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Abstract. It is shown that generalized gradient approxi- 
mations (GGAs) for exchange only, due to their very lim- 
ited form, quite generally can not simultaneously repro- 
duce both the asymptotic forms of the exchange energy 
density and the exchange potential of finite systems. Fur- 
thermore, mechanisms making GGAs formally approach 
at least one of these asymptotic forms do not improve the 
corresponding quantity in the relevant part of the asymp- 
totic regime of atoms. By constructing a GGA which 
leads to superior atomic exchange energies compared to 
all GGAs heretofore but does not reproduce the asymp- 
totic form of the exact exchange energy density it is 
demonstrated that this property is not important for ob- 
taining extremely accurate atomic exchange energies. We 
conclude that GGAs by their very concept are not suited 
to reproduce these asymptotic properties of finite sys- 
tems. As a byproduct of our discussion we present a par- 
ticularly simple and direct proof of the well known 
asymptotic structure of the exchange potential of finite 
spherical systems. 

PACS: 31.10.+z; 71.10.+x 

1. Introduction 

Generalized gradient approximations (GGAs) for the ex- 
change energy functional Ex[n] as introduced by Becke 
[1], Perdew and Wang [2], DePristo and Kress [3] and 
Vosko and Macdonald [4] though conceptionalty rather 
simple have been shown to reduce the error of the local 
density approximation (LDA) substantially (see e.g. [5- 
9]). The concept behind these GGAs is a partial resum- 
marion of the complete gradient expansion for E~[n] 
including only first gradients of the density n(r). Recent- 
ly, Becke [10] has put forward a new GGA which, be- 
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sides leading to the most accurate total exchange ener- 
gies (Ex's) for neutral atoms heretofore, satisfies an exact 
condition on the asymptotic form of the exchange energy 
density ex(r) of localized systems (see below) [11-13]. 
Becke argues that this is an important ingredient for 
constructing an accurate GGA. To the contrary, we shall 
show that this asymptotic condition is not important 
for producing accurate total E~'s in two ways: (i) By 
comparison with the exact ex(r) it wilt be shown that 
the GGA proposed in [10] does not reproduce the exact 
e~(r) in the relevant region but approaches its asymptotic 
form in a regime which is completely unimportant for 
electronic structure calculations. (ii) By constructing a 
new GGA which on average gives even better E~'s than 
Becke's functional El0] but does not lead to the correct 
asymptotic form of e~(r) it is demonstrated directly that 
the asymptotic form of e~(r) is unimportant for obtaining 
accurate Ex's (on the level of Becke's GGA [10]). 

It is worth noting that our comparisons are made 
with the Ex's derived from the Optimized Potential Mod- 
el (OPM) [14, 15] (called ~,OVM, ~ S in the following, wher- 
ever a clear distinction from other definitions is required) 
which are the most appropriate values for comparison 
as has been emphasized in recent years [16-19]. As a 
matter of principle these OPM,_ Ex ~ are different from both 
the HF, E~ s obtained from the single particle wavefunctions 
of Hartree-Fock (HF) theory (used in (6) below) and 
the D F T - H F ,  E~ ~ calculated from the density functional 
theory (DFT) definition of E:,[n] based on the HF  ap- 
proximation, i.e. E~FT-UF[n]- I~V = Etot In] - T~ In] - / ~ t  In] 
-- En In], where HF Etot [hi is the total HF energy function- 
al, T~ In] is the kinetic energy functional of noninteract- 
ing particles, Eex t [n] is the external energy contribution 
and' En[n ] represents the Hartree term. This point has 
not always been appreciated in the literature although 
the differences between E~V's and OPM,. E~ ~ (shown in Ta- 
ble 2) are significant since they are of the same magnitude 
as the errors the best available GGAs produce. 

