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Abstract. Quadrature formulas suitable for evaluation of improper integrals such 
1 

as f [(x) (1 -- x)-"( t  + x)-~dx, ~, fl < I are obtained by means of variable transfor- 
- - 1  

mations x = tanhu and x = erfu, and subsequent use of trapezoidal quadrature rule. 
Error analysis is carried out by the method of contour integral, and the results are 
confirmed on several concrete examples. Similar formulas are also obtained to 

oo  

accelerate the convergence of infinite integrals f ] (x)d x by means of variable trans- 
formations x = sinhu and x = tanu. -oo 

1. Introduction 

Variable t ransformation is a well-known technique for evaluation of improper 
integrals. However,  its success strongly depends on a proper choice of the mapping 
function, which seems to have been left to the ingenuity of each mathematician,  
who is supposed to get a special mapping function tailored for each specific 
integrand (e.g. [2]). In  contrast  with that,  Schwartz [7] has given a seemingly 
general prescription for such a t ransformation which is very  efficient when applied 
to a large class of improper integrals. In  the present paper we will give several 
quadrature  formulas obtained according to similar ideas as Schwartz's.  That  is, 
the mapping function is so chosen tha t  the singular points of the integrand is 
moved to infinity, which converts the improper integral into a convergent infinite 
one, and the trapezoidal rule with an equal mesh size is applied to the converted 
integral. 

One might  think tha t  such a transform would simply exchange one difficulty 
for another, but  this is not  the case. Reasonably smooth convergent infinite 
integrals are easier to evaluate than those with finite limits. The use of the 
trapezoidal rule with an equal mesh size over (--0% oo) gives an unusual ly high 
accuracy as has been first noted by  Goodwin E3]. Indeed it can be shown to be 
more efficient than  any  other quadrature  formulas over (--0% oo) having an 
infinite number  of sampling points provided the integrand is analytic over 
( -~ ,  ~) [8]. 
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The present work overlaps much of the Schwartz 's  results ~7] 1. Nevertheless 
we feel tha t  a more detailed exposition of this technique, having in mind its use 
in the l ibrary routines, is fully justified. We will also give another  t ransformat ion 
which converts  an infinite integral into a finite integral of a periodic function. 

We assume tha t  the integrand of the given integral  is analytic over  the range 
of integrat ion except a t  the end points, and apply  the method of contour integral 
to error analysis ES, 6, 8, 9]. 

2. Generalities 

Let 
b 

t = f / ( x ) d x  (2.1) 

be the integral to be evaluated.  [ (x) is assumed to be analytic in a certain domain 
which includes the line segment (a, b). We make a change of variable by  means 
of a subst i tut ion 

x = ~b (u), (2.2) 

where ~5 (u) is analyt ic  in a certain domain and maps  the line segment  c ~ u - < - d  
onto a --< x --< b monovalent ly .  We then obtain the t ransformed integral 

d 

r = f g (u )d u  (2.3) 
c 

where 
g (u) = / (~b (u)) ~b' (u). (2.4) 

I t  is also remarked tha t  either or both  of c and d m a y  be infinite. The  function 
g (u) is also analytic in a certain domain including (c, d). Thus we can apply  any  
known quadra ture  rule to (2.3), giving, say, 

I~ = Y, Akg(ak). (2.5) 
k 

Rewrit ing (2.5) in te rms of the original function ](x) we obtain a new quadra ture  
formula  

I A = ~, Akdp'(ak)/(~b(a~) ) = ~. Bk/(bk) (2.6) 
k k 

for the original integral  (2.t), where b k ---- q5 (ak) and B k = A k qg' (a~) are the abscissas 
and the weights of this new formula. 

The error for the formula (2.6) 

d 

A I - ~  f g ( u ) d u -  Y, A~g(a~) (2.7) 
c k 

can be brought  into a form of contour integral by  the subst i tut ion of Cauchy 's  
integral  representat ion for g(u) into (2.7), resulting in 

i ~ a~ (wlg(wlaw, (2.8) 
8 

I We are indebted to the referee for bringing this paper to our notice. 
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where 
d 

f 
c 

The function ~ (w), defined in the complex w-plane, will be called the characteristic 
[unction of the quadrature error [8, 9]. The path C is a contour enclosing the line 
segment (c, d) counterclockwise. The error estimation, i.e. the evaluation of the 
contour integral (2.8), can be carried out by the saddle point method [8]. 

