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Abstract. We prove that a variant of Moser’s iterative method for solving non-
linear equations is quadratically convergent and give error bounds. We estimate the
amount of arithmetic for the method and compare it to Newton’s method. Finally
we use the method to solve a problem with small divisors.

1. Introduction

In this paper we will discuss an iterative technique, due to Jiirgen Moser, for
finding the roots of a single nonlinear equation f(x) =0. Consider the following
method:

Xpt1 = %y —ynf(xn): (1 '1)
Yu+1=Yn —Yn U’ (xn)yn'_'l:" (1'2)

The first equation is similar to Newton’s method, in which case y, is equal to
1/f’ (x,). The second equation is Newton’s method applied to g (y} =1/y —f'(x,)=0.
Thus, if v, is close to 1/f'(x,) then v, is even closer. It can be shown that the
rate of convergence for the above scheme is (1 +/5)/2=1.62 ..., provided the
root is simple, see {4, pp. 149-151]. However, this is unsatisfactory from a numeri-
cal point of view because the scheme uses the same amount of information per
step as Newton’s method, yet, it converges no faster than the secant method.
Moser’s method was developed as a technical tool for investigating the stability
of the N-body problem in Celestial Mechanics. The main difficulty in this and
similar problems involving small divisors is the solution of a system of nonlinear
partial differential equations, which on the Fourier side can be written in the
form F(w) ==w + T(w) =0 where T is a nonlinear unbounded operator and w is a
vector with infinite many components. Thus we can not expect the contraction
method
W1 = — T(w)) (1.3)

to converge to a solution. The application of Newton’s method is also dubious
since it is not clear whether F’ (w;) =1 4 1" (w,) is invertible. In essence, Moser’s
idea is to solve the problem by a sequence of changes of variables, see Section 3.
An alternative device has recently been proposed by Riissmann, see [6].

In Section 2 we will prove that a modification of (1.2) leads to a quadratically
convergent scheme, see also [4, pp. 151-152] and [12]. In Section 3 this scheme
will be interpreted in terms of an approximation to the inverse function of f(x).
In Section 4 we will discuss the natural generalization of the method to systems
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of nonlinear equations, and also give error bounds. The computational aspects
are considered in Section 5. Finally, in Section 6 we compare several methods
for investigating stability problems involving small divisors.

2. The Improved Scheme

We will now consider a modified version of Moser’s method:

Xpg1 = Xy _ynf(xn)t (21)
Yat1=Vn —Yn U’ (xn-l-l)yn —11 (2'2)

We note that (2.2) differs from (1.2) in that the latest available information is
used. This is crucial for obtaining fast convergence.

Let « be a simple root of f(x) =0. We assume that f is twice differentiable in
an open interval B with midpoint « and let

m =infg|f’'|, M =supg|f”].

If B is sufficiently small then m is positive. Our main objective is to investigate
how fast x, converges to « and not how fast y, converges to 1/f (). We regard
¢,=x,—0o and d,=1—y,f (x,) as the errors in the #-th step. Convergence
properties for the y, can easily be obtained once the rate of convergence for ¢,
and d, have been found, see Corollary 2.

We can now formulate our first result.

Theorem 1. Let 62?47 and define s, =|d,| +c¢|e,|. If x, is in B and s, <4,

then s, ,; < 2s for all #.

Remark. This result shows that s, converges quadratically. However, we do
not claim that e,,,/e? converges to a constant, which is the normal way of ex-
pressing the quadratic convergence of an iterative method for a single nonlinear
equation, see {10, p. 9]. Nevertheless e, converges rapidly to zero, see Corollary 1.

Proof. We will prove the result by induction and consider the (» + 1)-th step.
Suppose that x, is in B and that s, <4. We will then show that x, ., isin B and
that s, ,; < 2s2. From this follows that s, ;< 3}.

By expanding f in a Taylor series around x, we get
0=F(e) =f (%) =1 (%) & +41" €.
Here /" is evaluated at a point between x, and « and thus || <M. From this
and formula (2.1) we obtain an expression for the error in step #+1,
busr =6 —Vull (%) &s — 11" €5

zdnen +%ynf"ef2l'

To estimate y, we use that |d,|=[1 —¥,f (%,)| <}. Because |f'(x,)|=m we can
conclude that |y,| < 3/(2m). Combining these estimates with the above equation
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for ¢, ,, we find

Jewsal SI el + 5 5 Mleal®

=s,]e.]- (2.3)