It also has been suggested [10] that Becke's new 
GGA might satisfy the asymptotic condition on the cor- 
responding exchange potential vx(r) [15, 20, 21, 22]. It 



has already been noted very recently (see e.g. [23, 24]) 
that this in fact is not the case but rather a Vx(r ) ~ c/r 2 
(r  = Irl) results from this G G A  (for spherically symmetric 
systems). We shall explain in detail why the mechanism 
introduced by Becke for satisfying the asymptotic condi- 
tion on e~(r) produces an asymptotic vx(r),,~c/r 2. From 
this discussion it will become clear that for a G G A  based 
on first gradients of the density n(r) there is no other 
mechanism available to reproduce the asymptotic form 
of e~(r), i.e. all forms of GGAs reproducing the exact 
asymptotic e~(r) necessarily have the same asymptotic 
v~(r). Thus this demonstrates quite generally that GGAs 
can not satisfy both the asymptotic conditions on e~(r) 
and v~(r) simultaneously. Furthermore we consider a 
construction in the spirit of Becke's method which repro- 
duces the exact asymptotic behaviour of v~(r) and show 
that the underlying mechanism distorts the quality of 
the G G A  in more important regimes of atoms, again 
indicating the artificial nature of such constructions. We 
also investigate whether the asymptotic v~(r)~c/r a of 
Becke's new G G A  is an improvement over previous 
L G G A ~  ~ which decay exponentially, thus elaborating the 
corresponding remark in [23]. 

The paper is organized as follows: in Sect. 2 we briefly 
introduce the concept of the OPM and give a direct 
and simple DFT  proof for the asymptotic form of v~(r) 
for finite spherical systems. In Sect. 3 we compare the 
asymptotic forms of the exact ex(r) and v~(r) with those 
of Becke's new G G A  and demonstrate analytically the 
incompatibility of an asymptotically correct e~(r) from 
a G G A  with an asymptotically correct v~ (r). We further- 
more investigate the construction of a G G A  which leads 
to the correct asymptotic form of v~(r). Finally, in Sect. 4, 
we present a simple new G G A  which gives superior Ex's 
without satisfying the asymptotic condition on e~(r). 

2. Theory 

Recently, in the context of DFT  there has been more 
emphasis on the asymptotic properties of the exchange 
energy density ex(r) and the exchange potential v~(r) [13, 
20, 22, 25, 26]. In this section we briefly review the under- 
lying theory and give a simple proof for the asymptotic 
form of v~(r) for finite spherical systems based directly 
on its DFT  definition. 

In DFT  the contemporary definition of E~[n] [16- 
19] (sometimes called exchange only) utilizes the wave- 
functions q~i of the so-called OPM [14, 15]. The q~ are 
those ground state solutions of the OPM equation (in 
atomic units), 

17 2 {---~-~.- t)OPM(r)) ~)i(r): ~i ~i([)~ ( 1 )  

with a local potential VopM, which at the same time mini- 
mize the H F  energy. Thus the minimization procedure 
determines both the local VopM and the corresponding 
solutions qS~. The exchange energy is then defined using 
the standard Fock expression with these ~b~, 

Ex[n] = - ¼  ~ dZ r ~ da r ' p(r, r')p(r', r) 
[r-r ' [  (2) 

p (r, r') = 2 ~ O ( ~ . -  ei) 4)* (r') ~b i (r) (3) 
i 

n(r) = p(r, r), (4) 

where we have restricted ourselves to spin-saturated sys- 
tems for simplicity. Applying the Hohenberg-Kohn theo- 
rem [27] for noninteracting systems one concludes that 
Vop M and E t t v [ t ~  are functionals of the density n(r). 
Then it follows that (to within a constant) 

Vop~ (r) = voxt (r) + v.(r) + v.(r), 

where Vext and vn are the external and Hartree potentials, 
respectively, and 

vx(r) = ~E~ [n] 
n(r)  ' (5) 

with E x given by (2). Talman and Shadwick [15] (using 
the integral equation that vx (r) satisfies) and others [20- 
22] have shown that for localized systems v~(r) has the 
asymptotic form 

1 
v~,(r) , - - .  (6) 

r ~ o 9  

Consequently any DFT  representation of Ex In] should 
aim at satisfying the asymptotic requirement (6) which 
e.g. is crucial for obtaining accurate eigenvalues for the 
highest occupied orbital of the Kohn-Sham equations 
[22, 26, 28, 293. 

