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for the Solution of Constrained Nonlinear Equations
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Abstract. Let H; and H, denote Hilbert spaces and suppose that D is a subset
of H;. This paper establishes the local and linear convergence of a general iterative
technique for finding the zeros of G: D — H, subject to the general constraint P (x) =,
where P:D —D. The results are then applied to several classes of problems, including
those of least squares, generalized eigenvalues, and constrained optimization. Numeri-
cal results are obtained as the procedure is applied to finding the zeros of polynomials
in several variables.

1. Introduction

A great deal of work has been published (cf. [1, 2, 4, 5, 8-10]) on the theoretical
verification of general iterative techniques for the solution of constrained optimi-
zation problems in a Hilbert space setting. Underlying the typical convergence
results for variational gradient techniques is the crucial assumption of positive
definiteness of the second derivative of the objective functional. And although
such theory is useful in attacking a large class of problems, this assumption often
proves to be a severe one as is evidenced by the next two well-known examples.

The first is the bounded linear operator equation
Tx=f (1)

where T maps the Hilbert space H into itself. With the inner product on H
denoted by <., > and the induced norm by |-| we can attempt to solve (1) by
optimizing either the functional

F(x)=<(Tx,x)—2{f, x> (2)

or

F(x) =T x—f[> (3)
The second example is the eigenvalue problem
Tamiz  |o=1 (@)

which may be solved by applying a gradient-restoration scheme to the ““angular”’

measure
F(x) =|<x,2) Tx —<{T x, x) x |2 (5)
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In both cases classical theory is unable to establish a very general setting in
which either of these approaches is convergent although quite general settings
do exist (cf. {7, 11, 3, 6]). The difficulty is the possible lack of positive definiteness
of F in any of the cases. The purpose of this paper is to overcome this deficiency
by first reformulating the authors previous results in order to provide a more
tractable theory and then applying it to a general problem that specializes to (1)
or (4). It may be observed that although the new theory presented in section 3
appears to be a mere specialization of previous work of the authors (see Section 2),
it is actually a significant extension of these results in the sense that less assump-
tions on the underlying problem is required. That is, when the analysis of [6] is
applied to a reformulation of the problem itself (see (14) below), then a much
wider range of applicability is realized and the inherent deficiency of a generally
incomputable step size is overcome (see (16) below).

The unconstrained form of the algorithm (see (15)~(16) below) we consider is
not new and was first considered at about the same time by Altman {1] and
Fridman (4]. Even in this simplified setting, however, a full development of the
algorithm was not made. More specifically, in addition to addressing ourselves to
questions pertaining to asymptotic rates of convergence, implementation, applica-
tion, and stability, reliance here is on less restrictive assumptions which is a
crucial ingredient for the special cases that will be considered. (See remark 1
below.)

II. Some Preliminaries

In this section we set up the notation and present two theorems that provide
a foundation for the remaining sections. Since the results have been extracted in
an appropriate form from a previous paper [6], the proofs will be omitted.

We assume throughout this paper that H represents a real (or complex)
Hilbert space and let G and P denote operators mapping a non-empty subset D
of H into H. The problem that concerns us in this section has the general form

G(x)=0

¥ in D. (6)
Px)=x

The form of the procedure we wish to examine for the solution of (6) depends
on a sequence of ‘‘step-size”” functionalss,: D-> R (or C, the complex numbers)
and is given by

xﬂ+1:P(xn_Sn(xn)G(xn)) n20’112"' (7)

where the iteration requires an initial approximation, x,, to the solution of (6).
Before we can properly discuss the convergence properties of (7) it is necessary
to specify some conditions on the various elements of this problem.

