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Abstract. A variety of Galerkin methods are studied for the parabolic equation 
u t =V,(a(x)V u), x~2c  R n, tc (0, T], subject to the nonlinear boundary condition 
uv=g(x, t, u), x~ ~s t~(O, T] and the usual initial condition. Optimal order error 
estimates are derived both in L * (Q) and H i (Q) norms for all methods treated, including 
several that produce linear computational procedures. 

1. Introduct ion  

We shall s tudy the numerical solution of the parabolic problem 

~u 
(a) ~t - V . ( a V u ) ,  x ~ O , O < t < T ,  

(b) u(x, 0)=/(x), x~9, t=0, (t.t) 
~u 

(c) a-~v =g(x,t ,u),  xEOQ, O < t ~ T ,  

where s is a bounded domain in ]P," and a/av denotes the exterior normal deriv- 
ative, by  a number of Galerkin methods. The pr imary object of this paper is the 
treatment of the nonlinear boundary condition (1.t c); consequently, we shall 
isolate its effect by taking a very simple differential equation. We shall assume 
that  

a=a(x),  xEQ, O<~t<~T, (1.2) 

throughout this paper. The more general nonlinear problem in which (1.1 a) is 
replaced by  

0 c ( x , t , u ) = ~  o ai(x,t ,u,  17u)+b(x,t,u, 17u) ( l . t a ' )  

will be treated in another paper by  H. H. Rachford, Jr., and the present authors. 
There are sufficient complications in the simpler problem to justify its separate 
presentation. 

Let (only real functions will arise) 

(v, w>--- f vwdx, (v, w)o~ = f vwda. (1.3) 

* The authors were partially supported by The National Science Foundation 
during the preparation of this paper. 
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Let I-la(Q)={vEL2(Q)[Ov/Ox, EL2(Q), i = t  . . . . .  n} and norm it in the usual 
way [71 : 

~ v  2 
II"l#c,~) =[Ivllb~,~> + Y. I~- ,  L,<,~) =llullb<,~)+l!Vvllbr (t.4) 

i = I  

Let L ~ (0, T; X) denote those vector-valued maps of [0, T] into X such that  

T 

[lflF,-,co,,-;~, = f l[,,(t)ll*~dt<oo, a ~ P  < ~ ,  0.S) 
0 

and Loo (0, T;  X) those maps such that  

Ilvlk~.{o,,-;x~-- sup IIv(t)llx<oO. (t.6) 
0 < t < T  

Denote by  

llv lln,<,~> = II vv lk.c,~,, v ella (~). 0.7) 
the seminorm on H t (Q) that  is a norm, equivalent to the Ht-norm, on the subspace 
Ho ~ (/2) of H 1 (/2) obtained by  closing C~ ~ (/2) in H 1 (/2). Adopt the definitions of 
Lions-Magenes [7] for H '  (/2) and H s (8/2), s real, whenever these constructions 
can be carried out. Since we shall not use very large or small values of s, it is 
not necessary t h a t / 2  have a C OO boundary. Extend the inner product notations 
of (t.3) to represent the duality between H s and (HS) ' for b o t h / 2  and 8/2. If 
/2 = (a, b) ( IR, H s (8/2) ---~Loo (8/2) for all s. 

Some properties of/2 and the coefficient a (x) will be critical in our convergence 
analyses below. Certain trace theorems will be vital both in the proofs and, 
surprisingly, in the actual choice of the computationally more efficient discrete 
time Galerkin methods. The two trace inequalities that  we shall consider are the 
following: 

There exists a constant Cr  such that,  for 0 < e --__ t 

II,,Ik,{~,~,~_crr~llvll,~ac,,~+~-,llvllL.r veHa(/2). (Tt) 
There exists a constant Cr, ,  such that  

Ilvll~.{o,~,<c,.,ll,,ll~,+,{,~, ~,en,+*(s~), o < s < ~ - ,  s . t .  (T2) 
Both (TQ and (T2) are standard for domains with smooth boundaries [7], but  it 
is also clear tha t  they hold under less restrictive conditions. In  particular, they 
hold for /2 a rectangular parallelopiped or an interval. Only (TI) will be required 
for the H a estimates. 

