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Abstract. Let H 1 and H 2 denote Hilbert  spaces and suppose tha t  D is a subset 
of H r This paper establishes the local and linear convergence of a general i terat ive 
technique for finding the zeros of G : D -+H,  subject to the general constraint  P (x) = x, 
where P :  D -+D. The results are then applied to several classes of problems, including 
those of least squares, generalized eigenvalues, and constrained optimization. Numeri- 
cal results are obtained as the procedure is applied to finding the zeros of polynomials 
in several variables. 

I. Introduction 

A grea t  deal of work has been publ i shed  (cf. [ l ,  2, 4, 5, 8-10]) on the  theoret ica l  
ver i f icat ion of general  i te ra t ive  techniques for the  solution of const ra ined opt imi-  
zat ion problems in a Hi lber t  space set t ing.  Under ly ing  the typ ica l  convergence 
results  for var ia t ional  gradient  techniques is the  crucial assumpt ion  of posi t ive 
defini teness of t he  second der ivat ive  of the objec t ive  functional.  A n d  al though 
such t heo ry  is useful  in a t t ack ing  a large class of problems,  th is  assumpt ion  often 
proves to  be a severe one as is evidenced by  the  next  two well-known examples.  

The first  is t he  bounded l inear  opera tor  equat ion 

T x  -----1 (t)  

where T maps the  Hi lber t  space H in to  itself. Wi th  the  inner  product  on H 
deno ted  b y  ( . ,  . )  and the  induced norm by [['[] we can a t t e m p t  to solve (t) b y  
opt imiz ing  ei ther  the  functional  

F(x) = ( T  x, x )  --2(1, x) (2) 
o r  

F(x) =llTx -Ill*. (3) 
The second example  is the  eigenvalue problem 

T x = 2 x ,  II~II=~ (4) 
which m a y  be solved by  app ly ing  a gradient - res tora t ion  scheme to the  " a n g u l a r "  

m e a s u r e  

F(x) = [[(x, x)  T x  -- ( T x ,  x )  xll~. (5) 

* This work was supported by  NSF  grant GJ 34737. 

26 Numer. Math., Bd. 23 



372 S.F. McCormick 

In both cases classical theory is unable to establish a very general setting in 
which either of these approaches is convergent although quite general settings 
do exist (cf. [7, 1 t ,  3, 6]). The difficulty is the possible lack of positive definiteness 
of F in any of the cases. The purpose of this paper is to overcome this deficiency 
by first reformulating the authors previous results ill order to provide a more 
tractable theory and then applying it to a general problem that  specializes to (t) 
or (4). I t  may  be observed that  although the new theory presented in section 3 
appears to be a mere specialization of previous work of the authors (see Section 2), 
it is actually a significant extension of these results in the sense that  less assump- 
tions on the underlying problem is required. That  is, when the analysis of [6] is 
applied to a reformulation of the problem itself (see (14) below), then a much 
wider range of applicability is realized and the inherent deficiency of a generally 
incomputable step size is overcome (see (16) below). 

The unconstrained form of the algorithm (see (15)-(16) below) we consider is 
not new and was first considered at about the same t ime by Altman [t] and 
Fridman [4]. Even in this simplified setting, however, a full development of the 
algorithm was not made. More specifically, in addition to addressing ourselves to 
questions pertaining to asymptotic rates of convergence, implementation, applica- 
tion, and stability, reliance here is on less restrictive assumptions which is a 
crucial ingredient for the special cases that  will be considered. (See remark t 
below.) 

II. Some Preliminaries 

In this section we set up the notation and present two theorems that  provide 
a foundation for the remaining sections. Since the results have been extracted in 
an appropriate form from a previous paper [6], the proofs will be omitted. 

We assume throughout this paper that  H represents a real (or complex) 
Hilbert space and let G and P denote operators mapping a non-empty subset D 
of H into H. The problem that  concerns us in this section has the general form 

G (~) = o 
x in D. (6) 

P ( x )  = x 

The form of the procedure we wish to examine for the solution of (6) depends 
on a sequence of "step-size" functionals s~: D-+  R (or C, the complex numbers) 
and is given by  

x ~ + l = P ( x , - s ~ ( x ~ ) c ( , ~ ) )  ~ = 0 , 1 . 2 . . .  (z) 

where the iteration requires an initial approximation, x0, to the solution of (6). 
Before we can properly discuss the convergence properties of (7) it is necessary 
to specify some conditions on the various elements of this problem. 

