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Abstract. We prove that  a variant of Moser's iterative method for solving non- 
linear equations is quadratically convergent and give error bounds. We estimate the 
amount of arithmetic for the method and compare it to Newton's method. Finally 
we use the method to solve a problem with small divisors. 

1. Introduction 

In  this paper we will discuss an iterative technique, due to Jiirgen Moser, for 
finding the roots of a single nonlinear equa t ion / (x )  = 0 .  Consider the following 
method:  

x,+ 1 = x ~  - - y , / ( x ~ ) ,  (IA) 

y,,+~ =y , ,  --3,,, f (x,,)y,, - -  I I .  (t .2) 

The first equation is similar to Newton's  method, in which case y .  is equal to 
I / / '  (x~). The second equation is Newton's  method applied to g (y) = i /y  - - / '  (x,~) ~ O. 
Thus, if y~ is close to i f ( x , , )  then Y~+I is even closer. I t  can be shown that  the 
rate of convergence for the above scheme is (t +V5) /2 - -1 .62  . . . .  provided the 
root is simple, see [4, pp. t 49-t  51 ]. However, this is unsatisfactory from a numeri- 
cal point of view because the scheme uses the same amount  of information per 
step as Newton's  method, yet, it converges no faster than the secant method. 

Moser's method was developed as a technical tool for investigating the stability 
of the N-body problem in Celestial Mechanics. The main difficulty in this and 
similar problems involving small divisors is the solution of a system of nonlinear 
partial differential equations, which on the Fourier side can be written in the 
form F(w) = w + T(w) = 0 where T is a nonlinear unbounded operator and w is a 
vector with infinite many  components.  Thus we can not expect the contraction 
method 

w~+l = --  T(wk) (t "3) 

to converge to a solution. The application of Newton's  method is also dubious 
since it is not  clear whether F'  (wk) = I + T '  (w~) is invertible. In  essence, Moser's 
idea is to solve the problem by  a sequence of changes of variables, see Section 3. 
An alternative device has recently been proposed by  Rfissmann, see [6]. 

In  Section 2 we will prove that  a modification of (t .2) leads to a quadratically 
convergent scheme, see also [4, pp. t51-152] and [t2]. In  Section 3 this scheme 
will be interpreted in terms of an approximation to the inverse function of ](x). 
In  Section 4 we will discuss the natural  generalization of the method to systems 
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of nonlinear equations, and also give error bounds. The computat ional  aspects 
are considered in Section 5. Finally, in Section 6 we compare several methods 
for investigating stability problems involving small divisors. 

2. The Improved Scheme 

We will now consider a modified version of Moser's method:  

X n + l  = Xn --Yn/(X~,), 

Yn+l = Y n  - -Yn [[' ( X n + l ) Y n  - -  t ] .  

(2.1) 

(2.2) 

We note tha t  (2.2) differs from (1.2) in tha t  the latest available information is 
used. This is crucial for obtaining fast convergence. 

Let  cr be a simple root of ] (x) ----0. We assume that  / is twice differentiable in 
an open interval B with midpoint  ct and let 

m =infBl/'], M = supBI/"l. 

If  B is sufficiently small then m is positive. Our main objective is to investigate 
how fast x. converges to ~r and not how fast y .  converges to l ] ] '  (,r We regard 
e.=x.--o~ and d . = i - - y . [ ' ( x . )  as the errors in the n-th step. Convergence 
properties for the y .  can easily be obtained once the rate of convergence for e. 
and d. have been found, see Corollary 2. 

We can now formulate our first result. 

9M 
Theorem 1. Let c = 4 m  and define s. =Idol +c le . I .  If  x 0 is in B and So<} ,  

then s,~+l <=2s~ for all n. 

Remark. This result shows tha t  s. converges quadratically. However, we do 
not claim tha t  e,,+l/e ~ converges to a constant,  which is the normal way  of ex- 
pressing the quadratic convergence of an iterative method for a single nonlinear 
equation, see [t 0, p. 9]. Nevertheless e~ converges rapidly to zero, see Corollary t. 

Proo[. We will prove the result by  induction and consider the (n + t)- th step. 
Suppose tha t  x. is in B and that  s. < 3- We will then show tha t  x.+l is in B and 
tha t  s.+ 1 =<2s~. From this follows tha t  s.+ 1 < 3 .  

By  expanding [ in a Taylor  series around x. we get 

, 1 , ,  2 o= / (~ )  = / ( x . ) - / ( x ~ ) e . + 2 ]  e.. 

H e r e / "  is evaluated at a point between xn and • and thus [["] <= M. From this 
and formula (2.t) we obtain an expression for the error in step n + l ,  

e.+,  = e. - y .  El' (x.) e. - �89 I "  e. ~] 

=d.e. + i y . / "  e~. 

To estimate y .  we use tha t  Id.l=lt -yd'(x.)l <�89 Because I!'(x.)l>m w e  can 
conclude tha t  [y.] < 3/(2m). Combining these estimates with the above equation 
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for e,,+a we find 

I~+ll--<ld.[ le.t+ 12 - ~  Mle.I ~ 

<=snlen ]. (2.3) 

Since s , ,<�89 we see tha t  le.+d <�89 and thus X.+l is in B. 
We will now est imate d,,+x. F rom (2.2) follows tha t  

d.+~ ={1  --Y.t' (Xn+l)} $ 
----{1 -- y,, /' ( x,) + y ,  It' ( x,) --1' (x,~+l)~} 2. 

The first te rm in the last paranthesis s imply equals d,. F rom the mean value 
theorem follows tha t  ] '  (x.) - - ] '  (x,+a) = / " .  ( x , -  X,+l) where ]"  now is evaluated 
at  a point between x, and x,,+v Both points are in B and we therefore have 
I/"I<_M. Moreover we conclude from (2.3) t ha t  Ix~-x .+l l<�89 By using 
these est imates and the fact tha t  ]y. [ <  3/(2 m) we obtain the following inequalities 

3 3 }z 
la.+ll<_- {la. l+ 2;.M-21e,,I 

~s~.  (2.4) 

F rom (2.3) follows tha t  c[e~+l[--<s~. We can finally conclude tha t  s~+~ ~ 2 s ~  by  
combining this result with (2.4). This completes the proof. 

