
Z. Phys. D 29, 115-119 (1994) ZEITSCHRIFT 
FOR PHYSIK D 
© Springer-Verlag 1994 

Resonant double electron capture by fast He 2+ from helium: 
the first-order Born approximation with correct boundary condition 
L. Gulyfis, Gy. Szab6 
Institute of Nuclear Research of the Hungarian Academy of Sciences, P.O. Box 51, H-4001 Debrecen, Hungary 

Received: 16 March 1993/Final version: 6 July 1993 

Abstract. The first-order Born approximation with cor- 
rect boundary condition is applied in a study of the reso- 
nant double electron capture by fast He 2÷ from helium. 
A configuration-interaction wave function is employed 
to describe the ground state of helium. Total cross section 
as a function of the impact energy is calculated and com- 
pared with experimental and theoretical values. 

PACS: 34.70. 

Introduction 

The double electron capture in high energy He 2 ++ He 
collision has received considerable interest from both 
theoretical and experimental points of view over the past 
decades. The first experimental studies were performed 
several years ago [1-3]. Comparing these earlier results 
to the new ones [4, 5] some deviation could be found 
in the energy dependence of the total cross section data 
in the impact energy range 0.4-6.0 MeV [6] (see Fig. 2 
below). The data from [1, 5] are smooth continuation 
of each other while the results from [2, 3] exhibit differ- 
ent qualitative dependence. At lower energies the data 
of DuBois [4] confirm the tendency predicted by the 
measurement of Pivovar et al. [2]. The newest experi- 
mental results of Schuch et al. [7] agree with the data 
of de Castro Farina et al. [5] at 1.5 MeV impact energy, 
however their experimental total cross section values are 
somewhat lower than it could be predicted from [5] 
at the highest energies. 

The theoretical studies for the above mentioned reac- 
tion are concentrated mainly on the impact energy range 
0.4-1.5 MeV, where most of the experimental data are 
available. The calculation of Gerasimenko [8] based on 
a first Born like calculation seems to overestimate the 
experimental data. The two-state atomic expansion of 
Theisen and McGuire [9] is in good agreement with 
the experimental data at lower energies, however it seems 

to overerstimate the process at high collision energies. 
As a higher-order perturbation approach the Continuum 
Distorted Wave (CDW) approximation was given by 
Gayet et al. [10]. Two different types of wave functions 
(hydrogenic and Hartree Fock (HF)) were applied for 
representing the final state. The difference between the 
two cases reveals that the two-electron capture is very 
sensitive to the choice of the orbitals formed around 
the projectile. In a further study [6] the Continuum Dis- 
torted Wave Eikonal Initial States approximation 
(CDW-EIS) was applied, too, and a very good agreement 
with group of experiments [1, 5] was found in the studied 
energy range 0.2-3.0 MeV [6]. 

All the theoretical descriptions mentioned above are 
based on the independent particle (IPA) approximations 
[11, 12]. Namely, the interelectron Coulomb interaction 
is approximated by an appropriate average field, such 
as the Hartree-Fock atomic model potential. So the IPA 
completely ignore both the 'dynamic' (effect of the elec- 
tron-electron interaction in the scattering region) and 
'static' (effect of the electron-electron interaction in the 
ground states) correlations. Consequently, in this formal- 
ism the double capture transition probability P leads 
to the product P: P2, where P~ and P2 are the probabilities 
for the first and second capture events, respectively. 