The change of the variable w of integral (2.8) into z through the transformation 

z = ~ ( w )  (2.1o) 
yields another formula 

1 dZ = ~ 7  ~ ~(z)/(z)dz, (2.11) 
C 

where the function a)(z) is defined in the complex z-plane by 

(z) = # (~ (w)) = r (w). (2. t 2) 

The formula (2At) gives the quadrature error directly in terms of the original 
function /(z). Hence q~ (z) is to be regarded as the characteristic function of the 
original formula (2.6). The path C is the mapped image of C from the w-plane 
into the z-plane by z ----- $ (w). 

As we have shown in the papers [8, 9], it is very helpful for practical error 
estimation to have a contour map of the modulus of the characteristic function 
[~(z)[ or I~ (w)[ prepared for each quadrature formula. The choice between the 
two formulas (2.8) and (2A1) may be made according to convenience. 

3. Quadrature Formulas for Improper Integrals 

In this section we apply the variable transformation to the integration of an 
improper integral over the open interval ( - - t , t ) ,  i.e. 

1 

I = / / ( x ) d x ,  (3.t) 
--1 

where [ (x) may have singularities at one end or both ends of the interval. 

(3.a) The TANH-Rule. If we take 

x = t a n h u  (3.a.1) 
as the mapping function, we have 

o o  

f , I =  ! (tanhu) ~ d u .  (3.a.2) 
- - c o  

Applying the trapezoidal rule we obtain the quadrature formula 

I a = h  ~, / (tanhnh) 
t 

cosh*nh " (3.a.3) 
n ~  --OO 

We will call (3.a.3) the TANH-rule. 
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The error of (3.a.3) is given as 

1 
A I = I  - - I  a ~ f ~ (w)/(tanhw) ! = ~-- ~ d w, (3 .a.4) 

C 

where the characteristic function ~ (w) is given by [8] 

- -2z~ i  
~(w) = l--exp(--2z~iw/h) ~= 2 z i e x p  (+2~iw/h); I m w > 0  

2 ~ i  (3"a'5) 
I --exp(+2z~iw/h) ~ --2zd exp (--2z~iw/h); Im w<O. 

The path C consists of two infinite lines running along both sides of the real axis. 
Hence we have the characteristic function ~)(z) in the z-plane 

f ^ .[i+z~+~i/h 
| I m z > O  

qg(z) = $ (artanhz)"~ = I ~ .[t+z~-,,qh (3.a.6) 
[ - -  z r ~ z }  ; I m z < 0 ,  

so that 
! F 

A I  = 5 - ~ i ]  qb(z)l(z)dz, (3.a.7) 
C 

where C is the mapped image of C in the z-plane. 

I t  should be noted that the function artanh z is multi-valued so that each 
strip domain in the w-plane 

W ~ = { w I - - ~ / 2 + m ~ < I m w < ~ / 2 + m ~ } ,  m = 0 ,  4-1, •  . . . .  (3.a.8) 

is mapped onto the whole z-plane cut along (1, oo) and (--e% --1). Accordingly, 
the characteristic function (3.a.6) and hence the integrand of (3.a.7) should be 
defined on the Riemann surface so that the path C may also run outside the prin- 
cipal sheet. 

The contour for [ r  is the mapped image of the contour [~  (w)[= e 
in the w-plane, which is approximately a pair of straight lines given by Imw = 
4- (h/2 ~) log (2 z/e), and hence the former is given by a pair of circular arcs 

1 
x~ +(Y4-c~176 sin~2co ; z = x  +iy ,  co=(h/2~ ) log(2z/e) (3.a.9) 

which meet at z = q - t .  It  will be seen that only those curves for which e < 2 ~  
�9 exp(--z~2/h) fall in the principal sheet of the Riemann surface, as is shown in 
Fig. I for the case h = 0.5. 

