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Abstract. A two-electron model potential method is pro- 
posed to compute diabatic electronic excited states for 
Na2. The configuration space is first divided into two 
subspaces corresponding to singly and doubly excited 
configurations respectively. Next this partition is modi- 
fied to ensure a correct dissociation limit for the ground 
state. The matrix element of the electronic Hamiltonian 
between the two subspaces can be extrapolated along 
a Rydberg series up to the ionization continuum. The 
first order M.Q.D.T. treatment of Giusti (1980) is then 
used to estimate the cross-sections for the reaction 
Na (3 p) + Na (3 p) ~ Na~- + e- ,  considering various sym- 
metries of the intermediate Na2 molecule. A marked se- 
lectivity in favour of the as,+ s~cmmetry is found and 
the estimated cross-section o-~ 5 A 2 for a collision energy 
of 0.05 eV is in satisfactory agreement with the experi- 
mental results. 

PACS: 34.20b; 31.50+w; 34.50 

1. Introduction 

Being a simple example for the formation of a chemical 
bond, the associative ionization reaction: 

Na (3 p) + Na (3 p) -+ Na~- + e- ,  (1) 

has been the subject of much experimental investigation 
[1-61. The most striking result at thermal energies is 
the marked dependence of the cross-section upon the 
preparation of the colliding atoms in particular magnetic 
sublevels [Jm). As discussed in several papers [7, 8], 
this anisotropy should be qualitatively explained by a 
strong selectivity of the molecular autoionization pro- 
cess: 

Na** (2 s + 1A) ~ Na~ + e -, (2) 

with respect to the symmetry of the electronic molecular 
state involved in the reaction (2). It is then, of course, 

necessary to assume that a given preparation of the col- 
liding atoms [9] may lead to a selective population of 
one molecular symmetry: 

Na(3p Jm) + Na(3p Jm) ~ Na~* (2s+ 1A) (3) 

The treatment of the autoionization process requires a 
knowledge of the potential curves and dynamical cou- 
plings for the Na2 molecule. Adiabatic calculations have 
been performed, in the framework of a two-electron 
pseudo-potential [10, 11] or model potential [12, 13] 
approach, for the 2, H and A electronic excited states 
up to the 3 p + 3 p  dissociation limit. The comparison 
between the experimental and the theoretical spectros- 
copic constants [t3] provides a check of the accuracy 
of the calculations, which is estimated around 1%. More- 
over, adiabatic molecular quantum defects can be de- 
duced from the calculations [12] and compared with 
the results of a fit to experimental data [14]. 

However, the adiabatic picture is not well adapted 
to the treatment of the dynamical problem: it is more 
convenient to develop adiabatic  picture so as to treat 
the molecular autoionization in the framework of the 
Multichannel Quantum Defect Theory (MQDT) first de- 
veloped by Giusti [15] for the inverse process (dissocia- 
tive recombination) and next applied to the H + H asso- 
ciative ionization [16]. 

In the diabatic treatment, the electronic Hamiltonian 
is diagonalized separately within two subspaces [17], 
corresponding to singly and to doubly excited states re- 
spectively. The Na2 Rydberg molecule is considered as 
a two-electron system, with a Rydberg electron bound 
to the Na~- core which is either in the ground state or 
in an excited state. For a given symmetry, one then con- 
siders simultaneously singly-excited Rydberg series con- 
verging to the ground state of Na~-, and doubly-excited 
states. 

The physical quantities involved in the MQDT treat- 
ment are, for each internuclear distance R, the quantum 
defect #*(R) associated with a Rydberg series, the poten- 
tial energies Ei(R) of the various doubly excited states, 
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and an "energy-normalized" form [8] :t~}l(R) of the elec- 
tronic coupling between the two subspaces. The quanti- 
ties #~(R) and ~t(R) should be nearly constant along 
the series l, in agreement with the typical behaviour of 
unperturbed Rydberg series [18]. It is then possible to 
extrapolate such quantities from low Rydberg states 
where accurate calculations are available up to the ioni- 
zation continuum, so that the method avoids an explicit 
calculation of the final electronic state Na ]  + e-.  

Obviously, this picture of a Rydberg molecule is no 
longer valid at large internuclear distances, where the 
Na~- core is parting into two cores. 

The aim of the present paper is to report for model 
potential calculations concerning the diabatic excited 
states of 2, H and A symmetry in the Na2 molecule. 
We shall check the validity of the Rydberg molecule 
picture by evaluating the parameters #l (R) and ~l(R) 
for various states of a given series. We shall also provide 
an estimation for the cross-sections of the associative 
ionization reaction using a first order MQDT treatment 
for the direct molecular autoionization process. A more 
refined treatment of the dynamical problem will be pre- 
sented in a following paper. 

Atomic units will be used, except otherwise stated. 

2. Quasi-diabatie states 

2.1. Principle of the method 
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Fig. 1. Potential energy curves for the ground and first excited states 
of Na~ (corresponding to the first orbitals used in the Na2 treat- 
ment) 

Next, instead of diagonalizing the hamiltonian in the 
full space of configurations, as in the adiabatic treatment, 
we define two subspaces P and Q, in which a partial 
diagonalization is performed. We have tried out several 
choices for the definition of the two subspaces. The calcu- 
lations have been performed for a set of R values indicat- 
ed in the following tables. 

As we have given in [13], hereafter referred to as paper 
I, a detailed presentation of the two-electron model po- 
tential method, we shall recall briefly the main lines of 
this treatment. 

