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We construct explicit solutions of the Klein-Gordon equation for continuum states. The 
role of the energy in the single-particle Klein-Gordon theory is elucidated. Special emphasis 
is laid on the determination of resonance states in the continuum for overcritical potentials. 
As examples for long-range interactions we depict solutions for the Coulomb potential of a 
point-like nucleus as well as an extended nucleus. The square-well potential and the 
exponential potential are treated to exemplify peculiarities of short-range interactions. We 
also derive continuum solutions for a scalar interaction of square-well type. Finally we 
discuss the behaviour of a spin-0 particle in an external homogeneous magnetic field. 

PACS: 11.10.Q; 25.80H 

1. Introduction 

In this paper we examine stationary solutions of the 
Klein-Gordon equation for energies [E[>mc 2. We 
investigate the behaviour of unbound spin-0-particles 
in various long- and short-range potentials, respect- 
ively [1]. In particular we explore overcritical poten- 
tials in which the binding energy E b of the strongest 
bound particle exceeds the pair-production threshold 
of twice the rest mass, i.e. I Eb[ > 2mc 2. The appearance 
of the bound state as a resonance in the negative 
frequency continuum is verified. This striking phen- 
omenon exhibits a close analogy to the spontaneous 
positron production in overcritical Coulomb fields 
[2], which represents the underlying motivation for 
our studies. The continuum solutions for a nonsingu- 
lar Coulomb potential may also be of considerable 
significance for the scattering of pions on finite-size 
nuclei. In addition we display distortion effects of spin- 
0-particles and -antiparticles in short-range poten- 
tials. 

Our paper is organized as follows: In the premises 
we briefly review the standard representation and the 
Schr6dinger representation. Furthermore we elabor- 
ate the difference between the separation constant 
describing the time-dependence of the wave function 

and the energy being defined as the volume integral 
over the T°°-component of the energy-momentum 
tensor. This quantity deserves special consideration 
within the framework of a relativistic wave equation 
for spin-0-particles. The next section deals with ex- 
plicit solutions for a Coulomb potential. As examples 
for short-range potentials we treat the square-well 
potential and the continuous exponential potential. 
For the latter we restrict the evaluations to s-waves 
only. To demonstrate the consequences of a different 
type of interactions we study the behaviour of Klein- 
Gordon particles in a square-well potential coupled to 
the square of the rest mass in the differential equation. 
Finally we derive the stationary states of a Klein- 
Gordon particle in a homogeneous magnetic field. 

2. Premises 

2.1. Standard representation 

The Klein-Gordon equation describes particles with 
spin zero. Taking electromagnetic interactions into 
account it is represented by 

q+ oo,. (, ,  
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where q is the charge and m o the rest mass of the 

particle and i0" = ihO" = ih c & ' -  V , A" = (Ao, A). 

We now employ natural units (h = mo= c = 1). Then (1) 
may be written more explicitly as 

2 
(i~t-qAo)~b=((-iV-qA)2+l)~. (2) 

In the subsequent sections we neglect the vector 
potential and consider only spherical symmetric and 
time independent potentials 

A(r, t)=0, qAo(r, t)= V(r). (3) 

The separation ansatz 

¢(r, t )= qS(r)e -i~' (4) 

leads to the stationary wave equation 

(V 2 -]- { E - -  V(F)} 2 --  i )(])(r)=0.  (5) 

Except for plane wave solutions as well as for solu- 
tions for a homogeneous magnetic field we will separ- 
ate the angular part of ~b 

~b(r) = v(r) Ylm(O, * ) .  (6) 

The radial component v(r) satisfies the differential 
equation 

d2 2d z l(l+l))v(r)=O (7) 
aV+TTr  +k  r s 

with 

k s = { E -  V(r)} 2 - 1. (8) 

Taking 

u(r) v(r) = (9) 
r 

we obtain 

( d2 I(1+1) ) 
dr ~ r2 +k s u(r) = 0. (10) 

With the replacement yl=u and ys=du/dr the 
second-order differential equation (10) is easily trans- 
formed into two first-order coupled differential equ- 
ations [1]. 

The tbur-current of a Klein-Gordon particle is 
given by 

= q(o*{i0u-- qAU}¢-- ~k{i3 u + qAU} ~k*). (11) j .  

The prefactor is chosen to yield the correct nonrelativ- 
istic limit [3, 4]. With j" = (p, j) and by using (3) and (4) 
this may be written as 

p(r) = q{E-- V(r)}qS*~b, (12) 

• i , 
j(r) = q~(~bV~b - qS*V~b). (13) 

2.2. SchrSdinger representation 

The Schr6dinger representation transforms the 
second-order differential equation (2) in the time vari- 
able into two first-order equations. In this represent- 
ation the Klein-Gordon equation reads [3, 5] 

i~TW =/q(q)q* (14) 

with 

1/1 ~2 
/~(q) = (% + iz2) ~tTV-- qA) + V+ z 3 (15) 

r 

and the Pauli-matrices in the standard representation 
[3]. The individual components of the two-compo- 
nent wave function 

are related to 0 from (2) via 

~b+Z=¢,  (17) 

~ b - z = ( i ~ t - V ) ¢ .  (18) 

For the charge density and the current density one 
obtains 

p = qt tJ tZ3~ = q(qS*~b- Z'Z), (19) 

j = q  Itt/"~ ~7 3 ('/5 3 q2~ +iz2)(~ VW-qAW) 

Using the potential (3) and the separation ansatz 

. . . .  i e ,  / ~ 0 ( r ) ~ - i E t  V(r, t)=*otr e = xo(r))e (2.1) 

we get the stationary equation 

I)(q)q~o = Eq%. (22) 

Finally we notice that if q~ satisfies (14) the wave 
function 

satisfies the equation 

i~udc=aq(--q)Wc. (24) 

This will be discussed in more detail in Sect. 2.4. 