Throughout this section we assume the existence of an &> 0 and nonempty
subsets E and N of D such that the following are true:

i) N={x€H: |x—E| <e} where the notation
| —E|=inf{|x —u|: u€E};
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ii) Letting P(N) ={P(x): x€ N} and Zy = P(N) n (N —E), then for each x in
Zy there exists a unique %, in E such that |4 x||=|x —E| where we denote
Ax=x—u,;

iii) E is a set of solutions of (6}, that is, G (#) = P(u) —u =0 for all % in E;
iv) There exists a function ¢: R*— R* so that g(y)—1 as y—0"* and
[P(x) = Pw)|<e(lx —u]) | x—u| ®)
forall xin N and # in E;
v) There exists a y5 >0 so that G(x) +0 and

KG (%), 4 2> 2 yn]G ()[4 %] )
for all xin Zy; and

vi) For some sequence of numbers (g,: # =0, 1, 2...) that satisfy
050,=2—0¢ n=0,1,2..) (10)
for some o> 0, the sequence {s,: # =0, 1, 2 ...) satisfies

(456> | o(l4s))
sa(3) =0 GmE T th(x)u)

(1)

forall xin Zy and # =0, 1, 2 ... [Henceforth, the notation o (|4 x|) will collectively
represent any quantity that satisfies

ofldx])
jdzi—o A% =0

where the limit is taken as x ranges over the set Z,. Note the implication of uni-
formity with respect to x in Zy.]

A neighborhood, N, that satisfies condition i) for some £ >0 is referred to as
an g-neighborhood of E. Leto > 0and 0 <yy <1anddefinek, = (1—a (2 —a)yi)*.
Note that 0 <4, <1 for ¢ < 2.

Theorem 1. let G, P,E,N, and (s,:#=0,1,2...) satisfy conditions i)
through vi) above. Then there exists an g-neighborhood N’ contained in N such
that for any x, in Zy. the sequence (x,: 7 =0, 1, 2 ...) given by (7) is well defined
and satisfies the inequality

4%, 3| < ko +e0)|Ad %) n=0,1,2,... (12)

where &,->0 as #—> oo, That is, the algorithm defined by (7) is locally and linearly
convergent.

Remark 1. 1f G(x) is the gradient of some functional F(x) and if P(x) is the
identity operator on D, then (6) represents one formulation of the unconstrained
optimization problem applied to the functional F. In this case theorem 1 provides
a fairly simple, though improtant, modification of standard theory on gradient
techniques. Under some differentiability assumptions on F, the usual results call
for the condition that

CE'" ()b by =y lh B

26*
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for some y>0 and all % in H. It is particularly restrictive to require that this
condition be met for all »in H. (Witness the first example of Section 1.) According
to Theorem 1 it is sufficient that the condition holds for all % in the set {4 x: » in
Zy.}. This relaxation of the positive definiteness condition becomes much more
significant when constraints are included in the problem.

The next section will make use of the following definition of differentiability
of the operator G.

Definition. Let E, N, and Z satisfy conditions i), ii), and iii) above. Then G
is said to be uniformly (E, N, Zy)-differentiable if for all x in Zy, the Frechét
derivative, G’ (x), exists and satisfies

G(x) =G (x) Adx+o(|Adx])
and
I6" (0 =M
for some M << o0.
The next theorem provides a condition sufficient for such differentiability
that is weaker than the usual second derivative assumption.

Theorem 2. Suppose that E, N, and Zy satisfy conditions i), ii), and iii) and
that G' (u, -+ 04 x) exists for all x in Zy and 0 < 0 < 1. Suppose, also, that the set
{G' (#,): x in Zy} is uniformly bounded and that

lim sup {|G" (, + 64 %) —G' (u,) |t xinZy, |4 2| <&, 001} =0.

Then G is uniformly (E, N, Zy)-differentiable.

Remark 2. A similar differentiability assumption for P(x) involves the ability
to write

P(x) = P(u) + P’ (u) (x —u) +o(|x —u])

for x in N and # in E. It is easily seen that for P to satisfy condition iv) it is
sufficient that this be true for P(x) and that |P’(«)| <1 for all # in E.