Recently attempts have been made to avoid the IPA 
through the appropriate description of the correlated 
electronic orbitals of the unperturbed hamiltonians. 
Crothers and McCarroll [11] used the Pluvinage wave 
function to describe the initial state applying the so- 
called continuum-continuum correlation within the 
CDW approach. The single differential cross section 
(SDCS) values are lower than those of Gayet et al. [6, 
10] applying a similar CDW model in the framework 
of the independent particle approach. Deco et al. [13] 
used the configuration-interaction (CI) wave function for 
describing the initial and final states also in the frame 
of the CDW approach. The SDCS values, which are 
higher than the corresponding ones of Gayet et al. [10] 
(with HF orbitals, see [13]) especially at higher energies, 
demonstrates the role of the static correlation in the de- 
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scription. More recently Gravielle et al. [14] calculated 
the double electron capture process in the frame of the 
second-order distorted wave formalism• The electronic 
repulsion was also included in first order as a perturba- 
tion potential during the collision in their calculation, 
and the SDCS values were very similar to the ones of 
Crothers et al. [11]. Moreover, a negligible difference 
was found between the results using HF and CI wave 
functions• As it is seen, the static correlation has a differ- 
ent contribution in the different theoretical models used 
for describing the double capture in He 2 ÷ + He collision 
(e.g. the differences between the results using uncorrelat- 
ed and correlated wave functions is and is not negligible 
in the study [13] and [14], respectively). However, these 
deviations does not change the results significantly and 
the experimental values with similar or larger deviations 
is not able answer the question regarding the role of 
the static correlation in description of these reaction• 
It is interesting to note that all of these models still use 
the product or the sum of the products of one electron 
capture amplitudes, which correspond to the participat- 
ing individual orbitals in a correlated wave function. 

All of the experimental data mentioned refer to the 
capture into all states of the helium, in contradiction 
with the theoretical SDCS values referring to the reso- 
nant double capture, i.e.: 

He 2+ +He(ls2)  ~ He(1 s2)+He 2+. (1) 

Gravielle et al. [14] found that the contribution from 
capture into excited states is about 30% of the cross 
section for capture into the ground state at 180 keV. 
This contribution decreases with increasing impact ve- 
locity and so it is not likely to affect the behavior of 
the SDCS as a function of the impact energy. 

The aim of the present work is to study the process 
(1) in the frame of the first Born approximation with 
correct boundary conditions (BIB) [15]. Recently the 
B1B model has been satisfactory used for the description 
of single electron capture phenomena. It gives compara- 
ble values to the ones of higher order models (CDW 
and CDW-EIS) at not too high impact velocities where 
the Thomas scattering is negligible [15-17]• So the pres- 
ent study try also to find an answer to the question 
whether a similar conclusion could be valid in describing 
the double capture process (1). In the present calculation 
the bound states are described by CI wave function. 

In the next section we give the details of our deriva- 
tion and the last section contains comparison of the pres- 
ent results with experimental and other theoretical 
values. 

Unless stated otherwise atomic units will be used 
throughout. 

Theory 

Consider the following two-electron capture process 

Zp + (ZT, el, e2)i ~ (Ze, el, e2)f + ZT, (2) 

where Zr  (K=P,  T) is the charge of the K th nucleus 
and e k (k= 1, 2) is the kth electron. The parenthesis (..)j 
symbolizes the bound states characterized by the j ( =  i, 
f )  quantum numbers. Let rKk be the position vectors 
of the kth electron relative to the Kth nucleus. The vec- 
tor of the internuclear axis will be denoted by R, while 
ra2 represent the interelectron relative vector. Further, 
ri(rfl is the position vector of the center of mass system 
Z r - e  j - e 2 ( Z p - e l - e 2 )  relative to Ze(Zr), Ki and K I 
are the initial and final momenta• The masses of projec- 
tile and target nucleus are Mp and Mr.  