Elliptic regularity plays an important role in obtaining optimal L 2 estimates. 
Consider the Neumann problem 

~v (1.8) 
a ~  = %  xeS/2, 

where 
O < m < a ( x )  <=M <oo (t.9) 

and ;~ is a sufficiently large positive constant. We shall at various times need the 
following a priori inequalities: 
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For  ~v = 0, there exists a constant  C such that  

For  q~ = 0 ,  there exists a constant C such that  

These results are well known for smooth a (x) and smooth DQ; see Lions-Magenes 
[7]. Note tha t  we must  be able to define H s (a12), - -~2=o = ~ , 3  < o <: a in order for (R2) 
to make sense. For  n----1 and a(x) smooth, (Rt) and (R2) are elementary. Elliptic 
regulari ty is not  needed for the H 1 estimates. 

Galerkin methods are based on approximabil i ty of functions in the solution 
space, H 1 (Q) in our case, by  functions in conveniently chosen subspaces. Usually 
these subspaces are selected in some systematic fashion depending on some 
parameter,  such as the spacing of nodes associated with the elements of a particular 
basis for a subspace. Bramble and Schatz [4] formulated a useful definition tha t  
isolated extract ly the properties tha t  we shall need in order to derive optimal L z 
estimates. Let h > 0 be a parameter  and let dr'  h be a (finite-dimensional) subspace 
of H ~ (Q) associated with h. Then the family {~'h} is said to be an S~ family if the 
following inequalities hold. 

For  0 ~< s--< I and s <= q <_ r, there exists a constant  C such tha t  

inf ]l v-Z]~, (~)  <=Cl[vllm(~)hq-S, vEHq(Q). (S~) 
ZE ,,,#?'h 

In  fact, the above is a special case of their definition, since we are interested 
only in s E [0, 1]. Essentially all of the s tandardly used subspaces satisfy this 
requirement for some choice of r--> 2. The Hermite spaces, the smooth spline 
spaces, and the spaces based on triangles all are S~ spaces, at  least if some modest 
regulari ty is practiced in the choice of nodes [2, 3, 4, 5, 6]. 

In  m a n y  discussions of Galerkin or other projection methods for approxi- 
mat ing  solutions of partial differential equations, a so-cal led" inverse hypothes is"  
has been used. Typical of these is the assumption tha t  

Babu~ka [t ] has shown tha t  for m a n y  domains I2 such tha t  a12 contains a smooth 
piece having non-zero curvature  it is impossible to construct  an S~ family with 
the  subspace being a tensor product  of spaces of piecewise polynomials having 
local bases such tha t  (.) is satisfied. I t  is impor tant  to  note tha t  we do not assume 
(.) or any other  such embedding  result. 

Let  us turn  to the formulation of the Galerkin methods tha t  we shall consider 
for approximat ing the solution of (t.1). A weak form of (t.1) is as follows. Find 
a function u (x, t) such tha t  

u E L  2 (0, T; Hi(Q)),  au 7"; 

z W(12), o<,<__T, (1.1o) 

u(., o) ----leg~(12), 
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where the explicit dependence of g on x and t has not been written for notational 
convenience. I t  is this weak form that  we propose to approximate in the numeri- 
cal procedures. Let 

~ '  = Span Iv 1, v 2 . . . . .  V N] C H 1 ([2) 

and define the continuous-time-Galerkin method as follows. Find a function U (x, t) 
such that  

U(., t)E~s O<=t<~T, 

U(., O) - - f  " smal l " ,  (t.11) 

~ - , v  + ( a V U ,  V v ) - - ( g ( U ) , v ) o ~ = O ,  v c . ~ ,  O<t<=r. 

The specification of U at t ime t = 0 is obviously vague; the usual ways to obtain 
U (., O) are interpolation of [ into J ,  L2-projection of J into..s and HI-projection. 
We shall not be specific at the moment,  since the various estimates that  we shall 
derive below require different approximations of the initial condition. 

We shall derive both H 1 and L ~ estimates for u - -  U in the sections to follow. 
Under various hypotheses we shall see that  

- v IrL,(0, = o  (h ' - 1 )  
and 

II- - u (o, = o (h') 

if :s  comes from an S~ family, u is sufficiently smooth, and U(x, O) is 
chosen reasonably. 