There is a variety of reasons for choosing this defini- 
tion of the exchange energy functional in DFT  compared 
to basing Ex[n] on the H F  approximation, i.e. using 
E D F T  - H F  F -  q - -  r ; ~ H F  x Ln_I = ~tot In] -- T~ [n] - Eex t [n] - E n [n]. First of 
all, as the definition of exchange only is identical to the 
lowest order term of an expansion of E~Fa'-rlr[n] in 
powers of e 2, it is generally more accessible to al l  kinds 
of analyses than the complete Ex DFT- I-IF [n]. In particular, 
the gradient coefficient of exchange only (for a more de- 
tailed discussion see Sect. 3) is known. Also, in contrast 
to Ex DFT-I-IF [n], the definition of exchange only leads to 
a functional with unique scaling properties [19, 30]. Fi- 
nally, it allows a direct numerical construction of the 
corresponding local v~(r), again offering the possibility 
of detailed study. 

From (2) a possible and natural definition of the ex- 
change energy density is 

ex([n]" r )~  1 fd 3 r' p(r, r') p(r', r) 
' - z J  I r - r ' l  

(7) 

which is adopted in this paper (as e.g. in [13]). Gunnars- 
son and Lundqvist [11] and Levy et al. E12] (in terms 
of the exchange hole sum rule) as well as March [13] 
(using the idempotency of the one particle density matrix 
- a proof which is most useful for our purposes) showed 
that for localized systems this ex has the asymptotic 
structure 



n(r) 
ex([n];r) ~-~oo >-2-7" (8) 

This property of e~[n] might be of some interest for 
improving the calculation of energy differences (such as 
the ionization potential) over the LDA. 

At first glance (6, 8) seem to be contradictory: taking 
the functional derivative (5) of the asymptotic form (8) 
one ends up with 1/2 of (6). However, it is important 
to notice that taking the functional derivative does not 
commute with the limit r ~ oe. It is the intrinsic quadra- 
tic structure of E~[n], (2), which restores the missing 
factor of 2. 

To see how this factor of 2 comes about  we give 
a direct D F T  proof of (6) on the basis of (5) (which 
is most easily done for spherically symmetric systems). 
Our proof is performed in a way so as to parallel March's 
proof for (8) as much as possible in order to demonstrate 
the close connection between both asymptotic relations 
(6) and (8). 

For  spherical systems the qSi are given by 

4~,zm(r) = P~l(r) Ylm(O, ~o) (9) 
r 

and the density reduces to 

n(r) = 2 ~ ~ ( P . , ( r ) ) 2  0 ( e r -  e.z). (lO) 

For large r one now can replace the functional derivative 
with respect to n(r) in (5) by a functional derivative with 
respect to the highest occupied orbital Phk(r), 

;{[  ) - lim E n (r') + t 1 
a n(r) .-,0 

1 6E~ [n] 
- - +  

~-+~ 4 ( 2 k + l )  Phk(r) 6Phk(r)' 
(11) 

where we exclude accidental degeneracy for the highest 
occupied orbital and the a-function has been normalized 
with respect to the space in which n(r) is defined. For 
spherical systems it is straighforward (see e.g. [15]) to 
express Ex in terms of the P~t(r), 

E~= -- ~ ~ O(ev--e,,) O(eF--e,,r)(21+ 1)(2/ '+ 1) 
n,  t W, l '  

l + I '  oa oa L 
r< 

~, cu, t l d x  jdYrL+l 
r=lt-rl o o 

• t ' . , (x )  p . , , , ( x )  ~ ( y )  e , ,~ , (y )  

where r< is the smaller of x, y and r> the larger and 

cu,/. = [  [(l' + L- l )  !(L + l_i~_~ ij i!(l + l '-L) !] 

, ,,_), 

if l+l'+L is even and is 0 otherwise. Thus from (11) 
one obtains 

l+k 

Vx(r)~-Z~--~O(e~--~,i)(2t+l) ~ czkr 
n,l L=ll-kl  

l-~,(r) ; .  x L 
• - 3 a x & ( x )  [P~k(r) o 7~-P"'(~) 

~ [--~i-~ 1 ~,(x) ~(x) 1 - t - ~ '  P~t(r) ~°[ dx  

. _ - - i ~ o ( ~ - ~ . 0 ( 2 k +  1) Ckko 

~( r )  
; dx P~k(X) Pnk(x) 

P~(r) o 
1 

, - -  (12) 
r --+ °°  r '  

where the orthonormality of the /',t's has been used to 
arrive at (6). 