The 'prior' and the 'post '  forms of the transition am- 
plitude for process (2) in the first Born approximation 
with asymptotically correct boundary condition are the 
following: 

Ti(f-) (P) = ~ f  d ri d re /d  rp2 e iK1rs (p~ ( te l  , rp2) 

Z e Z e 2 Z p ]  

rel rp2 ~- 
(3.a) i 

Ti(f+)(P) = I~  dry dr r ,  drr2 eiK'~s q~7 (rpt, rp2) 
Z, Zr  2ZT] iK 

• t----a-~te ~ ' ¢&(rr:, rr2) E(R), (3.b) 
rT1 rT2 l X j  

where, 

E(R) = exp {i ZP(ZTv -- 2) ln(vR -- vR) 

+ i ZT(ZPv -- 2) ln(vR + vR)}, (4) 

qof(rpl , rp2 ) and q~i(rT1, rT2) are the initial and final elec- 
tronic wave functions, and v is the incident velocity vec- 
tor. To order O(1/Me, 1/MT) the term K i r i + K i r  I has 
a simple form K ~ r i + K i r I = p r i - - v r p t - - v r ~ E = - p r y  
--vrTl--vrT2 , with p being the momentum transferred 
to the projectile (3a, b) shows that the electron-electron 
repulsion 1/rl2 enters the problem through the unper- 
turbed initial and final wave functions (static correlation) 
in this first order model. Higher order terms are required 
to include the dynamic correlation [12]. 

From now we concentrate on process (1), where most 
of the experimental and theoretical data are available. 
In this case the calculation is simplified because the loga- 
rithmic term E(R) in (3a, b) vanishes. For describing 
the electronic ground state a configuration-interaction 
wave function of Joachim et al. [18] has been used: 

tpCI'r r ~ 1 @ 4~z +~ t :, 2)=~-2_/_, Z Fl(r:,r2) 
4Jc l=o 2 /+1  m=-i 

Fl(rl, r2) = 2 ~.,k~A(1)tl +P~ 2) [41 ÷,,l,,-(cq r : ) ,  
n<__k 

• ~b 1 +k,l,.~(~, r g ]  (5) 

with 

q~i,t,,, (c~, r)=rie -~2- Ylm(f) (6) 

being the unnormalized Slater-type orbitals• Further- 
more n+k<=# and ~=3.7 is a nonlinear variational pa- 
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rameter. The coefficients ~(~) ~-,,k are linear variational pa- 
rameters whose values are obtained by the Rayleigh,Ritz 
method. P/,2 (J = i, f )  is the operator which exchanges 
1 and 2 and, Y~m is the usual spherical harmonics. So 
the transition amplitude for the process (2) is a linear 
combination of the transition amplitudes (f(+'-)(p), see 
below) corresponding to each of the participating Slater 
orbitals 

2i ,~$ li If #i #f  

T},}'-)(P) = 2 Z 2 E Z 2 xh . ; ,  ;Xni  k ~ z~n  f k f 
l i = O  I f  = 0  mi = - - l i  m f  = - - l f  n i ~ k i  o f  <=kf 

!I+ P,/2) (! + P £) ~(+, _) 
" (21 i+l ) (21f+l )  J (P) 

where, 

(7) 

f(-)(p) = ~j'~ dr~ drel dre2 e~Kf~fc~+,,,tf,m,(rp1) 

• ~t,f+kS, ly, ms(rp2) [ Z / ,  Z p  2 2 / , ]  
rp 1 r p 2  ' } - - - R  - ] 

• ei~m4~+,~,h,m,(rrO q~h+k,h,,,~(rr2). (8) 

The subscripts i, f in (7, 8) label the initial and final 
quantities f(+)(p) could be derived similarly (see (3 b)), 
so in the following we deal with the prior form of the 
transition matrix (3 a). 

Introducing the Fourier transform and a partial wave 
representation of the wave function and the potentials, 
we get: 

l l  l 7 

(nlmh ~,P! - -  "'" 
11 = 0  ml = - l r  /7=0  m7 = -17 

g'~liO ~ l i - - m  i E"~If 0 ¢"~lymf 
• Jt~'Im "~- ' /10,120 ~'~' l~ml,12m2 * - ' 1 1 0 , 1 3 0  ~11--~17~t,13--m3 

• ~ . .q40 ,150  ~ J l a m 4 , 1 5 m 5  ~'-~/40,160 X-'lam~a,16m6 
d'~/30 1~13m 3 