A two-electron model Hamiltonian: 

1 
W(1, 2) = h(1)+ h(2) + ~ - +  Vd~e, (4) 

r12 

is considered, where h(i) is the one electron model poten- 
tial describing the motion of the electron (i) in the field 
of the two Na + cores at a distance R, 1/r12 is the two- 
electron interaction and Vdle~ a cross-polarization term. 

The two-electron Naz wave function is expanded as: 

7-'(I, 2 ) = ~  fiab [qSa(1) q~b(2)+ 49, (2) qSb(1)] 
ab 

(5) 

where the orbitats ~b(i) are eigenfunctions of the N a f  
Hamiltonian. 

In contrast with paper I, and in view of the physical 
interpretation given below, we have not used a screened 
Na f  Hamiltonian, so that the present results correspond 
to adiabatic potential curves that are slightly less accu- 
rate. 

The list of the configurations that we have considered 
is given in paper I and in [19]. We have also described 
in there the numerical method used to compute the ma- 
trix elements of W (1, 2). 

In order to enlighten the following discussion, the 
energies of the Na~- orbitals are represented in Fig. 1. 

2.2. Diabatic "' A "representation: quasi-diabatic states 

A straightforward partition of the configuration space, 
in the spirit of the "quasi-diabatic" representation pro- 
posed by Sidis and Lefebvre-Brion [20] defines two sub- 
spaces [17] pa and QA where: 

i) pA includes all the configurations containing the 
ground state orbital % 3 s of the Na~ molecular ion. 

ii) QA includes all the other configurations. After diagon- 
alization within the two subspaces QA and pa, we obtain 
eigenstates ~i a and ~A such that: 

<~1 •(1, 2)1~> =Fi(R ) 5u, (7) 

<~AI ~( I ,  2) I~,A> =Ej(R) ,5ji, (8a) 

1 
Ej(R)=go(R ) 2(n](R)) z 5jj, (8b) 

<~a I ~ ( i ,  2) I~> = (n* (R))- 3/2 ~(R)  (9) 

The quantities Fi, E j, n~, ~K}q for the two symmetries 
122 + and 322+ are displayed in the Tables i and 2 for 
some values of the internuclear distance R. The diabatic 
potential curves Fi(R) and Ej(R) are drawn in the Figs. 
2a and 3 together with the potential curve go(R) of the 
Na + ground state. It is clear that for R < I0 au, several 
Rydberg series, hereafter labelled "l', can be identified 
and associated with a quantum defect #t such that 

n*(R)~--nt--#t(R) nt>l+l (10) 



1 + Eg Method A 

R(a.u.)  

10 

SubspaceP A 

"s" series "d" series 

j 2 4 6 3 5 

Ej(a.u.) 
nj * 

SubspaceQ A 

ii Fi(a.u.) 

I1, i 0 . 2 3 8 8  
i2 0.1947 
3 0.1443 

pA Ej(a.u.) 
QA nj* 

i Fi(a.u.) 

1 - -  - 0.2668 
2 - 0.2082 
3 - 0,1718 

pA Ei(a.u.) 
)A ni,  

Fi(a,u.) 

- 0.2982 
- 0.2205 
- 0.2077 

Ej(a.u.) 
n j* 

Fi(a.u.) 

- 0.3204 
- 0.2320 

~- 0.2217 

- 0.2724 - 0.2429 - 0.2301 
2.80 3.82 4.82 

- 0.2657 - 0.2400 
2.96 3.99 

Normalized electronic couplings ~ ( R )  

0.060 0.051 0.041 
0.016 0.009 0.010 
0.028 0.008 0.006 

0.066 0.060 
0.053 0.057 
0.015 0.025 

r 
-0 .2862  -0 .2568  -0 .2440  1-0.2795 -0 .2543  

2.81 3.84 4.86 / 2.97 3.99 

Normalized electronic couplings ~ ( R )  

0.068 0.057 0.045 0.052 0.049 
0.018 0.060 0.010 0.030 0.038 
0.010 0.027 0,021 0.030 0.023 

-0 .2836  -0 .2546  -0 .2421 -0 .2758  -0 .2518  
2.84 3.89 4.94 3.04 4.06 

Normalized electronic couplings ~ i ( R )  

0.073 0.063 0.053 0.046 0.040 
0.019 0.001 0.004 0.026 0.029 
0,050 0.033 0.025 0.013 0.008 

T 
- 0 .2706  -0 .2429  -0 .2308  ] -0 .2621 -0 .2401 

2.89 3.94 4.99 / 3.11 4.13 

Normalized electronic couplings Ni(R) 

0.065 0.067 0.044 0.003 0.002 
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Table l a .  Energies F,.(R) and Ej(R), 
effective quantum numbers n* (R) and 
scaled electronic interactions (see Eqs. (7), 
(8), (9) in text) for the diabatic states of 
Na2 of ~S + symmetry computed through 
the " A "  procedure 
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Fig. 2a-c,  Diabatic potential curves of 1Z~+ symmetry computed 
with three different methods (see text) a "'A" procedure, b " B "  
procedure, c " C "  procedure. Dash-dotted lines. "'s'" Rydberg 
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~Z + Method B 

R(a.u.) 

10 

Subspace pB 

"s" series "d" series 

i j 2 4 6 3 5 

Ej(a.u.) 
nj* 

Subspace QB 
Fi(a.u.) 