Since s, < 4 we see that |e, ;| <4|e,| and thus x, ., isin B.
We will now estimate 4, ;. From (2.2) follows that

dn+1:{1 nf ( n+l)}2
—{1 yn +yn[f( )—f’(x1z+1)]}2'

The first term in the last paranthesm simply equals d,. From the mean value
theorem follows that f' (x,) —f'(x,,1) =/ - (%, — %,,.,) Where f’ now is evaluated
at a point between x, and x,,,. Both points are in B and we therefore have
|[/"| =M. Moreover we conclude from (2.3) that |x, —%,,,|<}|e,|. By using
these estimates and the fact that |y, | < 3/(2m) we obtain the following inequalities

l +1|<{ld I*"""'*ﬂf—— l}z
<sl. o

From (2.3) follows that cle, ;| <si. We can finally conclude that s, , <2s? by
combining this result with (2.4). This completes the proof.

From the definition of s, follows that |¢,|<s,/c and |d,|<s,, and we can
therefore use Theorem 1 to estimate the rate of convergence of ¢, and d,. Slightly
sharper estimates can also be obtained as in

Corollary 1. If x, 1s in B and s,<<4, then

(259) 1 (250)2"
I nl zn?f—l e ld |< o

Remark. We can express this result by saying that the convergence of the
iterative method (2.1), (2.2) is R-quadratic at the point « which means that
lim sup,|¢,|*™ is less than one. For a definition and an analysis of this concept
see [5, pp. 287-294].

Proof. To find the bound for |¢,| we use the inequality (2.3) and obtain
le ] = S,—18u—3 -+ Soléo]-

Let g, =2s,. From Theorem 1 follows that ¢, =< ¢? and consequently ¢, < (g,)%".
We can therefore estimate the products of the s, as

—1 n

1

90)

= (q )1,

By combining this estimate with the inequality for |¢,| and by using that |,| < s,/c
we arrive at the bound as stated in the corollary.

From (2.4) follows that |,| <%g;_, and the proof is completed by using the
inequality for g, with & =# —1.

The next corollary shows that y, converges quadratically to 1/f' (a).

"1
II/\

:0

bl
U
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Corollary 2. Let §, =1/f (#) —,. If %, is in B and s, <3, then

l F) IS 230)
Proof. The corollary is an easy consequence of the inequality |4,|<s,/m.
From the mean value theorem follows

0,1 (@) =1 =y, (%) + 3.1/ (%) — 1 (*)]
=dn +yn " n

where f'’ is evaluated at a point between x, and «. Thus || < M. Since |y,|<
3/(2m) we get the estimate

.1 @] =]+ 5y Ml

=s,

and the proof is completed by using that |f' («)|=m.

3. An Alternative Formulation

Moser’s original derivation and presentation of his method was in terms of
an approximation to the inverse function of f(x). The formulas (1.1}, (1.2) is a
later interpretation, see [4, pp. 121-126]. We will now show that the modified
method (2.1), (2.2) also can be expressed in this manner.

Let the initial guess x, be in the neighborhood B of « and assume that sy <4
such that the iteration will converge according to Theorem 1. By a change of
variables we may assume that x, is zero and consequently that B is a neighborhood
of zero. Since ' does not vanish in B there exists an inverse function ¢ of f such
that (fo ¢) (&) =& for all £ in B. If ¢ was known, « =¢(0) would be the root of
f(x} =0. The basic idea is to find a good approximation to ¢ (&).

Let f,={ and define the sequence of function }, recursively by

8. (&) =1.(8) =& (3.1)
@, (§) = —[£,(0) +8.(—8.(0)) &, (3-2)
v, (&) =& +w, (£), (3.3)
Fas (&) =14 (0, (8))- (3.4)

To interpret this scheme we introduce the composite function
%, () =vq0v50:--00,
and using this notation we can rewrite Eq. (3.4) in the form
1 (&) =1 (w4 (€))- (3.5)

By a slight modification of Moser’s proof, see [4, pp. 123—~126], it can be shown
that £,(0) and f,(0) —1 converge rapidly to zero. Thus, if # is large and & small
then the functions £, () and £ are close and it follows from (3.5) that », is a good
approximation to the inverse function ¢ in a neighborhood of zero.
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To bring forth the connection between the schemes (2.1}, (2.2) and (3.1)-(3.4)
we observe that all the functions v, depend linearly on &. The functions #, are
therefore linear, i.e. u, (&) =, +4a,£. On the other hand the u, satisfy w, ,(§) =
u,(v,(£)) and by identifying the coefficients of & in this equation and by using
(3.2) and (3.3) we see that

Xnt1 =% — 8,8y (0)’

Ayt =104, ""angr,t (_gn (0))
From Egs. (3.1) and (3.5) follow that g, (0) =/(%,(0)) and g, (&) =/'(«,(£))a,—1.
Moreover, u,(0) =x, and #,(—g,(0}) =%,,;. Thus the last two equations are
identical with Eqgs. (2.1), (2.2).