I t  should also be noted that any quadrature formula obtained by a variable 
transformation is subject to an i~herent error, which cannot be avoided irrespective 
of the integrand, i.e. even when integrating constant. Assume the given function 
/(x) to have the form 

/(x) =O-x~)-~h(x), ~ < t  (3.a.lo) 

where /l(x) is regular in a certain domain including the interval [ - - t ,  t].  We 
use (3.a.4) and deform the contour C so as to be able to use the saddle point 
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- ~  I,/ 

Fig. I. The contour map of [ q~ (z) l of the TANH-rule for h = 0.5 

method.  Since the integrand 

t 
F (w) = q~ (w) ~ (1 - -  tanh2w)-~/1 (tanhw) (3.aAt) 

has singularities (poles or branch points) at  w = •  zd/2, we cannot  move the pa th  
beyond these points. Since the var ia t ion of (3.aAl) is dominated,  when h is 

small, by  the rapid decay of I ~  (w)[ ~ 2 ~  exp( -2z~I Imwl /h  ) for large IImwl/h, 
we have, by  taking the pa th  C close to these singularities, a rough es t imate  for 
the error:  

~(h) ~ lq3 (~2 z~i/2) [ ~ 2z~ exp (--:~2/h). (3.aA2) 

If  we est imate (3.a.4) more precisely by  the saddle point  method,  we would see 
tha t  the exact  error is 2 ~  exp ( - -~ /h)  multiplied by  a factor  of order t which 
depends on ~. This amount  of error cannot  be avoided whenever  we use T A N H -  
rule, i.e. even when x = 0, since the singulari ty is also contained in ~ (w)/cosh 2 w. 
Larger  error will be introduced if /(z) has singularities outside the real axis. 

Since (3.a.3) involves an infinite sum, an addit ional error et due to the 
NI2 

t runcat ion,  i.e. the replacement  of ~, by  ~, , should be considered. For  a 
n ~  - - o o  n =  - - N J 2  

given number  of terms N + 1 ~ N, et increases when h is diminished, while e (h) 
is then diminished, and hence we expect  a certain op t imum value for h. I f  we 
use the form (3.aA0) f o r / ( x ) ,  e t is approx imate ly  given by  

e, % exp [ - - ( t  - - ~ ) N h ] .  (3.a.t3) 
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The minimum error is obtained for a given N when 

d 
d~ {~ (h) + ~,} = ~ {exp ( -  ~ / h / +  exp (--(t -- ~) ~ h ) }  ---- 0 

o r  

exp (--~*[h) ~= exp [--( t  --c~) Nh] (3.a.t4) 

if we drop the factor of order ! outside the exponential function. This yields the 
optimum value of h: 

h -- V-(i - a) N (3.aA S) 

Substituting this into (3.a.12), we see that  the dominating factor in the error 
can be written as 

e(N) =~ 2~ exp ( - - ~  tV~--aN �89 (3.aA6) 

in terms of number N of the sampling points. I t  must be noted that  (3.aA6) has 
been derived with the assumption that  ]l(z) in (3.a.t0) is everywhere regular 
except on the real axis. If it has any singularity elsewhere in the complex plane, a 
more detailed analysis would be needed, perhaps with the aid of Fig. I (or a 
similar figure for each specific value of h). In any case, however, we can expect 
an asymptotic form of e(N) which is more or less similar to (3.aA6) above. 

(3.b) The ERF-Rule. If we take 

x = e r f u = ~  exp(--t2)dt (3.b.t) 
0 

as the mapping function, we have 

oo  

I =  erfu exp ( - - u ) d u .  (3.b.2) 
- - o o  

Applying the trapezoidal rule as in (3.a), we have 

2 Ia = ~- h ](erfnh) exp(--n~h*), (3.b.3) 
n =  - - o o  

which will be called the ERF-rule. 

If we assume the same form (3.a.t0) for [(x), the error can be estimated by 
studying the analytic behavior of the function 

2 exp (--w ~) (t --  erf~w)-~. (3.b.4) s (w) = ~ ( w ) G  

If the functions t ~  erf w have any zeros which are finite, the path C of the 
integral (2.8) cannot be moved beyond these zeros. To locate these zeros we 
make use of the map of erfw in the first quadrant of the w-plane which is given 
in Fig. 2 showing the contours of its moduli and phases. The map for the other 
quadrants can be obtained by reflection with respect to the real and the imaginary 
axes, since erfw is a real odd analytic function. I t  will be seen from this figure 
that  the function erf w has an infinite array of zeros lying closely along the line 
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Fig. 2. The altitude map of modulus and phase of erfw 

v = u  ( w = u + i v )  and also that  the zeros of 1 +e r fw,  i.e. the points satisfying 
erfw = - - l ,  are located in the close vicinity of these zeros. The position of the 
singular points that  are located nearest to the origin and the real axis are given 
by  •  o and 4-wo, where 

wo ~ t.35 +1.99i .  (3.b.5) 