III. The Problem and Procedure

Let H, and H, denote real (or complex) Hilbert spaces whose inner-product
in each case is denoted by <-,-> and induced norm by ||-|. In addition, suppose
that m is a positive integer and that G,, G,, ..., G,,_; and G,, represent operators
mapping a subset, D, of H, into H,. Suppose also that P maps D into itself.
Then the problem that we are henceforth concerned with is given by

G, (%) =0

k=1,2,...,m; xin D. 1

) —x (13)
Such a problem can be thought of as a general form of a system of nonlinear
equations with constraints. [At this point it may be of benefit to the reader to
skip ahead to the discussion immediately following the corollaries of theorem 3.]
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We will assume sufficient differentiability of the G, to allow us to define the
operator G on a subset of D by

6(1) =561 (1) 6u(v (14

where G;* denotes the adjoint of the Frechét derivative of G,. The method pro-
posed for the solution of (13) is then given formally by

xn+1:P(xn_s(xn)G(xn)) #n=0,1,2,... (15)
where the step-size functional s is defined on a subset of D by

B e

Notice that (15) is a gradient-projection-like scheme applied to minimizing the
functional

F(3) =1 316, ()P 17)

subject to the constraint P(x) =x. This results from the observation that G (x)
is the formal gradient of F(x). It will now be shown that (15) and (16) describe a
convergent process under some assumptions.

Theorem 3. Let E denote a nonempty set of solutions of (13) and assume the
existence of an e-neighborhood, N, of E that satisfies conditions i} and ii) of
section I1. Suppose, also, that P satisfies condition iv). Finally, let each G, (x)
be uniformly (E, N, Zy)-differentiable and assume the existence of a y >0 such
that

161 APy 1)
for all x in Zy. Then there exists an ¢-neighborhood N’ contained in NNV such that
the sequence (x,: # =0, 1, 2, ...) in (15) is well defined and satisfies the inequality

|4z, a=k|4x,] =n=01,2,... (19)

where 0 <k < 1. Thus, the algorithm (15)-(106) is locally and linearly convergent
to the set, E, of solutions of (13).

Proof. The only difficulty here is to demonstrate that v) and vi) are valid
which we first do for the case m =1, i.e., G(x) =G;* (¥)G,(x). Remembering the
differentiability assumption on G, it then follows for x in Z that

(Ax,G(x)) =<A%,61*(%) Gy (%)
' =Gy (%) 47,6y (%)) (20)
=[G () [F 4o (|4 2 |G1 ()]

G =[G1(x) A x| +o (|4 x])
zy|d x| +o (|4 x|)

Moreover,
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Letting M =sup{|G’ (x)||: x in Zy}, (20) and (21) combine to yield

<4%,G()>] 2 (7145 +0(45]) |6, (x u
= (7 + 140161 9 6y

Therefore, v) is true for a proper choice of N’. To prove vi), note that by (22)
we have

(22)

llG(x)l!;m<Ax,G<x)>

= (7/ +-
Hence, from (20) and (23) it follows that

G 2
(Ax, (#)> o(J4x[) IGy (%)

G IG (=) |7
4%,G(x)) | of|4x|)
IG ()| IG (%)

This establishes the assertions of the theorem in the case that m =1. The proof
for m > 1 is now a simple exercise and we omit it.

The following corollaries are immediate.

Corollary 1. If x, is chosen so that |4 x,] is small, then a crude estimate for the
linear convergence factor

. Az,
b= Jim sup e 4
is provided by the inequality
B<1—y} XM (25)
k

where M, =sup{|G(%)|: xinZy} 1 <k <m.

