 2 = the induction step will work provided 4

and a; =|é*|z +kc, [|U],] are small enough i.e. provided % and % are small
enough. For fixed T, the restriction on % is automatically removed.

This proves (3.5), and concludes the proof of the lemma.

4. Error Estimates in H, and H,,

Let Z=2Z(x,t) denote the elliptic projection of u(x,?) along 4, Z(-,t)=
E (u(-, 9))€S% (), defined by

A@Z,V)=4@w V), VeSa(d). (4.1)
Here « is the solution to (1.1). Let
5" — Un .
17" — M” __Zﬁ‘
We note that by Taylor expansion around ¢ =% we have
& (" — (a()43),) + (f (%, ")), =R, (4-2)
where
KR, v)| scB|wlwg w, nlvfy (43)

The following lemma summarizes the results we need for the elliptic pro-
jection:

Lemma 4.1, There exists a constant ¢ such that for 2 < T,

Sup Wl < chlulws @, 1y, 1=0,1, (4.4)
<j<n

sup |27} =c|ulwg e, @.5)

0sjsn

sup 8,27y <clwlwp @1 (4.6)
0sj=n
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Proof. See e.g. [13, 14].
We now start to derive the error estimates. We obtain from (1.6) and (4.2),
A (8,7 V)=4 (8, U V)—4(5,2", V)
=—F(U* V)—A ({0, V) + A (6, 2", V) — A (8,2, V)
= —F(U" V) + F(u", V) +A4(8,2% V) — A (82", V) +<R,, V>
—{—F(U" V) +F @, V)}+{F W, V) —F o, )}
+{A(8,2%, V) = A (8, 2" V)} +<R,, V.
Let V =£"1 1 £~ We use Lemma 2.7 to estimate the first term on the right,
Lemma 2.6 with v =y for the second, Lemma 2.4 and (4.6) for the third, and
(4.3) for the last term. We obtain
W < (G0 ok (0 — o+ B[O )
+Gy (w2 4 b |ulwp
+c k2| ulwg @, o} (16 16" ).
or, using that U” — " =£" —g" and (4.4),

2 W < el HEh b+ W
+ 1 Gy [ ] +wlwe e, ) + B fulwg w0}
= S+ -+,
ey =en 50p 107 Wb b il

Hence

I L+ S o) (871 18 ) +egh (49
and it follows that
16" < cs (I&°: +[&4 ) + %2+ 7*), =k<T, (4.7)
cg=cs[T, sup | U'ly, |u|wg @, 10, |4 |ws @, 0] (4.8)
JRET
By (4.4) we obtain
[0 el Sclloh +IEh R, mEST, i=04 (49

where the constant has the same dependence as in (4.8).

Pyoof of Theorem 1.1. By Lemma 3.2, U” is bounded in H, for h=<hy, nk =T,
the bound depending on |U®|, and |U'|,. Hence the theorem follows from (4.9).

5. A Method of Calculating U° and U?

We shall give a general method for finding U® and U, close to the elliptic
projections of #, and % (-, ) respectively.
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In addition to the general assumptions of Section 2, we assume in this section
that

g €H g
Let U be given by the rule
~ 1 1
AU, V)= [T(u)V+ [ I(a(um),)V. VeSH(A), (5.1)
0 0
and U by
~ (U= ~
i (—’Lk—U« V)+F (U, V) =0, VeSi(d). (5.2)

Using the same techniques as in Section 4, it is easy to prove that
leok = A fuolura,
where ¢ only depends on 4, and that
18t < o (B + £%) + €1, (5-3)

where ¢ = ¢ [JU, o]l [ erm].
Taking V=U'—U%in (5.2) we see that

|0t = U =c (U] %.
Combining those results with Theorem 1.1 the following theorem obtains:

Theorem 5.1. Assume that Assumptions 2.1 and 2.2. hold, and that u,€H,,,,.
Let T >0 be given, and let U° and U* be given by (5.1) and (5.2).

Then there exist constants #, and c,

hn=ho [T»

) "u+1]
and

¢=¢[T, |ttyllss, |#lwg @, |0 it )]
such that for h</hy, nk<T,
[U" —u(-, nk) | Sc(k? +R*TY,  i=0,1.

6. Optimal Order Error Estimates in Maximum Norm

We assume in this section that the partitions A considered are quasiuniform,
i.e., that there exists a constant ¢ such that

h<c minN(x,-——xi_l). (6.1)

.....