Thus, by deforming the path  C very close to these points, we have a rough estimate 
of the error of the present formula: 

Similar consideration as has been made for the foregoing example leads to 
an expression for the error for a given number of terms, given as 

s (N) : 2 ~r exp (--3.4 ~ / I ~ N ~ )  �9 (3-b.7) 

Comparing (3.b.7) with (3.a.t6), we see that  the ERF-rule is in general superior 
to the TANH-rule for integrands such tha t /1  (x) is regular in the whole z-plane. 

When 0t = 0, F (w) has no singularity in the finite w-plane. Even in that  case 
we have an error of the order of exp(--~#/h z) which is obtained by making the 
path  C pass through w =4-~ri]h,  the saddle points of F(w). We may  call this the 
inherent error of the present formula. 
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(3.c) The IMT-Ru le .  

Another  formula,  which is due to Iri, Moriguti and Takasawa  [4], is obta ined 
by  the change of variable 

u 

' f  ( x = ~ (u) = ~ exp 1 + t 1 - t 
- - 1  

1 

dt (3c2) 
- -1  

which maps  the interval  (--1,  4) onto itself. Since all the derivatives of ~b(u) 
vanish at  - - t  and + l  we can again apply  the trapezoidal rule with an equal 
mesh size of h = 1IN to the t ransformed integral. We call this the IMT-rule. I t  
is also applicable to improper  integrals. I t  can be shown [4] that ,  if the integrand 
is of the  same form as (3.aA0), the dominat ing factor  of the inherent error is 

e (N) ~ 2 z~ exp ( - -  ] / ~  - - ~ ) N i ) .  (3 .c.3) 

Hence the IMT-rule is about  as efficient as the TANH-ru le  when /(x) is regular 
except at  z ----zk 1. 

4. Numerical Examples for TANH-, ERF- and IMT-Rule 

The above three rules are applied and compared  for the following two samples 
of improper  integrals. 

1 

f (4.i) (x -- 2) (1 -- x)t(t  + x)t =-- t '9490 �9 �9 
- - 1  

1 

COS YgX 
(4.ii) J (l - x)~ d x  = - - 0 . 6 9 0 4 9  . . . .  

- - 1  

Figs. 3 and 4 show the errors in the results of application of the above quad- 
ra ture  rules to these examples  as a function the number  N of the sampling points  
actual ly  used. These curves have  been obtained by  an opt imal  choice of the 
t runcat ion points,  i.e. by  tha t  of the value N for each value of h. This optimization, 
while necessary in order to obtain a smooth  curve, is not  essential for the practical  
application of these formulas. 

I t  will be evident  f rom these figures tha t  the  ERF-ru le  is far superior to the 
TANH-ru le  and the IMT-rule for the same number  of the sampling points. We 
have already seen this in the error analysis. A meri t  of the TANH-ru le  m a y  be 
found, however,  in the simplicity of generating the  sampling points and the weights 
in the  process of integration. 

In  (4.i) the error due to the poles of the in tegrand a t  x = 2 becomes dominant  
in comparison with tha t  due to the singularities a t  the ends of the interval,  except  
in the case of TANH-rule ,  in which case both  errors are of nearly the same order 
of magni tude,  because the  par t  of the real axis y = 0, [ xl > t is mapped  onto the 
line I m  w = z~/2 + m z~ on which 1~ (w)[ takes  the constant  value ~ 2 z~ exp (--z#/h).  
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Fig. 3. The computed error of / l/{(x --2) (t - - x ) i  (t + x)~}dx 
- - 1  

( - -  o - -  TANH-rule,  - - , - -  ERF-rule,  - . . . .  IMT-rule) 

N 

IAII d~ n ~ : ~  .5 

'~,,,,,~.4 = h 
lO-, 

0.3 " ~  ~ 
- 

Io "1~ ~. ~5 
0.25 ~ ' ~ .  D 

10.15 "" . , . .  . . . . . . . . . .  

i !: 
0.175 

10 .20 k 
0 50 100 150 200 250 

1 

Fig. 4. The computed error of f (cos •x)/]/l - - xdx  
- - 1  

( - -  o - -  TANH-rule, - - - - -  ERF-rule,  - - , - -  IMT-rule) 

N 
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In the example (4.ii), the main contribution to the error comes from the saddle 
points, the existence of which is due to the fast growth of Icos ~w I and the rapid 
decay of Iq~ (w) l in both directions along the imaginary axis. 