Corollary 2. If each G;(x) is sufficiently continuous at E so that G;(x)4 x =
Gr(u,) Ax +o(|4x|), then (18) can be replaced by the condition that

SlGiw) AxpzplAsp  xinz, (26)
k

In particular, this is true when the Gy («) are uniformly continuous on Zy. Morever,
suppose there exists an &> 0 such that the set Zy ={x in Zy: e <|d x| =2¢} is
nonempty and compact. (This requires H to be finite dimensional in general.)
Suppose, also, that the subsets {(#,, Ax): x in Zy} and {(u,, A x): xin Zy} of EXH
are equal and that the function ¢: x—>#, is continuous on Z}. Then condition (18)
can be replaced by the requirement that there exist at least one 2in {1, 2, ..., m}
for each x in Z such that

Gr(u,) A x5 0. (27)

In particular, this is true when P is the identity and N is convex and has compact
closure.
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Remark 3. Although the method (15)-(16) enjoys the stability suggested by the
inclusion of g, in the considerations of section II, a more significant kind of
stability exists and it is important for the next section to make note of it. In
particular, let W, (x) represent some approximation to G;*(x)G,(x) so that
W, (x) =G (%) G (%) + 0 (|4 x])). Then if W, () is used in place of G;*(x)G,(x) in the
iteration (15)-(16), convergence is nevertheless guaranteed and results identical
to those in theorem 3 are valid. Moreover, with the assumptions of Theorem 3,
suppose that ¢, (x): H,—~H, for each v in D and 1 <% <m and that

&y = max (sup | &, (x) |)
k x€Zy
is sufficiently small. Then convergence of the approximate iteration

3 1G5l

X,
(PN

"

=P\ % — n

where we let

3= 3 (GE (5) + o (5))Ga 1)

follows as in Theorem 3 with the estimate of % in corollary 1 altered accordingly.
Now we have shown that x, converges to the set E. It also follows that there
exists a # in E to which the sequence (x,) converges. [It is observed that (x,) is
a Cauchy sequence in H, by noting that for some % in the interval (0, 1)

?
sy = 2l = 2y — s P

< SH s — 5P

/\

e O L L = VPA N

The stability of (15)-(16) in this sense now implies the local linear convergence
of the approximate iteration given above where we now use any subsequence
{#;,) of (x,) and define

sz xl,.Gk )

If we define the subsequence wisely, we appreciably reduce the need to compute
the derivatives of G, at each iteration.

Remark 4. The scope of applicability of Theorem 3 is suggested by the follow-
ing examples.

a) A simultancous set of nonlinear equations in several unknowns. If the problem
is that of finding the zeros of f: R" R (or C"—C"), then iteration (15)-(16)
becomes

Elfk )[?
—fm*"'Zf (%) T (%)

Xyl = X — 7“
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where we use the notation f =(fy, f,, -.., f;). If E is convex and bounded, a condi-
tion sufficient for local convergence is that each f; is uniformly continuous on N
and that, for each x in N —E, at least one of the numbers f *(u,) A%, 1 <k <],
is nonzero. Indeed, with these assumptions we can guarantee the convergence
of various computational modifications of the above procedure. As an example,
we might modify the procedure by successively involving only the equation that
causes the most trouble. More specifically, the iteration is

R A CAY oA A
S A eA]
where 7 =7 (x,) is chosen to maximize |f,(x,)| over k=1, 2, ..., {. Another modi-

fication is defined by chosing » while rotating through the numbers 2 =1, 2, ...,/
to be such that |f,(x,)| is greater than a preassigned epsilon. When no such
exists, the threshold epsilon would be reduced and the process continued until
sufficient accuracy (e.g., small epsilon) is attained.
Note that in the scalar case f: R—R the iteration reduces to Newton’s
method and can therefore be thought of as one form of its generalization (cf. [1, 4]).
b) Singular linear equations. Suppose that T: H,—H, is a bounded linear
operator with closed range R(T). Then the application of (15)—(16} to problem (1)
with f in R(T) yields the iteration
_ 17, —fIF
Bt =5 T T T 5, — N
Letting Q denote the null space of T, if # is a particular solution of (1) then the
linear variety E =u -Q is the set of all solutions of (1). It is then possible to let
N =H, be an e-neighborhood of E. Because R(T) is closed it can be shown that