• x~. , /60,170 l ~16m6 ,17m 7 
* ~" :k ^ * ^ • v~, .~ (v) v ; , ,~  (v) v ~ , . .  (p) (-)  ghl±h + ;~ (P), (9) 

where, 

1 
" ( - -  l )  mr+re '  [I l l  [ I f ]  [11]  [13]  [ / 4 ]  [ / 6 ]  ( [ / 2 ]  [ / 5 ]  [/7])Y, 

[lk] = 21k + 1, and ~;~"~ is the Clebs-Gordan coeffi- ~Jl  I ~ 1 , / 2 m 2  

cient. Furthermore 
3 ce 

( - )  
ght±h-tv(P)--(4~) ~ I dql q2 

0 

• E~-- Gt~,,~(q~)Qhht~.~(ql,v ) 

oo 

I dq2 q2 G;~,(q2 ) Qht, t,~,(q2, v) 
0 

• $231617(P, ql ,  q2) 
3 ~ 

+(4n) ~ ~ dq~ q~ Gl~n~(q~) Qhhl2.~(ql, V) 
0 

dq2 q22 E2-- G;~k~(qz) Qht, t~k~(q2, v) 
0 

' St2td~(P, q~, q2) 
3 oo 

+2Zv(4z0 y ~ dq~ q2 Gtz,z(ql)Qhht2,,(q~, v) 
0 

with, 

oo 

dq2 q2 2 Glskz(q2) Qh*,t~k,(q2) 
0 

• S~316tT(P, qt ,  q2), (10) 

oo 

Gu(q) = ~ dr /+i+ 2jl(qr) e -~ 
0 

Ql,t213~(q, v) = (. drrll+"+2j12(vr)j13(qr)e-~ 
0 
oo 

S~112z~(P, ql, q2) = ~ drrkjl~(pr)jz~(ql r)Jt~(q2r), 
0 

(11) 

where j~(x) is the spherical Bessel function• Ej is the 
energy of the j th  electron in the initial state (E0=E 1 
+ E2) is the ground state energy of the He atom calculat- 
ed with CI wave function, see (5)). Considering the above 
formulas the following remarks would be important re- 
garding the physics involved. As the present description 
based on a frst order model (B1B) the electrons interact 
separately with the distorted field - -Zr / rKk+ZK/R  (K 
= P, T; k = 1, 2, see (3)). The initial and final bound-state 
wave functions has a form of linear combinations of un- 
normalized Slater-type orbitals. As a consequence the 
transition amplitude is a linear combination of ampli- 
tudes described by (9, 10), Equation 10 describe the radi- 
al parts of the following processes. The first term charac- 
terize the product of the transition between appropriate 
Slater orbitals of the active (first) electron via the 
--ZK/rKk potential and an overlap between appropriate 
Slater orbitals (integration over ql and q2, respectively, 
translation factors and other term are also involved). 
The different (initial and final) Slater orbitals are re- 
garded as eigenfunctions of approximate (initial and fi- 
nal) Hamilton operators representing different parts of 
correlation and screening. So the nonvanishing overlap 
of these functions could also describe a real physical 
transition so it is retained also [12]. The other terms 
has a similar meanings. (It should also mention here 
that the orthogonality condition of the wave functions 
is a non necessary condition in the B I B  model [15].) 