Throughout this section we assume the existence of an e > 0 and nonempty 
subsets E and N of D such that  the following are true: 

i) N = {x EH: [[ x - -  E 1[ < e} where the notation 

[[x--EU =inf{l[x--~U: uEE}; 
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ii) Lett ing P(N) = {P(x) : x E N} and Z N = P ( N ) n  (N- -E ) ,  then for each x in 
ZN there exists a unique u .  in E such that  IIA x l l= l lx - -EU where we denote 
A x = x--u~; 

iii) E is a set of solutions of (6), tha t  is, G (u) = P(u) - - u  = 0 for all u in E ;  

iv) There exists a function ~: R*--->R § so tha t  0(7)-+1 as 7 - + 0  § and 

for all x in N and u in E ;  

v) There exists a 7~v > 0 so that  G (x) # 0 and 

] <G (x), A x>] ~TN[IG (x)IlllA xll (9) 
for all x in ZN; and 

vi) For some sequence of numbers (an: n = 0 ,  1, 2 ...) tha t  satisfy 

~ < ~ , = < 2 - a  n = o ,  t, 2...) (10) 

for some a >  0, the sequence (s~: n = 0 ,  1, 2 ...) satisfies 

s,,(x) _~,, ( <A~,G(~)> o(llA~ll)h (tt) 
IIG(x) II ~ + JIG (x)II ] 

for all x in Z N and n = 0, 1, 2 . . .  [Henceforth, the notat ion o ([I A ~ID will collectively 
represent any  quant i ty  that  satisfies 

lim ~ (llAxl]) 
i tz . , -~0 IIAxll - - 0  

where the limit is taken as x ranges over the set Z N. Note the implication of uni- 
formity with respect to x in ZN.~ 

A neighborhood, N, tha t  satisfies condition i) for some e > 0 is referred to as 
an e-neighborhood of E. Let a > 0 and 0 < 7N < t and define ko = (1 --  a (2 --  a) 7~v) ~. 
Note tha t  0 < k. < 1 for a < 2. 

Theorem 1. Let  G, P, E, N,  and (s~: n = 0 ,  1, 2 ...) satisfy conditions i) 
through vi) above. Then there exists an e-neighborhood N '  contained in N such 
tha t  for any  x 0 in Z N, the sequence (x.: n = 0 ,  t,  2 ...) given by  (7) is well defined 
and satisfies the inequality 

IIAxn+lll<(ko+e.)llAx.[I ~ = 0 ,  1 ,2  . . . .  02) 

where e~-+0 as n - +  co. That  is, the algorithm defined by  (7) is locally and linearly 
convergent.  

Remark 1. If  G (x) is the gradient of some functional F(x) and if P(x) is the 
identi ty operator on D, then (6) represents one formulation of the unconstrained 
optimization problem applied to  the functional F.  In  this case theorem t provides 
a fairly simple, though improtant ,  modification of s tandard theory on gradient 
techniques. Under some differentiability assumptions on F,  the usual results call 
for the condition tha t  

<F"  (x) h, h> > 7  <h, h> 

26*  
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for some 7 > 0 and all h in H. I t  is particularly restrictive to require that  this 
condition be met  for all h in H. (Witness the first example of Section I.) According 
to Theorem t it is sufficient that  the condition holds for all h in the set {A x: x in 
ZN, }. This relaxation of the positive definiteness condition becomes much more 
significant when constraints are included in the problem. 

The next section will make use of the following definition of differentiability 
of the operator G. 

Definition. Let E, N, and ZN satisfy conditions i), ii), and iii) above. Then G 
is said to be uni[ormly (E, N, ZN)-differentiable if for all x in Z N, the Frech6t 
derivative, G' (x), exists and satisfies 

G (x) = O '  (x) ,~ x + o  ([]A xl] ) 
and 

][G'(x)II<=M 
for some M <  oo. 

The next theorem provides a condition sufficient for such differentiability 
tha t  is weaker than the usual second derivative assumption. 

Theorem 2. Suppose that  E, N, and Z N satisfy conditions i), it), and iii) and 
tha t  G' (u, + 0A x) exists for all x in Z N and 0 < 0 < t .  Suppose, also, that  the set 
{G' (u,): x in ZN} is uniformly bounded and that  

[ ~  sup{lIG'/ux + 0 z  x)-a'(~x)ll: x in zN, IFZ xrl<*, o < 0 < 1 }  =o. 

Then G is uniformly (E, N, ZN)-differentiable. 

Remark 2. A similar differentiability assumption for P(x) involves the ability 
to write 

P(x) = P(u) + P '  (u) (x --  u) + o (ll x - u II) 

for x in N and u in E. I t  is easily seen that  for P to satisfy condition iv) it is 
sufficient that  this be true for P(x) and that  HP' (u)I] < t for all u in E. 

III. The Problem and Procedure 

Let H 1 and H 2 denote real (or complex) Hilbert spaces whose inner-product 
in each case is denoted by < . , .  > and induced norm by II.]t. In addition, suppose 
that  m is a positive integer and that  G 1, G2 . . . . .  G~_ 1 and G~ represent operators 
mapping a subset, D, of //1 into H z. Suppose also that  P maps D into itself. 
Then the problem that  we are henceforth concerned with is given by  

Gk(x) =0  
k = l , 2  . . . . .  m; x i n D .  03) 

p ( x )  = x 

Such a problem can be thought of as a general form of a system of nonlinear 
equations with constraints. [At this point it may  be of benefit to the reader to 
skip ahead to the discussion immediately following the corollaries of theorem 3.] 
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We will assume sufficient differentiability of the G~ to allow us to define the 
operator G on a subset of D by  