As with all proofs of (6) in the literature, our direct 
DFT proof relies on the existence of one highest occu- 
pied orbital which decays most slowly for large r. Thus 
the asymptotic form of vx(r), (6), can only be valid for 
those r where the total density is well represented by 
the highest occupied orbital alone. Even more, the norm 
of the outermost orbital has to integrate almost to 1 
as is clear from (12). As March's proof of (8) only uses 
the idempotency of the density matrix one could at first 
glance expect the form (8) to become valid for smaller 
values of r than (6). This impression, however, is mislead- 
ing as the idempotency of p(r, r') can only be used in 
(7) after the Coulomb denominator has been replaced 
by its asymptotic form 1/r. The r-regime where this re- 
placement is possible is again determined by the highest 
occupied orbital which defines the finite size of the sys- 
tem. Consequently the r-regime where (6, 8) become valid 
is identical as can be seen directly from Figs. 1 and 2. 
Note  that both asymptotic forms originate from the 
same structure in Ex In] demonstrating their close con- 
nection 

3. Asymptotic properties of GGAs 

The general form of GGAs (for spin saturated systems, 
using atomic units) is [1-4] 

E~ GA In] = ~d 3 r e~DA(n)f(~), (13) 

where 

3 (3 ~2)~- e~DA(n) = A~ n(r) 4, A ~ -  
4re 

~ (r) = (2 k~;)(-~(r)) 2 , k~(r)-= (3 re2 n(r)) ½ • 

(14) 

(1.5) 

In order to reduce to the correct limit for a homogeneous 
system f ( 0  has to approach 1 for vanishing ~. On the 
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other hand the prefactor of the lowest order inhomogen- 
eity correction to the LDA as introduced by Herman 
et al. [3i] and Sham [32], though known for weakly 
inhomogeneous systems from the linear response of the 
homogeneous electron gas [18, 33], is sometimes viewed 
as an adjustable parameter, i.e. the constant cz in the 
power series expansion of f(~) about 3=0,  f ( ~ ) = l  
+ c2 ~ + .... is chosen to give optimum exchange energies 

for neutral atoms [1, 10]. This adjustment leads to a 
gradient coefficient cz that is roughly 2 times larger than 
that derived from linear response. 

Although in contradiction to the linear response re- 
sult this procedure nevertheless could be appropriate for 
selfconsistent electronic structure calculations for atoms 
and molecules analogous to the case of the kinetic energy 
functional T+[n]: for T~[n] Lieb [34] has shown by 



means of 1/Z (nuclear charge) expansion (keeping the 
ratio N/Z  fixed) of the total energy of atoms and mole- 
cules that the homogeneous electron gas kinetic energy 
functional, i.e. the Thomas-Fermi functional, together 
with a 1.69 ... times larger gradient correction as ob- 
tained from linear response used as an approximate 
T~ [hi in a selfconsistent calculation reproduce the lead- 
ing two orders of a 1/Z expansion of the exact kinetic 
energy of these systems. Thus while the dominant contri- 
bution to a selfconsistently used T~ [n] of atoms and mol- 
ecules from the 1/Z expansion is identical to the homoge- 
neous electron gas result (in spite of the rather strong 
inhomogeneity of these systems) the 1/Z expansion leads 
to a larger inhomogeneity correction. This is in contrast 
to the case of a weakly inhomogeneous system where 
one would expect the linear response result to give the 
appropriate gradient coefficient for a selfconsistent calcu- 
lation. Of course, in most applications of GGAs for 
Ex [hi the kinetic energy functional is taken into account 
exactly by using Kohn-Sham equations. However, it 
might still require a larger gradient coefficient for E~ In] 
to reproduce the exchange energy of atoms to the appro- 
priate power of Z by a selfconsistent calculation. In this 
sense a larger gradient coefficient in GGAs might be 
justifiable. In any case the value of the gradient coeffi- 
cient is of little importance for the objective of the pres- 
ent work, i.e. the discussion of the asymptotic properties 
of GGAs which result from the limit of large gradients. 

