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Abstract. The numerical differentiation of data divides naturally into two distinct 
problems: 

(i) the differentiation of exact data, and 
(ii) the differentiation of non-exact (experimental) data. 

In  this paper, we examine the latter. Because methods developed for exact data axe 
based on abstract formalisms which are independent of the structure within the data, 
they prove, except for the regulaxization procedure of Cullum, to be unsatisfactory 
for non-exact data. We therefore adopt the point of view that  satisfactory methods 
for non-exact data must take the structure within the data into account in some 
natural  way, and use the concepts of regression and spectrum analysis as a basis for 
the development of such methods. The regression procedure is used when either t h e  
structure within the non-exact data is known on independent grounds, or the assump- 
tions which underlie the spectrum analysis procedure [viz., stationaxity of the (de- 
trended) data] do not apply. In this latter case, the data could be modelled using 
splines. The spectrum analysis procedure is used when the structure within the non- 
exact data (or a suitable transformation of it, where the transformation can be 
differentiated exactly) behaves as if it were generated by a stationary stochastic 
process. By proving that  the regulaxization procedure of Cullum is equivalent to a 
certain spectrum analysis procedure, we derive a fast Fourier transform implementa- 
tion for regularization (based on this equivalence) in which an acceptable value of the 
regulaxization parameter is estimated directly from a time series formulation based 
on this equivalence. Compared with the regularization procedure, which involves 
0 (n 8) operations (where n is the number of data points), the fast Fourier transform 
implementation only involves O (n log n). 

1. I n t r o d u c t i o n  

The tacit  assumptions which underlie most  numerical  differentiat ion proce- 
dures proposed to date are more or less equivalent  to the assumption tha t  t h e  

data  to be differentiated is exact. This is a direct consequence of the use of abstract  
concepts as the basis for their formulation. For example, m a n y  authors  have 
examined numerical  differentiation under  the assumption tha t  the step-size 
(between data  points) is large compared with the accuracy of the data.  They  
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force this assumption by regarding the data to be exact, and therefore, circumvent 
the difficulty that  the numerical processes defined by these abstract procedures 
are potentially unstable. 

A number of authors have recognized that numerical differentiation proce- 
dures do lead to unstable numerical processes and have proposed different proce- 
dures for their stabilization. These proposed procedures can be classified as 
either regularization, optimal step-size or analytic function techniques. How- 
ever, except for the regularization procedure of Cullum [t3], they do not come 
to grips with the problem posed by real (non-exact) data which arise in experi- 
mental situations. Since the explanation lies in the formulation of these methods 
on the basis of some abstract concept which ignores the source and the nature 
of the given data, we develop numerical differentiation procedures which take the 
structure within the data into account. In fact, we develop two statistical proce- 
dures. In w we sketch briefly the use of regression analysis, while in w we 
discuss in detail the use of time series. 

One of the main advantages of these two methods is that they allow the 
curve (signal) from which the derivative has been derived to be constructed. 
This is then available to the experimenter for comparison with the original data. 
I t  represents a direct but not necessarily conclusive check (from the experi- 
mentalist's point of view) on the reliability of the numerical derivative obtained. 

In w 6, we show that the regularization procedure of Cullum [13 ~ is equivalent 
to a certain spectrum analysis procedure, and use this to 

(i) derive a direct estimation procedure for the optimum value of the regulari- 
zation parameter of the CuUum procedure, and 

(ii) construct an automatic computational procedure for numerical differen- 
tiation based on a fast Fourier transform implementation of the spectrum analysis 
equivalence of regularization. 

The exploratory nature of the spectrum analysis method is preserved by 
using a comparison of the data and the reconstructed signal to decide whether 
the given data can meaningfully support a differentiation. Compared with the 
regularization procedure, which involves O (n 3) operations (where n is the number 
of data points), the fast Fourier transform implementation only involves O (n logn). 

A cursory survey of methods based on abstract formalisms, including Cullum's 
regularization procedure, is given in w while the application of the spectrum 
analysis procedure to synthetic and experimental data is discussed in w The 
order of convergence of the spectral differentiation procedure is established in w 7. 

The practical importance of differentiating non-exact data is not discussed 
in this paper. The interested reader is referred to Anderssen and Bloomfield [t ]. 

2. Methods Based on an Abstract Formalism Including Regularization 

The abstract formalisms on which numerical differentiation methods have 
been based can be classified as: 

(i) Polynomial Interpolation: see Bickley [3], Brodskii [8], Chakravarti [t0], 
Kranzer [30], Salzer [39, 40] and Sch6nhage [41]. 
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(ii) Taylor Series and van der Monde Systems: see Bj6rck and Pereyra [5], 
Galimberti and Pereyra El 7], Hunter [27] and Lyness and Moler [34]. 

(iii) Spline Interpolation: see Birkhoff and de Boor [4] and Secrest [421. 

(iv) Contour Integration: see Lyness [3t, 32] and Lyness and Moler [33]. 

(v) Integral Equations and Regularization: As well as illustrating the im- 
properly posed nature of differentiation, the integral equation formulation 

t 

g(t)--f/(s)ds, /(4)=g'(t), 0 < s < t < T ,  (2.t) 
0 

can be used to construct finite difference and stabilization procedures for exact 
and non-exact data, and be used to throw further light on the general nature of 
differentiation formulas. The general properties of finite difference methods for 
(2.1) have been examined by de Hoog and Weiss [25, 26], while different regulari- 
zation procedures have been proposed by Cullum [12, t3], Doigopolova and 
Ivanov [14], and Vedeneev and Zhidkov [46]. 

(vi) Others such as strict estimation in Strom [43], Richardson extrapolation 
in Engels [16] and random sampling in multidimensional space in Tsuda [44]. 

We refer to formulas generated with respect to the totality of data points as 
global and reserve the title local for formulas generated with respect to a small 
fixed number M of data points and applied sequentially. 

A careful examination and comparison of these methods indicate that:  

(i) The most satisfactory method for exact data, when g (t) is known analyti- 
cally, is the contour integration procedure of Lyness and Moler. 

(ii) When the data is exact, but g(t) is not known analytically, the local 
interpolatory formulas are the most satisfactory (because of their simplicity) as 
long as the steplength between data points remains large with respect to the 
rounding error but small with respect to the local variation in g (t). When this 
is not the case or cannot be guaranteed a priori, then a more sophisticated method 
such as regularization should be used. 

(iii) Except for regularization, with an acceptable value for the regulafization 
parameter, none of the above methods is satisfactory for non-exact (experimental) 
data. 

Because it plays a fundamental role in the subsequent analysis, we conclude 
this section with a brief discussion of the regularization procedure of Cullum 
E12, 13]. 

Without loss of generality, we assume that [O, T] = [0, t ] and g (O) ----g (t) ---- O. 
In addition, we introduce the norms 

1 

IIgl]~ = f gZ ( x) d x, 
0 

Ilgl[~ = Ilgl]~ + IIgI~IUL 

and denote the space of twice differentiable functions with second derivatives 
square summable by Vr Cullum first observes that the Volterra integral equation 

t2,~ 
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formulation (2.t) can be replaced by the Fredholm formulation 

1 

g( t )=  f H(t--s) /(s) ds=n/(t), (2.2) 
0 

with H (t--s) the Heaviside unit step function. Next, by applying regularization 
in the sense of Tikhonov, the solution of (2.2) is reduced to the following family 
of optimization problems P (x) (0< ~_< 1): for each e minimize 

( i ) '  c -Ila/-gl l ,* + l(x) ax II/[l  (2.3) 

with respect to /EVr ~. The regularization parameter is e. Using a calculus of 
variations' argument (see Hestenes [24]) the determination of the /(x) which 
minimizes (2.3) for a fixed e is reduced to the solution of the second kind Fred- 
holm equation 

1 

e/(t)+fKo(t, s) l(s) ds=m(t) ( 0 < t ~  1) (2.4) 
o 

in which the kernel K o (t, s) is computable {see CuUum [t3 ; w Since Cullum [13] 
proves that  P (,r is well-posed for 0 <~_< 1, /(t) can be determined from (2.4) 
by  using finite difference methods based on the replacement of the integrals by 
suitable quadrature formulas. 