- 0.2715 -0 .2524 - 0.2300 
2.82 3.84 4.83 

- 0.2657 - 0.2400 
2.96 3.99 

Normalized electronic couplings ~(R)  

1 

_ _  t L 
[ 

pB 

pB 

0.2414 
0.1953 

, 0.1442 

Ej(a.u.) 
n j* 

Fi(a.u.) 

- 0.2691 
- 0.2095 
- 0.1718 

0.070 0.059 0.049 
0.017 0.008 0.057 
0.029 0.009 0.006 

Fi(a.u.) 

- 0.2965 
- 0.2210 
- 0.2078 

EJ(2~,u') 

0.077 0.071 
0.053 0.057 
0.030 0.025 

-0.2848 -0.2562 -0.2439 -0.2799 -0.2542 
2.84 3.87 4.87 2.96 3.99 

Normalized electronic couplings ~(R)  

0.077 0.061 0.046 0.062 0.059 
0.020 0.060 0.046 0.043 0.050 
0.010 0.020 0.015 0.030 0.026 

- 0.2814 -0.2539 - 0.2418 -0.2771 -0.2523 
2.89 3.93 4.97 3.00 4.03 

Normalized electronic couplings ~4j~j(R) 

0,069 0.051 0.035 0.057 0.054 
0.025 0.033 0.047 0.010 0.010 
0.004 0.031 0.022 0.004 0.035 

pB -0.2694 -0.2423 - 0.2303 -0.2638 -0.2404 
2.92 3.98 5.05 3.07 4,09 

Normalized electronic couplings ~ (R)  Fi(a.u.) 

- 0.2999 
- 0.2287 
- 0.2214 

0.066 0.067 0.059 0.003 0.002 

Table lb. Same as Table la  in case of the 
"B" procedure 

In (i0) n z is the principal quantum number  (varying from 
3 to 5 or 6 in our present calculations) and #Z(R) varies 
little from one value of j  to the next one. We have already 
discussed in [12] the identification of the 1Z+ series as 
" s "  and "d"  series. The two quantum defects #s and 
#d vary only of a few percent when j is changed, the 
ground state being not considered here and the first ex- 
cited state differing more markedly from the rest of the 
series. In the same way, two 3S+ series can be identified 
as "p" and "f" series, the lowest state being even more 
different than in the preceeding case. 

We should remark that the present notat ion "l" does 
not mean that the corresponding Rydberg electronic 
states are eigenstates of the electronic orbital angular 
momentum.  The problem of the " s -d"  or " p - f "  mix- 
ing wilt not be discussed in the present paper  [14]. 

For  a given symmetry, a scaled interaction between 
a doubly-excited state i and a Rydberg series " / "  can 
be defined from the relation: 

This energy normalized electronic coupling is roughly 
constant (within 20%) for the third and fourth levels 
of the " s "  1Sg+ series and varies even less ( ~  10%) be- 
tween the first two levels of the " d "  series. In the 32;,+ 
case (Table 2), it is striking that the doubly-excited states 
are not interacting with the " p "  Rydberg series, and 
only with the " f "  series. The scaled interaction ~/~ij(R) 
then varies by less than 5%. 

For  larger internuclear distances (R _> 10 au) the mo-  
lecular quantum defect or the scaled interaction ~.~(R) 
are no longer constant when the principal quantum 
number  varies, and therefore cannot  be extrapolated 
along a Rydberg series to the continuum. 

The main disadvantage of the "'A" representation is 
that the ground state X 1Zg+ is not well represented, the 
lowest state in pA having an unphysical dissociation lim- 
it. As a consequence, the connection between the com- 
puted doubly-excited states and physical states at large 
internuclear distances is impossible. 

~ j ( R )  ~ "~l(R) for all n l (11) 



1Z~ Method C 

a(a.u.) 

Ej(a.u.) 
nj* 

Subspace Qc 
Fi(a.u.) 

1 
2 0.1945 
3 0.1440 

Subspace pC 

"s" series "d" series 

2 4 6 3 5 

- 0.2724 -0.2429 - 0.2301 -0.2657 -0.2400 
2.80 3.82 4.82 2.96 3.99 

Normalized electronic couplings ~ii(R) 

0.061 0.051 0.048 
0.015 0.006 0.010 
0.028 0.008 0.030 

0.067 0.062 
0.043 0.050 
0.019 0.004 

QC pC I Ei(a'u')n9 

'i(a.n.) 
0.2640 
0.2097 
0.1718 

- 0.2862 - 0.2568 - 0.2440 - 0.2795 - 0.2543 
2.81 3.84 4.86 2.97 3.99 

Normalized electronic couplings ~i(R) 

0.071 0.060 0.051 0.051 0.048 
0.014 0.060 0.010 0.042 0.041 
0.020 0.020 0.020 0.028 0.015 

. . . . . . . . . . . . . . . . . . . . . . .  

Zj(a.u.) 
nj* 

F~(a.u.) 

- 0.2905 

-0.2836 -0.2546 -0.2421 -0.2758 -0.2519 
2.84 3.89 4.94 3.04 4.06 

Normalized electronic coupHngs~(R) 

0.080 0.069 0.061 0.037 0.033 

10 

i2 
i3 

pC 
QC 

[2 
i3 

- 0.2204 
- 0.2077 

E j ( a . u . )  

nj* 

Fi(a.u.) 