= ~,Gk (x)Gk(x) (14) G (x) ' * 
k = l  

where G~* denotes the adjoint of the Frech6t derivative of Gk. The method pro- 
posed for the solution of (t3) is then given formally by  

x,~+l = p  (x~ - s (xn)C(x~) )  n = o ,  1, 2 . . . .  (t5) 

where the step-size functional s is defined on a subset of D by 

m 

k~l II Gk (x)II ~ 
s (x)  - -  IlG(x) l[ ~ (16) 

Notice that  (15) is a gradient-projection-like scheme applied to minimizing the 
functional 

~(x) - � 8 9  - tlc~(~)ll' (t7) 
k = l  

subject to the constraint P(x) = x. This results f rom the observation tha t  G (x) 
is the formal gradient of F(x). I t  will now be shown tha t  (t 5) and (16) describe a 
convergent process under some assumptions. 

Theorem 3. Let E denote a nonempty  set of solutions of (13) and assume the 
existence of an s-neighborhood, N, of E tha t  satisfies conditions i) and ii) of 
section II .  Suppose, also, tha t  P satisfies condition iv). Finally, let each Gk(x ) 
be uniformly (E, N,  ZN)-differentiable and assume the existence of a 7 > 0 such 
tha t  

I2 IIC2(x)~ ~ll ~_->~ IH xl[ ~ 08) 
/ r  

for all x in Z N. Then there exists an e-neighborhood N '  contained in N such tha t  
the sequence (x,~: n = 0, t, 2 . . . .  ) in (t 5) is well defined and satisfies the inequality 

I I~o+ml t~k l l~xd  n = 0 ,  i , 2  . . . .  09 )  

where 0 ___< k < t. Thus, the algori thm (t 5)-(t6) is locally and linearly convergent 
to the set, E, of solutions of (13). 

Pro@ The only difficulty here is to demonstrate  tha t  v) and vi) are valid 
which we first do for the case m = 1, i.e., G(x) =G~* (x)Gx(x). Remembering the 
differentiability assumption on G1 it then follows for x in Z x tha t  

(A x, G (x)) = (A x, G~* (x) G~ (x)) 

~--- (G 1 (x) A x, G 1 (x)) (20) 

= Itq (~)[[' + o (IH x ID I Iq (x)II. 
Moreover, 

ii G, (x)II = IIG;. (0,,) ~ �9 II § o (11~ ,,' II) (2t) 
>=:,.ItA 4 +o ( IH  4 ) .  
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Let t ing  M =sup{llG' (x)[[: x in ZN}, (20) and  (21) combine to yield 

]<A x, G (x)>[ > (y IIA x II + o (IIA xll))[IGl(X)II 
(22) 

> ( 5 '  o(l l~d),  = ~ - ~ j I I A x l l l l G ; * ( x ) G a ( x ) l p .  

Therefore,  v) is t rue  for a proper  choice of N ' .  To prove vi), note  tha t  by  (22) 
we have  

a (Ax, a(x)) It (x)It > 
(23) 

> ,iv + o(ll~xII) 3 G IlAx[I Ill l(X)[[- 

Hence,  from (20) and (23) it  follows tha t  

riG1 (x)I[  2 
s (x) - IIG (~)I12 

<Ax, G(x)> o(llzJxll) llGl(x)ll 
- 116( ,0  I1' + Ila(x) l[ ~ 

- IIG(~)112 + I IG(~ ) I I"  

This establishes the  assertions of the  theorem in the case tha t  re = t. The proof 
for re > 1 is now a simple exercise and we omit  it. 

The following corollaries are immediate .  

Corollary 1. If  x o is chosen so t ha t  I1~ xoll is small, then a crude es t imate  for the 
linear convergence factor  

II~x.+ll[ (24) k = l im sup 
.-~oo I[Axnl[ 

is provided b y  the inequal i ty  

k S <= t - - y 2 / Z M  ~ (25) 
k 

where n~ =sup{ll~;(x)H: x inZN} a -<k_<re. 

Corollary 2. I f  each G'~(x) is sufficiently continuous a t  E so t ha t  G~ (x)A x = 
G~ (u,) A x + o ([[Ax H), then (t 8) can be replaced by  the condition t ha t  

Z IIOs (-,)A x II 3 __>: [IA x I1 ~ x in Z,v (26) 
k 

In  part icular ,  this is t rue when the G~ (x) are uniformly continuous o n  Z N. Morever, 
suppose there exists an e > 0 such tha t  the set ZTv = { x  in ZN: e =< II A xl[-< 22} is 
n o n e m p t y  and  compact .  (This requires H to be finite dimensional in general.) 
Suppose, also, tha t  the subsets {(u,, A--~): x in ZN} and {(u,, A--x) : x in Z~v} of E •  
are equal and  tha t  the function r  x-+u, is continuous on Z}. Then condition (t 8) 
can be replaced b y  the requirement  tha t  there exist at  least one k in {1, 2 . . . . .  re} 
for each x in Z N such tha t  