The only disadvantage of this method is the choice of an acceptable value for 
the regularization parameter, since the problem of its choice has not previously 
been formalised. 

3 The Regression Procedure 

We now turn to the examination of the two independent statistical procedures 
for the numerical differentiation of non-exact data. The choice of one in favour 
of the other depends to a certain extent on the nature of the data. From the 
point of view of the present investigation, we can delineate three (not mutually 
exclusive) possibilities: 

1. A structure for the information in the non-exact data is known from theory 
or an independent analysis. In this case, we can use standard regression theory 
to fit a model of the known structure which is then differentiated. If the accuracy 
of the data is high and only one derivative is required, then this regression proce- 
dure can be applied directly. If the data is such that  it can be transformed to 
yield a stationary time series {see Box and Jenkins [7] and Hannan [22, 23]} 
and the accuracy of the data is poor, then use should first be made of a spectrum 
analysis of the transformed data {see Jenkins and Watts [28] and Grenander and 
Rosenblatt [19]} to see whether it can meaningfully support a numerical differ- 
entiation. 

2. An underlying structure for the data is unknown, but  it can be trans- 
formed to yield a stationary time series. In this case the spectral analysis proce- 
dure of w167 5 should be used. The advantage of this procedure over regression 
(when both apply) is that it generates the required n-th derivative (n ~ t) directly, 
thus minimizing the enhancement of rounding error effects. 
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3. An underlying structure for the da ta  is unknown and the data  cannot be 
transformed to yield a s ta t ionary time series. In  this case, it is necessary to fall 
back on the use of the regression procedure. Now, however, a set of basis functions 
such as polynomials or splines, must  be chosen for the representation of the 
structure within the data.  Numerically, this raises many  difficult questions, and 
therefore, will not  be persued in detail in this paper. 

In  this section, we examine the regression procedure. A discussion of the 
spectral procedure is deferred to subsequent sections. 

Let  
{(g,, t,,); n = 0 ,  t . . . . .  N}={(g0,  to) , (gl, tl) . . . . .  (gu, tx)} (3.1) 

represent the non-exact da ta  which it is necessary to differentiate with 

O<to<tl  < . . . ~ t x =  T. 
I t  i s  assumed that  

(i) g=g (t) is unknown, 

(ii) the t~ (n = 0, t . . . . .  N) are known exactly without  error, 

(iii) the errors in the observations g~ (n = 0, I . . . . .  N) are independent normal 
random variables with mean zero and variance a~, 

(iv) on the basis of either a priori knowledge or the choice of a set of basis 
functions, it is assumed tha t  g=g(t) can be modelled as the linear form 

g (t) - -  a l  r (t) + a2 05 (t) + . . .  + aM CM (0 + ~ (3.2) 

with M < N, the r ) ( m =  1, 2 . . . . .  M) known and linearly independent on 
[0, T], the ~ a normally distributed stochastic variable with zero mean and 
variance a~ and the a m (m = t, 2 . . . . .  M) unknown. 

When incorporated in (3.2), the data  (3.t) yields the over determined linear 
system 

M 

x,m a,~=g,+,~ ( n = 0 ,  1, 2 . . . . .  N),  (3.3) 
m = l  

where x~----r and the e, are random variables with mean zero and variance 
a~=a~+a~. Using matr ix  notation, (3.3) can be rewrit ten as 

Xa=g+r (3.4) 

If, under  the above assumptions, it is assumed that  the model (3.2) is correct 
with regard the choice of the $,~ and M, then the maximum likelihood est imator 
/t for a coincides with the least squares estimator defined by  

X r X ~ = X T g ,  (3.5) 

and is normally distributed with mean ~ and variance a 2 ( x r x ) - I .  

In  addition, the statistic ~ is distributed independent ly  of the defining 
relationship for the least squares est imator ~ ,  of a z, viz. 

N ~  = gr  ( I - -X  (xT x)  -~ X T)g. (3.6) 



t 62 R.S.  Anderssen and P. Bloomfield 

Since it is known that {N52/a ~} has a X~V-M distribution {see Mood and Graybill 
[3 5 ; w w 13.6-- 13.7]}, a (1 --~) t O0 % confidence interval for a m is given by 

am :Jz tN-M (0r [ N - -M [XrX]-m.l,m (3.7) 

where tN-M (X) is the two-tail a-point of the t-distribution with N - - M  degrees 
of freedom, and rxTx1-1 denotes the m-th diagonal element of [XrX]-I. L J m ,  m 

It  follows from (3.2) that /(t)---~(t)=dg(t)dt can be modelled as the linear 
form 

(t) = ax 61 (t) + a 2 62 (t) + . . .  + a m q~M (t). (3.8) 

When incorporated in (3.8), the unknown data 

{(/~, t,);/~-----~(tn), n = 0 ,  1, 2 . . . . .  N} (3.9) 

yields the overdetermined linear system 

A a =  I (3.to) 

with A~,~=$m(tn). Thus, the estimation of the numerical derivative ~(t,) 
(n = 0, t ,  2 . . . . .  N) reduces to a special case of the general statistical problem: 
/or any matrix A, estimate the linear ]orm 

defined over the regression coefficients o] the linear overdetermined system (3.4). 

Since, as noted above, ~i is normally distributed it follows that  f = A ~ must 
be also. Thus, the substitution of ~ in (3.t0) for a is consistent with the situation 
where the data (3.9) is actually observed, with the errors in [ normally distributed, 
and the ~ is calculated directly as the least squares estimator. In fact, f is normally 
distributed with mean A a and variance a*A (xTx)-1AT and is independent of a *. 
Consequently, a ( t--~) 100% confidence interval for the m-th element /~ of 
becomes 

in-]- tN--M (Or) [~'~ [A (xT x)-1A T]n,n ]�89 (3.1 t) 

This includes the special case X = A  when estimates of ~, ( n : 0 ,  t, 2 . . . . .  N) 
are required. 

The actual numerical evaluation of ~, (~2 and [xTx]--I should be based on 
orthogonal factorization or modified Gram-Schmidt orthogonalization procedures 
in order to minimize the enhancement of rounding error. The reader is referred 
to Wilkinson and Reinsch [48] as a source reference. 

For the given data (3A), accepting that (ii) and (iii) and consequently the use 
of the least squares estimator can be justified, the validity of the above rests 
heavily on the validity of (iv). This depends on the assumption that  

(a) a realistic and meaningful model for the data is given by (3.2), 
and 

(b) only a finite number M of terms of (3.2) are required to define a "safe"  
model. 
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Though statistical verification of (a) and (b) cannot be obtained directly, 
there exist a number of independent techniques which yield indirect evidence as 
to their possible validity. 

A comparison of ~ (t,) with g, ( n =  0, 1, 2 . . . . .  N) and the size of the corre- 
sponding confidence intervals, defined by  (3At) with A = X ,  yield a first order 
check on (a). A poor comparison and large confidence intervals imply that  (3.t t) 
is inappropriate, if it is clear that  they do not arise as a direct consequence of 
inaccurate data, or the choice of ~b,~(t) ( r e = t ,  2 . . . . .  M), which leads to an 
unstable numerical process for the evaluation of ~, ~ or EXrX]-I. 

A test that  a model with a smaller choice of M than the " sa fe"  choice will 
adequately describe the situation {i.e. that  some of the coefficients a m in the 
model (3.2) may  be taken as zero} can be used to examine the validity of (b). 
Such a test has been discussed in Anderssen and Seneta [2; p. 160]. 

When the choice of the model (3.2) can be predicted with assurance from 
prior information, the testing of the validity of (b) complements the analysis, 
and the implementation of the least squares method as a tool for numerical 
differentiation is straight forward if the numerical process so defined is stable. 
However, when the choice of the model (3.2) is very much an open question, the 
testing of (a) and (lo) represents a check on the suitability of any choice made. 

In such situations, this leaves the general choice of the ~b,, (t) (m = t, 2 . . . . .  M) 
unanswered. In general, one would not choose 

~r~(t) = / ~ - t  ( re=t ,  2 . . . . .  M) 

since in this case x r x  coincides with the ill-conditioned Hilbert matr ix  {see 
Ralston [38; Chapter6]}. In fact, the choice should be based on numerical 
considerations. The potential instability of global and local differentiation 
formulas based on polynomial interpolation more or less rules out the use of 
globally defined polynomials, unless some suitable orthogonality condition holds. 
Since this is a rather specialized assumption which has its own problems, it will 
not be examined here. 