The Eq. (t.1t) is a system of ordinary differential equations, nonlinear if g 
is nonlinear in u, for the coefficients of the basis elements v, (x). As such, it is not 
usually solvable directly in any form that  is numerically usable; hence, we shall 
introduce several methods of differencing in the time variable to produce solvable 
algebraic problems at each time level. Let v n =v  ( t ' )=v  (nA t) and set 

V •+{t = ~(V n + V"+I). ( t . t 2 )  

Note that  v *+�89 ~ v (t "+j) in general. The simplest differencing leads to the Crank- 
Nicolson-Galerkin procedure given by  

(dtU',  v) + ( a V U  "+�89 Vv)  - - (g( t  *+�89 U*+�89 v)o ~ ----0, v E ~ ,  (1.13) 

where 
d,  u "  = ( u  .+1 - u " ) I A  t. (t.14) 

Note that  the time is actually inserted at (n + ~)A t, but  the average of U" and 
U *+x is used in the evaluation of g. This equation is centered on time at t "+t, and 
it is easy to see that  it is locally second order correct in the time step. We shall 
show that ,  under sufficient hypotheses, 

and 
max Ilu" - u-lk,(a > = o  (h" + (A t)9-). 

n 

Note that  the /-/1 estimate concerns the averaged solution. I t  indicates that  the 
numerical solution is in general better  at  the times t "++ than it is at the t ime t n. 
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This to a large extent explains the famous Crank-Nicolson "bounce"  that  
engineers have observed in printing out answers at the time levels rather than at 
average time levels. (Forget the fact that  they usually employ finite-difference 
methods; analogous results can be derived in the finite-difference case.) I t  is also 
very important  to take account of the nature of the H a estimate when modifying 
the Crank-Nicolson procedure to give algebraically more efficient procedures. 

The algebraic system generated by the Crank-Nicolson method at  each time 
step is nonlinear if g is nonlinear in u. Thus, it seems attractive to modify the 
evaluation of the boundary term so as to obtain a linear algebraic system at each 
time step. The simplest way which maintains local second order accuracy to do 
is to extrapolate using U" and U "-a to approximate U ~+�89 since 

u "+�89 = ~u" - -  ~ u  "-1 + 0  ((A t)~). 

However, it is clear that  if this extrapolation is chosen, there will be terms such 
as []u" -- U"HL,(0a) arising in the error analysis. The trace inequality (Tt) is sharp 
in the sence that  it is false if the Ho t (D) term is omitted; hence, there is no place 
to hide the L~(OQ) terms at the time levels using the positive definite terms related 
to g2. This indicates very strongly that  any linearization of the boundary term 
should be done using only the values U'-�89 U"-~, etc. We shall write down three 
such schemes out of the large set of possibilities and shall analyze them as typical. 

The extrapolation of the boundary values mentioned above can be changed 
to u "+�89 = 2u n-�89 - -u" -~  + 0  ((A t)'), where simply for notational convenience we 
restrict ourselves to constant time steps. This leads to the Extrapolated-Crank- 
Nicolson procedure 

(dtUn, v ) + ( a g U  "+�89 Vv)--(g(t"+�89 ZU"-t--U"-6),v)oa=O, vE.Xf. (t.t5) 

The second method is based on linearizing g (u) about u'- �89 

~g (~"+~-u"-~) +o((~t),). g(u "+~) = g(u"-~) + ~ (u"-~) 

Thus, we can define the Linearized-about-u"-�89 procedure as the 
following: 

(dr U", v) + (a V U "+~, Vv) 

-- (g ( t"+�89 U~-~) + ~u (t'+�89 U~-�89 (U"+�89 V~-�89 v)ea ( t . t6)  

= 0 ,  vEdt ' .  