It  should be remarked that special caution is required in the evaluation of 
the integrand to avoid the loss of significant figures due to cancellation as x 
tends to 4- t .  One should make a direct substitution of t = t - - x - - - - I - - t a n h u  
---- 2 exp( - -2u) / ( l  + exp (-- 2u)) of t  = t  - -x  = t  - -e r fu  ----erfcu into t - -x ,  if possi- 
ble. In using computers one should also be aware of possible underflow troubles. 

5. Quadrature Formulas for Slowly Convergent Integrals 

Another example of the use of variable transformation is to accelerate the 
convergence of an infinite integral 

I =  f /(x)dx (5.t) 
- - 0 0  

whose integrands decay rather slowly as x goes to infinity. Such is the case when 
O0 

integrating f (t + x~)-~dx, for example. 
- - O O  

(La) The SINH-Rule. We put 
x ----sinhu (5.aA) 

in (5.t), so that we have 
CO 

I = f l(sinhu) coshudu. (5.a.2) 

If we apply the trapezoidal rule with a mesh size of h, we have a quadrature 
formula 

I a---h ~. / (sinnh) coshnh, (5.a.3) 
n ~  - - o o  

which will be called the SINH-rule. We have for the error 

t 
A I = ~ - ( f  ~ (w)] (sinhw) coshwdw, (5.a.4) 

g 

where q~ (w) is given by (3.a.5). 
The approximate characteristic function q~(z) expressed in the z-plane is 

written as 

r (z) = ~ (arsinhz) "~= 2 ~ei (z + zVfi-~) ~ ~,h ; I m z > o  (5.a. 5) 

[ _ 2 ~ i ( z +  z~L~-~) h ; I m z < o .  

The contour map of [qS(z)[ is obtained by the mapping of the straight lines 
I m w = + c 0 ,  c o =(h]2~)  log(2re/e) into the z-plane, and is given by a family of 
confocal hyperbolas 

x~ y, 
cos2co "~- sin2co --1 (5.a.6) 

with foci at z = + i .  
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By the transformation z=s inhw,  each strip domain W~ defined by (3.a.8) 
is mapped onto the whole z-plane cut along (i, i oo) and ( - - i , - - i  oo). In the 
principal sheet of the Riemann surface, I,ib(z)] takes its minimum value 

2~ exp (--~2/h) along the cuts (i, i ~ )  and (--i, -- i  oo), and ]~b(z)] can never 
become smaller than that minimum value over the whole principal sheet. Now, 
any non-trivial integrand /(z) must have at least one singularity over the whole 
z-plane, either at a finite z or at infinity, and if it is at infinity, it must be an 
essential singular point s ince/(z)-+0 as z - + +  oo. Let us first assume that there 
is a singular point at a finite z. Then we cannot move the path C beyond this 
point, so that an error in excess of the minimum value 2 g  exp(--g~/h) is to 
be expected. If, on the other hand,/(z)  has an essential singular point at z-----0% 
[/(z)] must become large towards some direction with argz =~ 0, ~, and hence the 
path C cannot be moved to infinity either. In any case, an error of the order of 

e (h) ~ 2 zc exp  ( - -~2 /h)  ( 5 .a.7) 

cannot be avoided, the best case being given by an integrand having all its singu- 
larities on the cuts (i, i oo) and (--i,  - - i  oo). 