F rom the definition of s~ follows tha t  le,~[<=s, dc and Id,~]<=s,,, and we can 
therefore use Theorem t to es t imate  the rate of convergence of e~ and d~. Slightly 
sharper  est imates can also be obtained as in 

Corollary 1. If x o is in B and s o < �89 then 

levi < (2s0)~" 1 [d~l < (2s,)*" 
2 n + l  c ' 4 

Remark. We can express this result by  saying tha t  the convergence of the 
i terat ive method  (2.t), (2.2) is R-quadrat ic  at  the point  a which means tha t  

�9 2-t~ hm sups[e,[ is less than one. For  a definition and an analysis of this concept 
see [5, pp. 287-294]. 

Proo/. To find the bound for [e,] we use the inequali ty (2.3) and obtain 

re.l_-< so_~s._~ ... ~01eol. 
Let  q~ = 2s k. F rom Theorem t follows tha t  qk+l *:~q~ a n d  consequently q, <__ (q0) **. 
We can therefore est imate the products  of the s k as 

n - - 1  n - - 1  

H ~ =< H �89 (qo) ~ 
k ~ 0  k = 0  

= 2 - "  (qoff "-1 . 

By  combining this est imate with the inequali ty for ]e,[ and by  using tha t  [e0[ _< so[c 
we arrive at the bound as s ta ted in the corollary. 

From (2.4) follows tha t  [d,[ =< _~,24 ~,-~" and the proof is completed by  using the 
inequali ty for qk with k = n - -  1. 

The next  corollary shows tha t  y~ converges quadrat ical ly  to t if' (o O. 
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Corol lary  2. Let ~ = t / / ' ( ~ )  --y~. If x 0 is in B and %<�89 then 

- -  2m 

Proo/. The corollary is an easy consequence of the inequality I~l  _< G/re. 
From the mean value theorem follows 

6.1' (~) = 1 - - y . / '  (x.) +y, ,  [/' (x.) --1 '  (~)] 

= d . + y , J "  e,, 

w h e r e / "  is evaluated at a point between x. and ~. Thus [/"[ ~ M .  Since tY,,[ ~= 
3/(2m) we get the estimate 

i~.ll/,(~)l<ld, l+  3 Mle. I ~dm 
~s~ 

and the proof is completed by  using that ]/' (x)]_--> m. 

3. A n  Al ternat ive  F o r m u l a t i o n  

Moser's original derivation and presentation of his method was in terms of 
an approximation to the inverse function of ](x). The formulas (1.t), (t.2) is a 
later interpretation, see [4, pp. t21-t26]. We will now show that  the modified 
method (2.t), (2.2) also can be expressed in this manner. 

Let the initial guess x o be in the neighborhood B of ~ and assume that  s o < �89 
such that  the iteration will converge according to Theorem t. By a change of 
variables we may  assume that  x 0 is zero and consequently that  B is a neighborhood 
of zero. Since ] '  does not vanish in B there exists an inverse function ~b of ] such 
that  (fo$)(~) = ~  for all 8 in B. If r was known, ~ = r  would be the root of 
f(x) = 0 .  The basic idea is to find a good approximation to $ (~). 

Let /0  = f  and define the sequence of function fn recursively by 

g~(~) =L(~)  --~, (3.1) 

wo (~) --- - Eg~ (0) + g~ ( - g ~  (0)) ~], (3.2) 

v~ (~) = ~  + w~ (~), (3.3) 

/.+1 (~) = / .  (v~ (~)). (3.4) 
To interpret this scheme we introduce the composite function 

u.(~) = v o o v l o  . . . o r . _  1 

and using this notation we can rewrite Eq. (3-4) in the form 

L(~) =l(u.(~)). (3.s) 
By a slight modification of Moser's proof, see [4, pp. t23-t26],  it can be shown 
that  ]~ (0) and ]~ (0) - - t  converge rapidly to zero. Thus, if n is large and ~ small 
then the functions f,(~) and ~ are close and it follows from (3-5) that  us is a good 
approximation to the inverse function ~b in a neighborhood of zero. 
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To bring forth the connection between the schemes (2.t), (2.2) and (3.1)-(3.4) 
we observe tha t  all the functions v. depend linearly on 2. The functions u, are 
therefore linear, i.e. u~ (2) = x~ + a . ~ .  On the other  hand  the u,, satisfy u,,+l ( ~ ) =  
u,  (v~ (~)) and by  identifying the coefficients of ~ in this equation and by  using 
(3.2) and (3.3) we see tha t  

x,+~ = x~ --  a,g~ (0), 

a,,+a =a, ,--ang' , , ( --g, , (O)) .  

From Eqs. (3. ! ) and (3.5) follow tha t  g, (0) = / (u,  (0)) and  g~ (~) = / '  (u,  (~)) a , - -  t .  
Moreover, u, , (O)=x, ,  and u,, (--g,, (O) ) = x,+ v Thus  the last two equations are 
identical with Eqs. (2.1), (2.2). 

Finally we ment ion tha t  if the argument  of g~, in (3.2) is zero instead of - - g ,  (0), 
then the scheme (3.t)-(3.4) reduces to Moser's original me thod  (1.t), (1.2). 

4. A Generalization. Error Bounds 

I t  is easy to generalize Moser's method to a sys tem of nonlinear equations 
F(x)  = 0 .  Let  x 0 be given and chose A o = [ F ' ( x o ) ]  -1, where F '  is the Frdchet 
derivat ive of F a t  x o, see [5, p. 6t 1- We consider the following scheme 

x~+ a = x,, - -  A~F(x~),  

A,+a = A ,  - - A ,  IF'  (x,+x) A,  - - I ] .  