Finally we mention that if the argument of g, in (3.2) is zero instead of —g, (0),
then the scheme (3.1)~(3.4) reduces to Moser’s original method (1.1), (1.2).

4. A Generalization. Error Bounds

It is easy to generalize Moser’s method to a system of nonlinear equations
F(x) =0. Let x, be given and chose A4,={[F'(x,)]™!, where F’ is the Fréchet
derivative of F at x,, see {5, p. 61]. We consider the following scheme
Xnt1 = Xy —AnF(xn)»

A, =A4,—A4,[F (x,.,)4,—1I].

If F’ is nonsingular in a neighborhood of a solution « of F(x)==0 then minor
modifications of the proof of Theorem 1 shows that the method converges
quadratically provided x, —« is sufficiently small. The convergence of this scheme
and a related method has also been discussed by Zehnder, see [12].

We will now estimate the error in the (# + 1)-th step in terms of computable
quantities from the #-th step. This bound can be used as a stopping criteria. The
proof is based on Kantorovich’s theorem for Newton’s method, see 5, p. 421-423].

Theorem 2, Let B be a neighborhood of %, and assume that
[F'(x) —F' (n) | <y [ x|

for all ¥ and y in B, where || denotes the max-norm for vectors and the corre-
sponding matrix norm. Suppose that

e=[4,1F () —T] <1

and define
B=01—e)14,], n=(1—e)|4,F(z,)|
If Byn < % and the sphere with center x, and radius (1—}1 —28y7)/(By) is in B,
then
1441 — | S (2Byn +eB)n.

Remark. The constants ¢, § and n which depend on # can be calculated in
each step of the iteration, whereas y must be estimated from the beginning. If F
is twice differentiable in B then we can choose

2*f
ax,' 6x7'

y =suppmax, X;;
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where f, are the components of F. We will not prove this result, but refer to
(5, pp. 74-78] for the necessary tools.

Proof. We consider the (n +1)-th step in the iteration and write

Ay=Ay 1 —[4, 1 J,— 114, (4.1)
Xpp1=2%, —A,F, (4.2)

where J, =F'(x,) and F, =F(x,). From Eq. (4.1) follows that
I—4, J,=U—4,, ] (4.3)

which shows that 4, and J, are nonsingular matrices since by our initial assump-
tion the norm of the right hand side is less than one. We can therefore rewrite
(4.2) in the form

Fpt1 [(An]n)—l'—l] AnEz =xn—]n—1Er (44)

We can interpret the left hand side, which we denote by #%,.;, as the result of
one step of Newton’s method.

By using Kantorovich’s result for Newton’s method we can find a bound for
%,,1 —o in terms of y and the norm of J;!' and J*F,. From (4.3) follows that

Jt=(4,])"4,
=1 — (I _An——l ]n)z]_lAn
and we can therefore estimate J;?, using the definitions of ¢ and 8 by
12 =0 =) |4,]=5.
Since JJ1E, = (4, J,)* 4, F, we obtain by using the same technique that
| El=( —e) |4, E | =.

We can now refer to Kantorovich’s theorem, see [5, p. 421], which states that if

pyn <4 and the sphere with center x, and radius (1 —)/1 —28y%)/(8y) is in B,
then Newton’s method converges to « with «x, as initial guess. In particular the

first iterate satisfies
1501 —a] = 28y2
To estimate the second term on the left hand side of (4.4) we note that it follows
from (4.3) that
(A J)t =T =[I =T = A, 1[I — 4,1 J)
By using this identity and the definition of  we conclude that
|%ns2 — Hpia| S (1 — &%) 2|4, F, |
=é&n.

The proof is completed by combining the last two inequalities.

5. Numerical Aspects

In this section we will compare Moser’s method to Newton’s method from a
computational point of view. We write Newton’s method in the implicit form

F' (%) (%11 — %) = —F (%) (5.1)
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and assume that F has # components, so F’ is a » by » matrix. To find x, ., we
must solve the linear systems of Eq. (5.1). For the sake of illustration we choose
two examples. We are not concerned with the existence of a solution to the pro-
blems, rather we will estimate the amount of arithmetic for the two methods.