- 0.2941 
- 0.2310 

I- 0.2215 

0.015 0.005 0.030 
0.050 0.022 0.020 

0.025 0.029 
0.005 0.004 

-0.2706 -0.2429 -0.2308 -0.2621 -0.2401 
2.89 3.94 4.99 3.11 4.13 

Normalized electronic couplings ~(R) 

0.082 0.073 0.067 
0.030 0.025 0.022 
0.020 0.027 0.030 

0.029 0.023 
0.034 0.037 
0.051 0.038 
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Table lc. Same as Table la in case of the 
"C" procedure 

2.3. Diabatic "B "' representation 

We have proposed in [12] an alternative construction 
for the 1Z~ diabatic states, in which we have first diagon- 
alized the Hamiltonian in the subspace of the two config- 
urations (% 3 s) 2 and (an 3 s) 2, hereby defining two eigen- 
states XB and Y~, XB being the lower one. The subspaces 
P~ and Q~ are then deduced from pa  and QA by replacing 
the configurations (% 3s) 2 and (a, 3s) z by XB and YB 
respectively. The present calculations differ from those 
reported in [12] because the QB subspace contains a 
larger number of configurations. The results are dis- 
played in Table l b  and in Fig. 2b. They do not differ 
significantly from the previous ones; the second excited 
state has a quantum defect closer to those of the two 
other "s"  states; in contrast, the deviation of the scaled 
interaction ~U//~(R) from its average value ~/z (R) are larger 
than in the previous case. 

However, this procedure is far from providing a satisfacto- 
ry ground state, demonstrating that the doubly excited 

configurations containing the rc u 3 p, ~g 3 p, ~g 3 p and ~ru 3 p 
orbitaIs do contribute markedly to the ground state. 

2.4. Diabatic " C " representation 

A third method consists in diagonalizing first the p A  

subspace, in order to obtain correct unperturbed Ryd- 
berg series. Calling Xc  the lowest eigenstate, we define 
the subspace pC by excluding X c from pa, while: 

QC = QA ~ X c  (12) 

The doubly-excited states are next constructed by dia- 
gonalization within the QC subspace. 

This procedure provides a ground state that is satis- 
factory. The singly-excited 1Zg+ Rydberg series, together 
with the doubly-excited states and the interactions are 
presented in Fig. 2c and in Table ic.  However, like in 
the " B "  case, the deviation of the scaled interaction 
~ j ( R )  from its average value ~ l (R)  is larger than what 
was found in the " A "  procedure. 



292 

3Z+ Method A 

R (a.u.) 

10 

Subspace pA 

"p" series "f" series 

j 1 3 5 2 4 

Ej(a.u.) 
nj* 

-0.2597 -0.2371 - 0.2272 
3.11 4.19 5.19 

0.00 
0.00 
0.00 

Subspace QA 
;i Fi(a.u. ) 

1 - 0.2060 
2 - 0.1610 
3 - 0.1433 

- 0.2415 - 0.2294 
3.90 4.90 

Normalized electronic couplings~(R) 

0.00 0.00 0.018 0.019 
0.00 0.00 0.048 0.046 
0.00 0.00 0.013 0,013 

pA Ej(a.u.) 
QA nj* 

Fi(a.u.) 

-0.2749 -0.2516 - 0.2416 -0.2561 -0.2438 
3.10 4.17 5.17 3.88 4.89 

Normalized electronic couplings~(R) 

0.00 0.00 0.020 0.021 
0.00 0.00 0.044 0.042 
0.00 0.00 0.008 0.009 

0.00 
0.00 
0.00 

- 0.2449 
- 0.2007 
- 0.1846 

Ej(a.u.) 
n j* 

-0.2753 -0.2512 - 0.2405 -0.2566 -0.2434 
3.05 4.11 5.14 3.78 4.78 Q A  

[ 

1 
2 
3 

IQ a 

i 

Fi(a.u.) 

- 0.2752 
- 0.2271 
- 0.2049 

Ej(a.u.) 
n j* 

0.00 
0.00 
0.00 

Normalized electronic couplings~(R) 

0.00 0.00 0.036 0.036 
0.00 0.00 0.048 0.043 
0.00 0.00 0.009 0.011 

-0.2674 -0.2408 - 0.2298 -0.2487 -0.2338 
2.97 4.08 5.12 3.63 4.66 

Fi(a.u.) 

i 
0.2820 
0.2375 
0.2207 

0.034 
0.017 
0.035 

Normalized electronic couplings ~ ( R )  

0.014 0.008 0.048 0.042 
0.021 0.019 0.049 0.037 
0.024 0.021 0.009 0.007 

Table 2. Same as Table la  for the 3Z,+ 
symmetry 
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Fig. 3. Diabatic potential curves of 3E,,+ symmetry computed in 
the framework of the "A" procedure (see text). Dash-dotted lines: 
"p" Rydberg curves Ej(R), dotted lines: "f" Rydberg curves Ej(R), 
broken lines: doubly excited curves Fi(R) 

2.5. Discussion 

We have also tried to define diabat ic  states in the frame- 
work of a procedure  privileging the qual i ty  of the g round  
state X 1Sg+. This state was computed  with the best pos- 
sible accuracy by d iagonal iza t ion  of the H a m i l t o n i a n  
within the full space of configurat ions.  The subspace P 
was next const ructed by o r thogona l i za t ion  of the m o n o -  
excited configurat ions  to the X state, while Q was ob- 
ta ined by o r thogona l iza t ion  of the doubly-exci ted con- 
f igurations to X u P. The result ing diabat ic  curves can- 
no t  be interpreted as unpe r tu rbed  Rydberg  series crossed 
by doubly-exci ted states, and  therefore they are useless 
for our  purpose.  Details of the calculat ions are presented 
in [19]. 