I f  F '  is nonsingular in a neighborhood of a solution cr of F(x )  = 0  then minor  
modifications of the proof of Theorem 1 shows tha t  the me thod  converges 
quadrat ical ly  provided x o - -  a is sufficiently small. The convergence of this scheme 
and a related method  has also been discussed by  Zehnder, see [t2]. 

We will now est imate the error in the (n + l ) - th  s tep in te rms of computable  
quanti t ies from the n- th  step. This bound, can be used as a s topping criteria. The 
proof is based on Kantorovich 's  theorem for Newton 's  method,  see [5, p. 421-423]. 

Theorem 2. Let  B be a neighborhood of x~ and  assume tha t  

liF' (x) - - F '  (y) I[ ------- r II x --Yl[ 

for all x and y in B, where I"[] denotes the max-norm for vectors  and  the corre- 
sponding mat r ix  norm. Suppose tha t  

e = ~ A~_I F '  (x~) - -  I [1 < t 
and  define 

fl = ( 1 -  e*)q [[A~ll, ~ = ( l - - e z ) - l I I A ~ F ( x ~ ) [ I .  

I f  flg,~ < �89 and the sphere with center x~ and radius (t - -  ]/t- - -  2flg,~)/(flg,) is in B, 
then 

Remark. The constants e, fl and ~ which depend on n can be calculated in 
each step of the iteration, whereas 9' must  be es t imated from the beginning. If  F 
is twice differentiable in B then we can choose 

~2f~ 9' = sup~ m a x  t 27~ j 
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where /l are the components  of F.  We will not prove this result, bu t  refer to 
[5, pp. 74-78] for the necessary tools. 

Proo/ .  We consider the (n + l ) - th  step in the i terat ion and write 

A~ = A n _  1 - -  [ A . _ I J  n - - I ]  A ~ _  1 (4.1) 

xn+ 1 = x~ - -  A n F. (4.2) 

where Jn = F '  (x~) and F n =F(xn) .  F rom Eq. (4.t) follows tha t  

I - - A n  J~ = ( I  - - A n _  1 J.)~, (4.3) 

which shows tha t  A.  and  J .  are nonsingular  matrices since by  our initial assump- 
tion the norm of the right hand side is less than  one. We can therefore rewrite 
(4.2) in the form 

x.+1 - -  E( A .  Jn)-I _ I]  A n F~ = x n - -  j ~ l  F~. (4.4) 

We can interpret  the left hand side, which we denote by  s as the result of 
one s tep of Newton 's  method.  

B y  using Kantorovich ' s  result for Newton 's  me thod  we can find a bound for 
Xn+l - - ~  in te rms  of V and the norm of j~ l  and J~IF..  F rom (4.3) follows tha t  

j;1 = (A n f . ) - i  An 

= [I  - -  ( I  - - A ~ _  1 J . ) 2 ] - I A  n 

and we can therefore es t imate  j~l,  using the definitions of e and fl by  

[[ j~ l  [[ < ( l  - e 2) -1 [[ An I[ = fl- 

Since J~lF.  = (A n Jn)-I A~ F. we obtain by  using the same technique tha t  

[] J~X F. [l ~ (t --,~)-1 ]lA. F. ][ = 9 -  

We can now refer to Kantorovich ' s  theorem, see [5, p. 42t ], which s ta tes  tha t  if 
flY~ < � 8 9  and the sphere with center x n and  radius (t --V 1 --2flV~)/(fl7 ) is in B, 
then Newton 's  method converges to ~ with x. as initial guess. In  part icular  the 
first i terate satisfies 

HXn+I--m[J_--__ 2flT*f. 

To es t imate  the second t e rm  on the left hand  side of (4.4) we note tha t  it follows 
f rom (4.3) t h a t  

(A n j . ) - i  - I = [I  - ( I  - -  A , , _  1Jn)*] -1 ( I  - - A n _  1Jn) 2. 

By  using this ident i ty  and  the definition of ~ we conclude t ha t  

[[ :~n+l - -  Xn+l [[ ~-~ (~ - -  e2)-1,2 [[ An F. ][ 

The proof is completed b y  combining the last  two inequalities. 

5. N u m e r i c a l  A s p e c t s  

In  this section we will compare  Moser's method  to Newton 's  me thod  from a 
computa t iona l  point of view. We write Newton 's  me thod  in the implicit  form 

F '  (xk) (xk+ x - -  xk) = - - F ( x k )  (5.t) 
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and assume that  F has n components,  so F'  is a n by  n matrix. To find x,+ 1 we 
must  solve the linear systems of Eq. (5.t). For  the sake of illustration we choose 
two examples. We are not concerned with the existence of a solution to the pro- 
blems, rather we will estimate the amount  of arithmetic for the two methods. 

The first example is Urysohn's  integral equation 

1 

u (s) = ~ (s) + f K (s, t, u (t)) dr. 
o 

The natural  discretization of this integral equation leads to a system of nonlinear 
equations for which the Fr6chet derivative is, in general, a dense unsymmetr ic  
matrix. In  Newton's  method we solve (5.t) by  Gaussian elimination which requires 
�89 3 + n  * multiplicative operations, see [3, P- 36]. To get s tar ted in Moser's method 
we must  invert  F'(xo) at a cost of n 3 operations, see [3, P. 36]. Thereafter each 
step of (4.t) and (4.2) requires 2n 8 and n 2 operations respectively if we use the 
s tandard way of multiplying two matrices. 

In  Moser's method the approximate inverse of F '  is available and this facilitate 
the estimate of the error. Even this advantage disappears if we compare it to 
the following version of Newton's  method 

xk+~ = xk  - I F '  ( x ~ ) ] - l F ( x k ) ,  

which however requires more work than the conventional form (5.1). From 
Kantorovich's  theorem we can obtain a bound for xk+l - -~  and the work would 
be n a + n  2 operations per step. 