2.3. Normalization and energy 

At this point of the discussion we have to consider the 
relationship between the separation constant E for the 
time-dependence of the wave function, the normaliz- 
ation of the wave function and the energy pO. We will 
also establish a relation between momentum and cur- 
rent of a Klein-Gordon particle. 

In order to calculate energy and momentum of a 
Klein-Gordon particle we will follow the route of 
classical field theory. The Lagrange-density s~ of the 
combined Maxwell- and Klein-Gordon field is given 
by [6] 

5ec =½-{(--k?ut~ * --qA"O*) (iOuO - qA, t f i ) -  O*~k} 

- ~  ~"~ (25) 
4 -t # v  ~ 

where F u~ is the field-strength tensor of the electro- 
magnetic field. Since we are not interested in energy 
and momentum of the free electromagnetic field we 
consider only 

S = S c + ¼ F ~ F  ~. (26) 

The energy-momentum tensor T "v is defined by [6] 

OS v , c~Z 
VU~-0(0-~,i 0 0 + ~ O  0--gUL~'. (27) 

With the separation ansatz (4) and the potentials (3) 
we obtain for the energy-density 

r °°  = E ( e  - v ) 4 , * ¢  + 4, + v4,*-  - 
( E -  V)zO*e)) (28) 

and for the momentum-density (k = 1, 2, 3) 

o k  l T = ~ ( E -  V)(q~*0k~b-- ~b~?k~b*). (29) 

For vanishing external potential T oo is always posi- 
tive independent of E. Integration of expression (28) 
over all space yields 

p0 = ~ TOOd3r = E ~ ( E -  V)O* 0 dar 

1 , 
+ ~=q~ V~b df. (30) 

To derive (30) Greens first identity and the Klein- 
Gordon equation were used. The remaining surface 
integral vanishes for localized wave functions. Let us 
now define 

P =--. (31) 
q 

We will call Q the density. Then according to (12) the 
energy may be written as 

P°= E ~ Q(r) d3r. (32) 

317 

In conclusion for strong external potentials the energy 
pO may become negative for E < 0 and for states which 
are normalized to + 1. However, bound states, which 
are normalized to - 1 and which enter the bound state 
gap from the negative frequency continuum with 
E < - 1, possess positive energy p0. 

The components of the momentum are obtained 
by integrating (29) over all space. In absence of magne- 
tic fields we get 

1 
p = q ~ E -  V(r)}j(r)d3r. (33) 

Here (13) has been inserted. 
Bound state solutions of particles are normalized 
according the condition [ t ]  

~p(r, t) d3r = __ q. (34) 

This normalization is not possible for continuum solu- 
tions if the integration domain extends to infinity. So 
analogous to the Schr6dinger theory [7] the normaliz- 
ation is determined via 

q ~? ~? 

= + q6(p-- p'). (35) 

q~p denotes a wave function with fixed momentum p. 
E.g., with this normalization the plane wave solu- 
tions of the free Klein-Gordon equation read 

( e = =  1) 

1 
Ol(r,t) = x / ~ ; ) ~ p  e i `"r-e ' ' ,  (36) 

1 
02(r, t)= x/~rc)~p e i'p'r + ep~). (37) 

But also the complex-conjugate of these two solutions 
are linear independent solutions of the free Klein- 
Gordon equation. 

Since the spherical harmonics are normalized to 
one, the ansatz (6) leads to a normalization condition 
for the radial part v(r) 

{ E -- V(r)} v*,(r)vp(r)r 2 dr = 4- (~(p - p') (38) 
0 

with 

p = x/E 2 - 1. (39) 

If we normalize the wave functions not on the momen- 
tum-scale, but on the energy-scale, i.e., 

{ E - V(r) } v*,(r)ve(r)r 2 dr = +_ 6(E - E'), (40) 
0 
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we employ 

v~(r)= [~E[ Vp(r)= ~ p  Vp(r ). (41) 

In most cases we will normalize the wave functions on 
the energy-scale. 

2.4. Particle- and antiparticle-states 

In this section we reexamine the role of the negative 
frequency solutions of the Klein-Gordon equation. 
Let us first consider (32) which represents a relation 
between frequency, density and energy. In the case 
[EI > m (continuum solutions) we obtain always two 
solutions, one with frequency + I EI and positive norm 

~Q d3r= + 1 

and one with opposite sign of frequency and norm. In 
order to avoid the well known difficulties with expect- 
ation values of continuum solutions we regard here 
the particles as localized in a finite volume. The energy 
usually remains positive for unbound particles. The 
situation differs for particles bound in a strong poten- 
tial. For example in a square well potential we may 
obtain solutions with negative frequency and positive 
norm [1]. It results that the energy in that case is 
negative. This is not surprising because it states only 
that the binding energy exceeds the rest mass. Solu- 
tions of a second type which appear for a sufficiently 
strong potential, however, yield a positive energy 
since they belong to a negative norm. What is the 
meaning of the second solutions? The usual answer is 
that they represent antiparticle-states [2, 11, 12]. We 
want to support this interpretation by some additional 
arguments. 