In contrast to all previous GGAs the functional re- 
cently introduced by Becke [10] has been constructed 
to obey the asymptotic relation (8) for exponentially de- 
caying densities. For spin-saturated systems the pro- 
posed GGA has the kernel 

]~ X2 (16) 
fRs s (4) = 1 2 } Ax 1 + 6 flx sinh- 1 (x) 

x = 2(6n@ 1//~, (17) 

where fl = 0.0042 (a factor of 2.2 larger than the value 
for fl obtained from linear response) has been chosen 
to reproduce the total HF  exchange energies (which are 
numerically very close to the OPM values see Table 2) 
of He and the noble gas atoms. The total exchange ener- 
gies produced by the functional (16) are so accurate that 
the form (16) (in particular the sinh -~ (~)-function) has 
attracted considerable attention [9, 35, 36]. For an ex- 
ponentially decaying density (assuming a spherical sys- 
tem) it follows 

n(r) ~o~ 'norSe - ~  (t8) 

n'(r) ,-+~ )-2n(r)  1 - - ~ r + . . .  (19) 

n'(r) ,~oo ' 2an(r) 1 - ~ r +  ... (20) 

]//~(r) > -~ s{1 ~ ) (21) 
~-.o~ 2 ( 3 n a n ( r ) ) ~ \ - 2 r  + . . . .  

where n' and n" are the first and second derivatives of 
the density with respect to r. Consequently, using (16 18, 

11 

21), one finds asymptotically that 

2 (3 nz)½ ¢½ t 
fB88(~) ~ 3Axtn(~) r-~°~ l- (22) ~ ~ 2Ax rn(r) ~ 

so that e~ 88 ([n]; r) in fact satisfies (8). 
It is of interest to examine to what extent the property 

(8) is actually present in the outer regions of atoms. To 
investigate this aspect we have calculated e°PM(r), (7), 
for 15 spherical neutral atoms consisting of 3 major 
groups behaving similarly in the outer regions: (i) alka- 
line earth - Be, Mg, Ca, Sr, Ba; (ii) noble gases - Ne, 
Ar, Kr, Xe, Rn and (iii) Zn, Cd, Hg in which the 2 
outermost orbitals are [np,(n+l)s], [ns, np] and 
[rid, (n+ I)s], respectively• We also considered He and 
Yb (the latter being similar to the alkaline earths). Note 
that all programs presently available for atomic OPM 
calculations [15, 37] only allow the exact treatment of 
spherical systems which is why we restrict ourselves to 
the atoms listed above. As examples we show 
-2rex(r)/n(r) for Ne, Ca and Zn in Fig. 1. Furthermore, 
we have inserted exact OPM densities [26] into the func- 
tional (16) in order to compare its exGGa(r) with ex°l'M(r) 
and the results of the GGA initially put lbrward by 
Becke [11 

fBS6(¢)= 1-- 1 fl 
X 2 

2~A~ 1 +7x  2' (23) 

(x is given by (17), fl=0.0035, 7=0.004) chosen as an 
example of a GGA which leads to an exponentially de- 
caying G([n];r)/n(r). It is obvious from Fig. 1 that the 
functional (16), in contrast to the exact e°PM(r), has not 
yet approached its asymptotic form at the maximum 
r-values displayed. On the other hand, in the inner re- 
gions there is very little difference between the function- 
als (16) and (23). It is far beyond (--~2 a.u.) the r-expecta- 
tion value of the outermost orbital that the two function- 
als start to become different. The main virtue of the form 
(16) is that it does not deviate from the exact G(r) as 
much as the form (23) as it approaches the extreme 
asymptotic regime which contains a neglegible amount 
of energy. 

Even more important than the asymptotic behaviour 
of ex([n]; r) is that of the corresponding G(r). In his 
paper [10] Becke introduces the Coulomb potential of 
the exchange hole, which falls off asymptotically like - 1/ 
r. It is worth noting that this potential is not identical 
with vx as the latter quantity is defined as a functional 
derivative, i.e. by (5). For spherical systems the v~ corre- 
sponding to a GGA of the form (13) is given by 

GGA LDA Vx (r) = Vx (n) 

{ 3 1 [n" 2~] 
df(~)~n~ + 

• f(~) 24(3rc@d~ rn~! 