The first example is Urysohn’s integral equation
1
u(s)=vw(s) + [ K (s, ¢, u(t))dt.
0

The natural discretization of this integral equation leads to a system of nonlinear
equations for which the Fréchet derivative is, in general, a dense unsymmetric
matrix. In Newton’s method we solve (5.1) by Gaussian elimination which requires
3n® 42 multiplicative operations, see [3, p. 36]. To get started in Moser’s method
we must invert F'(x,) at a cost of #® operations, see [3, p. 36]. Thereafter each
step of (4.1) and (4.2) requires 2#°% and %2 operations respectively if we use the
standard way of multiplying two matrices.

In Moser’s method the approximate inverse of F' is available and this facilitate
the estimate of the error. Even this advantage disappears if we compare it to
the following version of Newton’s method

Ty = X — [F (1) |2 F (%),

which however requires more work than the conventional form (5.1). From
Kantorovich’s theorem we can obtain a bound for #,.,; —a and the work would
be »3 4-#n? operations per step.

Qur second example is the differential equation

W' =f(t, u)

on the interval 0 <¢ <1 and with #(0) and #{1} given. If we approximate «” by
a second order central difference quotient, we obtain a system of nonlinear equa-
tions the Fréchet derivative of which is a tridiagonal matrix. In this case only
5# operations are needed to solve (5.1), see [3, p. 57], whereas $#® 4 3 #? operations
are required in (4.1), if we use that the matrices 4, are symmetric.

The main weakness in Moser’s method is the need for matrix multiplications,
and this weakness gets even more pronounced when solving nonlinear elliptic
boundary problems. There exist fast methods for computing the product of two
matrices, due to Winograd [11] and Strassen [9]. However, these methods can
also be adapted to solve a linear system of equations, and we shall therefore not
pursue the comparison further in this direction.

In the numerical calculations below we use the following version of the variant
of Moser’s method

Wpp1 =1 — A F(wy) {5.2)

where w, =0 and the linear operators 4, are defined iteratively by
Aju=A4; ,[2—F'(w) 4, ,]u (5-3)

for =1, 2,..., k with Agu=u. Thus to compute 4,F(w,) we must save the
Fréchet derivative from all the previous steps.
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To estimate the amount of arithmetic for this algorithm let ¢; and ¢ be the
number of multiplicative operations needed to calculate v =A4,u and F'(w;)v
respectively. It follows from (5.3) that ¢;=2¢;_, +¢ and since ¢, =0 we see that
¢, == (2 —1)c. If the cost of computing F(w;) is less than or equal to ¢, then the
total amount of work for the computation of wy, ..., %, is less than 2**+1c.

The cost per step of method (5.2), (5.3) grows thus exponentially. However,
if ¢ is small compared to the number of operations needed to solve (5.1), then we
can take several steps of Moser’s method in the time needed for one step of Newton’s
method, see e.g. the case investigated below. It is of course important in this
context that the modified method converges quadratically, whereas the rate of
convergence of the original method (1.1), (1.2) is only 1.62 ... . From a theoretical
point of view this difference seems unessential.

6. A Numerical Example

In this section we will illustrate the use of algorithm (5.2), (5.3) on a small
divisor problem, see Section 1. We consider two discs of radii , and 7, respectively,
rotating around axes through their centers.

Fig. 1

We let the distance between the axes be / and connect the discs with a spring
fixed on the edge of each disc, see Fig. 1.

In the discussion below we will assume that the discs rotate without friction
and that the force exerted by the spring is proportional to the lenght of the
spring. Let élz % 0, and éz :% 0, be the angular velocities of the discs. By
using the Euler equations of motions for a rotating rigid body with a fixed point,
see [2, p. 157], we get

I, 6, + kry{Isin 6, 47, sin (6, —0,)} =0, (6.1)
I, 0, + kry{lsin 0, 7, sin (B, —0;)} =0 (6.2)

where % is the spring constant and I; and I, are the moments of inertia of the
discs. We can reverse time, thus if 6, (f) and 6,(¢) are solutions of (6.1) and (6.2)
then 6,(—¢) and 6,(—¢) will also be solutions.

For convenience we set /=1 and introduce the constants u, =#&#/I, and

s =kry/I,. If we furthermore introduce the functions ¢,=0, and ¢,=¥0,
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Eqgs. (6.1) and (6.2) can be written as a reversible system
él =¢y,
éz =
(.1)1 = —m{sin0; +7,sin (6, —0,)},
¢y = — o {sin O, + 7, sin (6, — 6,) }.