The procedure  " C "  has been empirically found to 
be the best adapted  one. However  it appears  from Fig. 2c 
and  from Tables  1 that  in the region of the m i n i m u m  
of the curve N a ~  g round  state potent ia l  curve go(R) 
nei ther  the diabat ic  curves nor  the in teract ions  differ 
markedly  from the " A "  to the " C "  procedure.  
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Similar calculations have been performed for the 
other molecular symmetries. The aN.+ diabatic states 
have been computed in the framework of the A method 
(see Table 2 and Fig. 3). The second and third doubly 
excited states are obviously correlated to the 3 p + 3 p  
dissociation limit. One of the corresponding diabatic 
curves crosses the go(R) potential curve in the vicinity 
of the minimum. 

For the other symmetries, we have compared the re- 
sults of the "A" and of the "C"  methods. They are gener- 
ally little different except for the tag symmetry (see Fig. 
4a and 4b) where the first doubly-excited curve is shifted 
upward by diagonalization with the lowest state in P, 
which is more excited than in the ~22~ + case, its dissocia- 
tion limit being Na (3 s) + Na (3 d) (E . . . . .  0.2448 au) in- 
stead of Na(3s)+Na(3s)  (E=--0.3777 an). As a conse- 
quence, the first doubly-excited state, which is not cross- 
ing the curve go(R) in the " A "  procedure, does cross 
it in the " C "  procedure. The corresponding parameters 
are reported in Table 3. The discussion on the associative 
ionization process is then influenced by the choice of the 
diabatization procedure. 
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Fig. 5. Diaba t ic  potent ia l  curves of ~Ilg symmetry  compu ted  in 
the f ramework  of the " C "  procedure,  Dash -do t t ed  lines. " d "  Ryd-  
berg curves Ej(R), do t ted  lines: " g "  Rydberg  curves Ej(R), broken  
lines: doubly  excited curves FdR) 
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Fig. 6. Same as Fig. 5 for IH~ symmetry  computed  in the f ramework  
of the " A "  procedure.  Dash-do t t ed  lines: "p" Rydberg  curves 
Ej(R), dot ted  lines: "f" Rydberg  curves E~(R), broken  lines: doubly  
excited curves FdR ) 

The diabatic potential curves obtained in the frame- 
work of the '"C'' procedure are displayed in Figs. 5 to 
9 for the 1Hg, tH,,, 3//g, 3Hu and 3A, symmetries. A 
summary of the parameters #~(R) and Y/~I(R) computed 
at the internuclear distance R = 6 au is presented in Ta- 
ble 4 for all the molecular symmetries that can be popu- 
lated starting from two Na(3 p) atoms. 

As will be discussed in Sect. 3, the key factor for the 
occurrence of the molecular autoionization process is 
the distance Ro where a doubly-excited potential curve 
F/(R) is crossing the curve go(R). It is obvious from the 
Figs. 2 to 9 that the existence and the location of such 
a crossing depend markedly upon the molecular symmetry 
that is considered, therefore indicating a strong selectivity 
of the molecular autoionization process. 
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l a g  

R(a.u.)  

Method C 

J 
Ej(a.u.) 

n j* 

Subspace QC 
i Fi(a.u. ) 

,1 - 0.2087 
[2 0.1297 [ 

Ej(a.u.) 
[QC - [ nj* 

Subspace pC 

"d" series [ "g" series 
i 

1 2 4 1 3 5 

-0 .2628 -0 .2370 - 0.2273 -0.2287 -0.2235 
3.04 4.19 5.t7 4.99 5.80 

Normalized electronic couplings '~(R) 

0.00 0.081 0.083 0.00 0.003 
0.00 0.00 0.00 0.00 0.00 

0.2751 -0 .2507 - 0.2413 I-0"2430 -0.2377 
3.09 4.23 5.20 ~ 4.98 5.80 

Fi(a.u.) Normalized electronic couplings ~i(R) r 

-0.2213 J 0.00 0.073 0.083 I 0.00 0.001 
- 0 . 1 5 7 9 1  0.00 0.00 0.00 I 0.00 0.00 

Q C  

ii 

i l  
i2 

!QC 

pC 

pC 

Ej(a.u.) 
n j* 

-0.2711 -0 .2482 - 0.2394 -0.2418 -0.2361 
3.18 4.33 5.29 4.97 5.86 

Fi(a.u.) Normalized electronic couplings ~/~(R) 

0.002 0.002 
0.00 0.00 

0.00 0.056 0.056 
0.00 0.00 0.00 

- 0.2260 
- 0.1920 

Ej(a.u.) 
nj* 

i 
-0 .2649 -0 .2424 -0.2338 1-0.2366 -0.2307 

3.21 4.37 5.34 I 4.96 5.89 
I 

Fi(a.u.) Normalized electronic couplings ~j(R) 

1 - 0.2253 
2 - 0.2014 

0.00 0.046 0.046 0.003 0.003 
0.00 0.00 0.00 0.00 0.00 

Table 3. Same as Table l c  for the lag 
symmetry 
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Fig. 9. Same as Fig. 5 for 3A~ symmetry. Dash-dotted lines: "f" 
Rydberg curves Ej(R), dotted lines: "h" Rydberg curves Ej(R), bro- 
ken lines: doubly excited curves F~(R) 