3 d2f'~'(n',): In" 4 (n')2~. (24) 
(4(3n@) z d~ 2 t )  n ~- ~n 3 n 2 ] J  

For the following it is useful to note a suitable asymptot- 
ic form of this formula, 



12 

1 2 ~ o  'vEDA{f(4)--34( --~r~ df-d-~ (~) 

dgf  ~ 
(25) 

where we have replaced the asymptotic n" and n' in fa- 
vour of the asymptotic 4 using (18-21). Relative to the 
leading terms displayed those neglected in (25) are either 
of order 1/r 2 or exponentially smaller as ~ increases ex- 
ponentially for large r. For the functional (16) the asymp- 
totic forms of the required derivatives are 

d~fnss ({  ) ...... (37z2)½ in ( 1 - 1 ~ )  (26) 
~ ' -  3Ax ~½1 (4) 

;@ (3~2)~ I 
, ~ . ( 2 7 )  

fB88(4) ~-~o 6A~ Uln({) 

Again the terms neglected are at least smaller by 1/r 2 
compared to the leading order terms. Insertion into (25) 
together with (22) then shows that the v~ corresponding 
to the functional (16) falls off asymptotically as 
-5/(22r 2) rather than the required - 1 / r  as all contribu- 
tions of order 1/r cancel out (compare [23, 24]). The 
asymptotic form of this potential thus depends explicitly 
on the highest occupied orbital through L 

This is a general property of Becke's method to con- 
struct an e~[n] that satisfies condition (8): for any G G A  
this condition can only be satisfied if the kernel f ({)  
behaves asymptotically like (22) (independently of the 
way in which this asymptotic form is approached, i.e. 
on the complete form of f({)). Consequently the asymp- 
totic forms of the derivatives of f (4)  are given by (26, 
27) and thus the corresponding potential falls off like 
--5/(2)~r2). It is impossible to satisfy (8) with a G G A  
only depending on 4 without violating (6) and vice versa. 

Since all previous E~aA[n] give rise to Vx'S which 
fall off exponentially in the asymptotic regime of atoms 
it is interesting to investigate whether the much slower 
1/r 2 decay leads to any improvement (compare the corre- 
sponding remark in [23]). In Fig. 2 we have plotted 
- r  v~ (r) obtained by insertion of OPM densities into (24) 
using the kernel (16) for Ne, Ca and Zn and compare 
this to the exact v°VM(r) as well as to the G G A  (23). 
For none of the 15 atoms examined is v~ improved in 
the physically relevant part of the asymptotic regime 
( r<  10 a.u.) as the 1/r a behaviour sets in too far outside. 
Consequently the functional (16) used in a selfconsistent 

Table 1. Eigenvalues of highest occupied orbitals (in Hartrees): 
comparison of exact OPM eigenvalues with the results of (16) and 
(23) in selfconsistent calculations 

Atom OPM (16) (23) 

Ne 0.851 0.456 0.455 
Ca 0.t96 0.116 0.116 
Zn 0.293 0.189 0.190 

calculation also does not lead to improved highest occu- 
pied eigenvalues as can be seen from Table 1. 

It is interesting to note that the asymptotic form of 
vaGA (25), suggests a mechanism to generate a potential x 
with the correct asymptotic behaviour. Choosing 

i 
C 4 ~ 

one obtains 

d~(4) c 1 - - 4 - 5  
¢~oo 2 

d 2 f ( y ,  , - - c  ~_~ 
d 4 2 ""~'* ¢ ~ ~0 4 

Inserting these relations into (25) and using (21) the lead- 
ing terms cancel out and one ends up with 

3c vGGA(r) uLDA(n) 
~+ ~-~ 4(3 ~2 n(r))½r" 

With 

(3 n2)~ 
- (28) 

A, 

one thus can satisfy condition (6). Of course, this asymp- 
totic structure does not satisfy (8). However, given the 
physically more relevant nature of vx it might be worth 
violating (8) if one is able to improve v~. This is particu- 
larly interesting in view of the trend towards using LDA 
potentials in the calculation of orbitals subsequently in- 
serted into exact expressions for the energy (see e.g. [38]). 