G~ (u::) A x 4= O. (27) 

In  part icular,  this is t rue  when P is the ident i ty  and N is convex and  has compact  
closure. 
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Remark 8. Although the method  (15)-(i6) enjoys the s tabi l i ty  suggested by  the  
inclusion of a~ in the considerations of section I I ,  a more significant kind of 
s tabi l i ty  exists and it is impor tan t  for the  next  section to make  note of it. In  
part icular,  let Wk(x ) represent some approximat ion  to  G~*(x)Gk(x ) so tha t  
W k (x) = G~ (x)Gk (x) + o ([]A x t])- Then if W k (x) is used in place of G~* (x)G k (x) in the 
i terat ion (t 5)-(t6), convergence is nevertheless guaranteed  and  results identical 
to those in theorem 3 are valid. Moreover, with the assumptions of Theorem 3, 
suppose tha t  ek (x): HI-+H 2 for each x in D and i --< k--< m and tha t  

e N = max  (sup ]l ~ (x)[]) 
k xEg2v 

is sufficiently small. Then convergence of the approx imate  i teration 

( ) j ,E IIG k (x,,)IP 
x~+ 1 = P x ~ -  Ily,,IP Y" 

where we let 
= t ,  

k = l  

follows as in Theorem 3 with the es t imate  of k in corollary t al tered accordingly. 
Now we have shown tha t  x~ converges to the set E. I t  also follows tha t  there 
exists a u in E to which the sequence (x,) converges, l i t  is observed tha t  (x,) is 
a Cauchy sequence in H 1 by  noting tha t  for some k in the interval  (0, 1) 

P 

TIx~§ - x~ll ~ --< E It xo+ j -  x~+; -I lP  
/ = 1  

P 

__< x k"llx,,+l - x~ll ~ 
i = 1  

The stabil i ty of (t 5)-(t6) in this sense now implies the local linear convergence 
of the approximate  i teration given above where we now use any  subsequence 
(xz~) of (x~) and define 

y~ = Z G~* ( x j  G~ (x~). 
k = l  

If  we define the subsequence wisely, we appreciably  reduce the need to compute  
the derivat ives of Gk at each iteration. 

Remark 4. The scope of applicabili ty of Theorem 3 is suggested by  the follow- 
ing examples.  

a) A simultaneous set o/nonlinear equations in several unknowns. If  the problem 
is t ha t  of finding the zeros of /: R'~---~R t (or cm--~CZ), then  i terat ion (15)-(16) 
becomes 

x . + , = x , , - -  E l ,  . (x,,) lk (x,,) 1, Zl'*(x~)l~(x.) 
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where we use the notat ion ] = (ll,/8 . . . . .  /t). If  E is convex and bounded, a condi- 
t ion sufficient for local convergence is tha t  each/~ is uniformly continuous on N 
and that ,  for each x in N - -  E, at  least one of the numbers /~*  (us) A x, t --< k --< l, 
is nonzero. Indeed, with these assumptions we can guarantee the convergence 
of various computat ional  modifications of the above procedure. As an example, 
we might  modify  the procedure b y  successively involving only the equation that  
causes the most  trouble. More specifically, the iteration is 

i ,  
I, %,)/, %,) 

x~+x = x, - II/;* (x~)II ~ - 

where r ----- r (x,) is chosen to maximize [/k (x,) l over k = t ,  2 . . . . .  l. Another  modi- 
fication is defined by  chosing r while rotat ing through the numbers  k = 1, 2 . . . . .  l 
to  be such tha t  is greater than  a preassigned epsilon. When no such r 
exists, the threshold epsilon would be reduced and the process continued until 
sufficient accuracy (e.g., small epsilon) is attained. 

Note tha t  in the scalar case 1: R-+R the iteration reduces to Newton 's  
method  and can therefore be thought  of as one form of its generalization (cf. El, 4]). 

b) Singular linear equations. Suppose tha t  T :  H1-->H 2 is a bounded linear 
operator  with closed range R (T). Then the application of (15)-(t6) to problem (t) 
with ] in R (T) yields the i teration 

[[Ta n - - [ [ [~ T,(Txn --/). 
x,+x = x , - - [ I T , ( T x  _/)Liz 

Let t ing Q denote the null space of T, if u is a part icular solution of (t) then the 
linear var ie ty  E = u  + Q  is the set of all solutions of (t). I t  is then possible to let 
N = H  I be an e-neighborhood of E. Because R(T) is closed it can be shown tha t  

II Thl[---- r Ilhll 
for some ? > 0 and all h or thogonal  to Q. Observing tha t  A x is or thogonal  to Q 
for each x in H l, it  follows tha t  condition (18) is satisfied and Theorem 3 applies 
to establish convergence of x, to  E for arbi t rary  x 0 in H 1. 

c) The generalized linear eigenvalue problem. Suppose tha t  T 1 and T z are 
bounded  linear operators mapping H 1 into H e. Then the generalized linear eigen- 
value problem can be writ ten 