Given a particle of charge + q in an external field 
AU=AU(r) the Klein-Gordon equation reads after 
separation of the time variable 

(E - V)z~b = ( ( -  iV - qA) 2 + 1)4). (42) 

Let us first consider unbound solutions. With the 
convention Ep> + 1 we then obtain two equations 
reflecting the two possible values of E = _+ Ep 
(Ep - V)2~b (1) = ( ( - i V  -qA)  2 + 1)~b ~1), 

( - -  E p  - -  V ) 2 ~  (2) : (( - iV -- qA) 2 + 1)q~ (2). (43) 

Analogous the equations for a particle with charge - q 
in the same external field are 

( E p  + V)2(p (1) = (( - iV --~ qA) 2 + 1)~p °), 

(-- Ep + V)2q)  (2) = ((  - -  iV + qA) 2 + 1)~ (2). (44) 

The solutions of these equations obviously have to 
fulfill the relations q¢~) = ~b t2>*, q¢2) = ~b(~),. Our aim is 

to show that all expectation values of ~p~2) are identical 
to those computed with q5 ~1) and analogous for q¢1) 
and ~b (2). Because of the symmetry in the following 
considerations we restrict ourselves to the latter case. 

First we notice that the Lagrangian (26) is in- 
variant against the substitutions q ~  - q and 
~(2)_._).(p(1). W e  u s e  

~o)=  (pmexp{-iEpt}, ~(z)=~Z)exp{iEpt}. (45) 

This leads to 

s ( - q ,  ~b(1))=½{ ( -  iO'O (1)* +qAU~b ~1)*) 
× (iOtt ~/(1) + qAut~(1))_ @(1)* ~t(1)} 

= ½ { (i0,~ (z)- qAu~b (2)) 
x ( -  i0"0 ~2)* - qAU~b ¢2)*)- ~2).~t2) } 

= ~ ( +  q, ~bt2)). (46) 

In a complete analogous manner it follows 
jU(-q, ~bm)=jU(+q, ~bt2)), and similarly TUV(-q, O~l)) 
= TUV(+q, ~2)). In conclusion energy, momentum, 
charge and current display the indicated symmetries 
between particle- and antiparticle-states. 

In order to extend this to general expectation 
values we may derive an interesting relation. Given a 
hermitian operator O(+q) belonging to charge +q  
and the corresponding operator 0 ( - q )  belonging to 
charge - q we consider the expectation value [3, 5] in 
the Schrtdinger representation 

O ( -  q, qb ~1) ) = ~d3r qb(1)* r30(-- q)~ (1~. (47) 

Because of %% = - zlr3 and ~1) = "~10(2)* we obtain 

O( -- q, qb (1)) = ~d3r (I)(2)TT1 r 3 0  ( - -  q)zlqb(2)* = 

= - (~ d 3 r qb ~2)* z 3(% 0"( -- q)%)~(/))*. (48) 

qb (2) corresponds to ~c in (23). If the operator now 
fulfills the relation 

"C 1 0 " (  - -  q) = - -  O(  -}- q)'C t (49) 

we finally obtain 

O( - -  q,  ~ (1 ) )  = ( S d 3 r  (I)(2)~T30( + q)(I)(2})* 

= o*(+ q, , %  (50) 

So for hermitian operators the expectation values are 
the same. It is easy to verify that relation (49) is 
fulfilled by the charge operator ql 2 and the Hamil- 
tonian 

1 1 2 
giffI*(-q)=zl(z3+iz2) ~(--TV + q A )  

--~ Z l ( - -  V)-~,,Clq7 3 = --/~(+ q)%. (51) 

So we may demand that meaningful operators in the 
framework of the Klein-Gordon theory should fulfill 
relation (49) in addition of being hermitian. Under 



these circumstances it doesn't make any difference 
whether we use the second solution of the 'particle- 
equation' or the first solution of the 'antiparticle- 
equation'. The sign of the charge is a degree of freedom 
in the Klein-Gordon theory. 

3. The Coulomb potential of a point-like nucleus 

The attractive Coulomb potential is given by 

Z~ 
V(r) = , (52) 

r 

where Z is the nuclear charge number and ~ --- ~ the 
fine structure constant. It is known [1-4] that (10) 
yields bound state solutions only for 

Ze~< l+~ . (53) 

The energy eigenvalue of a Klein-Gordon particle 
bound in potential (52) always remains positive [1-4]. 