In an attempt to implement this idea into a G G A  
we have tried to optimize the exchange kernel 

f(~) =[_1 +a2 4 + a 4  42 +a6 43] 12 

t 

(and similar forms) restricting a6/b 4 to satisfy (28) (and 
fixing a 2 - - b  2 by the known gradient coefficient from lin- 
ear response [18, 33] - this restriction has no effect on 
our conclusions for the asymptotic properties of this 
functional). We first followed the approach of Vosko and 
Macdonald [4] to obtain the free coefficients in f (4)  
by fitting the exact e°PM(r) of our 15 neutral spherical 
atoms. In a second attempt we obtained the free parame- 
ters by a direct fit to the exact v°eM(r) of the same set 
of atoms. In both cases the optimization procedures led 
to extremely small coefficients a4, a 6 and b4 thus effec- 
tively switching off the asymptotic ~f~ behaviour. Treat- 
ing both a 6 and b 4 as free parameters in both cases 
the optimization procedure made a 6 almost vanish. Con- 
sequently, as for Becke's mechanism to reproduce the 
asymptotic ex(r), these GGAs approach their asymptotic 
forms for r-vatues which are completely irrelevant for 
electronic structure calculations. This indicates that there 
is no underlying property of the exact E~ In] behind this 
artifice to enforce the correct asymptotic behaviour. 



4. Accurate GGA violating the asymptotic constraint 

In  the preceding section we basically have shown that  
mechanisms mak ing  G G A s  reproduce  either of  the 
asymptot ic  propert ies  (6) or  (8) are no t  really successful 
in the sense that  the resulting G G A s  do  no t  show superi- 
or  asymptot ic  behaviour  in the physically relevant re- 
gime. To  demons t ra te  that  the satisfaction of (8) is not  
required to generate excellent total  a tomic  E~'s we have 
opt imized a [2/21 Pad6 approximant ,  

l + a l  ~ +a2 42 
f[2/2](~)= 1 + b l  ~ + b 2  ~2, (29) 

so as to reproduce  the total  E~ of  the 15 neutral  spherical 
a toms  of  Sect. 3. As for the G G A  (16) we have allowed 
for a free adjus tment  of  the gradient  coefficient. The re- 
sulting coefficients are a1=27.8428,  a2=11.7683,  bl 
=27.5026,  b2 = 5.7728 (the gradient  coefficient resulting 
from this opt imiza t ion  is abou t  2.76 times larger than  
that  f rom linear response). Table 2 shows that  this G G A  
reproduces  the Ex's of  these a toms  on average even 
slightly better than the functional (16). We have also 
opt imized the G G A  (16) by adjust ing fi to  the E°PU's 
of  the specific set o f  a toms  used in our  compar ison.  This 
led to f i=0.0041878 and an average er ror  of  0.107% 
which, on  this level of  accuracy,  is still quite different 
f rom the er ror  of  0.093% our  new G G A  generates. This 
demonst ra tes  indirectly how close to the achievable ac- 
curacy b o t h  these G G A s  actually are. In  contras t  to 
the functional  (16), however,  the G G A  (29) does no t  satis- 
fy (8). It thus is obvious  that  satisfaction of  (8) is not  
a precondi t ion  for obta in ing excellent total  exchange en- 
ergies. 

Recently,  a further  cri terion for const ruct ing G G A s  
has been in t roduced  [35] which is based on an exact 
condi t ion  for the exchange energy by Lieb and Oxford 
[391. Lieb and Oxford have shown that  

E ~  In1 -- T In I + T~ In I => c ~ d 3 r e LDA (n), (30) 
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where Ex~ [hi  is the exact exchange-correla t ion function- 
al of  D F T ,  T[nl and T~[nl are the kinetic energy func- 
tionals of  the interacting and noninterac t ing  systems, re- 
spectively, and the cons tant  c = 2.27. As E~ [n]  >Ex~ In1 
and Tin] > T~[n] [40, 41] one finds 

E~ In1 => c~d3r e~°n(n). (31) 

A sufficient condi t ion for satisfying (31) by a G G A  is 
to construct  f (¢ )  such that  

f ( ¢ ) < 2 . 2 7 ,  (32) 

which is equivalent to requiring (31) locally, i.e. for ener- 
gy densities. In  contras t  to Becke's G G A  (16) our  func- 
t ional (29) does satisfy this criterion. It  should be noted, 
however, tha t  the exact e~ (r) violates this local interpreta-  
t ion of  the Lieb-Oxford bound  in the asymptot ic  regime 
since by (8) 

e~(r) = - n(r) 42 .27  A~n(r)~=2.27 e~Da(r) 
z r  

for large r. 