Table 4. Average values for the parameters of the M.Q.D.T, treat- 
ment (see text) at an internuclear distance R = 6 au 

Sym- f u/~*(R) 
metry of the 

series doubly doubly doubly 
excited state excited state excited state 
1 2 3 

~+ "s ": 0.15 0.06 0.04 0.02 
"d": 0.02 0.05 0.04 0.02 

s ~  "'p": 0.17 0.00 0.00 0.00 
'7"": 0.1.2 0.02 0.04 0.00 

lug "'d": 0.02 0.01 0.01 - 
"g": 0.05 0.01 0.01 - 

3Hg "'d": 0.06 0.00 0.01 - 
"g ":-0.05 0.00 0.00 - 

~H,, "'p ":-0.59 0.05 0.00 - 
' f " :  0.01 0.02 0.02 - 

3H,, "'p ": --0.25 0.01 0.01 - 
"'f": 0.03 0.03 0.02 

lAg "d":-0.21 0.08 0.00 - 
"g ": 0.11 0.00 0.00 - 

3A u '~f":--0.10 0.04 0.01 - 

3. Application to the reaction 
N a  (3p) + N a  (3p) ~ N a  + + e 

We shall first discuss how the molecular autoionization 
process (reaction 2) can be estimated from the present 
diabatic curves. Next, we shall present a simple model 
for the estimation of the cross-sections for the reaction 
(1). 

3.1. Molecular autoionization : explanation 
of  the selectivity 

Assuming that a doubly excited molecular state ~c is 
populated during a collision characterized by a center 

of mass energy E T and a total angular momentum /~ 
we consider the direct autoionization process: 

Na~* ( S ,  L) ~ Na~- IX 2Sg+, v, L] + e(e, "l ' )  (13) 

where the molecular ion Na~- is formed in the ground 
electronic state, the vibrational and rotational states be- 
ing v and L respectively. We assume that the total angu- 

lar momentum h ~ 1) of the heavy particle motion 
is conserved. An electron is ejected with energy e in a 
continuum state which is the extrapolation of the singly- 
excited Rydberg series "l".  Its wavefunction is asymptot- 
ically a Coulomb wavefunction with a phaseshift ~#t. 
As discussed in Sect. 2.2, the notation "l"  does not in 
general mean that the motion of the free electron is charac- 
terized by a unique partial wave. 

In the weak coupling approximation [15] the cross- 
section for the reaction (2) is given, at a collision energy 
E r, by: 

L m a x  

a n ( E r ) = ~  G r ~ ( 2 L +  1) aL(Er) (14) 
L = 0  

In (14), E T is the collision energy,/~ the reduced mass, 
r the multiplicity ratio between the final and the initial 
electronic state in (2) and aL(ET) a dimensionless quan- 
tity such that: 

. . . .  4 ~il 2 
aL(ET)= ~, ~L (15) 

v = 0  + i l  2 
1 Vmax 32 ' L,< J 

where the probability amplitude for the reaction (12) is 
estimated by: 

i l  _ _  ~L--  n ~ Z~L (R) ~*(R) q)iL(Er, R) dR. (16) 

In (16) ~//~i*(R) is the energy normalized coupling, defined 
by the equations (9) and (11), between the initial and 
final electronic state. ZvL(R) is the vibrational wavefunc- 
tion in the final state while q~k(ET, R) is the energy- 
normalized radial wavefunction associated with the rela- 
tive motion of the two atoms in the initial doubly-excited 
state. 

The summation in (14) is over all the possible partial 
waves L in the reaction (t 3). It is controlled by considera- 
tions both on the initial and the final state of the nuclear 
motion. The presence of a small barrier in the long range 
part of the potential Fi(R) (see (7)) characteristic of the 
initial doubly electronic state can therefore significantly 
modify the value of Lma x in (14). In the present work, 
we have not considered such a possibility. 

It appears (see for instance Tables 1-3) that the quan- 
tity GZ(R) is a slowly varying function of the internuclear 
distance R, so that 

~i~lL~-- rC ~ l  S ZvL (R) q)~ (Ew, R) dR (17) 

The molecular autoionization process is characterized 
both by the average value "1~i z of the electronic coupling 
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Fig, 10. Wavefunctions for the nuclear motion in the final and in 
the initiaI state as a function of the internuclear distance R. The 
three lower curves correspond to a collision with energy E T 
=0.05 eV, angular momentum L=0 and the potential of a doubly- 
excited state a) ~Z~ + F1 (R) b) 3Z,+ F2 (R) c) lag F a (R). The five upper 
curves are the first vibrational wavefunctions for the Na~- ground 
state 

E(at 
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Fig. 11. Doubly-excited potential curves F2(R) (and F3(R ) in the 
case of the JZg + and 3Zd symmetries) correlated to the Na(3p) 
+Na(3p) dissociation limit. The full curves correspond to Z and 
d states, the broken curves to H states 

Table 5. Values of the probability amplitude #~L (V=0 and v=4) 
corresponding to a collision energy of 0.05 eV, an angular momen- 
tum L=0 and to the three potentials considered in Fig. 10 
('Z 2 F~(R), 3Z,*, Fz(R), ~Ag F~(R)) 

v=O v=4 

3Z~+ 0.139 t.150 
1Z+ 10-6 6.10 .6 
IA, 0.019 4.668 

and by the Franck Condon factor for the initial and 
final nuclear wavefunctions. The strong selectivity as a 
function of the symmetry of the molecular doubly exalted 
state ti) can therefore be qualitatively explained by con- 
sidering the relative position of the curves F~(R) and 
•o(R). 