Finally, g (u) can be linearized about the extrapolation: 

~g (2~"-~- u"-J)(u"+~- 2~"-~ + u"-~) + o  ((A 04). g(un+~) =g(2un-�89 + 

Thus, a Linearized-Extrapolated-Crank-Nicolson equation results: 

(dtU", v) + (aVU "+~, Vv) 

og E,+~ ) (U,+ t = o ,  (t.17) 

vE Jr ' ,  
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where 
E "+t = 2 U"-�89 - -  U"- t .  (1.t 8) 

All three methods produce linear algebraic problems at each time level. Note 
that  each requires a separate start-up procedure, since (t.t  5) and (1.17) are defined 
only for n > 2 and (t.t6) for n >= t. We shall indicate in the proofs that  care must 
be exercised in establishing that  these initial values can be obtained in a reasonable 
way so that  the inherent accuracy can be preserved. A method will be suggested 
to accomplish the desired initialization, and then it will be shown that  the same 
error estimates can be demonstrated as for the Crank-Nicolson scheme. 

Throughout the paper the function g will be assumed to have a bounded 
derivative with respect to u: 

[Ogo_ff(x,t, u l l ~ K  xEOD, O<=t<--T,__ - - o o < u < o o .  (1.19) 

Frequently, it will be assumed much smoother. However, we do not make an 
assumption on the sign of Og]Ou; i.e., we do not need to assume the stability of 
the associated steady-state problem. 

2. A Nonlinear H 1 Projection of the S o l u t i o n  

I t  is very convenient to make a preliminary study of a particular nonlinear 
projection of the solution u of (t.t0) into the subspace dd of HI  (~2) in which the 
solution of (t . t t )  lies. Let the function W (-, t) E~ '  be defined by  the relation 

(aV(u-w), Vv) + 2 ( u - w ,  vS-(g(u) -g(W), vSoo = o ,  v ~  ..a', 
O<=t<=T, (2.t) 

where 2 is a positive constant to be fixed sufficiently large that  existence and 
uniqueness of W are assured. We shall set 

= u - -  W (2.2) 

and shall derive estimates in both Hi(Q) and Li(/2) for ~7 and O~]Ot. These 
estimates will be absolutely fundamental  in our analysis of the convergence of the 
Galerkin approximations to u. Our method of analysis is related to earlier ones by 
Wheeler [10] and Fix and Strang [6] in the U and W are compared. 

The Ian (Q) estimates are much easier to come by than the L* (Q) ones; thus, 
it is reasonable to start  with them. Rewrite Eq. (2.t) in the form 

<aVe, Vv> v>-<g(u) --g(W), v)e ~ = 0 ,  v Cdt' ,  

and take v = ~ - - W = ( ~ - - u ) + ~ l = 8 u + ~ l ,  (r  Then 0.9) and (t.t9) imply 
that  

m [l*l l~, la) + 2 H~7 J~,r <= - (a VTI, V O u)  - 2 (n, e~ u) + (g (u) - g  (W), n + 8 u) e a 

= 4 + II, ltb.,, + 

1 2 
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Assume tha t  the t race inequali ty (Tf) holds for/2.  Then, 

23 K[I~/ 2 < 2 2 ~ 2 m ItL, t~.) 2 ~2. 3 K C T [,s [l~ [IH~ (i/) -~- E- I[~ ILL'(17)] ---~ 4 -  [[~ [IHol (D) -~ 3 5 K  2 C~ m -1 ]17] I[~,(D } 

for the choice ~ =m/(12KC2T). Hence, if 

> m + 72K~C4Tm -1, (2.3) 
it follows that 

Since ~ was an a rb i t ra ry  element of ~ .  

I1~11,,,r = c inf Kllu-xll,,,(,~> + I1" --ZIIL,r (2.4) gE././" 

~ C '  inf Iiu-xll.~c,. 0_<t___r. 

In  part icular,  (2.3) is sufficient to insure existence and uniqueness of W, given 
the hypotheses  (t .9) and (1. t9). 

The  est imate (2.4) required nothing on the subspace ~ '  and is essentially the 
best  possible/-/1 (/2) est imate,  since only C' is subject  to improvement .  If J = dr' h 
is an S~ space, then, for 0 --< t <-- T, 

I[~ []n,(a)--<-- C]lu[lH~(a) hk-1, 1 <-k <--r. (2.5) 

Eq. (2A) can be differentiated with respect to t ime to give 

= ~ ( u ) - T / ,  , j ~ - - K ~ ( u ) -  (W) ,v ~,, v ~ .  