Tlx=2T~x 
x in H 1. (28) 

F rom what  we will learn in the next  section, there are at least two formula- 
tions of (28) tha t  allow for the effective application of iteration (15)-(16). Both  
depend on lett ing 

G(x)=(T,x,  Tzx) Tlx--(T2x, Tlx) T2x x i n h ;  

and differ by  the definitions 
X 

P ( x ) -  IIT=xl} x i n D ;  T~ x ~ 0 ;  

and 
=llZ, xll*--I x inO.  
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The first formulation is gotten by choosing m = t  and Gx(x ) =G(x)  and using 
the definition of P given above. The second arises from letting P be the identity 
operator on D and definingGl: D--->H2~ R (or H ,  ~ C) by  

G a (x) = (G(x),~,(x)) x in D. 
Writing 

/ (x)  = (T~x, Tax > (T ,x ,  Tzx )  - I (T,x ,  T,x)l* 
and 

g(x) = (Txx , T lx  ) T* T~x + (T2x , T2x ) T * x T x x  

-- (T ,x ,  Tl X) (T* Tl x + T* x T2x ) 

and using a simplification, the procedures are, respectively, 

x.+t = P (x, / (x,) g (x.) g(x.)!' ] 
and 

=gr +t~(~-)t* (~g(x,,) +~p(x,) V'* (x,)) xn+a = xn -- [l~xg (xn) + ~ (xn)v/'* (xn)11" 

where ~ = (T~.x,, T2x,,). I t  is not too difficult now to show that  the assumptions 
needed for convergence are satisfied is this instance when E represents a set of 
eigenvectors belonging to an eigenvalue 2 of (28) that  are properly normalized, 
if E does not intersect the null space of T 2, and provided for any u in E there 
exists no h in E • that  satisfies (Ta- -2T , )h=T2u .  (The reader is referred to 
[% 11 ] for related work.) 

When the operators T~ and T, are nonlinear the assumptions required for 
convergence do not translate quite as nicely as they do for example c above, as 
is to be expected. The conditions do have a similar appearance, however. Since 
the nonlinear case is a basis for constrained optimization, we devote the next 
section to this example. 

IV. Minimization with Equality Constraints 

The form of the constrained optimization problem we wish to consider involves 
two real functionals, F and ~, defined on a subset, D, of H. With F the objective 
and ~ the constraint functional, the problem is that  of finding and element u of 
the constraint set C = {x in D: ~ (x) = O} that  satisfies 

F(u) = mi~ F(x). (29) 

[We note here tha t  a minimization problem with several equality constraints 
~1 (x) =~o~ (x) . . . . .  ~0 m (x) = 0 is of this form if we take ~ (x) = ~, ~0~(x).] To pose 

k 
(29) in the proper formulation we define G: D--~H where possible by 

G(x) = (V~0(x), VV,(~)> VF(~) --(VF(~), Vv,(x) > V~o(x). (30) 
[Note the relationship that  G shares with the Lagrangian of the pair (F, ~0).] 
I t  is well-known (el. [1]) that  solutions of (29) are precisely the zeros of G in the 
set C under certain conditions.' Thus, if P:  D--~H so that  C = {x ED: P(x) = x}, 
then (29) is equivalent to problem (t3) in this case. I t  is therefore with (29) in 
mind that  we devote this section to the following problem formulation. 
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Let gl and g2 denote mappings from a subset, D, of H 1 into H v Suppose that  
P: D---~D and define G: D - + H  2 by  

G (x) = (g~ (x), g~ (x))  gl (x) - -  (g~ (x), gl (x))  g~ (x). (31) 

The problem we consider in this section is given by 

a(x)  = o  
x in D (32) 

P(x) = x 
and the method by 

x , ,+l= P (x ~ --  IIG (x~) II~ G'* (x~) G(~) ) .  (33) 
Itd'* (x.)G (x~)II ~ 

The next theorem establishes the convergence of iteration (33) to solution of (32). 

Theorem 4. Let E be a nonempty subset of solutions of (32) exhibiting an 
s-neighborhood, N, satisfying conditions i) and ii) of Section II .  Suppose that  P 
satisfies condition iv) and that  gl and g2 are uniformly (E, N, ZN)-differentiable 
and have uniformly continuous Frech& derivatives on ZN. Assume that  g~ is 
nonzero on E. Then for each x in Z~ define the scalar 2x by 

2~ = (g '  (u~). gl (u~)) 
<g2 (u~), g2 (u,)) (34) 

and the operator Lx: HI-+H 2 by 

L,  =g~ (u~) --  ~g~ (~,). (35) 

Finally, let U =sup{HG' (u,)H: x in ZN} and suppose for some 7 > O and all x in Z N 
that  

II(g,(u,).gz(u,,))L, Ax--(g,(u,,),L~Ax)g,(u,,)]l>~,}J'4x H. (36) 

Then there exists an s-neighborhood N '  contained in N such that  for any x 0 in 
ZN. the sequence (x~: n = 0 .  1.2 . . . .  ) defined by  (33) satisfies the inequality 

l l~+, l l<k ,  ll~x~ll ~ = o ,  1, 2 . . . .  (37) 

where k~--~(l --},~/M2) �89 as n -+  ~ .  