A case for the use of splines can be based on the results of Birkhoff and de Boor 
[4] and Powell [37]- However, this will not be pursued here. We only pause to 
note that  the implementation of a least squares cubic spline procedure is a non- 
trivial task which has been discussed in the literature {see, for example, Burchard 
[9], de Boor and Rice [6] and Powell E37]}. 

4 The Time Series Approach 

Consider a set of observations, viz. a time series, 

{g~; k = 0 ,  l ,  2 . . . . .  N }  (4.1) 

of some phenomenon at the evenly spaced time points t~=kA ( k =  1, 2 . . . . .  N), 
where A denotes a constant steplength. We say that  a t ime series is statistical 
(as opposed to deterministic), if its future values can be described only in terms 
of a probability distribution. Further, if a statistical phenomenon evolves in 
t ime according to probability laws, then it is referred to as a stochastic process. 
Thus, we can regard a time series as a realization of a stochastic processes, tile 
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properties of which we wish to investigate on the basis of information contained 
in the t ime series. 

The concept of a stationary (stochastic) process is based on the assumption 
tha t  the process is in a particular state of statistical equilibrium. In fact, we say 
tha t  a stochastic process is strictly stationary if its properties are unaffected by a 
change of time origin. Thus, for a discrete process to be strictly stationary, the 
joint distribution of any set of ~ ( t  ~ ~ < n )  observations must be unaffected 
by  shifts in the time origin of length j'A (/' an integer). I t  follows from this result 
tha t  the mean and variance of a stationary stochastic process are constant. 

Let p (x) denote the probability density /unction of the random variable x, 
and P (x) the corresponding probability distribution /unction. Since p (gk) is the 
same for all k, its shape can be inferred from the histogram of the observations 
go, gz, g, . . . . .  gn- This is the fundamental result on which the analysis of a statio- 
nary  stochastic process hinges: The analysis o/ the properties o/ a stationary 
stochastic process which generated the given time series can be derived/tom the statistical 
properties o/this time series. This has led to the development of a very powerful 
theory for the analysis of t ime series. For the breadth and depth of the subject, 
the reader is referred to Box and Jenkins ET] for an introduction to time series 
and the autoregressive approach, to Hamming [20, 21 ] for an introduction to the 
frequency approach in numerical analysis, to Doob ~t 51 for the basic analysis 
of stochastic processes, to Hannan [22, 231, Jenkins and Watts  [281 and Gren- 
ander and Rosenblatt  [t9] for the spectral approach to time series, and to Tukey 
[45] for the use of the fast Fourier transform to compute numerical spectrum. 

In this section, we show how results from this general theory can be used to 
define a numerical differentiation procedure which takes the structure within 
the non-exact data  into account. The central assumption is the stationarity of 
the time series. Though this will not be true for most given time series, it is 
often easy to introduce some transformation of the data {for example, the removal 
of a (linear) trend} which reduces it to near stationarity. Any transformation 
is valid as long as it  does not block the possibility of obtaining the derivative of 
the data or enhances the sensitivity of the method to rounding error. 

We assume tha t  the transformed data  which is more or less stationary is 
given by 

{vk; k - -0 ,  t ,  2 . . . . .  N} (4.2) 

Suppose that u (t) is the function which underlies the data v k and the derivative 
of which we wish to obtain. We assume that  u (t) is a stationary stochastic process 
with the continuous parameter  t, that  is, a random function. Without loss of 
generality, we shall also assume that  u (t) is observed, or sampled, at the 
times t~=kA,  k = 0 ,  t . . . . .  N : I / A ,  and that  the measurement error in the k-th 
observation is x~. We assume further tha t  {x~} is a stationary stochastic process 
with the discrete parameter  k, that  is, a random sequence. Thus, 

vk = u (tk) + x~. (4.3) 

We may clearly assume without further loss of generality that  both u (t) and x k 
have zero expectation. The Wiener-Khintchine theory of generalised harmonic 
analysis {see Wiener E47] and Khitchine [29]} now implies that  u (t) and xk may  
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be represented as 
o o  

u( t )=  f exp(iot/A) dZ~(o), 
- - o o  

xk= f exp( iok)  dZ,(o). 
(4.4) 

The term exp(iot]A) is not standard, but is chosen here since we have a natural 
time unit, A. The relevant feature of the functions Z~ and Z. is that  the variance 
of an integral 

f 0 (o) dZ,, (o) 
I 

is given by  
f [0 (o)[* dGu (o), 

I 

where G~ is a nondecreasing function, called the spectral distribution /unction, 
and similarly for Z. there exists a spectral distribution function G.. If neither 
process contains any purely oscillatory component, as is usually the case, there 
will exist density functions g. and gx, and then the integrals may be written as 

y 10(o)[~g(o) do. (4.5) 
I 

Our present problem is to obtain estimates of */(tk). A more classical problem 
which is usually discussed within this framework is that  of filtering out the signal 
u (tk) itself. As we shall see, the solutions to these problems are closely related. 

Suppose that  we use a filter 

1, v~_, (4.3) 

to estimate ~ (tk). Now 

(t)---- Texp(iot/A) (io/A) dZ~(o) (4.6) 
- - o o  

and thus the error of this estimate is 

where 

(tk) --  ~ l, v k_, ----- T e x p  (io k) {io/A -- l(o)} dZ~ (o) 
} * = - - o o  - - o o  

- -  f exp( iok)  l(o) dZ~(o), 
- - * t  

(4.7) 

/ ( o ) =  ~. l, exp(--iro). 
r =  - - o o  

If we assume that  error and signal are independent, then the mean squared error, 
that  is the variance of (4.7), is 

f [io/~-l(0~)[,g~(o) do+ f II(o)l'g~(o) do. (4.8) 
- - o o  - - ~  
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We now assume tha t / t  has been chosen to be sufficiently small so that little or no 
detail of u (t) has been lost by the sampling. This implies that g, is either small 
or zero outside the interval (-- z~, ~) {Hannan [23], Section III.6]}, so we approxi- 
mate (4.8) by 

f {I icolA - -  Z(co) l* g, (co) +1 z(co) 1 ~ g, (co)} dco. (4.9) 

From the point of view of the subsequent analysis, it is more appropriate to work 
with l, (co)=(A/ico)l(co) than l(co). Using this notation, (4.9) becomes 

f co*l A ~{I i -- l ,  (~o) 1' g, (co) + l  l ,  (~o) [= g, (co)} d co, (4.10) 

which we shall denote by F (l,). 
In the more classical problem mentioned above, one estimates u (tk) by 

mr vk_,,  
V =  - - 0 0  

and the mean squared error is 

f {l t-m(co) l' g.(co) +lm(o~)l' g~(co)} aco, (4.11) 

where re(co)= ~ m, exp(ir~o). We shall denote (4.tt) by F(m). 
~ =  - - O o  

Let Z (a~)=g, (co)/{g, (co)+g~ (co)}. The central result of this theory is as follows. 

Theorem 4.1. 

F(m) = F (Z) +llZ-mll~, (4.12) 

#(z,) = # (2")+ l lZ-z, IlL (4.13) 

where II. II~ and II. ila aenotes the L~ norms ~ith weighting/unctions {g.(co)+g,(co)} 
~ 2  

and ~ {g, (w) + g, (co)}, respectively. 

Proo/. We prove only (4.t2). Now 

F(m)= F ( / + m - -  l) 

= f{I t - i ( c o ) - m ( ~  i ( c o ) + m ( c o ) - i ( ~ ' ) l ~ g , ( c o ) }  rico 
--r 

= F (i) + I l l -  m II~- 2 Re f [{1 -- Z (co)} {m (co) -- Z (co)} g, (co) 

- i (o~) {m (co)- 2 (co)} g, (co)] aco, 

and it is easily verified that  this last integral vanishes. The second result is proved 
similarly. 

The connection between our differentiation problem and the classical filtering 
problem is now clear. 
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Theorem 4.2. The min imum mean squared error filters has r e = l ,  and the 
m in imum mean squared error di/ferentiator has l .  = 1. 