Assume tha t  au/at~L ~176 (0, T;  L ~ (a/2)) and tha t  

82g , [ 82g 
-~/~u I ~-~ _<_ K~ < oo. (2.7) 

Then, essentially the same argument  as above shows tha t  

I 
provided tha t  (2-3) holds. Again, if ~ '  = -~'h is an S~ space, 

The  above results can be summarized  in the following theorem. 

Theorem 2.1. Le t  7] = u  - -  W be defined b y  (2A) and assume tha t  (2.3) is valid. 
Assume t h a t / 2  is such tha t  the trace inequali ty (Tl)  holds and assume tha t  the 
function g has its derivat ives O*g]~t~u and ~2g/Ou~ bounded.  Then,  if ~ '  = ~ ,  
is t aken  from an S~ family of subspaces of H i (/2), 
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and 

0_~ L,(o, < C ' (  )h ~-', l ~ k < r ,  = ~ -  L,(O, T; nk(a)) - -  

where C and C' are independent of h but C' depends on a bound for Ou/at on 
a/2 • [0, T]. 

The bounding of ~ and O~[~t in L~(/2) is a more delicate problem. These 
bounds will be obtained using a line of argument introduced by Nitsche [8, 9], 
although our versions vary considerably from his. 

Let c~ = ~ (t) EH 1 ([2) satisfy 

(aVo~, Vz)+20~,z)--(G~,z)o~=(~7, z), zeHl(/2), (2.t0) 

where 2 agrees with its previous value and the function G is defined by 

1 

(x, t) = f ~ ;  ~g (x, t, 0~(~, 0 + (1 - 0 ) w ( , ,  t))d0. (2.tt) G 
o 

Note first that  I G (x, t) [ =< K, the same bound as for ag/Ou. The value of ~ assures 
the existence and uniqueness of a. Now, the choice z =~7 in (2.40) and the definition 
of ~ lead to the following: 

= (a V*I, V (~ - -Z) )  + 2 07, ~ - - Z )  - -  (G~, ~)  + (g (u) - -g  (W), Z)o~ 

= (a Vn, V ( ~ - Z ) )  + 2 ( V ,  ~ - z )  - (g(u) -g(W), ~ - x ) ~  

Assume from now on in this section that  ~ = ~ ' h  is drawn from an S~ family, 
Then 

(2.t2) 
=< c II,; I1,,. c,~ I1~ 11,,.~ h, 

by (S~). If the elliptic regularity hypotheses (RI) and (R2) hold for (2A0), then 

I t  is convenient at this point to consider the following lemma that allows us to 
consider pointwise multiplication on H�89 Also, assume dim (/2)--< 3- 

Lemma 2.2. Let dim(/2) =<3 and assume that  (T2) holds. Let FEH]+*(/2), 
some e>O,  and GEH�89 Then FGEH�89 and 

[]FG []H�89 =< C, []F []H~ + e(.O)JIG []H�89 (aDJ. 

Proo]. Since dim (/2) ~ 3, 

H F I1~ r --- c tIF 11~+'r 
Hence, if G~L ~ (0/2), 

II F G II~'~,~ =< c IIF I1,,*+'~, IIO I1~,~o,~,- 
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I f  GEHX(a/2), then V(FG) =FVG +GVF and 

IIF 17'6: IlL, c~  c' II F II~ +':c.o~ 116: II~,,c~.ol. 
Since F EH 1+ * (a~Q) and dim (0/2) ~ 2, VF E L 2+~ (0Q), 6 = 0 (e) > 0, and G EL p (b/2), 
any  p < oo. Hence,  

Thus,  it follows from s tandard  interpolation theorems [7] t ha t  FGE H~(O~) if 
G E H e (0/2) and tha t  

IIF ll  c0 , --< c ( )II 
Note tha t  it is a tr ivial  consequence of the compactness  of the injection of 

H * ([2) into H~+*(/2), e < ~, tha t  

Let  us app ly  the above inequali ty to G~, where G is given by  (2.t t) .  Assume 
tha t  g can be extended to the closure o f /2 .  Then it is sufficient to show tha t  
GEH~(~2), boundedly for rE[0, T]. First,  GEL*(/2), since it  is bounded.  I t  is an 
easy calculation to see t ha t  

aG a~  (x, t) 
1 

_ ~-~- 
0 

where ~ = 0 u (x, t) + (1 - -  0) W (x, t). Hence, if g E C * (~] • [0, T] • 1R) with each 
of the  derivat ives appear ing above being bounded,  then (2.4), t aken  with Z = 0, 
implies t ha t  