Proo/. By the assumptions on gl and g2 it follows that  G' (x) exists for each 
x in Z~, and is given by  

G' (x) ~ x = (g~ (x). g~ (x))  g~ (x) '4 x - -  (g~ (x). g~ (x) )  g~ (x) '4 x 

+(g~(x)Ax ,  g,(x))g~(x)--(g~(x)Ax,  g~(x))g2(x ) (38) 

+ (g~ (x), g; (x) A x )  gl (x) - (g~ (x), gl(x) A x )  g~ (x). 

I t  is easy to show that  G is uniformly (E, N, ZN)-differentiable, by using (38) and 
the differentiability of gl and g,. The fact that  G' (x) is uniformly continuous 
also follows from (38) and the uniform continuity of g~(x) and g~(x). To show 
that  (26) is true we use the fact that  G (u,) ----0 and, hence, 

G' (u,) ~ x = (g~ (u,). g~ (u , ) )  g~ (u,) LI x - -  (g~ (u,). g, (u~)) 

�9 g~(u,,) "4 x + (g2(u,,).g~(u,,) .4 x)gl(u,) 
(39) 

- (g~ (u~), g~ (~,) .4 ~ )  g~ (ux) 

= (g~ (u,). g ,  (u,) 5 L, .4  x - -  (g~ (u,). L, .4  x )  g~ (u,). 

(26) is a consequence of (39) and the theorem is proved. 
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The following corollary concerns itself with a simplification of i teration (33) 
t ha t  enjoys the same properties of convergence. The  simplification amounts  to 
el iminating a small vector  quan t i ty  tha t  is unnecessary to compute,  at  least 
asymptot ical ly .  

Corollary 3. With  the assumptions of Theorem 4, define the scalar functional 
] on D and the vector  function g on D by  

/ (x) = <gl (x), gi (x)) <g~ (.),  g~ (x) > - I <g~ (x), gl (x) > 15 
. .  g(x)=(g,(x) ,g2(x))g~*(x)gx(x)+(gz(x) ,gx(x))g 2 (x)g2(x) (40) 

- <g~ (*), gi (~)> (g;* (x)g~ (.) + g i *  (x)g~ (~)). 

Then provided [[A xo[ I is small, the  sequence (x.: n = 0 ,  I,  2 . . . .  ) given by  

x . + z = p ( x  " l(x.)g(x,,) . . . .  [~-(}7[[~- -] n = 0, t ,  2 . . . .  (4t) 

is well-defined and satisfies inequali ty (3 7). 

Proo/. The proof rests on the observat ion tha t  (4t) is the result of the elimina- 
t ion of the t e rm 

q (x) A x -- (g6 (x) A x, g~ (x) 5 gi (x) -- <g; (x) A x, gi (x) 5 g~ (x) 

when comput ing G'(x)Ax as in (38). Since q(u , )Ax=O,  it is easy to show by  
the assumptions on G tha t  q* (x) e (x) is o ([IA xl] ). The theorem is now a consequence 
of Remark  3- 

Remark 5. The above corollary is readily in terpre ted  as an approach to solving 
problem (29) with one impor tan t  gap in the application. More specifically, if we 
define 

gl (x) = VF(x) 
x in D, (42) 

g~ (x) = v~ (x) 

then we are still left with making  an acceptable choice for P(x). Although a 
more  appropr ia te  selection might  be made for a specific form of (29) like, say, the 
eingenvalue problem (see example  c of the last section), in general a very  reason- 
able choice for P(x) is given by  

V,(x) V~v(x) x in D. (43) P(x)  = x -  )Fvw(.)l)~ 

If  ~0 (x) exhibits the differentiable proper ty  of Remark  2, it can easily be seen 
t ha t  P satisfies condition iv) of Section II .  Under  these assumptions it then  follows 
tha t  Eqs. (40)-(43) define a locally convergent procedure for the solution of 
opt imizat ion problem (29). 

So far the approach tha t  has been taken  for the solution of (29) has mainta ined 
the viewpoint  tha t  the problem is a constrained one and certain difficulties in 
analysis of convergence arise in this way. For this reason it  is impor tan t  to 
a t t e m p t  to t ransform (29) into an unconstrained problem as we now do. I t  will be 
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seen that  more can be said using this formulation without affecting the convergence 
properties of the iteration. Inparticuar,  if a solution set of (29) has an e-neigh- 
borhood with compact closure, then it will be possible to replace (36) with a 
condition that  is much easier to verify. 

Using the operator given by (3 t) we shall now attempt to solve 

G(x) = o  
x in D (44) 

v(x) = o  

by applying the procedure described in Section III  to the operatior G 1: D -->H 2 @ R 
(or H z @ C) defined by 

G,(x) = (G(.), 

The inner-product on the cross-product space is the natural one and the method 
thus has the form 

( IIG(x,,)H' +l~(x~)[2 I X~+l x~ 
k IIG' * (x~) G (xn) + ~ (.n) V * (x~)jl ~ ] (45) 

�9 (C'*(&,)G(x,~)+y~(x.)y/*(x,,)) n =O ,  t , 2  . . . .  