We will now use a general theorem due to Moser, see [4, p. 49]. It states that if
M and u, are sufficiently small, then there exist solutions of the form

0=+ (5.6, = +v,(5,6), (6.3)
O, =&, +us(61,82),  Pa=wo +v,(4, &9), (6.4)

provided @, and w, are rationally independent. The functions #,, #,, v; and v, are
real analytic, 27z periodic in & and &, with

él =Wy, é2=w2. (6.5)
Moreover, the reversible character of the system implies that «, and #, are odd
functions of & == (§,, &,) whereas v, and v, are even functions of & The real numbers
w, and w, are rationally independent if there exist two positive constants ¢ and =
such that
|71 +@a7a] >0 (|f2] +7a]) 7 (6.6)
for all (7,, 7,) 0.

One can show that the sum of the kinetic energies of the discs and the potential
energy of the spring is constant in time. If the spring constant is small then the
potential energy contained in the spring is small, but large amounts of kinetic
energy could possible be transferred from one disc to the other. However, Moser’s
theorem implies that the kinetic energies of the discs, i.e. 11,05 and 41,603, remain
almost constant in time provided the spring is sufficiently weak. In this sense
the system is stable.

To find the stable solutions we insert (6.3) and (6.4) in (6.1) and (6.2) and by
using (6.5) we obtain the following system of nonlinear partial differential equations
(0 Bg, ~+ 5 0, )21ty +piy {SIn (& +19) +7p 810 (§ —&p + 1y — 1)} =0,

() Oz, + g 0, )21ty + pa{sin (§5 +1p) +7y8in (5, — & + 1y —2y)} =0.

These equations present difficult computational problems. For computational
convenience we let #; and #, have period one instead of 2z by introducing the
new variables { = (x, y) where £ =2xn{. Since #, and #, are odd, real analytic
functions we look for solutions of the form

Uy = Z aje2ni(1',5)’ Uy == Zﬁjezﬂi(i,i)

all j0

where o; = —o_; and ;= —f_ . Here j = (jy, 7,) is a multiindex. Inserting these
expressions in the above partial differential equation we get

— X o lw,)2e2 0 -y {sin (2w x +243) 75 5in (270(x — ¥) +uy —ua)} =0,

j+0

— 2 B(w, )22 08 Ly {sin 2wy +ug) +7ysin (270 (y — %) +ug —1y)} =0

740
29 Numer. Math,, Bd. 23
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where w = (w,, w;) and (w, §) =w,; +w,jf,. The functions within the parenthesis
are odd and periodic in x and y with period one. We can therefore expand them
in a Fourier series and by equating the coefficients we finally obtain

o+ AF {sin(2ax+a) +rysin (2n(x —y) +a —ﬁ)} =0, (6.7)
B+ AF {sin 2y +B) +7,sin (2a(y—=x) +8 —a)}=0 (6.8)

where « and § are the Fourier coefficients of #;, and u, respectively, i.e. o = Fu,
and B =Fu,, and we have used the notation #, =% o =& and u, =F 18 =4.
In addition we define the operator A such that if y ={y,} are the Fourier coeffi-
cients corresponding to an odd function, then the j-th term of Ay is —y;/(w, )2
At this point it becomes clear why w; and w,; must be kept rationally independent.
While it is almost inconceivable that the stability of the physical system actually
depends on whether w,/w, is a rational number, the analytic formalism breaks
down. The existence of « and § which satisfy Eqs. (6.7) and (6.8) is a consequence
of Moser’s theorem, see {4, Chap. V].

To find o and B numerically we will apply the variant of Moser’s method in
the form (5.2) and (5.3) to Egs. (6.7) and (6.8). Let 5 and 4 be the Fourier coeffi-
cients corresponding to two odd, real analytic functions with period one. The
Fréchet derivative F’ (o, ) corresponding to (6.7) and (6.8) is a linear operator
on (#, ) with components

N+ p AF {cos (2mx + &) §) +rycos (27 (x —y) +a —ﬁ) % ~2§)}, (6.9)
D +u, AF {cos (2my +B)§ +7,cos 2a(y —x) +f —&) (@ —7)).  (6.10)

So far the problem has infinite many unknowns «; and ;. However, in the
numerical calculations we will only consider functions a andﬁ in the periodicity
interval 0 <x <1, 0 =y <1 on the discrete set of points x =7,/N and y =j,/N
where 7;,7,=0,1,..., N—1 and N is a power of two. On this mesh we can
represent a function # by a discrete Fourier transform, see [1, p. 151],

N=1
wlifo) = 2 p(m, ng) et mi ity (6-11)