We have the following result for the error in the elliptic projection, cf. (4.1).
Lemma 6.1. Assume that (6.1) holds. Then there exists a constant C such that
lo —E @) lwg = Chulo|ws-

Proof. The proof of this will appear in [5]. For m =0, i.e., continuous piece-
wise polynomials, the result holds without the assumption of quasiuniformicity,
see [16].
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Let
lulwe wie,ny = sup Ju(-, &) wg,
o<tsT

and let W(W,°, T) denote the corresponding space. We have the following
variant of Theorem 5.1.

Theorem 6.1. Assume that the hypotheses of Theorem 5.1 hold, that (6.1)
holds, and that the solution of (1.1) belongs to Wg (W2, T).

Then there exist constants 4, and c,
e =c[T, fuolusss |lws ovie, ), |ulwy et m)]
such that for A< hy, nk<T,
JU™ —u(-, nB) s Skt + .
Proof. By (4.7) and (2.3) we have
18" lwee < e (k* + 7).
Hence Lemma 6.1 gives
U —ulws <" —E (") |wg + " wg = c (k2 +7#).

Remark 6.1.The solution will belong to Wg° (W}°, T) if it belongs to Wg° (H 1, T).
Using Lemma 2.1, conditions which guarantee this are easily found in terms of
a, f, and u,.

Appendix
Joint work with Jim Douglas Jr. and Todd Dupont

We shall prove that in the case of Hermite cubics on a uniform mesh, the
Hermite interpolant is close to the elliptic projection. Hence if U? is chosen as
the Hermite interpolant of #,, and U? according to (5.2), the optimal orders of
convergence in H,, H, and L are retained provided #, is smooth enough (see
(4.1), (5.3), and the proof of Theorem 6.1).

Consider S§(4), with 4 ={%};cz, %;=1h, h1=NeZ. We introduce a basis
{V,,S;}, i=1, ..., N, for this space; V; and S; are the periodic extensions of V,
and S;, where V,(x) =V (xh™t —1), S;(x) =S (xht —i), and

0, y=1, or y=—A1,
V(y)=3(y —1)2(2y +1), 0osy=1,
(y+1)2*(—2y+1), —1=y=0,
0, y=1, or y=-—1,
Sy =y (y—1)> 0=y=1,
y(y+1)?: —1=sy=o0.

The Hermite interpolant of a function »(x) is

I(u) = ﬁvu(m) V, 4+ (ih)hS,.
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We shall prove that
I () —E (u) | < cht|uels.

It suffices to consider the case when

A(w,v) = f wv +w0,
see e.g. [5, Section 3]. With 2 =1 () —E (u) we then have
Iz|}t =6f](I () —u)z —I—ofl(I () —u),2,
It is well known that |[I (#) —u, < ch*||u],, and hence

Lj?(l(u) —u)z

To handle the second term in (A.2), we use the fact (see e.g. [

on (x;, x;,,) we have

I(u) —u=3(L} + L5+ R+ R,

where
L (1) =y w9(6) (5 — 52 (50 — )%,
- 1
Liia(®) =y u® (2;41) (8 — 22 (%4, — %)%,
Xi+r
Rif (x)= [ 7 (x, )(u () —u¥(x,))dt
Ria(0) = J’rm(x ) (u®(0) —u® (x,))dt,
and
‘—a%r? (, t)| <cht,
Let
N
z=2aV;+b;S;.
i=1
We have

1 N1 x4,y

[1} i=0 ¢

Using (A.5) it follows that

N-—1 x4,

3 2 ] (RY RO Ao el +oh® uls

=0

By computation we find that

<o July Do < 3o |2+ B Jul

301

(A.2)

(A3)

6, (3.48)]) that

(A.4)

(A.5)
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and, with subscripts interpreted modulo N if necessary,

F @S+ T ILH S =0,

Inserting (A.3) and (A.6) into (A.2) we hence obtain

N—1 x4+,

Zo x‘f (OiLi30)(Si)e +bi1 (L) (Siva)s)

i=

2t < ch®ufs +e

(A.7)

.

N-1
=ch® ”74”§ +ch® 1;0 b, (“(4) (%:41) —u(4)(x,-_1))

We next note that

Zi+1 ‘}
l“m (%i41) —u® (%;-1)] é"h}( / l“(a) (t)lzdt) )

Xi-y

and that, due to the fact that z is a piecewise polynomial,
, Zi+1
| (x)[2=Zeht [ |22
X

Since b; =h2'(x;), we obtain from (A.7),
=l < ch® Juli + <o 213

which proves (A.1).
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