We shall close this section with a theorem concerning the convergence of (45) 
and a corollary that  deals with a simplification of this procedure. 

Theorem S. Let E be a nonempty subset of solutions of (44) on which g~ is 
nonzero and which exhibits an e-neighborhood, N, satisfying conditions i) and it) 
of Section II. Note that P = I ,  the identify operator on D, and that  Z N = N - - E .  
Suppose that  gv &, and ~ are uniformly (E, N, ZN)-differentiable and have 
uniformly continuous Frech6t derivatives on Z N. Let 

M = sup{ ([[G' (u.)[[~ + [Iv/(us)[[~)�89 x in N -- E} 

and define ~. by (34) and L.  by (35)- Finally, assume the existence of a 7 > 0  
such that  

][ <g2 (u~,), g2 (u.)) L.  A x --  <g= (u.), L. A x)  g2 (u.)[[ z + [W' (x) A x]" => y* tlA xl] 2 (46) 

for all x in N. Then there exists an e-neighborhood, N', contained in N such 
that  the sequence (x.: n=O,  1, 2 . . . .  ) defined by (46) converges according to 
inequality (37) for any x o in N'. Moreover, assume that H 1 is finite dimensional 
and E is convex and bounded and for each x in N define E.  as the set of unit 
vectors in H 1 orthogonal to W'* (u.). Then condition (46) is equivalent to the 
assumption that  the problem 

L,h=~g,(u~)  ~r xEN; hEE,. (47) 
has no solution. 

Proot. Clearly G 1 (x) is uniformly (E, N, ZN)-differentiable and its derivative 
is given by 

G~(x)h=(G' (x )h ,w ' (x )h  ) x i n N ;  h i n H  v 

With the natural innerproduct it follows that 

G~*(X)Gl(X ) =G'*(x)G(x)  +~p(x)w'*(x) x i n N .  
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The first conclusion of the theorem is then a consequence of applying Theorem 3 
with m = t and G 1 and P as above. The last conclusion follows from the com- 
pactness of the closure of N and the continuity of tP' (u~)2]-x and  

for x in N -  E. The theorem is proved. 

Corollary 4. Let  the conditions of Theorem 5 be satisfied and let ] and g be 
defined by  (40). Consider the iteration 

~t(;~n) +l'~(xn)l' 
x~+,=x.-  I I~g(~)~-~G;~)l l '  (~g(x,r)+v,(x~)~v'*(x~)) (48) 

where we have denote the quant i ty  o ~ = ( g ~ ( x 2 ) , g g . ( x ~ ) ) ,  n = 0 ,  t,  2, . . . .  Then 
the sequence (x~: n = 0, t,  2 . . . .  ) t ha t  it generates is well defined and is convergent 
according to (37) provided ]lzl x011 is sufficiently small. 

P r o o l .  The proof is similar to tha t  given in Corollary 3 and will be omitted. 

V. Computational Results 

Experimentat ion with the technique and its various modifications presented 
in this paper was accomplished in F O R T R A N  on a DECsystem-10 which uses a 
36-bit word-length. The results given in this section represent tha t  portion of 
the work tha t  dealt with the problem of finding the roots of polynomials in the n 
variables x = ( x  1, x 2 . . . . .  x, ,) .  With  m the degree they  have the form 

~. ai, i,...~ ~' i, ..x~n. (49) l(x) = i , + i , +  ... +~,,=<,,, x , .  x , , .  

The following specific examples were used in the investigation: 

2 2 3 3 3 ~t 3 
I1 ( x )  = x 1 x~ x 8 - -  2 x2  x ,  + 4 XlX~ x8  x ,  x 6 - -  24 x 1 x~ x 8 x 4 x 5 + 24, 

I X$ A X2~ h ( x )  = ~  i - - ~  ~ (3Xl - -X*) ,  

18 (x) ----- [4x, (x~ --  xz) + 0.02 (x I - -  t )]2 + [2 (Xl ~ --  xz)] ~, 

1, (x) = x~ + 4x~ + 9x~ + 16x~, 

Note tha t  in these examples we have, respectively, n = 5, 2, 2, 4, and 3 and m = i 5, 
3, 6, 2, and 9. 