Now we consider the continuum solutions. The 
physical solution being regular at the origin (r~0) is 
given by (p = ~ 1 ) 

u(r) = N M _ i6, u(2ip r) (54) 

with the Whittaker function [8] 

M ~ , u ( z ) = e - ~ / 2 z ~ + U l F l ( ½ + y - x ,  1 +2#, z) (55) 

and 

,u=x/(l+½)2-(Z~) 2, 6 -  Z~E (56) 
P 

1 F l ( a , b , z  ) denotes the confluent hypergeometric 
function [8]. N is the normalization constant. Again Z 
is restricted by (53) in order to yield real energy 
eigenvalues. Formally there exists a second solution of 
the Klein-Gordon equation for the Coulomb potential 
of a point nucleus in which the sign of # in (54) is 
reversed. The same problem already appears in the 
discussion of the bound state spectrum. Here it can be 
demonstrated, that the solution with negative sign of# 
would lead to a divergent value for the integral over 
the energy density T oo . In conclusion the second 
solution, which displays a stronger singular depen- 
dence close to the origin, cannot be accepted. Based 
on similar arguments we also discard this second 
solution for continuum states. 

Using the way of normalizing wave functions by 
their asymptotic expansions [7] we can determine the 
remaining constant N. Normalization according to 
(40) yields 

N 1 5a[F(½+l~+i6)l  
e = ~ e  2 ~(] ~2~p) (57) 
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and according to (38), Np = x / P ~ l  NE. The normaliz- 
ation on the energy scale is used in the figures. In the 
nonrelativistic limit the density ~ for a Klein-Gordon 
particle agrees completely with the corresponding ex- 
pression for a Dirac particle [14]. In Fig. 1 we display 
the radial density times r z for different positive and 
negative frequencies. All units are natural units, the 
radial density Q is defined via the radial charge density 
(12) and by (31). 

Due to the fact that the given potential is repulsive 
for an antiparticle the density belonging to a negative 
frequency becomes very small in the vicinity of the 
nucleus for energies near the rest mass. 

In order to demonstrate the influence of the centri- 
fugal term l ( l+ 1)/r 2 we display in Fig. 2 the radial 
density for a fixed energy but different angular mo- 
menta. Figure 3 also indicates that for negative fre- 
quencies the radial density becomes positive in the 
region of the nucleus. This holds true for all negative 
frequencies and may be deduced from the relation for 
the radial density 

/ Z~ \  , r-o + 
Q(r)r2=LE +~- - ) lu ( r ) l  z = Er '  zu + Zo~r2U. (58) 

Point-like nucleus, Z=60, t=O 
I ! ! ! i 

; i, "f '  ',,:'i,,'i, b,/' 
-1 

-- E=+1.50 

.... E=-tSO 
I ~, I I I I 

i i i 1 i 

i . ¢ " , ,  
",. / '. 

N_, ",,,, / ,,,, 

-2 ",,  / '  

-3 ~ .... E=-t05 X . . . . /  
1 I I ,  I I 

0 5 10 15 20 25 

r 

Fig. 1. Radial densities for different frequencies in the continuum 
of the Klein-Gordon equation for a Coulomb potential. The posi- 
tive densities belong to particle states, the negative to antiparticle 
states. Natural units are employed, Q is defined by (12) and (31) 
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Fig. 2. Radial densities for states with different angular momenta 
for the Coulomb potential of a point-like nucleus. Continuum states 
with negative frequencies are considered 

Point-like nucleus, Z=68, t=O, E=-IO 
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-0.2 

-0.6 
I I i i i , ! J 1 

0.0 0.1 0,2 0.3 O.t, 0.5 

r 

Fig. 3. Radial density of an antiparticle in an s-state of a point-like 
nucleus with Z=68. The values are chosen to demonstrate the 
positive density close to the origin (r~0) 

4. The potential of  a finite-size nucleus 

The nucleus is assumed to be a homogeneously char- 
ged sphere of radius R. The potential is given by 

V(r)= 2 R \  R 2 j  forr~<R, 

Za 
V(r) - for r > R. (59) 

r 

Solving (10) with this potential for the inner region 
(r<~ R)  yields 

ui(r ) = Dr 1 + 1~ (r) (60) 

with D as a normalization constant and 

~ ( r )  a_ ef ~,, b . r  2". (61) 
n = O  

The coefficients o f~ ( r )  are given by the general for- 
mula 

-- Bb._  I + 2ACb._  2 - -  C2bn- 3 
b, = (62) 

4nl+ 2n(2n + 1) 

for n >/1 with the convention b_ 1 = b_ 2 = 0 and bo = 1. 
We have used the abbreviations 

3Za Z~ 
A = E + ~ - ~ - ,  B = A 2 - 1 ,  C=-2R 3. (63) 

For  the outer region we obtain a similar expression as 
(54) 

uo(r ) = N (cos t/.fi (r) + sin t / f  2(r)) (64) 

with 

fl(r) = (2ip)- 1/2- ~ M _  i~. u( 2ipr), 

f2(r) = (2ip)-1/2 + , M _,~, _ ~(2ipr) (65) 

and with the same meaning of/~, p and 6. But now the 
solution is not restricted to that part which is regular 
at r = 0. N denotes the general normalization constant 
and t / a  phase, which will be derived from the mat- 
ching condition. The constants D, N and q are deter- 
mined by the conditions 

(i) u i (R)=uo(R) ,  

dul duo 
(ii) ~-r  (R) =-d~-r (R), 

(iii) u(r) , / - - s l n ( p r  + ~(r)), 
N rcp 

(66) 

in which ~b(r) has the form 6 In r + ~bo. Condition (iii) is 
equivalent to normalization according to (40). 