Our second example is the differential equation 

u" =l(t ,  u) 

on the interval 0 <:t  ~ I and with u (0) and u (t) given. If  we approximate u"  by  
a second order central difference quotient, we obtain a system of nonlinear equa- 
tions the Fr6chet derivative of which is a tridiagonal matrix.  In  this case only 
5 n operations are needed to solve (5.t), see [3, P- 57], whereas �89 3 + 3 n2 operations 
are required in (4A), if we use that  the matrices A k are symmetric.  

The main weakness in Moser's method is the need for matr ix  multiplications, 
and this weakness gets even more pronounced when solving nonlinear elliptic 
boundary  problems. There exist fast methods for computing the product  of two 
matrices, due to Winograd [i t  ] and Strassen [9]. However, these methods can 
also be adapted to solve a linear system of equations, and we shall therefore not  
pursue the comparison further in this direction. 

In  the numerical calculations below we use the following version of the variant  
of Moser's method 

wk+ 1 =wk --  AkF(w~) (5.2) 

where w0----0 and the linear operators A k are defined iteratively by 

A~u = A i - 1  [2 - - F '  (wi) Ai_l]  u (5.3) 

for i-----f, 2 . . . . .  k with A o u = u .  Thus to compute A~,F(wk) we must  save the 
Fr6chet derivative from all the previous steps. 
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To estimate the amount  of ari thmetic for this algorithm let c i and c be the 
number  of multiplicative operations needed to calculate v = A i u  and F'(wi)v 
respectively. I t  follows from (5.3) tha t  c i = 2 c i _  1 + c  and since c o = 0  we see that  
c k = (2* - -  t) c. If  the cost of computing F(wi) is less than or equal to c, then the 
total  amount  of work for the computat ion of w 1 . . . .  , w,+ 1 is less than  2'+1c. 

The cost per step of method (5.2), (5.3) grows thus exponentially. However, 
if c is small compared to the number  of operations needed to solve (5.t), then we 
can take several steps of Moser's method in the t ime needed for one step of Newton's  
method, see e.g. the case investigated below. I t  is of course impor tant  in this 
context tha t  the modified method converges quadratically, whereas the rate of 
convergence of the original method (t A), (t .2) is only t .62 . . . .  F rom a theoretical 
point  of view this difference seems unessential. 

6. A Numerical Example 

In  this section we will illustrate the use of algorithm (5.2), (5.3) on a small 
divisor problem, see Section t. We consider two discs of radii r 1 and ra respectively, 
rotat ing around axes through their centers. 

Fig. I 

We let the distance between the axes be l and connect the discs with a spring 
fixed on the edge of each disc, see Fig. t.  

In  the discussion below we will assume that  the discs rotate wi thout  friction 
and tha t  the force exerted by  the spring is proport ional  to the lenght of the 

spring. Let  01 d �9 d = ~ /  01 and 02 = ~  02 be the angular velocities of the discs. By  

using the Euler equations of motions for a rotat ing rigid body  with a fixed point, 
see [2, p. t 57], we get  

I101 + krl{lsin 01 + r 2 sin (01 --02)} = 0 ,  (6.t) 

12 "09. + k r 2 {1 sin 02 + r 1 sin (02 - -  01)} = 0 (6.2) 

where k is the spring constant  and 11 and I s are the moments  of inertia of the 
discs. We can reverse time, thus if 01(t) and 02(t) are solutions of (6.t) and (6.2) 
then 01(--0 and O,(--t) will also be solutions. 

For  convenience we set l = t  and  introduce the constants /~1----kh[I1 and 

p , = k r J I  v If  we furthermore introduce the functions •1=01 and r  
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Eqs. (6.t) and (6.2) can be written as a reversible system 

- -  -/*l sin 01 + r2 sin (01 - -  02)}, 

---- 0, + ' 1  sin (02- -  01)}. 

We will now use a general theorem due to Moser, see [4, p. 49]. I t  states tha t  if 
Pa and/*2 are sufficiently small, then there exist solutions of the form 

01 =~1 + ul(~,, ~2), ~bl =o)1 +v1(~1, ~2), (6.3) 

0n =~2 +u2(~1, ~2), $2 = 0 2  +v2(~1, ~2), (6.4) 

provided 0)1 and 0)z are rationally independent. The functions ul, u2, v 1 and v 2 are 
real analytic, 2 ~ periodic in ~1 and ~2 with 

i l  =0)1, ~2 =0)2- (6.5) 

Moreover, the reversible character of the system implies tha t  u I and u 2 are odd 
functions of ~ = (~1, ~2) whereas v 1 and v 2 are even functions of ~. The real numbers 
oh and 0) 2 are rationally independent if there exist two positive constants a and 
such that  

Iohil q-0)2i2[ > o(lf i l  + li2l)-* (6.6) 
for all (]'1, i2) =4 = 0. 

One can show that  the sum of the kinetic energies of the discs and the potential 
energy of the spring is constant  in time. If  the spring constant is small then the 
potential energy contained in the spring is small, but  large amounts of kinetic 
energy could possible be transferred from one disc to the other. However, Moser's 

1 "2 and  �89 remain theorem implies that  the kinetic energies of the discs, i.e. ~I101 
almost constant in time provided the spring is sufficiently weak. In  this sense 
the system is stable. 

To find the stable solutions we insert (6.3) and (6.4) in (6.1) and (6.2) and by  
using (6.5) we obtain the following system of nonlinear partial differential equations 

(0)1 ~ t  + O)2 0~,)2 Ul +/ .1  {sin (~1 + ul) + r2 sin (~1 - -  ~2 + ul --  u2) } = 0, 

(Oh ~r +0)2 ~ ) a  u2 + / .2{  sin (~2 +u2) + r l  sin (~2 --~1 + u 2  --ul)}  = 0 .  