1 Tr|zyiA)

I*(T %, —1)-

for some y >0 and all % orthogonal to Q. Observing that 4« is orthogonal to Q
for each x in H,, it follows that condition (18) is satisfied and Theorem 3 applies
to establish convergence of %, to £ for arbitrary x, in ;.

c) The generalized linear eigenvalue problem. Suppose that T, and T, are
bounded linear operators mapping H, into H,. Then the generalized linear eigen-
value problem can be written

Tix=AT,«x

in H,. 28
L=t 0 25)

From what we will learn in the next section, there are at least two formula-
tions of (28) that allow for the effective application of iteration (15)-(16). Both
depend on letting

Gx)=LTpx, T,x) Ty x — L2, Tyx)Tyx xinD;
and differ by the definitions

P(x)= xinD; T, x==0;

_F
|Ta#|
and

p(x)=|T,xf—1 xinD.
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The first formulation is gotten by choosing m =1 and G,(x) =G(x) and using
the definition of P given above. The second arises from letting P be the identity
operator on D and defining G,: D—~H,® R (or H,® C) by

G, () =(G(x),p(x)) #xinD.
Writing
Hx) ={Tyx, Tyx) {Tox, Thx) —](sz, Tl">|2
and
g(x)=Tyx, TyaxdTF Tyx+ (Tox, Tyx) T*« Ty x
— L%, Ty (T Ty x + T x Ty x)

and using a simplification, the procedures are, respectively,

- 1) 8(%,)
Ty =P (xn_W)
and

x

= AT ||ag(1f>(+m'§’fp'*('x T (o () + (%) 9 (%))
where o = (T, x,, T, x,>. It is not too difficult now to show that the assumptions
needed for convergence are satisfied is this instance when E represents a set of
eigenvectors belonging to an eigenvalue 4 of (28) that are properly normalized,
if E does not intersect the null space of T,, and provided for any # in E there
exists no » in EL that satisfies (Ty —AT3)h =T,u. (The reader is referred to
[3, 11] for related work.)

When the operators T; and 7, are nonlinear the assumptions required for
convergence do not translate quite as nicely as they do for example ¢ above, as
is to be expected. The conditions do have a similar appearance, however. Since
the nonlinear case is a basis for constrained optimization, we devote the next
section to this example.

IV. Minimization with Equality Constraints
The form of the constrained optimization problem we wish to consider involves
two real functionals, F and yp, defined on a subset, D, of H. With F the objective
and y the constraint functional, the problem is that of finding and element # of
the constraint set C ={x in D: yp(x) =0} that satisfies

Flu)= min F(x). (29)

[We note here that a minimization problem with several equality constraints
1, (%) =9y (%) =+ =9, (x) =0 is of this form if we takep(x Z'I’k }.] To pose

(29) in the proper formulation we define G: D—H where p0531ble by

G (%) = (Pyp(x), Vp(2)) VF(x) = VE(x), Vy (x)) Vo (). (30)
[Note the relationship that G shares with the Lagrangian of the pair (F,y).]
It is well-known (cf. {1]) that solutions of (29) are precisely the zeros of G in the
set C under certain conditions. Thus, if P: D—H so that C ={x€D: P(x) =x},
then (29) is equivalent to problem (13) in this case. It is therefore with (29) in
mind that we devote this section to the following problem formulation.
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Let g, and g, denote mappings from a subset, D, of H, into H,. Suppose that
P: D—D and define G: D—>H, by

G (x) = {g2(%), g2 (%) £1 (%) — <&a(%), £1(%)> &2 (#). (31)
The problem we consider in this section is given by
G(x) =0 xin D (32)
P(x)=x

and the method by

G 2
bya =P (1 — (A G (1) G (). (%)

The next theorem establishes the convergence of iteration (33) to solution of (32).