Proof. This is an immediate consequence of Theorem 4.1. 

I t  should be noted that  the procedure implied by Theorem 4.2 will often not 
be feasible. Usually, we will require that  the differentiation should be carried 
out by a local formula of the form 

R 

~. l, v k ,. 
f = - - R  

Theorem 4.1 then assures us that the best procedure in the sense of mean squared 
error is obtained by finding that  function of the form 

R 

Zr ~ l(/el exp(irco) 
r =  - - R  

for which 

i~ "i (co)-- (Alico) z'IR~ (co) 

best approximates 2" in the B-norm. Clearly, in this constrained problem, the 
solution will no longer be related to that  of the filtering problem, since there the 
approximation would have to be with respect to the ~-norm. 

The use of this theory requires knowledge of the spectral density functions 
g~ and g~, which will rarely be known a priori. In the next section, we discuss 
estimation of these quantities from the data, and also two ways of establishing 
differentiation procedures based on the theory contained in this section. 

5. The Spectrum Analysis Procedure 

In this section, we construct two algorithms based on the time series theory 
of the previous section where it was shown that  the numerical differentiation 
problem reduces to the determination of 

(co) = g. (co)/{g. (co) + g~ (co)} (5.1) 

which minimizes # (1.). One yields a local differentiation formula while the other 
yields a global procedure. In both cases, an estimate of 1 (co) is required. 

A simple step function estimate for I (co) can be derived if the spectrum of the 
data consists of regions where either g~ (co) < g, (co) or g, (co) >~ g~ (co) ; viz. 

~(co)= (g~ (co) >>g.(co)). (5.2) 

This proposal is based on the assumption that  the spectrum g~ (co) of the data 
(4.2) shows a clear division between signal and noise. If  this is not the case, it 
can be used as a basis for deciding whether the data can meaningfully support a 
numerical differentiation. This result alone justifies the use of the spectral ap- 
proach, at least as an exploratory tool. 
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Though windows of the form (5.2) will yield reliable results, far bet ter  results 
will be obtained when, along with (5.3), the window is tapered (linearly) in 
regions where g~ (to)"~gx (co). The difficulty is the choice of some "best" estimate 
for I from among the to ta l i ty  of possibilities. In the next  section, we see how this 
can be resolved by  showing that  the regularization procedure of Cullum is identical 
to a certain spectrum analysis procedure. 

For  the est imated l (co), we derive both an explicit and an implicit numerical 
differentiation algorithm. Both  have certain advantages. For  example, the 

implicit method allows the use of quite complex tapering in the shape of 1 (to). If 
it is necessary to repeatedly differentiate the same type  of data, then it would 
be advantageous to have a local (explicit) differentiation formula of the form 

R 

~ ( t k ) =  Y. Z~R) vk_,. (5.3) 
r ~  - - R  

In a once off situation, it is usually more appropriate to use an implicit procedure 
which involves the direct numerical approximation of 

(t,) = ~ l, vk_, 
r ~  - - o o  

= ~. l, ~exp(ito(k--r))d(Z,(to)+Zx(to)) 
, - - ~  -oo (5.4) 

o o  

---- f exp(i~ok) l(to) dZ~(to) 
- - o o  

c o  

= f exp(itok)(i~o/A) l(to)dZ~(to). 
- - 0 0  

The first algorithm we develope is an explicit procedure. If a local differen- 
t ia tor  of the form (5.3) is required, then it follows from w tha t  the best procedure, 
in the sense of mean squared error, is obtained by finding 

R 

Z(R)(o))= ~ l~ R) exp(irto) (5.5) 
r =  - - R  

for which l(, R) (co) = (A/ito) Z IR) (to) best approximates Z (to) in the r -norm.  From 
Theorems 4.t and 4.2, this reduces to the minimization of 

[[~ (to) - l~, ~) (to) I[~ = f I i (to) - l(, R) (~)l  ~ (to)~/a ~) g~ (0,) d~o, 
-"  (5.6) 

= f [ (i~o/A) Z (o~) --  Z ~el (to)[ ~ g~ (to) dto 

with respect to the l~ ~1 of (5.5). Taking the form of l~, e) (to) into account and using 
the basic techniques of the calculus of variations, this leads to the following 
conditions for the evaluation of the l~el: 

f {(ito/A) 1 (to) --  l (R) (co) g~ (09) exp (--  ito k)} de) = O. (5.7) 
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Using (5.5) and the spectral estimate ~ (~) for Z (o~), (5.7) can be reorganized to yield 

with 

and 

R 

Z l~ ~ ~, ,=r~ ( k = - - R  . . . . .  R), (5.8) 
r ~  - - R  

a ,k= f g,(~o) exp (leo(r--k)) dw, (5.9) 

~k= ~(i~o/A) ~ (co)g~(~o) exp(--ioJk)do~. (5.10) 

By replacing g~ (o~) in (5.9) and l (co)g~(o~) in (5.10) by piecewise polynomials 
on the grid { w i = 2 ~ / N ;  i = 0 ,  1 . . . . .  N} product integration techniques can be 
used to evaluate the a, ,  and Tk. The fast Fourier transform could also be used to 
determine the a,k and the 7k- The l~ R) are then obtained by inverting the linear 
system (5.8). The sequential application of (5.3) then yields 

u (t~) for k = R . . . . .  N - -  R. 

If u (tk) is also required at the points 

k = 0 , 1 , 2  . . . . .  R - - l ,  and k = N - - R + I  . . . . .  N, 

then the odd periodic extension of the data (4.2) should be used. We shall show 
in w that the odd periodic extension represents the natural way in which to 
extend numerical differentiation data. 

The second algorithm we examine is an implicit procedure. The basis of this 
procedure is the direct approximation of (5.4) using numerical quadrature. The 
construction of this algorithm is based on the observation that, in order to 
calculate g~ (co), it is first necessary to evaluate the periodogram of the data (4.2). 
Hence, it is necessary to use the fast Fourier transform to determine the finite 
Fourier transform (co i =  2 ~i/N) 

N - - 1  

~(o~i)----(l/N ) ~. v(t,) exp(--iro~i) ( i = 0  . . . . .  N - - t )  (5.1t) 
t~O 

with the inverse Fourier transform defined by 

N - - 1  

v(t , )= ~ 5(a~i) exp(io~ir ) ( r=0 ,  f . . . . .  N - - Q .  (5.12) 
i = 0  

If we write 
z~-I (o.,) = X ~ (o,i) ( -  ~ < o., < ~), 

where the 6's have been extended periodically, it follows that  

N - - 1  

v (t,) = ~. exp (io~ir) ~ (wi) 
i = o  

n 

= f exp( ior )  dZ(~"l(w) ( r = 0  . . . . .  N - - t ) .  
~ z t  
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Comparing this with 

v(t)---- f exp(ie~t/A) dZv(o9 ) ( - - o ~ < t < ~ ) ,  

we see that  Z~ n) serves as an approximation to Zv. Hence it may  be used to 
construct an approximation to (5.4), that  is 

u (tk) ~ f exp (io~k) (i~o/A) Z (o~) dZ~")(o~) 
- ~  (5.~3)  

= ~ exp (ir (i~/z]) 1 (r ~) (r 

where the final expression can be regarded as a quadrature formula for u (t~). 
Consequently we estimate the derivative by evaluating (5.t3) with Z replaced by 

its estimate l. 
The results obtained with both these procedures are discussed in w 8. We close 

this section with two comments on the implicit, or global, procedure just derived. 
The first is that  fast Fourier transform algorithms are most efficient when the 
number of data points being transformed is highly composite, and that  all 
algorithm which works only when this number is a power of two is relatively 
simple. For this reason, data are often extended by zeroes to make the series 
length up to a power of two. However, in the next section it emerges that  the 
natural way to extend data for the purposes of numerical differentiation is by 
the odd periodic extension. This should insure that  the biases introduced at the 
ends of the data by the frequency approach are minimized. 

There is one other advantage of the spectral analysis procedure. I t  also 
allows the signal u (t) for which the derivative ~2 (t) has been derived to be con- 
structed. Thus, the experimentalist can use this as a cross-check on the reliability 
of the resulting numerical derivative by  comparing the reconstructed signal with 
the data (4.2). 