The cross section for a process specified in (1) is de- 
fined: 

P m a x  

aif=27z--- ~ S [~fl2pdp, (12) 
P m l n  

where Tif is either Ti(f +) or T/f -) (because of the special 
feature of the process (1)), Pmi,--AE/v and pmax= Oe are 
the minimum and maximum momentum transfers, and 
A E is the energy transfer during the collision. The three- 
dimensional integral, which is required to obtain the 
SDCS was performed using the Gauss-Legendre quadra- 
ture. In the case of rapidly oscillating integrals (see (11)) 
the ~-algorithm [19] was used to accelerate the computa- 
tion, The summation in (9) was retained up to the 11 
-- 17 ~ 2 values because of the large computing time. The 
estimated contribution of the additional terms were less 
than 5%. 
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Results and discussions 

Single differential cross section for resonant double elec- 
tron capture by alpha particle impinging on He (1 s 2) tar- 
get calculated in the B1B approximation for moderately 
high energies is presented in Fig. 1. Two types of the 
correlated CI-wave functions corresponding to the 
number 12 and 60 of one-electron unnormalized Slater 
orbitats (# = 3, 6 respectively, n+ k< # see (5, 6)) were 
applied. The proper ground-state energy values are E o = 
-2.898 a.u. and Eo = --2.90227, respectively. Differences 
between the total cross section data calculated with # = 3 
and # = 6  parameters were less than 2%, which shows 
a very good convergence behavior of the CI wave func- 
tion. (The curves in Figures correspond to the CI wave 
functions belonging parametrising the # = 3). Uncorrelat- 
ed bound state wave functions, i.e. a product of K-shell 
one electronic hydrogen-like orbitals with a variationally 
determined nuclear charge Z =  1.67, and a product of 
5 - z  HF Clementi-Roetti orbitals (RHF) [20] were also 
applied for comparison. At the lowest energies the SDCS 
values calculated with hydrogen-like functions are 10% 
higher than those calculated with CI wave functions. 
The difference slightly increases up to 25% (at 6 MeV) 
with increasing projectile energies. The tendency and the 
difference at lower energies is the same for RHF wave 
functions, however the deviations at the higher energy 
are larger (50% at 6 MeV). The increasing deviation with 
increasing impact energies in the SDCS values obtained 
with H-like and RHF functions is due to the difference 
between these orbitals at large momentum values. 

The comparison of the B1B calculation using CI func- 
tions with experiments and theoretical approximations 
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lision. Theories are for the resonant collisions (1 s 2 -- 1 s2). Solid line: 
present B1B approach with CI wave function; long dashed lines: 
CDW approach [6]; short dashed line: CDW approach [11]; dotted 
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[2]; full  circles: [5]; open triangles: [4]; full  triangles: [7]; open 
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at different impact energy ranges 0.5-1.5 MeV and 1.5- 
6.0 MeV is given in Fig. 2a, b, respectively. It is seen 
that the energy dependence of the experimental results 
from [1, 5, 7] is in agreement with the predictions of 
different theories. There are deviations among the SDCS 
values predicted by the calculations using different types 
of wave functions, especially in the lower energy range 
where most of the data are available. (Here it is impor- 
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tant to note the limited validity some of these theories). 
In the case of the independent particle approximation 
a very good agreement with the experimental data is 
found with the CDW-EIS calculation in the whole ener- 
gy region, while the CDW one predicts higher values 
at the lowest energies [t7]. The tendency is the same 
in these two models in describing the single capture pro- 
cesses. Differences are also found between the CDW cal- 
culations using different types of correlated wave func- 
tions especially at lower impact energies. (In [6] and 
[13] the same CDW code were used and in [11] the 
sequence of events was allowed.) The present B1B ap- 
proximation using CI wave function is in good agree- 
ment with the experimental data especially in the higher 
impact energy region where the model is applicable for 
the single electron capture. This implies that the double 
or multiple scattering phenomena, described by higher 
order theories does not influence essentially the double 
capture process (1) in the above energy region. However 
relating to this conclusion the deviations among the ex- 
perimental data should also mentioned. 

This work was supported by the Hungarian National Science 
Foundation (OTKA, F4304) 

Note added in proof. After submitting the present manuscript, the 
authors became aware of another calculation of the double capture 
within a CB1 approximation (Belkic, D~.: Phys. Rev. A47, 189 
(1993)) resulting in a higher cross section. The source of this discre- 
pancy has not found yet. 
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