In  each case two initial guesses were used, the components  of one of which 
being chosen randomly ill an appropriately selected intervM. The iteration was 
stopped when e~, the absolute value of the polynomial, became smaller than 
t0  -s even though in several instances convergence was much more rapid past  
this point. The following table describes the results which, in this environment,  
are felt to  be fairly representative of the computat ional  performance of the 
procedure:  
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Poly- Initial vector e o e I e~ e s 
nomial 

It (1.00, 1.o0, t.o0, 3 • IO z 5 • 10 -1 6 • 10 -2  2 >( 10 -a  

t .oo,  1 .oo) 
(--0.435, 0.379, 0.176, 5 • t03 2 • 10 a 5 x 10 "0 I • t02 

-- 0.934, 0.482) 

is (0.t95, 0.732) 3 X 10 -1 2 x 10-"0 6 x t0 -6 1 • t0 -a 
(t0.0, t.00) 3 x t0 a 7 x 10"0 7 x 101 5 X t 0  -1 

la ( - -  t.20, 1.00) 5 X 10 ~ 2 • t0 ~ 4 X 10 -1 I X t0 -1 
(0 .358 ,  - - 0 . 2 1 7 )  7 x t 0  -1 2 x 10 -1 6 X 10 -2 2 • 10-"0 

]4 ( t . 0 o ,  1 .0o,  3 X 101 9 • 1o 1 3 x I o  ~ 1 • IO ~ 
t.oo, t.oo) 

(--0.610, 0.465, 4 • 10 ~ I x 10 ~ 5 • 10 -1 3 • t0 -1 
0.2t 7, -- 0.385) 

15 ( --0.t42, 0.677, 0 .751)  9 x 10-"0 2 x t0-"0 2 x t0 -4 9 >< t 0  - n  
(0 .736 ,  - - 0 . 6 6 1 ,  0 .573 )  4 X t00  1 X | 0 0  5 X 10 -1  2 X t 0  -1 

Remark 6. The  e f fec t iveness  of t h e  t e c h n i q u e  in f ind ing  zeros of  a single 
p o l y n o m i a l  is a p p e a r e n t  in  t he  a b o v e  table .  N o t e  the  a l m o s t  q u a d r a t i c  conve rgence  

cha rac te r i s t i c s  for  s o m e  of t he  examples .  The  p e r f o r m a n c e  of t h e  a l g o r i t h m  as i t  
appl ies  to  sy s t ems  of n o n l i n e a r  e q u a t i o n s  is a top ic  of cu r ren t  i n v e s t i g a t i o n  and  
is, however ,  e n j o y i n g  m i x e d  success.  Whi l e  the  m e t h o d  is c o m p u t a t i o n a l l y  

super io r  t o  o the r  ex i s t ing  t e c h n i q u e s  in  some cases (e.g., t h e  p r o b l e m  on  page  305 
of  [9]), i t  p roves  to  be  t oo  s low in others .  On  t h e  o t h e r  hand,  i t  is i m p o r t a n t  to 
n o t e  t h a t  t h e  mod i f i c a t i on  sugges ted  in e x a m p l e  a of sec t ion  I V  compare s  favor -  
a b l y  in t e r m s  of t he  n u m b e r  of i t e r a t i ons  w i t h  t h e  full  p rocedure  a n d  is the re fore  

cons ide r ab ly  m o r e  eff ic ient .  F u r t h e r  a d v a n t a g e  is e x p e c t e d  to  be  g a i n e d  b y  t h e  
use  of a d i f ference  a p p r o x i m a t i o n  to t h e  d e r i v a t i v e s  t h a t  need  be  c o m p u t e d  dur ing  
t h e  i t e ra t ion .  F ina l ly ,  i t  is a n t i c i p a t e d  t h a t  t h e  low c o m p u t a t i o n a l  cos ts  and  
s imp l i c i t y  of t h e  a lgo r i t hms  wil l  be  u n d e r s c o r e d  b y  t h e  ev idence  of t he i r  sus- 

c ep t i b i l i t y  to  s t r a i g h t - f o r e w a r d  acce le ra t ion  t echn iques .  These  obse rva t ions  are 
h i g h l y  sugges t ive  of t he  p o t e n t i a l  for  t h e  d e v e l o p m e n t  of a genera l ly  e f fec t ive  

process  ba sed  on t h e  schemes  p r e s e n t e d  here.  
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e4 % r e7 e 8 Error at 
Convergence 

7 •  .7 . . . .  e 4 = 7  • 10 .7 

4 X t01 I X t01 2 X 10 ~ 2 X I0 -1 1 X 10 -3 ~9=7  X 10 -~ 

. . . . .  6 3 =I X 1 0  -8  

3 X t 0 -~ 0 -- -- -- % = 0 

3 X I0 -2 7 X 10 -a 1 X 10 -a 2 X 10 -4 3 X 10 -0 e 9 = 0  
4 X 10 -a 1 x 10 -a 2 x I0 -~ 3 x t0  -~ 9 x t0 -~ e f = 9  x i0 -7 

4 x t0 -1 2 x 10 -1 1 x 10 -1 I x 10 -1 6 X 10 -1 ea4~ 7 X I0 -7 

2X 10 -x 2X t0 -1 1 X t0 -1 1 X t0 -~ 5 X t0 -2 e a s = 6  X t0 -~ 

. . . . .  ea = 9 • t 0 -11  

7 • t0 -2 2 • 10 -3 4 • 10 -3 2 X 10 -4 9 X I0 -~ e 8 = 9  x 10 -7 
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