6. A Spectrum Analysis Interpretation for the Regularization Parameter 
of Cullum's Method 

As indicated in w 2, of the methods based on an abstract  formalism, Cullum's 
method is the only one which can be applied to the differentiation of non-exact 
data with reliability, and its successful application depends heavily on the use 
of the optimum value of the regularization parameter  c~. Consequently, as is clear 
from the conclusions in Cullum [43; p. 264], the general applicability of this 
method depends heavily on finding an interpretation for the optimum ~ which 
allows it to be computed accurately. 

Here, we show that  an interpretation in terms of the implicit spectral analysis 
method exists. Initially, we observe that,  for given data g(t), 0 ~ t ~  4, with 
g ( 0 ) ~ g ( 4 ) = 0  and a non-zero and positive ~, it follows from Cullum [43; eqn. 
(4.1)], tha t  the exact regularized solution is defined by 

1 y X 1 

f f / (z)  d z d y + f / ( y )  dy+o~/(t)--~/I~l(t)=fg(y) dy (6.0 
t 0 0 t 
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along with the boundary conditions 

1~i~ (0) =/<11 (t) = o.  (6.2) 

Theorem 6.1. The regularized solution/ (c~; t) o/ Cullum's method is defined by 
the di//erential equation 

1 (~; t)_all21 (~; t )+  ~1(*~ (0t; t) =gUl (t) (6.3) 

and the boundary conditions (6.2) and 

/(3/(~; 0) =/13) (~; t) = 0.  (6.4) 

Proo/. We obtain (6.3) by differentiating (6.1) twice with respect to t. The 
boundary conditions (6.4) are obtained by substituting t----- 0 and t = t, respectively, 
in the first derivative of (6.t) 

Corollary 6.1. I! g ( x) = ( k ~) -1 sin k ~ x, then 

1(~; x)=cosh~x/(1 + ~(k ~)~+o~(k~)~). (6.5) 
Proof. Substitution in (6.2), (6.3) and (6.4) confirm that (6.5) is a particular 

integral of (6.3), while the boundary conditions (6.2) and (6.4) force the comple- 
mentary function to be zero. 

Since we have g ( 0 ) = g ( t ) = 0 ,  it follows that g(t) may be expanded in a 
Fourier sine series 

oo 

g (t)= ~, y, sin (z~rt), (6.6) 
r = l  

which is continuous at the end points t = 0  and t =  t. Hence, from Corollary 6.1, 
the regularized solution is given by 

oo 

1(~; t )=  ~, v ,~ r  cos (~r*)/0 +~(~r)'+~(~r)~}. (6.7) 
r = l  

The validity of (6.7) hinges on the assumption that the regularized derivative of 
the Fourier series of g, gEL 2, coincides with the Fourier series of the regularized 
derivative of g. This is a direct consequence of the well-posedness of the regulari- 
zation formulation P(a) {see (2.3)} which was established by Cullum [t3; Theo- 
rem 5.t]. Consequently, in the case when g (t) is given only as data 

{gh--~g(tk); tk=kA,  a -=t /N ,  k = o  1 . . . . .  N} (6.8) 

we can construct the finite Fourier sine series corresponding to (6.6) by using 
an odd extension of (6.8). In this way, we obtain (since g(0)=g(l)----0) 

N - - 1  
2 

7 , = ~  ~.gks in (~krA)  ( r = t , 2  . . . . .  N - - I ) ,  (6.9) 
k = l  

as an approximation to V, (r-----t, 2 . . . . .  N--1).  The substitution of (6.9) along 
with ~7, = 0 (r > N) in (6.7) then yields 

N - - I  

](~; tk)= Z ~ , ~ r / { t  +~(~r )2+x(~r )  4} cos(~rkA) .  (6.t0) 
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with 

This evidently has a similar form to the implicit procedure of w 5, viz. 

N--1 

(t,) = Y, (i~;/zl) Z (o,j) ~ (o~;) exp (ir (6.1 t) 
j = o  

N--1 

~(r = (t/N) Y g, exp(-irroi), (6.12) 
r=O 

since, with coi=2z~j/N=2z~iA, (6.11) and (6.12) can be rewritten to yield 

and 

N - - I  

(t,) = ~ (i2ni) Z i gi exp (i2 z~iA k) (6.t3) 
j=O 

N--1 

gi=  (t/N) ~. g, exp(-- i2 ~riA) (6.14) 
r--0 

with 1j.= Z (o~i) and g i=  g (c~ 
The difference between the two representations (6.t0) and (6.13) relates to 

the fact that (6.10) has been derived using a Fourier sine series (in order to main- 
tain consistency within the regularization formulation) while (6.t3) has been 
derived using the full Fourier series representation, and therefore, involves 
fewer frequencies. Consequently, if we apply the spectral procedure to an odd 
periodic extension of the data (6.8) and use the relevar~t argument of w 5, then we 
obtain the following formula corresponding to (6.t3) 

N--1 

~(tk)= E ~i Zi~Tj cos(~ikA). (6.15) 
/=1 

Thus, a comparison of (6.t5) with (6.10) indicates that the regularization 
approach can be regarded as a variant of the time series approach in which Z (co) 
is approximated by a function of the form 

& (,,,) = t / { t  + ~ (o,/A)" + ,~ (o.,/A)'}. (6. t 6) 

We observe that  for a given value of ~, an alternative implementation of the 
regularization procedure of CuUum is obtained by carrying out the implicit 
spectrum analysis procedure of the previous section with Z (m) replaced by 2~ (09). 
This will yield a computationally superior method since this implementation 
will only involve 0 (N logN) operations (when using the Fast Fourier Transform 
{see Cooley and Tukey [t I ]}), compared with 0 (N 3) operations required normally, 
since the numerical solution of (2.4) reduces to the inversion of a non-sparse 
matrix of order N. 

This equivalence also gives rise to a criterion for comparing values of the 
regularization parameter and a procedure for estimating the optimal value under 
this criterion. For suppose the spectrum of the errors, g,(m), were known up to a 
constant, say 

g,(~)=bh(~), 
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where h (o~) is a known function. This is certainly true if the errors are known to be 
uncorrelated, when h (co) ~ 1. Suppose further that  

Then it is easily seen that  1 (~) is now precisely ~ (o~), and that  the spectrum of 
the observed data is given by the two parameter  model 

g~ (~,; ~, b) = b h (~) [ l  + l/{o~ (~,l,J) ~ + ~ (~/,J)~}]. 

Since the probability distribution of the observed data is determined by its 
spectrum, and hence, by  the values of a and b, the statistical likelihood of any 
suggested values of a and b may be calculated from the observed data. This is 
discussed more fully in Anderssen and Bloomfield [1 ], who show how to eliminate 
b from the problem, and that  the optimal vlaue of ~ under this criterion, that  is 
the maximum likelihood estimate of ~, is found by  minimising 

/ N[2 

h(%)/{~ (o/A)* + ~(o//t)4}]) NI2 log t Z. r~(~,~)/rh(~,) + 
\ ' t ~ J .  ~/~ (6.17) / 

+ Y log b + 1/{~ (%./~)8 + ~ (%/~),}], 
i=1 

where ~j  = 2 ~I"/N and 

I~(~ 2nN ~o % 
is the pefiodogram of the data. 

Other consequences of the fact that  the regularization method has a well 
defined spectral interpretation are: 

1. The stability and well-posedness of the regnlarization procedure represents 
a heuristic proof of the stability and well-posedness of the spectral procedure for 
numerical differentiation, at least when Z (o~) = , ~  (o)) and an odd periodic extension 
of the data is used. 

2. In order to minimize bias due to the ends of the data, it is necessary to 

(a) detrend the data so that g (0)= g (1)= 0 and 

(b) work with an odd periodic extension of this detrended data. 

3. Since the time series procedure is designed to cope with errors in the data, 
it represents justification for Cullum's conclusion (based on numerical experi- 
mentation) that  the regularization method is stable for noisy data. 