In the determination of the constants D, N and t/ 
we first consider the case Za ~< 1 +1, i.e. p is real. First 
we realize that fl(r) and f2(r) are real. This can be 
verified by the definition (65) and by using the Kum- 
mer transformation [8] of the confluent hypergeo- 
metric function. 

According to condition (i) we simply obtain 

N 
D (cos t/f~(R) + sin rl f2(R)). (67) 

R '+ 1~¢ (R) 

To fulfill condition (ii) we first form the derivative [8] 

~ M  +,(2ipr)=l-(ipr +i6)M_i~ +_,(2ipr) 
O r  - -  i ~ ,  _ r ' 



We introduce the abbreviations 

, ,  ~ ( )  I+1 
r '  

B~ (r) = M _  io, ±u(2ipr), 

+ 1 
B£ (r) =- ( ipr  + i r ) M _  ~, ±u(2ipr), 

r 

For the logarithmic derivative at r = R it follows 

g(r) = 

cos q(B~ (R) + B~- (R)) + sin tl(2ip)2U(B; (R) + B ;  (R)) 

(69) 

(70) 

(71) 

(72) 

cost/B + (R) + sinrl(2ip)ZUB? (R) 
(73) 

This may be resolved in an elementary manner to 
yield 

t a n q =  g ( R ) B ~ ( R ) - B ] ( R ) - B ~ ( R ) ( 2 i p ) - Z " .  
g ( R ) B ? ( R ) - B f  ( R ) -  Ba  (R) 

(74) 

To fulfill condition (iii) we consider the asymptotic of 
Uo(r) 

r ~ o o  

Uo(r ) = 2N{cosr/t¢ l l c o s ( p r + 6 1 n r - a r g ¢ 0  

+ sin r/l ~2 t cos(pr + 6 In r - arg ~2) } (75) 

with 

F(1 + 2~) { _  2in~-(~ +" + i~), (76) 
¢~-  F(½ + / ~ -  i6)" "' 

F(1-2/~) . 2ip)_(~_u+~) (77) 

Now we identify 

2N {cost/I ~1 [ cos(arg ~0 + sin ~/I ~2 Icos(arg 42)} 

= ~ s i n q ~ o ,  (78) 

2N { cos t][~ 11 sin(arg ~ 1) + sin t/I ~ z I sin(arg ~2) } 

= . / 2 c o s  qS0, (79) 
~l np 

which represents the condition to determine N and 
4~o. The above relationship may be summarized as 

i 
N cosr/~ 1 +Nsinr /~ 2 - ~ -  e-i¢° - (80) 
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The new asymptotic reads 

Uo(r )~  ~ U{(ei.~l +e-i"~2 ) e - i ( p  r+,~l-~) 

q- ( e i n ~  -t- e - i ' 1 ~ )  e i~pr + °In r) } 

and finally with condition (iii) it results 

(90) 

(91) 

Finally we obtain 

t , Re¢l +tanr/Re~2 (81) 
an q~o = i-m~l + tan t/Im ~2' 

N = ~ l ~ [ c o s Z r / I  ~ 112 + sinZt/I ~212 
~/  2np 

+ 2cosq sinq(Re ~lRe~2 + Im ~11m ~2)] -1/2 . (82) 

This yields the desired asymptotic behaviour for Uo(r). 
Next we consider the alternative case Zc~ > l+½ 

and we substitute 

# ~  i~ = ix / (Za)  z - (l + ½)2. (83) 

Now we have to evaluate the corresponding constants 
D, N and t/, which in principle may take on complex 
values. The quantities indicated by a tilde, e.g. ~1, are 
understood to be the same as without tilde, except for 
the obvious replacement (83). First we notice that 

f* (r )  =f2(r) (84) 

with 

fl(r) = (2ip)- 1/2-i~ M _  ir, i;~(2ipr), 

fz(r) = (2ip)- 1/2 + it, M _  i6, - i;,( 2ipr) • (85) 

This leads to the ansatz 

Uo(r) = N (ei"fl (r) + e - i"f2(r)). (86) 

Again for D we simply obtain 

N 
D = - l  +1 . - .  (ei'Ifl (R) + e - i~fz(R) ). (87) 

K ~ ( K )  

The logarithmic derivative at r = R yields 

ein v R - iv  r 
/ n ,  ffl( )+e  Ff2(R ) (88) 

with f'i(r)= ; f i ( r )  and f *  =f2. This, immediately, leads 

to 

e-2i,r f ' l  - g f l  _ f ' l  - g J l  (89) 
gfz - f l  (f'l - gfl)*" 

Again we use the derivative (68) with the substitution 
(83). We thus get explicitly 

e _  2 i t /=  g ( R ) B ~ ( R ) - B ~ ( R ) - B ~ ( R )  . . . .  2i~ 
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1 ~ 2 
N=---~p~p[ l¢~l  +1~'z l2+2 Re(e-2"'~*'~z)] -1/2. (92) 

Since the conditions to determine the constants D, N 
and t/ lead to awkward expressions we decided to 
integrate the radial differential equations for a finite- 
size nucleus numerically. For  this purpose we used the 
following method. From the series expansion of the 
radial wave function inside the nucleus we evaluated 
the fraction F=ui(ro)/U'i(ro) for a relative small value 
to. Then we set with an arbitrary initial value c, ui(ro) 
= c. It follows u'~(ro) = c/F.  With these initial values we 
integrated the radial equation numerically using the 
computer program [9] up to a large value of r. The 
correct normalization of the wave function is then 
obtained from condition (iii). The nuclear radius R can 
be taken fixed or can be linked with the charge num- 
ber Z, e.g. via R =ro(2.5 Z)  u3 with ro = 1.2 fm. 