5. Concluding remarks 

In  conclusion we would  like to emphasize that  in view 
of  our  results it seems to be quest ionable whether  the 
asymptot ic  condit ions discussed in this paper  are a rea- 
sonable criterion to judge or  const ruct  a G G A .  All our  
results indicate that  G G A s  due to their very limited form 
are not  suited to reproducing these asymptot ic  proper-  
ties of  finite systems. Mechanisms to enforce these 
asymptot ic  properties seem to be artificial and show no 
success in the relevant par t  of  the asymptot ic  regime. 
Fo r  practical  purposes,  which is the main  aim of  the 
concept  of GGAs ,  the functionals compared  in this work  
are equivalent with respect to their asymptot ic  behav- 

Table 2. Total ExItV's, EOPM's [43] and the deviations of the GGAs (16), (23) and (29) from E °PM (in mHartrees) as well as their individual 
(hi) and average absolute (5) percentage errors 

Atom - E nF - E °PM (16) 6(16) (23) 6~z3) (29) 6(z9) 

He 1026 1026 -- 1 - 0.142 0 0.031 0 0.000 
Be 2 667 2 666 -- 3 -- 0.127 8 0,299 1 0.028 
Ne 12108 12105 -- 57 -- 0.469 -- 33 -- 0,271 -- 45 -- 0.369 
Mg 15994 15988 --44 --0.278 - 12 --0,076 --30 --0.186 
Ar 30185 30175 -- 8 -- 0.028 21 0,071 8 0.028 
Ca 35 211 35199 -- 27 -- 0.077 7 0,019 - 9 -- 0.025 
Zn 69 641 696t9 -- 237 --0.341 - 248 - 0,356 -- 238 --0.342 
Kr 93856 93833 11 0.012 - 3 9  -0,042 - 1 0  -0.01i 
Sr t01955 101926 26 0.026 - 30 -0.029 0 0.000 
Cd 148914 148879 74 0.049 - 50 - 0.034 0 0.000 
Xe 179097 179 063 199 0.111 21 0.012 94 0.052 
Ba 189100 189065 173 0.091 - 17 -0.009 57 0.030 
Yb 276214 276145 -505 -0.183 -850 -0,308 -737 -0.267 
Hg 345304 345244 210 0.061 - 247 -- 0.071 -- 118 -- 0.034 
Rn 387504 387450 496 0.128 -35  --0.009 109 0.028 
8 0.142 0,109 0,093 
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iour. Our  analysis demonst ra tes  that  it is necessary to 
resort  to more  complicated forms for the exchange ener- 
gy functional,  as e.g. discussed by Ou-Ya ng  and Levy 
[42],  if one wants  to make  real progress towards  improv-  
ing the asymptot ic  structure of  E:, [n]. Also, it appears  
to be m a n d a t o r y  to consider the condit ions (6) and (8) 
together  rather than as separate requirements as they 
have the same origin in the exact Ex[n l .  In  order  to 
make  any improvements  for G G A s ,  however,  it seems 
advisable to  concent l~te  on  those regimes in a toms  or  
molecules (and also solids) where G G A s  have the poten-  
tial to approximate  the exact vx(r). 

We would like to thank Dr. M.J. Mehl for informing us of his 
work on the asymptotic properties of the functional (16) in which 
he also comes to the conclusion that the corresponding potential 
falls off like t/r 2 and encouraging us to present these results. We 
also acknowledge gratefully our correspondence with Prof. J.R Per- 
dew about this work. This work has been supported in part by 
the Natural Sciences and Engineering Research Council of Canada 
and the Ontario Centre for Large Scale Computation. 
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