7. The Order of Convergence of Spectral Differentiation 

Initially, we derive in Theorem 7.t, for smooth exact data g (t), the order of 
convergence of the corresponding spectral derivative, and then interpret it from 
the point of view of the differentiation of non-exact data. Assuming that  on the 
interval [0, 4], the data v k has the structure (4.3) with x~ = 0 ,  we prove 

13 Numer. Math., Bd. 22 
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Theorem 7.1. I / u  (t) satisfies the conditions 

(i) uEC p E0, t ] ,  P-->3; 

(ii) u Ipl satisfies a Lipschitz condition o] order r, 0 ~ f l < t ;  

(iii) u(- -x)=--u(x) ,  x~E- l ,  1]; 

(iv) u (o) - -  u (1) = o, ucq~ (o) - -  u~q~ (1) (q - -  t ,  2 . . . . .  p ) ;  
then 

[~ (t k) - -  u (t,)[ ---- O (~) + O (A p + ~ - ~) ( 7.1 ) 

i/the number o/data points (N + t) is su//iciently large. 

Proo]. Let  ~(a ;  t) denote the regularized der ivat ive of u(t) under  the con- 
1 

straint  tha t  f ~  (~ ; t )d t  = 0, then 
0 

[~ ( t ~ ) -  ~ (t~)[ ___ la (tk) - ,~ (~; tk)l +{~ (~; tk) - ~ (tk)l. (7.2) 

I t  follows from Theorem 3.1 in Cullum [13] tha t  

[~ (t~) - ~ (~; t~)[ = o  (~). 

On the other  hand, set t ing g (t) = u (t) in (6.6) and it (~;t) = ] (,r t) in (6.7), we obtain 

l~ (t~) - ~ (~; t~)[ = o  (~). 

However ,  this la t ter  es t imate  does not replace Cullum's since it also applies to  
the case when C(0r ]) of (2.3) is not  minimized exact ly.  

Let  the Fourier  sine series expansion for u(t) on the  in terval  [--~, t l  be 

co l 

u (t) ---- Z 7, sin (~t r t), ~', ---- 2 f u (t) sin (~r t) dt, 
r = l  0 

and denote the coefficients of the finite Fourier  sine series corresponding to an 
odd extension of the da ta  v k = u (tk) by  

N 
2 ~ , - ~ -  ~,vksin(~krA ) ( r = t , 2  . . . . .  N - - t ) .  

/~=1 

Then, using the equivalence between regularization and  spec t rum analysis derived 
in w 6, it follows tha t  

] ~_,N-x cos(str kA) 

(7.4) 
o ~  

+ ~ 7, ~tr 2~(str) cosQtrkA). 
i~N 

Now, it is not  difficult to establish tha t  

I7,l ----0 ( r -*-a)  , (7.5) 

and it fotlows from H a m m i n g  [2t ; Pa r t  I I I ]  tha t  

7, =~, + ~. (--~2Nq-, +7~Nq+,)" (7.6) 
q = l  
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Using (7.5) in conjunction with (7.6), it can be shown that  

I ,-f,1 =o(N-p-p) ( r = l ,  2 . . . . .  N - - i ) .  (7.7) 

Since [ cos (xrkA)]  < t and 2~ (:~r) < 1, (7.4) yields on applying (7.5) and (7.7) that 

1~ (~; tk) -- u (tk)[ = 0 (A +p+a-~). (7.8) 

Combining (7.2), (7.3) and (7.8), we obtain the required result (7.1). 

Interpretation /or Non-Exact Data: In the actual application of spectral 
dilferentiation to non-exact data v, with the structure (4.3), we use the window 

(co) = 2~ (co) to filter off the noise from the signal. In this way, the Fourier sine 
coefficients for v,, y, say, are replaced by ~,2~ (z~r). Let the function with these 
smoothed coefficients be g~ (t). Then Theorem 7.1 remains valid for this non-exact 
data, if g~ (t) {instead of u (t)), now satisfies the conditions of Theorem 7.t, since 
it is the derivative of this function which sprectral differentiation determines. 

8. Numerical Results 

Numerical experimentation with noisy artificial data as well as real experi- 
mental data indicated that:  

(i) Though the regression procedure, using fixed knot splines, gave better 
results than methods based on an abstract formalism (excluding Cullum), the 
fast Fourier transform implementation of the regularization procedure of Cullum 
(FFT implementation) invariably yielded better results. The possibility of using 
a variable knot procedure (see Burchard [9], de Boor and Rice [6]) was not given 
serious consideration since its computational efficiency would not compare 
favourably with that of the FFT implementation. 

(if) The estimation procedure for ~ (viz., the minimization of (6A7)) always 
yielded values which gave smooth derivatives using the FFT implementation. 
In addition, a comparison between the given and reconstructed data was 
favourable as long as the data was not  too noisy. The actual minimization was 
carried out using a quadratic procedure. 

(iii) The explicit (local) spectrum procedure gave nearly identical results to 
the implicit (global) spectrum procedure when the number of points in the explicit 
formula exceeded 9 (viz., when R > 4). 

We do not present the results for experimental data in this paper. The inter- 
ested reader is referred to Anderssen and Bloomfield [t] where the results of 
applying the F F T  implementation to some photoelectric response data of Ltittge 
(see Pallaghy and Ltittge [36]) is examined at length. 

Instead, we apply the FFT  implementation to the artifical data 

g(x) = B x2(x --OA ) (x--0.2)  (x --0.5)(x - -0 .75) (x- -0 .95) (x- - t )  3 
(8.~) 

+ A  x 2 +~  =g0(x) + s ,  

t3" 
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Table I. Comparison of exact and calculated signal and derivative for data  (8.t) 
(A=1/128,  xi=iA,  A=l.O, B = I . 0 E + 3 ,  s = t . 0 E - - 6 )  

c~= 3.213 E- -21  

1 --2.744 E - - 6  --4.137 E - - 6  - - t . 0 8 1 E - - 2  --4.137 E - - 6  - - 1 . 0 8 1 E - - 2  
17 1.996 E - -  2 1.996 E - - 2  4.016 E - -  t -- 5.320 E - -  7 2.244 E - - 4  
33 3.943 E - -  2 3.943 E - -  2 -- 6.682 E - -  2 -- 3.348 E - -  7 7.024 E - -  5 
49 6.937 E - - 2  6.937 E - - 2  8.156 E - -  t - -3 .8 t7  E - - 7  --1.313 E - - 4  
65 2.500 E - -  1 2.500 E - -  1 1.844 t.038 E - - 6  2.083 E - -  5 
8t 4.529 E - -  1 4.529 E - -  I t.191 t.270 E - -  7 --9.619 E - -  5 
97 5.625 E - -  1 5.625 E - -  1 8.715 E - - I  3 . 8 f 2 E - - 7  -- 1.240 E - - 4  

t13 7.436 E - -  1 7.436 E - -  1 2.049 - -2 .5 t5  E - - 7  1.780 E - -  5 
t29 t.000 t .000 1.994 7.t92 E - -  7 -- 5.847 E - -  3 
a 2 9.336 E - -  t3 1.286 E - - 6  

(A=1/128, x i=iA,  A = l.O, B = I . 0 E + 3 ,  s = I . 0 E - - 2 )  
~ =  2.087 E - -  12 

t - 2 . 7 4 4  E - - 2  -- t.289 E - - 2  2.789 E - -  I -- t.289 E - - 2  2,789 E - -  t 
17 t . 5 0 8 E - - 2  2 . 2 3 6 E - - 2  3 .011E- -1  2 .399E- -3  - - 1 . 0 0 3 E - - t  
33 3.699 E - -  2 3.962 E - -  2 -- 6.405 E - -  2 1.874 E - -  4 2.848 E - -  3 
49 6.613 E - - 2  7.186 E - - 2  8.522 E - -  1 2.485 E - - 3  3.652 E - -  2 
65 2.596 E - -  I 2.5t9 E - - I  1.808 1.874 E - -  3 --3.567 E - - 2  
81 4.558 E - - 1  4.522 E - -  1 1.186 --6.600 E - - 4  --4.292 E - -  2 
97 5.661 E -- 1 5.606 E - -  t 8.9t 5 E -- 1 --  t.924 E - -  3 1.993 E - -  2 

t13 7.422 E - -  1 7.434 E - -  1 1.965 --1.975 E - - 4  --8.482 E - - 2  
t29  9.946 E - -  1 9.970 E - -  1 2.023 --2.98t  E - - 3  2.286 E - -  2 
a ~ 9.t37 E - -  6 7.881 E - - 3  

d e f i n e d  o n  t h e  i n t e r v a l  [0 . t  ], w h e r e  e is a n o r m a l l y  d i s t r i b u t e d  r a n d o m  v a r i a b l e  

w i t h  m e a n  zero a n d  s t a n d a r d  d e v i a t i o n  s. I n  t h i s  way ,  we k n o w  t h e  e x a c t  s t r u c -  

t u r e  of t h e  s i g n a l  g0(x),  a n d  t h e r e f o r e  c a n  c o m p a r e  e x p l i c i t l y  t h e  e x a c t  a n d  

c a l c u l a t e d  s igna l  a n d  d e r i v a t i v e .  T h e  r e s u l t s  a re  l i s t e d  in  T a b l e s  I a n d  2 w h e r e  