1, M=
where the Fourier coefficients y are determined by

N-1
Pl m) = s 3wl o) e s, (612)
fta=
If the coefficients ¢ are given we can evaluate the function # defined by (6.11)
for all integers 7, and f, and this periodic continuation of » will have period N
in both variables. Similarly we can continue y, defined by (6.12), as a periodic
function. The mesh function # is odd if #(jy, 7o) = —u(—7, —f2) = —u(N—7y,
N—j,). Thus, u is odd if and only if y is odd. To compute # from 3 and vice
versa we use the fast Fourier transform in an implementation by Singleton [7].
All indices in the expansion (6.11) and (6.12) are positive. This is convenient
from a programming point of view, but our definition of the operator A must be
changed accordingly.
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We will now outline the (#-+1)-th step of the algorithm, assuming that
a =0 and B =pB™ are given. Since « and g are the Fourier coefficients correspond-
ing to real, odd and periodic functions they are purely imaginary. We can there-
fore find « andﬁ simultaneously by one application of the fast Fourier transform,
see [1, p. 7]. Thereafter we evaluate all sin and cos terms used in (6.7)-(6.10) at
the points x =¢,/N and y =j,/N. The function F(«, 8) defined by the left side of
(6.7) and (6.8) is computed by a further application of the fast Fourier transform
and multiplications with the diagonal matrices y; 4 and u,A. Finally we compute
the correction term A4, F(a, 8) in (5.2) by using (5.3) recursively. It follows from
(6.9) and (6.10) that if we store all cos terms evaluated at «® and g% for
=1, 2, ..., n, then the evaluation of A4,(n, #) involves two applications of the
fast Fourier transform. We can therefore estimate the constant ¢ in Section 5 by
6N2 4 4N? log, N because one step of the fast Fourier transform requires roughly
4 N2%log, N? complex multiplications, see [1, p. 23 and 152].

We will compare this version of Moser’s method to Newton’s method. Let y
and & be the modifications of & =« and 8 =™ to be computed in the (» -+ 1)-th
step, ie. (5, =[F (« )] F(a, f). By reorganizing (6.9) and (6.10) we see
that the components of the Fréchet derivative F’(«, §) applied to (5, #) can be
written as

{I 4+ py AF [cos 2mx + &) +ryc08 (27 {x —) —}—&—f?)]}my

— 7, AF cos (2m(x —y) +a—f)*9

— ppry AF cos (27u(y — %) +f —&) *7

+{I +p AF [cos 27y +B) +rycos (27 (y —x) +8 — &)1} D
where # denotes convolution. If we represent «, 8, and & by discrete Fourier
transforms and use the fact that » and & are odd, wee see that (5.1) reduces to a
dense system of linear equations with N2 unknowns. Gaussian elimination requires
approximately N¢/3 multiplicative operations for this system.

Table 1 contains an approximate estimate of the work involved for the two
methods. We see that it is advantageous to use Moser’s method if N is large and
both methods converge rapidly.

In the computations presented below we have used w, = }/2 and w, =1 which
satisfy (6.6) with ¢=0.5 and 7=1. To establish the inequality it is enough to
prove that if p and ¢ are positive integers, then

|p—V29|205( +9)™ (6.13)
Table 1
N=4 N=38 N=16
The constant ¢ 350 1.900 9.700
1 step of Newton 1.400 87.000 5.600.000

1 step of Newton >

n step of Moser if n < 2 5 9

= step of Newton <

n step of Moser if u = 5 9 13

29*
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Table 2. The modified Moser’s method

k Iteration N =4 N=23§ N=16
102 2 1.8-1072 1.8-1072 1.8 1072
3 5.8-1078 3.4-10¢ 3.7-107%
4 1.7-107? 5.4-1077 8.4-1077
1073 2 1.9-1073 1.9-1072 1.9-1073
3 5.8-107% 2.6-1077 2.6 1077
107¢ 2 1.9 104 1.9-107¢ 1.9-10™4
3 5.8-10™1 2.5-1071° 2.5-10710

We consider the following cases, one: pfg and (p +1)/g<}2, two: p/g<}2 and
(p +1)/g>1/2, and three: p/g>]/2. The first case is obvious. In the second case
we use that f(r) = #? —2is a convex function and /()/2) =0. Let x, be the approxi-
mation to |/2 computed by one step of the regula falsi method applied to f(x)
with x, =p/g and x, = (p +1)/q as initial points. We get

1 2¢%—p?

To establish (6.13) we multiply the above inequality by ¢ and note that the
numerator is greater than one, whereas the denominator is smaller than 2(p +g¢).
In the third case we use Newton’s method with x; =p/g as initial guess, and the
proof is similar.