These equations present difficult computat ional  problems. For  computational  
convenience we let u 1 and u s have period one instead of 2 ~ by  introducing the 
new variables ~ = (x, y) where ~----2~r~. Since u 1 and u 2 are odd, real analytic 
functions we look for solutions of the form 

Ul = E O~j e2ai(j'r qJ2 = E flj e2z~i(j'r 
i4=0 j4=O 

where ~i = --c~_ i and fli = --f l - i"  Here j = (1"1, J2) is a multiindex. Inserting these 
expressions in the above partial differential equation we get 

- -  X o~j(0), j)Ze2~'li'r +/h{s in  (2~rx +u~) +r~  sin (2~(x  - -y )  + u  1 --u2) } = 0 ,  
j4=0 

- -  X f l i  ( 0 ,  j )2  e 2 ~i  (i, r +/*~ {sin (2 ~ y  + u2) + r 1 sin (2 ~r (y --  x) + ua --  u~) } = 0 
j4=0 

29 Numer. Math., Bd. 23 
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where eo : (col, co3) and  (co, ]) :o17" 1 + o j 3 .  The functions within the parenthesis  
are odd and periodic in x and y with period one. We can therefore expand  t h e m  
in a Fourier  series and  b y  equat ing the coefficients we finally obtain 

0r +/~lAo~-{sin (2 :zx +&) + r ,  sin ( 2 r r ( x - - y )  + &--/5)} : 0 ,  (6.7) 

/5 +ff2Ao~-{sin (2:zy + ~ ) + r l  sin ( 2 : z ( y - - x ) + ~ - - & ) }  : 0  (6.8) 

where ~ and/5 are the  Fourier  coefficients of ul and  u 3 respectively, i.e. ~----~-u 1 
and fl =o*'u3, and we have  used the notat ion u 1 =o~-1~  = & and u 2 ----o~'--1/5 =/5. 
In  addit ion we define the opera tor  A such tha t  if 7 ={) ' i}  are the Fourier  coeffi- 
cients corresponding to an odd function, then the ?'-th t e rm of A y  is --7/(to, ])~. 
At this point  it becomes clear why  o 1 and ~o~ must  be kept  rat ionally independent .  
While it is almost  inconceivable tha t  the s tabi l i ty  of the physical  sys tem actual ly  
depends on whether  r 2 is a rat ional  number ,  the analyt ic  formalism breaks 
down. The existence of cr and/5 which satisfy Eqs. (6.7) and (6.8) is a consequence 
of Moser 's theorem, see [4, Chap. V]. 

To  find ~ and/5 numerical ly  we will apply  the var iant  of Moser's me thod  in 
the form (5.2) and (5.3) to Eqs. (6.7) and (6.8). Le t  ~ and 0 be the Fourier  coeffi- 
cients corresponding to two odd, real analyt ic  functions with period one. The 
Frdchet  derivat ive F' (~,/5) corresponding to (6.7) and (6.8) is a linear operator  
on (~1, v ~) with components  

~+fflASZ{cos(2:zx+&)~+r3cos(2~z(x--y)+&--fl)(r (6.9) 

0 +f f2A#-{cos  ( 2 = y  +/~) t9 + r l  cos (2•(y - -x )  + f i  - -  &) (t~ --~)}.  (6A0) 

So far the problem has infinite m a n y  unknowns ~i and/s j .  However ,  in the 
numerical  calculations we will only consider functions & and/5 in the periodicity 
in terval  0 g x < i, 0 =<y < 1 on the discrete set of points x =]I/N and y =],./N 
where ]1, I'3 = 0 ,  t . . . . .  N - - l  and N is a power of two. On this mesh we can 
represent  a function u by  a discrete Fourier  t ransform, see I1, p. 151 ], 

N - - 1  

u(/'l, ]~) = Y,, y(nl ,  n2)e3"i(i'"'+J'')/x (6.'11) 
n l , ~ t = 0  

where the Fourier  coefficients 7 are determined b y  

N - - 1  

Y(nl, n3) = -N~ ~, u(/'l, i~)e-2=i(i '" '+i'" ')lN. (6.'12) 
/ ' .  i t  = 0 

If  the  coefficients ~ are given we can evaluate  the function u defined by  (6A1) 
for all integers 1"1 and  1"3 and this periodic continuation of u will have period N 
in both  variables. Similarly we can continue ~, defined by  (6A2), as a periodic 
function. The  mesh function u is odd if U(il, 1 " 3 ) = - - u ( - - ] l ,  --]~)=--u(N--]l,  
N--],). Thus,  u is odd if and only if 7 is odd. To compute  u f rom y and  vice 
versa  we use the fast  Fourier  t ransform in an implementa t ion  by  Singleton [7]. 
All indices in the expansion (6.11) and  (6A2) are positive. This is convenient  
f rom a p rogramming  point  of view, but  our definition of the opera tor  A must  be 
changed accordingly. 
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We will now outline the ( n + t ) - t h  step of the algorithm, assuming that  
c~ ----0~ {"/and fl =ill< are given. Since a and fl are the Fourier coefficients correspond- 
ing to real, odd and periodic functions they  are purely imaginary. We can there- 
fore find & and fi simultaneously by  one application of the fast Fourier transform, 
see El, p. 7]. Thereafter we evaluate all sin and cos terms used in (6.7)-(6.10) at 
the points x =i l /N and y =i=/N. The function F(~, r)  defined by  the left side of 
(6.7) and (6.8) is computed by a further application of the fast Fourier transform 
and multiplications with the diagonal matrices p IA and/,~A. Finally we compute 
the correction term A, f (~ ,  r) in (5.2) by using (5.3) recursively. I t  follows from 
(6.9) and (6.10) tha t  if we store all cos terms evaluated at ~{il and rio for 
i = t ,  2 . . . . .  n, then the evaluation of Ai(~, ~9) involves two applications of the 
fast Fourier transform. We can therefore estimate the constant  c in Section 5 by 
6N 2 + 4N 2 log=N * because one step of the fast Fourier  t ransform requires roughly 
�89 N 2 log 2 N 2 complex multiplications, see [t, p. 23 and 152]. 