(x) d e n o t e s  t h e  r e c o n s t r u c t u r e d  d a t a .  I n  t h e  F F T  i m p l e m e n t a t i o n  used ,  a l i n e a r  

or  q u a d r a t i c  t r e n d  is r e m o v e d  f r o m  t h e  d a t a  to  force  t h e  c o n d i t i o n  g (0) = g (1) = 0. 

I t  is c l e a r  f rom T a b l e s  t a n d  2 t h a t  e v e n  for  n o i s y  d a t a  w i t h  t h e  d e r i v a t i v e  

c h a n g i n g  r ap id ly ,  t h e  F F T  i m p l e m e n t a t i o n  y ie lds  r e l i ab l e  r e su l t s .  

W e  i l l u s t r a t e  t h e  p r a c t i c a l  c o n s e q u e n c e s  of t h e  c o m p l e x i t y  r e s u l t s  of w 6 b y  

c o n s i d e r i n g  t h e  c o m p u t a t i o n  t i m e  r e q u i r e d  o n  t h e  I B M  360[91 c o m p u t e r  a t  

P r i n c e t o n  U n i v e r s i t y  f o r  t01  d a t a  p o i n t s .  T h e  d i r e c t  i m p l e m e n t a t i o n  of  t h e  

r e g n l a r i z a t i o n  p r o c e d u r e  of  Cu l lum,  for  a s ing le  p r e d e t e r m i n e d  m, r e q u i r e d  15.75 

s econds ,  whi le  t h e  F F T  i m p l e m e n t a t i o n  t o o k  o n l y  0.22 s econds ,  w h i c h  i n c l u d e d  

t h e  c o m p u t a t i o n  of  t h e  o p t i m u m  v a l u e  of m. 
P r a c t i c a l  v e r i f i c a t i o n  of t h e  v a l i d i t y  of t h e  e q u i v a l e n c e  b e t w e e n  s p e c t r u m  

a n a l y s i s  a n d  r e u l a r i z a t i o n  is g i v e n  in  T a b l e  3. T h e  v a l u e  of t h e  r e g u l a r i z e d  

d e r i v a t i v e  c o r r e s p o n d i n g  t o  t h e  o p t i m a l  cho ice  of ~ in  w 6 {see c o l u m n  3 of T a b l e  3} 
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Table  2. Compar i son  of exac t  and  ca lcula ted  signal and  der iva t ive  for d a t a  (8.1) 
( A = I / 1 2 8 ,  xi=iA, A =  t.0, B =  t .0 E + 4 ,  s = 0 . O t )  

cc= 1.t01 E - -  t4 

t - -2 ,744  E - - 2  - -  1.766 E - - 2  2.804 E - -  I 1,766 E - - 2  2.804 E - -  1 
t7 5,4t2 E - -  2 5.325 E - -  2 t.941 - -  5.743 E - -  3 1-771 E - - t  
33 - - t . 7 0 7  E - - I  --  1.685 E - - I  - -5 .259  - -2 .579  E - - 4  - -9 .050  E - - 2  
49 --  5 . 7 5 2 E - -  I --  5.676 E - -  I t .532 4.348 E - - 3  1-250 E - -  t 
65 2.596 E - -  1 2.527 E - -  1 9.444 2.686 E - -  3 6.138 E - - 3  
8t t . 0 t 6  1.011 6.508 E - -  1 - - t . 7 5 3  E - - 3  - -6-359 E - - 3  
97 5.66t E - - I  5.565 E - -  1 - -4 .897  - -6 .019  E - -  3 - -  1.129 E - -  1 

t ! 3  5 . 4 4 1 E - - t  5.438 E - -  t 4.612 --  t .856 E - -  3 --  1-320 E - -  t 
129 9.946 E - -  I t .000 E - -  1 t .755 6.227 E - -  5 --  2-455 E - -  1 
a2 2.065 E - -  5 4-793 E - -  2 

(z~= 1/128, xi=id, A = I . 0 ,  B = t . 0  E + 4 ,  s =  5.0 E - - 2 )  
~ =  3.594 E - -  t3 

t - t . 3 7 2 E -  1 --  6.644 E - - 2  t .690 - -6 .644  E - - 2  1.690 
17 3,461 E - - 2  5.379 E - -  2 1.301 --  5.206 E - -  3 --  4-629 E - -  1 
33 --  t .804 E -- 1 --  1.620 E - -  l - -  5.498 6.200 E -- 3 --  3-292 E - -  1 
49 -- 5.881 E - -  l --  5.576 E - -  I 1.731 t ,432 E - - 2  3-244 E - -  l 
65 2.979 E - -  1 2,590 E - -  1 9.273 9,000 E - -  3 - - t . 6 4 t  E - - I  
8t t ,028 E - -  I 1,010 7.588 E - -  1 --  3.062 E - -  3 1.017 E - - t  
97 5,804 E - -  I 5.473 E - -  I - -4 .846  --  t .522 E - - 2  - -6 .217 E - - 2  

t t 3  5.383 E - -  1 5.480 E - -  I 4.284 2.355 E - - 3  --4-605 E - -  t 
t29  9.730 E - -  I 9.907 E - -  t 1.979 - -9 .267  E - - 3  - -2 .143 E - - 2  
r 2.578 E - - 4  3-37t E - - I  

i s  a l m o s t  i d e n t i c a l  w i t h  t h e  c o r r e s p o n d i n g  s p e c t r a l  d e r i v a t i v e  o f  T a b l e  1. O n  t h e  

o t h e r  h a n d ,  t h e  r e g u l a r i z e d  d e r i v a t i v e s  c o r r e s p o n d i n g  t o  n o n - o p t i m a l  c h o i c e  o f  

d i f f e r e d  ( o f t e n  g r e a t l y )  f r o m  t h e  o p t i m a l - - s e e  r e m a i n i n g  c o l u m n s  i n  T a b l e  3. 

9. Generalizations and Conclusions 

T h e  d e v e l o p m e n t  o f  t h e  f a s t  F o u r i e r  t r a n s f o r m  i m p l e m e n t a t i o n  f o r  t h e  

r e g u l a r i z a t i o n  p r o c e d u r e  o f  C u l l u m  d e s c r i b e d  a b o v e  r e s u l t s  f r o m  t h e  c o m b i n a t i o n  

o f  i d e a s  f r o m  t i m e  s e r i e s  a n a l y s i s  a n d  n u m e r i c a l  a n a l y s i s ,  I t  r e p r e s e n t s  a n  e f f i c i e n t  

i m p l e m e n t a t i o n  o f  a s o p h i s t i c a t e d  n u m e r i c a l  a n a l y t i c  p r o c e d u r e ,  in  w h i c h  u s e  o f  

t h e  f a s t  F o u r i e r  t r a n s f o r m  r e p l a c e s  t h e  n u m e r i c a l  i n v e r s i o n  o f  a l a r g e  n o n s p a r s e  

m a t r i x ,  T h r o u g h  t h e  e q u i v a l e n c e  e s t a b l i s h e d  i n  w 6, a n  o t h e r w i s e  u n i n t e r p r e t e d  

p a r a m e t e r  i n  t h e  n u m e r i c a l  a n a l y t i c  p r o c e d u r e  is  i n t e r p r e t e d  a s  a p a r a m e t e r  i n  