We mention that the points (w,, w,) satisfying (6.6) for some ¢ and 7 are
dense in R?, because every w, and w, can be approximated by (p,/q;) Y2 and p,/q,
respectively where $; and ¢, are integers.

The constants in (6.1) and (6.2) have been chosen in the following manner.
We assume the discs are made of steel with a density of 7.8 - 10® kg/m3. The
discs have radius 0.40 m and 0.15 m respectively and thickness of 0.01 m. The
distance between the axes was chosen to be 0.50 m. Thus the discs have masses
of 2.45kg and 5.51 kg respectively and the constants in (6.7) and (6.8) are
71 =0.2, 7, =0.3 and y, =4.08 &, py=1.21 k& where % is the spring constant. We
tried a variety of choices for £, but settled for a £ in the interval 10-2 to 10-¢ N/m.
If #=10"2 N/m, a weight of one gram will stretch the spring to a length of
0.98 m, so the spring is indeed weak.

All computations were carried out on the IBM 370/155 at Uppsala University.
The program was written in Algol. In this language a procedure can call itself
recursively, and this facilitates the programming. In accordance with (5.2), (5.3)
we choose ! =f® =0 and 4,=1. In Table 2 we give the relative magnitude of
the correction terms for the « component, ie. for n=2,3,... we evaluate
Jo — =[] |,- The correction terms for the 8 components are smaller
in absolute value than those for the « components, but the relative magnitude
follows exactly the same pattern.

The numbers in Table 2 indicate quadratic convergence for the modified
method. Moreover, from Table 1 follows that with the exception of N equal to 4,
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Table 3. The original Moser’s method

k Iteration N =4 N=3§ N =16
10~2 2 1.8-1072 1.8-1072 1.8-1072
3 4.1-107% 2.5-107% 2,710
4 3.5-107° 1.9-1077 4.4+1077
1072 2 1.9-1073 1.9-107° 1.9-1073
3 4.1-1078 2.7°1077 2.7+1077
104 2 1.9-10¢ 1.9-10~% 1.9-10™*
3 4.1-10712 2710710 2.7-10710

one step of Newton’s method requires more multiplications than is needed to
obtain the final result by Moser’s method.

If we replace (5.3) by A;u=4, ;[2—F (w, ) A,;_,]u we get a convenient
implementation of the original version of Moser’s method. We have compared
this method to the modified version. Table 3 contains the relative magnitude
of the correction terms for the « components. The rate of convergence is similar
to the previous case. The reason is that the Fréchet derivative (6.9), (6.10) at
a® =B =0 is close to F’ evaluated at o), BV,

Finally we have tried to obtain the solution of (6.7) and (6.8) by using the
contraction technique {1.3). This method is rejected in theoretical investigations
of stability problems involving small divisors, see [4, p. 120], but in our computa-
tions it did converge, though slowly.

We will now give a partial explanation of this phenomena. By using Parseval’s
identity for the discrete Fourier transform, see [4, p. 11], it is possible to show
that the discrete version of (1.3) is a contraction method provided

max {f, g}

min (w, 7)?

(1 47 +75) <1.

In this case any « and f§ can be used as initial values. Since there is only a finite
number of frequencies for each fixed IV, the inequality can always be satisfied if
the spring constant & is sufficiently small. For N =16 we have |(w, )| = (})2 - 5—7)
and by using the values for #,, 7,, 4, and u, we see that (1.3) is a contraction for
all £ <8.2-10"% This convers the case of the smallest % discussed here. However,
it can also be shown by tedious calculations that the /, norm of the Fréchet
derivative of T is larger than one for « =f =0 and 2 =10-2. Thus (1.3) may be
a contraction even with £ =102, but o« =8 =0 cannet belong to its domain of
definition. In Table 4 we present the relative magnitude of the correction terms
for the o components.