Theorem 4. Let E be a nonempty subset of solutions of (32) exhibiting an
e-neighborhood, N, satisfying conditions i) and ii) of Section II. Suppose that P
satisfies condition iv) and that g, and g, are uniformly (E, N, Zy)-differentiable
and have uniformly continuous Frechét derivatives on Zy. Assume that g, is
nonzero on E. Then for each x in Zy define the scalar A, by

— S&aluy) g1(n,)>
K CACANA TR G4
and the operator L,: H,—>H, by

Finally, let M =sup{|G’ (u,)|: x in Zy} and suppose for some y >0 and all x in Zy
that

” <g2 (ux)’ g2 (ux)>LxA x— <g2 (ux): LaA x>g2 (u’x) " _Z_VHA xn (36)
Then there exists an ¢-neighborhood N’ contained in N such that for any x; in
Zy, the sequence (x,: # =0, 1, 2, ...) defined by (33) satisfies the inequality

|42l ShlAn] n=01,2,... 67)
where k,— (1 —y2/M2)* as n— oo.
Proof. By the assumptions on g, and g, it follows that G’ (x) exists for each
x in Zy and is given by
G' (%) Ax = gy(x), &2 (%) > g1 (%) A % — {&o (%), &1 (¥)> g2 (%) A %
+ <82 (%) A %, 8, (%)) g1 (%) — {g2(%) A %, £ (%)) g2 (#) (38)
+<ga (%), g2(%) A %) g1 (%) — g2 (%), £1(%) A % g ().
It is easy to show that G is uniformly (E, N, Zy)-differentiable, by using (38) and
the differentiability of g, and g,. The fact that G'(x) is uniformly continuous

also follows from (38) and the uniform continuity of g;(x) and gz(x). To show
that (26) is true we use the fact that G (u,) =0 and, hence,

G’ (1) A x =<8y (), 8a (1) > 81 (1) A x — 82 (), &1 ()
() A% + (g (), 82 (w,) A %) & (u,)
— {8, 81(u,) A ) 83 ()
=ga(u,), 8 () > L, A x — (g3 (), L, A %) gy (t,).
(26) is a consequence of (39) and the theorem is proved.
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The following corollary concerns itself with a simplification of iteration (33)
that enjoys the same properties of convergence. The simplification amounts to
eliminating a small vector quantity that is unnecessary to compute, at least
asymptotically.

Corollary 3. With the assumptions of Theorem 4, define the scalar functional
f on D and the vector function g on D by

F(x) = (g1 (%), & (%)) {ga (%), g (%)> — | & (%), & (x)>]2
(%) =g (%), &(2)> g1* (%) & (%) + (&1 (%), & (%)) g2 * () g2 (%) (40)
— g (%), & (%)) (gé* (2) g (x) +-81* (%) &, (x))

Then provided ||4 x,| is small, the sequence (x,: 2 =0, 1, 2, ...) given by

_ f(%,) g (%) _
xn+1—P(xn——l[§(}%—)|2— ) %-—0,1, 2,..' (41)

is well-defined and satisfies inequality (37).

Proof. The proof rests on the observation that (41) is the result of the elimina-
tion of the term

g(x) Ax={ga(x) A%, 8, (x)> & (x) —<{ga(%) A %, 8 (%)) g (%)

when computing G'{x)4 x as in (38). Since ¢g(#,)Ax =0, it is easy to show by
the assumptions on G that ¢* (x)G (x) is o (|4 x|). The theorem is now a consequence
of Remark 3.

Remark 5. The above corollary is readily interpreted as an approach to solving
problem (20) with one important gap in the application. More specifically, if we
define

& (%) =VF(x)

in D, 4
e =P 2

then we are still left with making an acceptable choice for P(x). Although a

more appropriate selection might be made for a specific form of (29) like, say, the

eingenvalue problem (see example ¢ of the last section), in general a very reason-
able choice for P(x) is given by

_ R ACI A AC))

PO ==y

If () exhibits the differentiable property of Remark 2, it can easily be seen
that P satisfies condition iv) of Section II. Under these assumptions it then follows
that Eqgs. (40)~(43) define a locally convergent procedure for the solution of
optimization problem (29).