This is illustrated in Fig. 10 where we have repre- 
sented both the first vibrational wavefunctions Zvo(R) 
(v = 0, I, 2, 3, 4 and L = 0) associated with the final state 
and the nuclear continuum radial wavefunctions qo~(Er, 
R) or q~2 (ET, R), corresponding to a collision with energy 
0.05 eV, angular momentum L = 0, in the potential F~ (R) 
(resp. Fz(R)) of the first doubly-excited state in the case 
of the tNg+ and lag symmetries and to the second doubly- 
excited state in the case of the 3Z~+ symmetry*. It is 
obvious that the overlap is negligible in the first case 
and not in the two other ones. More quantitative conclu- 
sions can be drawn from Table 5, where typical values 
of the probability amplitude ¢ ~  at a collision energy 
of 0.05 eV are presented. 

*In the case of the ~Sg + symmetry, the lower doubly-excited curve 
FI(R) has been chosen as an example of a "non-crossing case". 
It will not be considered further in the discussion 

3.2. Calculations for the molecular autoionization process 

Starting from two separated atoms, the probability of 
populating a doubly-excited state F~(R) in a collision will 
depend upon the dynamics at large internuclear dis- 
tances. One should consider, in the asymptotic region, 
adiabatic potential curves and dynamical couplings be- 
tween them, in order to treat the collision problem for 
R > 10 au. Then a frame transformation from the adia- 
batic to the present diabatic representation would pro- 
vide a correct estimation of the various curves. 

It is beyond the scope of the present paper to discuss 
the long range collision problem. Nevertheless, we shall 
qualitatively relate the computed diabatic curves to the 
separated atoms limit. In fact, besides the curves correlat- 
ed to the Na (3 p)+ Na(3 p) limit (with asymptotic energy 
E~v = -0.2230), or to the neighbouring Na(3 s)+ Na(n l) 
limit one should consider ionic curves correlated to 
Na + + N a - ,  N a -  being either in the 1S ground state 

as  - -  (the asymptotic energy being then E i o , - - 0 . 2 0 8 9 6  
- I / R ) ,  or in an excited state [22]. The ionic-covalent 
crossing is located at R c ~ 7 1  au in the first case, but 
much closer for the other dissociation limits; for in- 
stance, the N a + + N a  - (3p 2 1D) curve corresponds to 
an asymptotic energy E~o~n=-0.114-1/R, so that the 
ionic covalent crossing is located at Rc--9.2 au and 
could have to be considered in the present discussion. 

From qualitative considerations, it is reasonable in 
most symmetries to assume that the second doubly-ex- 
cited curve F2 (R) curve is the most likely to be populated 
starting from two Na(3p) atoms. Indeed, after orthogon- 
alization to the lowest state in the P subspace, the curve 
F1 (R) should be correlated to an ionic dissociation limit. 
A look at Fig. 11 shows that for collision energies 
Ec<0.054 eV, the molecular ionization process should 
proceed selectively via the curve Fz (R) of 3S~ symmetry. 
Using the method described in Sect. 3.1, and considering 
the scaled interaction with the " f "  series presented in 
Table 2, we obtain from (14) a cross-section azf(ET) 
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-- (4/3) 47 ~2 that is 62.7 ~2 for ET = 0.05 eV. For such 
calculations, we have assumed that there is no long range 
barrier in the potential, so that the Lma x value in (14) 
is determined only by the number of rotational levels 
corresponding to a given vibrational level of the curve 
go(R). 

Assuming a statistical population sharing between the 
various molecular symmetries correlated to Na(3p) 
+Na(3p), the probability of populating one 3Z~+ state 
is 3 ~ ,  so that we end with a cross-section a---5 ~2 for 
the reaction (1). This value is in reasonable agreement 
with the experimental value which is around 1-4 ~k 2 [ t -  
3, 23]. Moreover, out of the two curves F2(R ) and F3(R), 
the lowest one is more likely to be populated from two 
a3p orbitals, while the upper one contains a larger con- 
tribution of the (ng 3 p) (~  3 p) configuration. Therefore, 
the autoionization via the 3Z~+ F2(R) doubly-excited dia- 
batic curve could explain the experimental observation of 
the strong polarization dependence of the ion signal at 
collision energies around 0.05 eV. 

However, especially in the case of potential curves 
of A symmetry (see Figs. 4 and 9) there is no obvious 
reason to disregard the possibility of populating the low- 
est doubly-excited curve F1 (R). We have performed cal- 
culations for the autoionization process via the 1Ag(F~) 
doubly excite d curve, which is crossing the curve go(R) 
in the vicinity of the minimum. We find a cross-section 
ald(Er)=19.2 ~2. Using again the very crude approxi- 
mation of a statistical population sharing between 12 
potential curves correlated to Na(3 p)+ Na(3 p), and as- 
suming an adiabatic correlation from the 3p + 3p limit 
to the curve/71 (R), one obtains a cross-section for reac- 
tion (1) around 1 ~2, also in agreement with the experi- 
mental results. Besides, our calculations show that the 
variation of the cross section as a function of the collision 
energy Er is different in the case of molecular autoioniza- 
tion via a 3Z,+ or via a lAg state [24]. The latest ioniza- 
tion channel being populated from two n atomic orbitals, 
this could lead to a modification of the polarization de- 
pendence of the cross-section when the collision energy 
is varied [23, 24]. 