In the Klein-Gordon equation we inserted the 
pion rest mass. For bound states [1] the energy eigen- 
value reaches - t  in natural units for Zcr(ls)=3287 
and Zcr(2p)= 3444, respectively, if R depends on Z as 
indicated above. For the fixed value of R =  10 in 
natural units the same happens for Zcr(ls)= 1986 and 
Zc~(Zp) = 2095 [1]. 

We investigated the wave functions with R fixed to 
10 (in natural units), l = 0  and Z=2400.  In order to 
find the value of E for which the continuum state 
resembles a bound state we computed the value of or z 
at r = 3 for several energies (Fig. 4). We found a very 
sharp peak at the resonance position of E =  
-1.4361129191. If E is greater or smaller than this 
value by 10-10 the value ofQr 2 changes by an order of 
magnitude. The situation is demonstrated in Fig. 4. 

f in i te-s ize nucteus 

10_2[ - . . . . . . . . . . .  _~ 

z=,,oo t t 

 ,o.k /\ 1 
'°'I / \  1 10' r / 

-z.o -3.0 -2.0 -1,0 0.0 1.0 2.0 

E - Ere s xlO -8 

Fig. 4. Radial density at r =  3 in natural units of a particle in 
an s-state in the Coulomb potential of a finite-size nucleus with 
Z=2400. For the nuclear charge distribution a homogeneously 
charged sphere is assumed with radius R = 10 in natural units, or 2 is 
plotted on a logarithmic scale versus the quantity E - E r ,  s with 
Eros = -1.4361129191. The resonance behaviour is obvious 

The radial density for this energy and slightly different 
energies is plotted in Fig. 5a and b. For  r~<20 the 
shape of the density is quite similar to that of the 
bound state just above the border to the continuum 
[1]. From Fig. 5b it can be deduced that the wave 
functions for r ~> 20 display the typical oscillatory pat- 
tern of a continuum state. The asymptotic behaviour 
( r~oe)  of the various radial densities in Fig. 5a is 
almost identical. The narrow resonance depicted in 
Figs. 4 and 5 reflects the strongly suppressed tunnel 
probability of a pion as massive particle through the 
effective Coulomb barrier [2]. 

Figure 6 is very similar to Fig. 4 except for the 
artificial insertion of the electron rest mass into the 
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Fig. 5a and b. Radial densities for continuum states with negative 
frequencies in the Coulomb potential of a finite-size nucleus with 
Z = 2400. The nuclear radius is R = 10. Qr 2 is plotted versus r for the 
resonance state with E = - 1.4361129191- inside the nucleus a as well 
as outside the nucleus b to demonstrate the asymptotic oscillatory 
pattern. Figure 5a also contains the radial density for states with 
slightly different energies to indicate the resonance behaviour 
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Fig. 6. Radial density at r=0.03 in natural units of a particle 
in an s-state in the Coulomb potential of a finite-size nucleus with 
Z = 110 (cf. Fig. 4). For the nuclear charge distribution a homogen- 
eously charged sphere is assumed with radius R=0.02 in natural 
units. Qr z is plotted on a linear scale versus E. At E = - 1.263 a s- 
state resonance appears 

Klein-Gordon equation. This calculation is basically 
suited for illustrative purposes to exemplify the conse- 
quences of overcritical electric fields within the frame- 
work of this relativistic equation of motion. But it 
might be also of some relevance in connection with the 
possible production of a new elementary particle in 
collisions of very heavy ions. A new light boson could 
be created spontaneously in the strong external field of 
two heavy nuclei. It would preferentially decay into an 
monoenergetic electron-positron pair. The critical 
value (EI~= - 1 )  for the ls-bound state here appears 
at Zcr(ls) ~- 108. For  Zcr = 110 we plot the radial dens- 
ity at r = 0.03 versus the eigenvalue E. The resonance 
at E = -  1.263, obviously, is much broader as for a 
Klein-Gordon particle with the pion rest mass. The 
radial densities of the resonance state as well as for 
continuum states with slightly modified energies are 
presented in Fig. 7a and b. In contrast to Fig. 5b the 
depicted states exhibit different phases in the asym- 
ptotic domain. 