We will compare this version of Moser's method to Newton's  method. Let 
and v q be the modifications of ~ =cr {~1 and fl =fl/-I to be computed in the (n + 1)-th 
step, i.e. ( ~ , # ) = [ F ' ( a ,  fl)~-lF(o~,fl). By reorganizing (6.9) and (6.10) we see 
tha t  the components of the Fr6chet derivative F' (c~, r) applied to (~, ~9) can be 
written as 

{I+t~lA~-[cos(2z~x+& ) + r 2  cos ( 2 z ~ ( x - - y ) + & - - f i ) J } , ~  

- - / , x r ~ A ~  cos ( 2 ~ ( x - - y )  +&-- /~)  .~9 

--/~2 r~A~- cos (2=(y  - -x)  + f i  --&) **~ 

+ {I  +/u~A,~ ~- [cos (2 n y  +/J) + Y1 COS (2 7g (y --  x) + f i  --  &)] } * v ~ 

where �9 denotes convolution. If we represent a, r, ~l and ,9 by discrete Fourier 
transforms and use the fact that  ~ and ,9 are odd, wee see that  (5.1) reduces to a 
dense system of linear equations with N 2 unknowns. Gaussian elimination requires 
approximately N6/3 multiplicative operations for this system. 

Table I contains an approximate estimate of the work involved for the two 
methods. We see that  it is advantageous to use Moser's method  if N is large and 
both methods converge rapidly. 

In  the computat ions presented below we have used co x ---- 1/2 and co2 ----- t which 
satisfy (6.6) with a =0 .5  and z = I. To establish the inequality it is enough to 
prove that if p and q are positive integers, then 

]p -- V2ql >= 0.5 (p +q)-X. (6.t3) 

Table I 

N = 4  N = 8  N = 1 6  

The cons tan t  c 350 1.900 9.700 

I step of Newton  t .400 87.000 5.600.000 

I step of Newton  > 2 5 9 
n step of Moser if n 

n step of Newton  < 5 9 13 
n step of Moser if n >= 

29* 
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T a b l e  2 .  T h e  m o d i f i e d  M o s e r ' s  m e t h o d  

k I t e r a t i o n  N ~ 4  N = 8  N = t 6  

t 0  - 3  2 '1.8 �9 '10 - 3  1 . 8  �9 1 0  - 3  `1.8 �9 1 0  - 3  

3 5 . 8 "  `10 - 5  3 . 4 "  `10 - 4  3 . 7  �9 '10 - 4  

4 '1.7 �9 '10 - 9  5 . 4 "  '10 - v  8 . 4  �9 1 0  - ~  

1 0  - 3  2 `1.9 " '10 - 3  '1.9 " '10 - 3  1 . 9  �9 '10 - ~  

3 5 . 8 "  '10 - 9  2 . 6 .  '10 - 7  2 . 6 .  t 0  - 7  

`10 - 4  2 `1.9 " `10 - 4  1 . 9  �9 '10 - 4  '1.9" 1 0  - 4  

3 5 . 8  �9 ̀ 10 -1 1  2 . 5  �9 ̀ 10 - l ~  2 . 5  �9 '10 - x ~  

W e  consider  the  following cases, one:  plq and  (p + t ) / q <  ]/-2, two:  p /q < V ~ and 
(p + t ) [ q > V 2  , and  three:  p/q>V2. The first  case is obvious.  In  the  second case 
we use tha t  f (x) = x 2 - -  2 is a convex funct ion and  ] (V 2) = o. Le t  x~ be the  approxi -  
ma t ion  to V ~ computed  b y  one s tep  of the  regula  falsi me thod  appl ied  to /(x) 
wi th  x I =p/q and x o = (p + 1)/q as in i t ia l  points.  We  get  

1 2q2 _p2  
V 2 --P/q > x2 --p/q -- q I + 2 p  

To es tabl ish  (6.t3) we mu l t i p ly  the  above inequa l i ty  b y  q and note  tha t  the  
numera to r  is grea ter  than  one, whereas the  denomina to r  is smaller  t han  2 (p + q). 
In  the  th i rd  case we use Newton ' s  me thod  with  x 1 -~ p/q as ini t ia l  guess, and  the 
proof  is similar.  

We  ment ion  t ha t  the poin ts  (co D co2) sa t i s fy ing  (6.6) for some a and z are 
dense in R 2, because every co x and co2 can be a p p r o x i m a t e d  b y  (Pl/ql) V ~ and PJq2 
respect ively  where Pi and  qi are integers.  

The  constants  in (6A) a n d  (6.2) have  been chosen in the  following manner .  
We assume the  discs are made  of s teel  with a dens i ty  of 7.8. l03 kg/m 3. The 
discs have radius  0.10 m and  0A 5 m respect ive ly  and thickness of 0.01 m. The 
dis tance  between the  axes was chosen to be 0.50 m. Thus the  discs have  masses 
of 2.45 kg and  5.51 kg  respect ive ly  and  the constants  in (6.7) and  (6.8) are 
rx = 0 . 2 ,  r2----0. 3 and  pa = 4 . 0 8  k, / . 2 = t . 2 t  k where k is the  spring constant .  We 
t r i ed  a va r i e ty  of choices for k, but  se t t l ed  for a k in the  in te rva l  10 -3 to t0  -4 N/m. 
If  k----t0 -2 N/m, a weight  of one g r a m  will s t re tch  the  spr ing to  a length of 
0.98 m, so the  spr ing  is indeed  weak. 