So far the approach that has been taken for the solution of (29) has maintained
the viewpoint that the problem is a constrained one and certain difficulties in
analysis of convergence arise in this way. For this reason it is important to
attempt to transform (29) into an unconstrained problem as we now do. It will be

¥ in D. (43)
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seen that more can be said using this formulation without affecting the convergence
properties of the iteration. In particuar, if a solution set of (29) has an e-neigh-
borhood with compact closure, then it will be possible to replace (36) with a
condition that is much easier to verify.

Using the operator given by (31) we shall now attempt to solve
G(x) =0
p(x)=0

by applying the procedure described in Section I11 to the operatiorG;: D —~H, DR
(or H,PC) defined by

xin D (44)

Gy (%) = (G (%), p(x)).

The inner-product on the cross-product space is the natural one and the method
thus has the form

— — IG () P +|w(x,) [
K1 = X ( [G"* (%) G (%,) +w (%) v * (5, ”2)

(GH )G (x) )y *(x) n=01,2,...

We shall close this section with a theorem concerning the convergence of (45)
and a corollary that deals with a simplification of this procedure.

(45)

Theorem 5. Let E be a nonempty subset of solutions of (44) on which g, is
nonzero and which exhibits an e-neighborhood, N, satisfying conditions i) and ii)
of Section II. Note that P=1, the identify operator on D, and that Zy =N —E.
Suppose that g;, g, and y are uniformly (E, N, Zy)-differentiable and have
uniformly continuous Frechét derivatives on Zy. Let

M =sup{ (|G’ (w,)[? +v’ (u,)|?)*: xin N —E}

and define 1, by (34) and L, by (35). Finally, assume the existence of a y >0
such that

[<ga(1.), g2 (u)> L, A% —<gy (), L, Ax> g5 () [P +1y' (x) A x|* Z 2|4 x|F (46)

for all x in N. Then there exists an g-neighborhood, N’, contained in N such
that the sequence (x,:7=0,1,2,...) defined by (46) converges according to
inequality (37) for any %, in N'. Moreover, assume that H, is finite dimensional
and E is convex and bounded and for each x in N define E, as the set of unit
vectors in H, orthogonal to ¢'*(«,). Then condition (46) is equivalent to the
assumption that the problem

L h=og,(u,) wscalar; xeN; heE,. 47
has no solution.

Pyoof. Clearly G, (x) is uniformly (E, N, Zy)-differentiable and its derivative
is given by
Gi(x)h=(G"(x)h,y'(x)h) xinN; hinH,.

With the natural innerproduct it follows that
Ci* (16, (1) =G * (MG (%) +y(W)y'*(x) xinN.
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The first conclusion of the theorem is then a consequence of applying Theorem 3
with m =1 and G, and P as above. The last conclusion follows from the com-
pactness of the closure of N and the continuity of ¢’ (#,) 4 x and

<g2 (ux)' g2 (ux) > LxZT‘ - <g2 (uz)r Lx Z—;>g2 (ux)
for x in N —E. The theorem is proved.

Corollary 4. Let the conditions of Theorem 5 be satisfied and let f and g be
defined by (40). Consider the iteration

xn+1 = xn ”ag aii: .;} I w | "2 ( (xn) +1P (xn)w’ * (xn)) (48)

where we have denote the quantity o« =<g,(x,), £,(%,)>, #=0,1,2, .... Then
the sequence (x,: # =0, 1, 2, ...) that it generates is well defined and is convergent
according to (

Proof. The proof is similar to that given in Corollary 3 and will be omitted.