5. The square-well potential 

The square-well potential is given by 

V(r) = - V o ® ( R  - r), (93) 

where ®(R--r)  denotes the Heaviside unit step func- 
tion. In order to link the potential depth with a certain 
nuclear charge number we set 

Za 
V o = ~ - .  (94) 
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Fig. 7a and b. Radial densities for continuum states with negative 
frequencies in the Coulomb potential of a finite-size nucleus with 
Z = 110. The nuclear radius is R = 0.02. Qr 2 is plotted versus r for the 
resonance state with E = -  1.263 as well as for slightly different 
energies (cf. Fig. 5) 

If the radius is assumed to depend on Z via R 
=ro(2.5 Z )  1/3 with ro = l . 2 fm ,  one obtains [1] the 
energy eigenvalue of a bound state as a function of Z 
for the Is-state, which reaches the negative continuum 
at Z , . , ( l s ) =  5626. If the radius is fixed to R = 1.5 fm the 
binding is stronger and E reaches - 1 at Z , , r ( l s ) = 4 2 0  
and at Zcr(lp)= 599 for the lp-state. Here we adopted 
the nuclear physics convention for classifying the 
bound states. We now investigate the continuum solu- 
tions of (7) with the potential (93). In the inner region 
( r<~R)  v(r) is given by 

v,(r) = Aj~(k,r) (95) 

with 

k, = ~/(E + Vo) 2 -- 1. (96) 
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Jz signifies the spherical Bessel function of the first kind 
[8] and A is a constant. For r >  R a linear combin- 
ation of two independent solutions of (7) has to be 
considered. This may be written as 

vo(r ) = N (cos t5 z Jl (kr) - sin ~lyz(kr) ) (97) 

with 

k=  E ~ Z I = p .  (98) 

y~ denotes the spherical Bessel function of second kind. 
The three constants A, N and f~ are connected by the 
matching conditions at r = R which yields 

A cos 6 z j l ( k R ) - s i n  ~t Yl(kR) (99) 

N jt(kiR) 

The phase ~ is obtained from the logarithmic deriva- 
tive 

kij'l(kiR) kCOS6l j ' z (kR)-  sin6l y'z(kR) 
j , ( k , R )  = ~ o s a ~ ' i  y,(kR)' 

(100) 

which leads to 

t ~ kJ'z(kR)jt(kiR)-kd'~(k~R)jz(kR) (101) 
a n  t =  , . ., • kyt(kR ) jt(ki R ) -  kdl(kiR )Yl(kR ) 

Here j~ and y'~ mean derivatives with respect to the 
argument of the corresponding Bessel function. 

The normalization constant N can be obtained 
from the asymptotic behaviour 

r - - ~  oo  N 

v o =__ ~rSin(kr--½1n+~S1), (102) 

which is easily deduced from the asymptotic form of 
the spherical Bessel function [15]. For the normaliz- 
ation on the energy-scale N is given by 

N~ = . (103) 

while normalization on the momentum-scale leads to 

N~=x/k/IEIN~. 
In particular we examined the behaviour of the 

radial density o.r z in the neighbourhood of the point 
at which the energy eigenvalue reaches the negative 
frequency contimmm. For example we considered the 
parameters l=  1, Z=5800 and R=20,58 in natural 
units. We plot Q'r 2 versus r (in natural units) for 
different energies (cf. Fig. 8). There is an obvious en- 
hancement for E "~ -1.007. We also investigated the 
continuum states keeping the radius R fixed to 1.06 in 
natural units. In particular we consider the point Z 
= 400, l=0,  which is an almost critical value for the 
ls-state [1]. Figure 9 shows Q'r 2 versus r for E =  1.1 
and -1.1,  respectively. The discontinuities at the 
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Fig. 8. Radial densities of a Klein-Gordon particle in a p-state with 
the indicated negative frequencies in a square-well potential 
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Fig. 9. Radial density of a Klein-Gordon particle in a s-state with 
E =  1.1. and - 1.1, respectively, in a square-well potential 

potential radius R are caused by the definition (12) of 
the Klein-Gordon density. 

6. T h e  e x p o n e n t i a l  p o t e n t i a l  

The attractive exponential potential has the simple 
form 

V(r) = - ae- br. (104) 

It is an example for a continuous short-range poten- 
tial. Compared with the square-well potential it has 
the advantage to be analytical for all spatial values. 
But due to its short-range character we expect a 
similar behaviour of the solutions for both potentials. 



Bawin and Lavine demonstrated that the Klein- 
Gordon equation with the potential (104) can be sol- 
ved analytically for s-waves [13]. We start with the 
separation ansatz 

b 
u(r) = ez-" f (  t ) (105) 

and the substitution 

2ia 
t = ~ - e  -b'. (106) 

The insertion of this ansatz and the potential (104) 
into (10) for l = 0  leads to 

dt 2 4- - + + - x  2 f ( t )=0.  (107) 

We have used the abbreviations 

2 = - i E '  ~ = i ~ l = i b ' b  (108) 

Equation (107) is the Whittaker differential equation. 
The general solution of this equation is given by [8] 

f(t) = C 1M). ~ (t) + C2 Mz, _ ~(t). (109) 

Mz,~(t) again denotes the Whittaker function. With 
the condition that u(r) has to vanish at the origin 
(r = 0) 

u(O) = C1M z, ~(-~-) + C2M z, _ ~(g~-) = 0, (110) 

we obtain as solution 
b 

u(r) = X e2-r(M~. _. (2~-)Mz, ~ (a-~-- e -  b,) 

- Mz, ~(2@)M~, _ ~(Z~-e- b,)). ( l l  1) 

N is a normalization constant. Using the relation (55) 
between the Whittaker functions and the confluent 
hypergeometric functions as well as the Kummer 
transformation [8] we can derive another expression 
for u(r), 

u(r) = N2"~ { ~*e i~-exp( br) 
a 

x 1Ft(½ + ~c-)o, 1 + 2~c, ~ - e - b ' ) e - i P ' - -  ~e i~'p~-b') 