Al l  computa t ions  were carr ied out  on the IBM 37o/t 55 at  Uppsa la  Univers i ty .  
The p rogram was wr i t t en  in Algol. In  this  language a procedure  can call i tself  
recursively,  and  this  faci l i ta tes  the programming.  In  accordance wi th  (5.2), (5.3) 
we choose ~(o) _ fl(ol = 0 and  A o = I .  In  Table 2 we give the  relat ive magni tude  of 
the correct ion te rms  for the  ~ component ,  i.e. for n----2, 3 , . . .  we eva lua te  
[I ~ --~176 The correct ion te rms for the  fl components  are smal ler  
in absolute  value  t han  those for the  ~ components ,  bu t  the  re la t ive  magni tude  
follows exac t ly  the  same pa t t e rn .  

The  numbers  in Table 2 indicate  quadra t ic  convergence for the  modif ied 
method.  Moreover,  from Tab le  t follows tha t  wi th  the  except ion of N equal  to  4, 
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T a b l e  3.  T h e  o r i g i n a l  M o s e r ' s  m e t h o d  

k I t e r a t i o n  N = 4  N = 8  N = t 6  

1 0  - 2  2 t . 8  �9 t 0  - 2  t . 8  �9 1 0  - 2  1 . 8  " t 0  - 2  

3 4 . 1  " 1 0  - s  2 , 5  " I 0  - 4  2 - 7  " t 0  - 4  

4 3 - 5  " 1 0  - 9  t - 9  " 1 0  - 7  4 . 4  �9 1 0  - ~  

t 0  - a  2 1 . 9 "  t 0  - a  1 . 9  �9 1 0  - a  t . 9 "  I 0  - a  

3 4 . 1  �9 l O  - s  2 . 7  �9 1 0  - 7  2 . 7  �9 t 0  - ~  

1 0  - 4  2 1 . 9 "  1 0  - 4  1 . 9  " 1 0  - ~  1 . 9 "  1 0  - 4  

3 4 . 1  - 1 0  - n  2 . 7  �9 1 0  - 1 ~  2 . 7  " t 0  - 1 ~  

one step of Newton's method requires more multiplications than is needed to 
obtain the final result by  Moser's method. 

If  we replace (5.3) by  A i u  = A i _ x [ 2 - - F ' ( w i _ l ) A i _ l ] u  we get a convenient 
implementation of the original version of Moser's method. We have compared 
this method to the modified version. Table 3 contains the relative magnitude 
of the correctior, terms for the a components. The rate of convergence is similar 
to the previous case. The reason is tha t  the Frdchet derivative (6.9), (6.t0) at 
acol =fl(0) = 0  is close to F '  evaluated at ~{11, tic1). 

Finally we have tried to obtain the solution of (6.7) and (6.8) by using the 
contraction technique (1.3). This method is rejected in theoretical investigations 
of stability problems involving small divisors, see [4, p. t 20], but  in our computa- 
tions it did converge, though slowly. 

We will now give a partial explanation of this phenomena. By  using Parseval 's  
identi ty for the discrete Fourier transform, see [1, p. t t] ,  it is possible to show 
that  the discrete version of (1.3) is a contraction method provided 

m a x  {/~1, # 2 }  
min { ~ , ~  (1 +r,  +r,.)<t.  

In  this case any  ~ and fl can be used as initial values. Since there is only a finite 
number  of frequencies for each fixed N, the inequality can always be satisfied if 
the spring constant k is sufficiently small. For  N = 16 we have 1@, J) l > (1 (~" 5 --7) 
and by  using the values for r 1, r 2,/x x and/~z we see tha t  (1.3) is a contraction for 
all k < 8.2 �9 t0  -4. This convers the case of the smallest k discussed here. However, 
it can also be shown by  tedious calculations tha t  the 12 norm of the Frdchet 
derivative of T is larger than one for ~ = f l  = 0  and k = I 0  -~. Thus (t.3) may  be 
a contraction even with k = t 0  -3, but  a = f l  = 0  cannot belong to its domain of 
definition. In  Table 4 we present the relative magnitude of the correction terms 
for the ~ components. 

We have also tested values of k larger than t0  -'~. Thus for k =0.025 we obtain 
convergence for N = 4 and N = 8, but  divergence for N = t 6 for all three methods. 
If  N and k are fixed the two versions of Moser's method give solutions which 
agree in the first 8 significant digits. If the relative magnitude of the correction 
term for the contraction method is of order 10 -d, the solution agrees with the 
other  two in the first d significant digits. 
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T a b l e  4 .  T h e  c o n t r a c t i o n  m e t h o d  

k I t e r a t i o n  N = 4  N = 8  N = 1 6  

10  -2  2 t . 9 "  10  -2  1 . 9 "  t 0  -2  1 . 9 "  10  -2  

3 2 . 8 "  10  - a  3 . 5 "  10  - a  3 . 5 "  10  - a  

4 5 . 6 "  10  - 6  2 . 8  �9 10  - 4  3 . 0 "  10  -4  

5 9 . 3  �9 t 0  - e  4 . 5  �9 10  -6  5 . 6 '  10  -5  

6 1 .2  �9 t 0  -5  1 .4  �9 10  -6  

t 0  - a  2 1 . 9  " t 0  - 3  1 . 9  �9 1 0  - 3  t . 9  �9 1 0  - 3  

3 2 . 9 "  10  -6  3 .5  �9 t 0  -5  3 .5  �9 t 0  - 6  

4 5 . 8 "  10  -3  2 . 5  �9 10  -v  2 . 5  �9 10  -~ 

10 -*  2 1 . 9 "  10  -4  t . 9 "  10  - 4  1 . 9 "  t 0  -4  

3 2 . 9 "  10  -~ 3 .5  �9 10  -~ 3 .5  �9 10  -7  

By compar ing  the  solutions for f ixed k, bu t  different  N, we get  an indicat ion 
of the  errors  in the  calculations.  Fo r  k = 1 0  -2 and  N = I 6  the solut ion of (6.7) 
a n d  (6.8) gives the  following Four ie r  series expansion of uj and  u 2 

ul = 0.02033 s in2~rx  + 0 . 0 7 1 2 2 s i n 2 z r ( x - - y )  

- -  0.00t 32 sin 2 ~ry + 0.00077 sin 2 ~ (2 x - -  2y) 

+ 0.00047 sin 2 ~r (2 x - - y )  + 0.00022 sin 2 ~r (2 x - -  3 Y) 

+ 0.00020 sin 2 ~r (x - -  2y) + . - .  

u 2 =  0 .01207sin2~ry + 0.01407 sin 2 ~r (y - -  x) 

+ 0.00029 sin 2 ~r (2y - -  x) + 0.000t 5 sin 2 zr (2y - -  2 x) + . . . .  