V. Computational Results

Experimentation with the technique and its various modifications presented
in this paper was accomplished in FORTRAN on a DECsystem-10 which uses a
36-bit word-length. The results given in this section represent that portion of
the work that dealt with the problem of finding the roots of polynomials in the #»
variables x = (%, %,, ..., %,). With m the degree they have the form

1(x) = +Z+i _,, Bixiacin LA (49)
1 t R n=:

The following specific examples were used in the investigation:

Fa(%) = %, %g %5 — 2 263 %3+ 4 2323 13 1] 23 — 24 %, %,y 24 2, %5+ 24,
fa(x) = (af — 423) 3 2, — %),

fo (%) = [42; (27 — x5) +0.02 (%, —1)]2 4 [2(2] — 23) %,

fo(%) =27+ 425+ 9x3 41613,

fo (%) =3 x; %5 x5 — 5623 x2 23 + %, %,.

Note that in these examples we have, respectively, n =35, 2, 2, 4, and 3 and m =15,
3,6,2,and 9.

In each case two initial guesses were used, the components of one of which
being chosen randomly in an appropriately selected interval. The iteration was
stopped when ¢,, the absolute value of the polynomial, became smaller than
1078 even though in several instances convergence was much more rapid past
this point. The following table describes the results which, in this environment,
are felt to be fairly representative of the computational performance of the
procedure:
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Poly- Initial vector & £ £ &
nomial
h {1.00, 1.00, 1.00, 3 X 102 5 %107t 6 % 1072 2x1073
1.00, 1.00)
(—0.435, 0.379, 0.176, 5 X 10°% 2 X 108 5% 10% 1 X 102
—0.934, 0.482)
fa (0.195, 0.732) 3 X107 2 X 1072 6 x 1078 1 %1078
(10.0, 1.00) 3 X 10% 7 X 10% 7 X 10t 5 X 1071
fs { — 1.20, 1.00) 5% 10° 2 x 10° 4 x 107! 1 x 107!
(0.358, —0.217) 7 x 1071 2x 1071 6 x 1072 2 x 1072
A (1.00, 1.00, 3 x 10! 9 X 10! 3x10° 1 x10°
1.00, 1.00)
{ —0.610, 0.465, 4 x 10° 1 x 10° 5 %X 107! 3 x 1071
0.217, —0.385)
Is (—0.142, 0.677, 0.751) 9x 1072 2 X 1072 2x 1074 9 x 10711
(0.736, —0.661, 0.573) 4% 10° 1 x10° 5% 1071 2x 1071

Remark 6. The effectiveness of the technique in finding zeros of a single
polynomial is appearent in the above table. Note the almost quadratic convergence
characteristics for some of the examples. The performance of the algorithm as it
applies to systems of nonlinear equations is a topic of current investigation and
is, however, enjoying mixed success. While the method is computationally
superior to other existing techniques in some cases (e.g., the problem on page 305
of [9]), it proves to be too slow in others. On the other hand, it is important to
note that the modification suggested in example a of section IV compares favor-
ably in terms of the number of iterations with the full procedure and is therefore
considerably more efficient. Further advantage is expected to be gained by the
use of a difference approximation to the derivatives that need be computed during
the iteration. Finally, it is anticipated that the low computational costs and
simplicity of the algorithms will be underscored by the evidence of their sus-
ceptibility to straight-foreward acceleration techniques. These observations are
highly suggestive of the potential for the development of a generally effective
process based on the schemes presented here.
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A & & & &g Error at
Convergence
7 X 1077 - — - - g=7X107"7
4 x 101 1 x 10! 2 x10° 2x 1071 1x 1078 &g =7 X 1077
— - - - — g3=1 X 1078
3 x 1078 0 — — — £=0
3 X 1072 7 %1073 1Xx1073 2x 107t 3 x 1078 &=
4x1073 1 x1078 2x 1074 3 %1078 9 % 1077 ef =9 x 1077
4 x 1072 2x107! 1 x107! 1x1071 6 x 1071 E34 =7 X 1077
2x 107 2 x 1071 1 x 1071 1 x 1071 5% 1072 E35=06 X 1077
— - — — — £g==9 X 10711
7 X 1072 2 %1072 4 %1073 2x10™4 9 X 1077 g5 =9 X 1077
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