In contrast, a look at Table 5 explains why, for dou- 
bly-excited potential curves that are not crossing the ionic 
curve go (R) in the vicinity of the minimum, the computed 
autoionization cross-sections are several orders of magni- 
tude smaller than the observed ones. 

3.3. Discussion 

Both the limitations on the total number of configura- 
tions involved in the potential calculations, and the un- 
certainty on the choice of the diabatic procedure should 
lead us to consider an "error bar" in the parameters 
that we are using in the MQDT treatment. We have 
checked that the present first-order results are not signifi- 
cantly modified when one varies those parameters within 
the "error bar". 

First, we have seen in Sect. 3 that the model of a 
Rydberg molecule is questionable for the internuclear 
distance R--10. In the case of molecular autoionization 

via the as,+ F2 (R) potential curve, the scaled interaction 
~2 s (R) deduced from the values of Table 2 has been mod- 
ified to ~S(R) by changing to 0 the value of ~2¢(R) 
for R > 10, and joining smoothly to the unmodified curve 
at R_< 8. At a collision energy ET = 0.05 eV, the molecu- 
lar autoionization cross-section o-2¢ varies only from 
63.7 ~2 to 62.1 ~2. Next we have modified ~Uf(R) to 
~rf(R)+AV, AVbeing a constant for all R values. The 
cross-section is modified from 63.7 ~2 to 60.6 ~2 for 
A V= + 0.005 and 66.9 ~2 for A V= -0.005. Finally, con- 
sidering again the interaction '~P~¢(R) defined above, we 
have shifted the curve F2(R ) by AE. The crossing point 
with go(R) is modified from 7.7 au to 7.5 au when AE 
=--0.002 and to 7.8 au when AE= +0.002. The cross 
section for reaction (3) is modified from a2s=62.1 ~2 
to 66.5 ~z and 54.8 ~2. We therefore may conclude that 
the present accuracy of the 3S] diabatic potential curves 
is satisfactory for the present estimation of the cross- 
sections, bearing in mind the crude approximations on 
the population sharing. 

Another check concerns the validity of the first-order 
approximation in the MQDT treatment. It has been per- 
formed and will be presented in a following paper [24]. 
The values for the total cross-section aay at ET = 0.05 eV 
are not modified when second order effects are intro- 
duced. However, a different conclusion is obtained at 
lower energies. 

The molecular autoionization process via the 
sag F1 (R) doubly-excited potential curves are more sensi- 
tive both to the accuracy of the computed potential 
curves and to the level of sophistication of the dynamical 
treatment. 

4. Conclusion 

We have computed diabatic curves at internuclear dis- 
tances R_< 10 au for the excited states of Naa by consid- 
ering separately singly excited Rydberg series (one elec- 
tron in the field of a ground state Naf  core) and doubly 
excited states (one electron in the field of an excited state 
Na~- core). We have deduced from these calculations 
molecular quantum defects for the Rydberg series and 
scaled interactions with the doubly-excited states. It is 
then possible to compute the cross-sections for the mo- 
lecular autoionization of Na~* in the flamework of the 
MQDT treatment proposed by Giusti [15]. It appears 
that this process should take place preferentially by pop- 
ulation of the second doubly excited curve of 3S2 symme- 
try; however, the first doubly excited curve of lAg sym- 
metry could also be a good candidate especially at low 
collision energies provided it may be populated from 
two Na(3p) atoms. The computed cross sections appear 
to be in satisfactory agreement with experiment. 

This first order treatment will be improved in a fol- 
lowing paper [24] by considering both: 

i) second order terms in the computation of the direct 
autoionization process. Recent calculations have shown 
that the cross-sections at an energy ET of 0.05 eV are 
not modified by the inclusion of those terms, while the 
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results at lower collision energies are significantly modi -  
fied. 
ii) the indirect au to ion iza t ion  process  via an excited vi- 
b ra t iona l  state of  a singly-excited Rydbe rg  electronic 
state:  

Na~*  ~ Na~ (v', L) ~ N a ~  (v, L) + e -  

Indeed,  the electronic coupl ing between a doubly-exci ted  
state and  a Rydbe rg  series " l"  leads to a popu la t ion  
t ransfer  not  only into the c o n t i n u u m  electronic states 
but  also to singly-excited Rydbe rg  states. The  v ibra t iona l  
ionizat ion is then responsible,  in a second step, for the 
ejection of the electron. The  cross-sect ion including bo th  
the direct and  the indirect  process  will be presented in 
a fo r thcoming  work  [24]. A detai led compar i son  with 
the semi-classical calculat ions of  G e l t m a n  [25] will be 
given therein. 

Finally,  future  w o r k  should clarify the popu la t ion  of  
the var ious  doubly-exci ted  states s tar t ing f rom the sepa- 
ra ted a toms  limit. The  statistical popu la t ion  shar ing as- 
sumed  in the present  work  is cer ta inly a crude  approx i -  
ma t ion  especially at  low collision energies. 

The authors are most grateful to Dr. Annick Giusti-Suzor for many 
helpful discussions and for making her computer code available. 
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