Al l  remain ing  te rms  have  coefficients less than  t0  -4. Fo r  N = 8  the  Four i e r  
coefficients are, af ter  rounding,  ident ical  to those above and the  agreement ,  as 
expected,  is bes t  for the  ve ry  low frequencies. Fo r  N = 4 the  Four ie r  coefficients 
agree wi th  those above  in the  f irst  two s ignif icant  digits.  If  k is 10 -8 or 10 .4 the  
solut ions for different  N differ much less than  in the  example  above,  p resumably  
because the  Four ie r  series for u 1 and  u 2 converge more rapidly ,  and  u I and  u 2 
can therefore  be well represen ted  b y  few terms.  

We observe t h a t  the  above solutions u I and  u 2 for k = t 0  -s and  N = I 6  are 
close to the  functions we obta in  in the f irst  s tep when we solve (6.7) and  (6.8) 
b y  any  of the  three  methods  discussed here.  In  fact ,  we f ind in the  first  i te ra t ion  

of (6.7) 

~1 ~lr* - -  0.07t43 ~x,o--  (1/~+0)3 =0.02041,  0q,_ 1 -  (V~_l)3  

which agrees to le rab ly  wi th  the  coefficients of the  domina t ing  te rms in the  
expans ion  of u 1. Similar ly,  by  using (6.8) we obta in  an  even be t t e r  agreement  
wi th  the  coefficients in the  expansion of u s 

/z3  /23 rx 
rio, x = ( o + t ) 3 = 0 . 0 1 2 0 9 ,  f l_x ,x= ( _ 1 / ~ + 1 )  , =0.01411.  

To ob ta in  the solut ion of the  nonl inear  pa r t i a l  different ial  equat ions  we jus t  
subs t i tu te  in u 1 a n d  u s the  original  var iables  ~1----2~x and  ~s = 2 ~ y .  F ina l ly  we 
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get  the solutions 01 and 02 of (6.1) and  (6.2) b y  solving (6.5) and  using (6.3) and  
(6.4), i.e. 

01 (t) = V ~t + cl + ul (V2t + c .  t + c.), 

o~(t) = t  +c2 +u2(V~t +cl, t +c2) 

where c 1 and  c 2 are a rb i t r a ry  real  constants.  

The computa t iona l  procedure  suggested in th is  section can be improved  in 
several  ways.  By  using the s y m m e t r y  of ~ and fl we can decrease the number  of 
sin and cos evaluat ions and the number  of mul t ip l ica t ions  needed in (6.9) and  
(6.t0) by  a factor  two. In  addi t ion,  the fast  Four ie r  t ransform can be speeded 
up  by  a factor  two. To prove this we assume u is an odd function and wri te  (6.1t) 
in the form 

N-l [N~=lo~,(nv n2) e2Z~'i~"llN ] 
~s=O n 

N - - 1  

= ~, F(/.1, n2) e 2~ii'~'m. (6.t4) 
~a~0 

Because u is odd, V is also odd and since ~ can be cont inued periodical ly wi th  
per iod  N we conclude t ha t  F(/.1, n2) = - - / ' ( N  --/.1, N --n2) for all/'1 and  n,. I t  is 
therefore enough to compute  -/"(/'1, n2) for / ' 1 = 0  . . . . .  N - - t  and  n 2 = 0  , ! . . . . .  
(N/2) - -  !.  This  can be done b y  N/2  fast Four ie r  t ransforms and  requires roughly 
(N/2) �9 (N/2) l o g a n  complex mult ipl icat ions.  F o r  each/ '1 we can consider (6.14) 
as a discrete Four ier  t ransform with  respect  to /'2, and  if we compute  u (fl,/'~) 
for /'t----0, 1 . . . . .  (N /2 ) - -1  and  i2 = 0 ,  t . . . . .  N - - I  we can f ind the  remaining 
coefficients b y  symmet ry ,  i.e. u(/" 1,/'2) = - - u ( N - - / ' x ,  N--/'a). Thus  the to ta l  cost  
is ~ N  2 logaN 2 complex mul t ip l ica t ions ,  which is only  half of the  number  of opera-  
t ions needed for the o rd ina ry  fast  Four ie r  t ransform. We can therefore solve a 
given problem twice as fast, or  a l ternat ive ly ,  t ake  one fur ther  s tep of Moser's 
me thod  in the  same amount  of t ime. Hence the comparison between Newton 's  
and  Moser's methods  becomes more favorable for the  l a t t e r  method.  Addi t iona l  
gain in speed can be ob ta ined  b y  using fast  Four ie r  t ransforms wr i t t en  specially 
for the  number  of points  we are in teres ted  in, for N = 8 see e.g. [8]. 

The purpose of this  example  has been to  i l lus t ra te  the  appl ica t ion  of Moser's 
me thod  on a problem which is difficult to  solve b y  o ther  methods.  At  present  there  
is no proof for the convergence of the discrete solut ion toward  the  solut ion of the  
continuous problem, though the s tab i l i ty  of our numerica l  results  s t rongly  indicate  
such a result.  
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