We have also tested values of % larger than 10~2. Thus for £ ==0.025 we obtain
convergence for N =4 and N =8, but divergence for N =16 for all three methods.
If N and % are fixed the two versions of Moser's method give solutions which
agree in the first 8 significant digits. If the relative magnitude of the correction
term for the contraction method is of order 10~% the solution agrees with the
other two in the first 4 significant digits.
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Table 4. The contraction method

k Iteration N =4 N=38 N=16
1072 2 1.9+-10"2 1.9-1072 1.9-1072
3 2.8-1073 3.5-10°% 3.5-10°8
4 5.6+ 1078 2.8-107¢ 3.0-107*
5 9.3:107% 4.5-10"5 5.6+ 1078
6 1.2-1075 1.4+1078
1073 2 1.9-1073 1.9-1073 1.9-10™8
3 2.9-107% 3.5-10°8 3.5-107°
4 5.8-1078 2.5-10~7 2.5-1077
1074 2 1.9-10™* 1.9-10™4 1.9-1074
3 2.9-10~7 3.5:1077 3.5-1077

By comparing the solutions for fixed %, but different N, we get an indication
of the errors in the calculations. For £=10-2 and N =16 the solution of (6.7)
and (6.8) gives the following Fourier series expansion of #, and u,

#, = 0.02033sin2nx 4+ 0.07122sin2 7 (x —y)
—0.00132sin27y +0.00077sin27z(2x —2y)
+0.00047 sin27 (2% —y) + 0.00022sin2x (2x —3 y)
+0.00020sin 27w (x —2y) +---

uy,= 0.01207sin2my + 0.01407 sin 27 (y — %)
+0.00029 sin27(2y — %) + 0.00015 sin27w(2y —2%) 4----.

All remaining terms have coefficients less than 10-% For N =8 the Fourier
coefficients are, after rounding, identical to those above and the agreement, as
expected, is best for the very low frequencies. For IV =4 the Fourier coefficients
agree with those above in the first two significant digits. If % is 103 or 104 the
solutions for different N differ much less than in the example above, presumably
because the Fourier series for #, and #, converge more rapidly, and #; and u,
can therefore be well represented by few terms.

We observe that the above solutions #, and u, for £=10"% and N =16 are
close to the functions we obtain in the first step when we solve (6.7) and (6.8)
by any of the three methods discussed here. In fact, we find in the first iteration
of (6.7)

% 0= 77_2—’_‘;-0)7 =0.02041, oy _ = ﬁ{%:omm
which agrees tolerably with the coefficients of the dominating terms in the
expansion of #,. Similarly, by using (6.8) we obtain an even better agreement
with the coefficients in the expansion of #,

M SR . 14 S
Bo1= GENE =0.01209, f_;,= (2 +17° =0.01411.
To obtain the solution of the nonlinear partial differential equations we just
substitute in %, and #, the original variables & =2xx and &, =2xy. Finally we
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get the solutions 6, and 6, of (6.1) and (6.2) by solving (6.5) and using (6.3) and
(6.4), ie. - -
0.(t) =72t 4, +u, (Y2t +ep, t4cy),

0(8) =t o5+ 1 (J2¢ +c5, ¢ +co)

where ¢, and ¢, are arbitrary real constants.

The computational procedure suggested in this section can be improved in
several ways. By using the symmetry of « and § we can decrease the number of
sin and cos evaluations and the number of multiplications needed in (6.9) and
(6.10) by a factor two. In addition, the fast Fourier transform can be speeded
up by a factor two. To prove this we assume # is an odd function and write (6.11)

in the form
N—1[N-1

M(].l, ]2) _ Z Z y(%l’ nz) g2nii,n,/N eznii,n,lN
0

N—1

- Zof(jl, 712) 62nii,n,/N' (614)
Because » is odd, v is also odd and since y can be continued periodically with
period N we conclude that I'(jy, #,) = — I'(N —4;, N —mn,) for all §; and #,. It is
therefore enough to compute I'(j;, #,) for §,=0,...,N—1 and n,=0,1, ...,
(IV/2) — 1. This can be done by N/2 fast Fourier transforms and requires roughly
(N/)2) - (N]2) logs N complex multiplications. For each j; we can consider (6.14)
as a discrete Fourier transform with respect to 7,, and if we compute u(jy, 7,)
for j;,=0,1,..., (N/2) —1 and §;=0,1,..., N —1 we can find the remaining
coefficients by symmetry, i.e. % (fy, f,;) = —#(V —7;, N —4,). Thus the total cost
is 1 N2log, N* complex multiplications, which is only half of the number of opera-
tions needed for the ordinary fast Fourier transform. We can therefore solve a
given problem twice as fast, or alternatively, take one further step of Moser’s
method in the same amount of time. Hence the comparison between Newton’s
and Moser’s methods becomes more favorable for the latter method. Additional
gain in speed can be obtained by using fast Fourier transforms written specially
for the number of points we are interested in, for N =8 see e.g. {8].

The purpose of this example has been to illustrate the application of Moser’s
method on a problem which is difficult to solve by other methods. At present there
is no proof for the convergence of the discrete solution toward the solution of the
continuous problem, though the stability of our numerical results strongly indicate

such a result.
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