1F ~(½+ ~c--2, 1 +2~c, 2~"--e-b')e ' ' }  (t12) 

with 
a 

~=e-'~,F~(½ +~c-2 ,  1 +2t¢, ~-"--). (1t3) 

Normalization on the energy-scale according to (40) 
by using the asymptotic expansion of u(r) yields 

b N~- 
2 a ~ / ~ p - l e - i ~ , F , ( ½ +  K - £ ,  1 +2~c, ~ - ) I  

(114) 
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and on the momentum-scale according to (38) Np 
- -  

In Fig. 10 we display the radial density Qr 2 of 
various continuum states for an exponential potential. 
The coupling strength of the potential is determined 
via a=Zc~. The range of the potential follows from 
b = 1/R. Strong distortion effects are visible. Especial- 
ly, the repulsion acting on the negative frequency 
states is obvious. 

7. The scalar square-well potential 

The radial Klein-Gordon equation for scalar spherical 
symmetric interactions coupled to the square of the 
mass reads 

( d2 t(l+l) E2-  ) 
~rr2 r2 t- 1 -  W(r) u(r)=0. (115) 

We consider the scalar square-well potential 

W(r)=  - Wo®(R --r). (I  16) 

The calculations are identical to those presented in 
Chap. 6 except for the obvious replacement 

k , = , / E  2 - 1  + W o. (117) 

In consequence we may take over all formulae of 
Chap. 6 including the normalization constant. This 
differs from the situation for bound state solutions [1]. 
For continuum states the normalization constant is 
determined by the asymptotic behaviour (r--* oo) of the 
wave function, i.e. outside the attractive potential. Of 
course, in the definition of the density we have to set V 

exponential potentiat 
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r 

Fig. 10. Radial density of particle and antiparticle continuum sta- 
tes in an exponential potential. For the determination of the 
coupling strength and the range of the potential we used a = Z~ and 
b = t/R, respectively 
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=0. Particle and antiparticle states exhibit the same 
density except for a different overall sign. 

In Fig. 11 we depict the radial density of a Klein- 
Gordon particle in a scalar square-well potential. The 
potential depth is fixed through W o = Zc~/R with R = 1 
in natural units. Continuum states with / = 0  and 
E =  1.1, 1.5 and 2. are considered. 

8. The homogeneous  magnetic  field 

This section deals with the behaviour of a Klein- 
Gordon particle in an external homogeneous magne- 
tic field. The magnetic field strength B is assumed to 
point in z-direction, thus B~ = By = 0 and 
B=B~. For the vector potential A we choose the 
gauge 

A~=-By, Ay=A~=0. (118) 

In contrast to the previous sections the zeroth compo- 
nent of the four-potential vanishes: V(r) = 0. The close 
relationship of the Klein-Gordon equation to the 
Schr6dinger equation allows to follow completely the 
route of nonrelativistic quantum mechanics [16] in 
order to determine the wave function of a spinless 
relativistic particle in an external magnetic field. The 
corresponding result for a Dirac particle in a homo- 
geneous magnetic field, e.g., may be deduced from 
[17]. 

Taking the potential as given above the stationary 
Klein-Gordon equation reads 

I-VZ+q2B2y2-2iqBy~---~+l]~(r)=E2~(r). (119) 

With the separation ansatz 

q~(X, y, z) = e i(pxx + P=z)qo(y) (t 20) 

it follows 

[-~+q2B2yZ +2pxqBy]~(y)= 

[E 2 - 1 _ p 2 -  p~] q~(y). (121) 

The transformation 

~= I x / ~ (  y+px~qB} (122) 

leads to the oscillator equation. Thus we obtain the 
solution 

%(~) -- e-  ~=/2H,(~) (123) 

with the Hermite polynomials 

H,(~)= ( -1)"  ~e~d"e -~  (124) 
x/2,n!,]- ff d~"  

For E it results 

E = +_ x/[ qBJ (2n + 1) + 1 + p2 (125) 

with n = 0, 1, 2, 3 . . .  The normalization condition 
+ c o  

ENZq~2,(y)dy = _+ 1 (126) 
- c o  

leads to the normalized eigenfunctions 

@x,y ,z )=  1 if-~Blei('~x+"~)e-~/2H (;~ (127) 
2rc'~ [E[ " ' ""  
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Fig. 11. Radial density of a Klein-Gordon particle in a s-state with 
E= 1.1, 1.5 and 2.0, respectively, in a scalar square-well potential 

9. Conclusions 

The occurrence of states with negative energy has been 
demonstrated for massive spin-0 particles bound in 
external potentials. In overcritical potentials bound 
states may enter as resonance the negative frequency 
continuum. We explicitly verified the existence of this 
resonance phenomenon. The continuum spectrum of 
the Klein-Gordon equation was determined for var- 
ious long- and short-range interactions within an an- 
alytical framework. Sign changes in the associated 
charge densities were depicted. In particular we de- 
rived the stationary solution for the Coulomb poten- 
tial of an extended nucleus which could be of relevance 
for pion scattering on nuclei. 

We are grateful for enlightening discussions with Prof. B. Mfiller. 
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