t h e  s p e c t r u m  o f  t h e  o b s e r v e d  d a t a ,  t h u s  a l l o w i n g  i t s  e s t i m a t i o n  f r o m  t h e  s t a t i s t i c a l  

p r o p e r t i e s  o f  t h e  d a t a ,  
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Table  3. Compar ison  of regular ized de r iva t ives  of the  d a t a  (8.1) 
( A =  1/128, xi=iA,  A = t.0, B =  1.0 E + 3 ,  s = 0 . 0 1 )  

a = 2 .  E - -  10 o~=2. E - -  t i  

g ( x i )  - ~o ( * i )  

t 2.548 E - -  t 2.548 E - -  1 2.549 E - -  t 
t7  t .714 E - -  1 - -2 .300 E - -  1 2.696 E - -  1 
33 8.108 E - -  2 1.480 E - -  1 -- t .465 E - -  2 
49 8.860 E - -  t 7.033 E - -  2 8.348 E - -  1 
65 1.642 --  2 .0t8 E -- t 1.803 
81 t .236 4.560 E - -  2 1.164 
97 1.061 t.891 E - -  t 9.561 E - -  1 

t13 t .722 3.279 E - -  1 t .884 
129 2.178 t.775 E - -  1 2.099 
a S 3.251 E - - 2  

2.549 E - -  t 

- -1 .318 E - - t  
5.225 E - -  2 
t . 9 t  4 E - -  2 

- - 4 . t 0 2  E - - 2  
--2.7t2 E - - 2  

8.456 E - -  2 
-- t .656 E - -  t 

9.906 E - -  2 
t . t 7 9  E - - 2  

oc= 2.087 E - -  12 oc=2. E - - 1 3  

? (;,I ? (,;,) - (x,i ) (x,) ~(xi) - / ' o  ( ' i )  

1 2.789 E - -  1 2.789 E - -  1 4.088 E - -  t 
17 3.011 E - -  1 --  1.003 E - -  1 3.474 E - -  1 
33 --  6.405 E - -  2 2.848 E - -  3 --  1.538 E - -  t 
49 8.522 E - -  1 3.652 E - - 2  8.826 E - -  1 
65 t .808 - -  3.567 E - -  2 t .82t 
81 1.186 --  4.292 E - -  2 t .217 
97 8.9t 5 E - -  t t .993 E -- 2 8.526 E -- 1 

113 t.965 -- 8.482 E - - 2  t .962 
t29 2.023 2.286 E - -  2 t .967 
a ~ 7.881 E - -  3 

4.088 E - -  t 

--  5.394 E - -  2 
-- 8.691 E - -  2 

6.694 E - -  2 
- -  2.283 E - -  2 

2.587 E - - 2  
- -1 .897 E - - 2  
- - 8 . 7 1 2 E - - 2  
-- 3.254 E - -  2 

1.t53 E - - 2  

cc=2.  E - -  14 

i 

t 6.069 E - -  1 6.069 E -  t 
17 4.823 E - -  1 8.097 E -- 2 
33 --  1.676 E - -  t -- 1.007 E - -  1 
49 9. t63 E - -  t 1.006 E - -  t 
65 t .850 5.879 E - -  3 
8t t .204 1.327 E - -  2 
97 7.838 E - -  ! --  8.780 E - -  2 

1t3 1.887 --  1.623 E - -  1 
t29 t .896 -- t .037 E - -  t 
a S 2.6t3 E - - 2  

T h e  n a t u r e  of  t h e  c o m p u t a t i o n a l  a d v a n t a g e s  i s  c l e a r  f r o m  t h e  c o m p l e x i t y  

r e s u l t  d i s c u s s e d  i n  w 6, a n d  t h e  i n d i r e c t  c h e c k  o n  t h e  r e l i a b i l i t y  of  t h e  c o m p u t e d  

d e r i v a t i v e  v i a  t h e  r e c o n s t r u c t e d  s i g n a l .  
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Consequently, it is natural to enquire whether this simple equivalence has 
generalizations. The extension of the spectral procedure to the situation where 
the n - - t h  derivative of g(t) is required is straight forward. The analysis and 
results of w w 4, 5 carry over with 

replaced by 

F:">(Z) = f {I (io~/A)=--Z(~)l~g.(o~) +1 l(o)12g.(~176 (9.1) 

and with (ico/A) and (oJ*/A ~) replaced by (ia~/A) n and (co*[A2) n elsewhere. 

However, this leaves the question of an optimal estimate for Z (a~) unanswered. 
At least for the higher derivative case, we could argue on heuristic grounds that  
the estimate J%~(o~) of (6.16) was appropriate. The exact form of the equivalence 
will depend on the way in which the regularization of the integral equation 
formulation for the ~v-th derivative, viz. 

1 

A " / =  f H( t - - s ) ( t - - s ) " - : / ( s ) / (n - - l ) l  ds =g(t), 0 < t < l ,  (9.2) 
0 

where H (t--s) is the Heaviside unit step function, is introduced. For example, 
when n is odd replace (9.2) by the following family of optimization problems 
(0 < 0~ ~ t) : for each ~ minimize 

for ]E W~ ~, under the assumption that 

g ( o / = g : "  = (o), //.'~-" - '~"-1~ - "  - -  I(~I - -  v ,  i = 1, 2 , - - . ,  n .  (9 .4 )  

Then, using the procedure developed in w 6, we obtain 

Theorem 8.1. The regularized solution [(c~; t) o/ (9.2) is defined by the dil- 
]erential equation 

(-- l )" / (0c ;  t) + ~1(~")(~; t) - - ~ 1  (~"+2) (~,  t) ---- (-- t ) " g  ("1 (t) (9 .5 )  

and the boundary conditions (9.4) and 

1:3"+:1 (~; 0) =1c~.+11 (~; 1) = 0 .  

Consequently, repeating the argument of w 6, we are able to conclude that the 
regularization procedure (9.2) can be regarded as a variant of the time series 
approach in which Z (~o) is approximated by a function of the form 

A:"> (o~) ---- 1 I[~ + ~ (ogA)'" {t + (o~lA)~}]. (9.6) 

Included within this equivalence are the following special eases: 

(i) n = t,  the numerical differentiation procedure discussed above, and 

(ii) n = 0, signal extraction in the Sobolev space W12. 
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The interesting thing to note about this estimate for 1 (co) is its dependence 
on n. As n increases, ,~*1 (co) cuts off more sharply the effect of higher frequency 
components. This is very interesting since we know from the nature of differentia- 
tion that  it is these higher frequency components which are responsible for its 
potential numerical instability. This then represents an intuitive explanation of 
why regularization defines a stable numerical process for optimal ~. I t  should be 
borne in mind that the validity of this equivalence depends on the assumed 
boundary conditions (9.4). Since they are not likely to apply in practice and are 
difficult to impose artificially, end effects will often be observed. 

An important consequence of this result is that derivatives of any order can 
be computed directly (non-sequentially) from the data, thus avoiding the ac- 
cumulation of rounding error usually associated with sequential methods. 

It  is clear that these results extend naturally to integral equations of the form 

t 

f k(t--s)/(s)ds=g(t), o < s < t < _ l ,  
o 

where 
I 

k ( t - s )  = Y a~ ( t - s )  *, 
i = 0  

if the problem of appropriate boundary conditions is resolved. 

We conclude by noting one further generalization. Nothing in the above 
analysis restricts one to the use of the Sobolev norm I]" ]]4, and therefore, if one 
requires additional smoothing the above analysis could be reworked for the 
general Sobolev norm 

IJgllL = Ilgl[~ + IIg ~1) 11~ + + flW ) IlL 
The above regularization-spectrum analysis equivalence for the n - t h  order 
derivatives remains valid. However, g(nl (co) must be replaced by 

2(~"~)(co) = t / [ t  + o~ (co/A )'nj~=o(co/A) ' q �9 

A comparison of the corresponding theoretical spectrum 

g,(co; ~, b) :bh(co)[1  + t/{~(r ~ (co/z])~i}l 

with the periodogram of the data must be used as the basis for the choice of m 
in a given application {see Anderssen and Bloomfield [11}. 
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