(5.b) The TAN-Ru le .  When the integrand ](x) in (SA) happens to be regular 
at x = 0% the transformation 

x ----tanu (5.bA) 

turns out to give an exceedingly efficient quadrature algorithm. By this trans- 
formation, (5.t) is converted to a finite integral 

2 

x-- f t(tan.) du (Sb ) 

of an analytic function/(tanu)/cosau which is periodic with period n and regular 
along the real axis including the end points u = •  ~/2 provided that the original 
integral is convergent. Since the trapezoidal rule with equally spaced sampling 
points is applicable for integration of periodic function over the whole period 
we have 

N 
- - - I  
2 

/ (tannh) t (N: even), (5.b.3) I a = h ~ N  COS = ~t h 

2 

in which h = ~/N.  We will call this formula the TAN-rule. The characteristic 
function ~(w) for (5.b.3) is again given by (3.a.5) [1], so that  the error is given 
by the integral 

' (5b4) A I - -  2z~i 

and the path C is taken as a rectangle with a width equal to zc, the period of 
tanw. 
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The characteristic function q~(z) for (Lb.3) expressed in the z-plane is given 
from (3.a. 5) as 

--2~ti 
_ ( i - - ~ / - N  ; I m z > 0  

1 k i + z l  
�9 (z) = 2 ~ i  (5.b.5) 

_ ( i - - z l + ~  ; Imz<O.  
t \ i + z /  

Unlike (5.a.5) it is regular over each half-plane. The path C of integration should 
be two closed curves, each lying in the upper or lower half-plane and enclosing 
all the singularities in respective half-plane (Fig. 5). Such C exists even when 

(z) is many-valued since /(z) is regular at infinity. 
The transformation z = t a n w  maps the straight lines I ~ ( w ) I ~  in the 

w-plane into a family of circles 

1 
x 2 + (y -- coth 2co) ~ -- sinh~2co, C o ----- (hi2 zt) log(2 ~/~) (5.b.6) 

in the z-plane. From this fact we can show that the error becomes smaller as 
all the singularities of the integrand get closer to 4-i. 

I t  must be stressed that the present rule is only applicable to functions which 
are regular at infinity. If it is applied to a function having any singularity (e.g. 
branch point) at infinity, the approximation will be very poor. 

Let us assume that the integrand / (x) approaches 0 at x--> oo in such a way that  

limoo / (x) x = = constant, m =integer > 2. (5.b.7) 

The integrand in (5.b.2) vanishes at the end points u =4-zc/2 whenever m is 
greater than 2. When ~ =2 ,  it remains finite there, however, and we must 
compute it as the limit values lirnoo / (x) x 2. This would give rise to a rather serious 

problem if the function g (u) is to be computed by computer. In such cases, the 

C 

real axis 

• 
point of f(z) 

Fig. 5. The p a t h  C of the  TAN-rule  in the  a-plane 

15 Numer. M~th., Bd. 2t 
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use of the mid-point rule 
N ----1 

In=h ~ ,2v / ( t anTv- (~  + n ) )  ~ / 1 t  ~ (N:even) (5.b.8) 

will be recommended since it does not require the function values at the end of 
the interval. A possible drawback of the mid-point rule would arise when one 
employs an automatic procedure in which the step size is halved repeatedly until 
the required accuracy is attained. In that case all function values have to be 
computed anew in each step and one cannot make use of the values computed at 
preceeding steps. 

6. Numerical Examples for SINH- and TAN-Rule 

We apply the SINH- and the TAN-rule to the following integrals. 

(6.i) ; dx l+x*  ~2.2214 ... 
- - O O  

OO 

f - (6.ii) (t + x~)~ = 2.3962 . . . .  

In Fig. 6 the computed errors are shown as a function of the number N of the 
sampling points. 
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The TAN-ru le  is obviously much more efficient than  the  S INH-ru le  for the  
in tegra t ion  of t/(1 + x 4) which is regular  at  infinity.  The SINH-ru le ,  on the  o ther  
hand,  can be appl ied  to any  function regardless of i ts  ana ly t ic  behavior  as x-->4- 0% 
prov ided  it is regular  for finite real  value of x. The error  observed in (6.ii) wi th  the  
SINH-ru le  is the  error  e (h) of (5.a.7). In  (6.i), on the  other  hand,  the  error due to 
the  poles of 1/(t + x 4) dominates  over  e (h) ~ 2 ~ exp( - -~2/h) .  

I t  would be a subord ina te  advan tage  of the  S INH-ru le  t ha t  the posi t ion of the  
sampl ing  poin t  and  the weight can be easily genera ted  in the  process of integrat ion.  
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