IIG IIL~ Co, T; n~ (0a,) ----< C (ll ~ liE *(o, ~;n,(~)) + t). (2.t 4) 

I t  follows from (2A3), (2A4), and Lemma 2.2 that  

II IIH, , , =< Cll, llL, o . 
Thus,  it follows from (2A2) tha t  

Now consider an L*(/2) bound for on/at. For re(0, T], let 9 r  be the  
solution of 

( aV %Vz) + '~ (~' z) -- ( ~ (W) % z )ar~ (2A6) 

ag ( W ) } +  au ag (W)},z)o~, z~H'(/2). 

Thus,  9 is the weak solution of 

--V.(aVg)+~9=O, x~/2, 

a ~ --bq~= 7, xea /2 ,  
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where 
Og 

b = ~  (W)EL ~ (0, T; H�89 

og ~g o,, [ ~g og ] 
7 =-T i  ( u ) -  >7 ( w ) +  ~ ~ ( u ) -  ~-~ (w) . 

Note that  the function is actually in H * (f2) for smooth u. We can consider the 
adjoint problem 

- -V.  (aV~v) + l~o=q~, x~t2, 

or, a ~ ;  --b%v=O, x60~2. 

Then, 

I]~llb(o) = <~, - v .  (a v ~ ) + ~ >  

= (7, ~;)e,, 

<[[rl~ ~c M[ : - oo) n~ (o~) 

__ c117 [~-~(0o>l[~lln'<o,. 
If the regularity hypotheses (Rt) and (R2) hold, a short calculation shows that  

IIv, ll..(,~) <-- c II~ll-(,~; 
hence, 

II ~ I1,.,~) < c Ib' I1,.,-~.~. (2.t 7) 
Now, 

1 
og f ot (u)-Ti(w)=n(x,O ~g (x,t,W(x,O+O[.(x,O--W(x,O])dO. 

0 

Since the integrand is boundedly in H�89 for 0E[0, 1] and tE(0, T] if g6C 3 
with bounded derivatives through order three, it follows that 

8g ~g 
0~ (u)---bt- (W)----Gin, G16L ~176 (0, T; Ht(O~2) ). 

In fact, 
I lqlko(o, r, .J  (o o~) _-__ c l:~ + II~,ll~lo, T,.,(,~,)]. 

Lemma 2.2 (with e = ] )  shows that  multiplication by G 1 is a continuous map of 
Ht  (0~2) into Hi  (0s by transposition it is also a continuous map of H - t  (0f2) 
into H - t  (0~9). Thus, 

Og 
(,,)--~- (w) .-~(o~) ~_Cllnlt~,-�89 (2.t8) 

with the constant depending on Hu]]m~a). 

Similarly, 
1 

] o. f 
0 
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If aulDt ~H~(a%2), then G2EH�89 ). I t  is clear that for smooth a(x), uEH4(%2) 
implies au/Dt EH~ (0%2). Hence, 

where 

C = C (  ou .~coo,' II"ll-,c~,). 

Note that H~(a%2) can be replaced by H1+'(c1%2) for e>O; however, uEH4(Q) 
will be needed anyway for the optimal rate of convergence to occur when the 
subspace contains at least the smooth cubic splines. 

Clearly, we need to estimate ~ in the H-�89 (a%2)-norm. This can be done using 
a different variant of the Nitsche lemma. Let/5 =/5(t)EH I (%2) be the solution of 

(aV/5, Vz) +2(/5, z) -- (G/5, z}e ~ = (c5, z)os~, zEHl(%2), (2.20) 

where O EH�89 (0%2) is such that 

(2.2t) 

The existence of such a ~ is a simple consequence of the Hahn-Banach theorem. 
Then, choosing z = ~  and using (2A) leads to 

= <a v,7,  v (/5 - z)  > + ~ (,7,/5 - z 5 - <g (u) - g ( w ) , / 5  - z ) ~ , ,  

-<--c 11'7 II,-,,c~> 11/5- z II,,,c,~, z ~ .  
Hence, 

11,711~-�89 =< c 11,7 II-,~ 11/5 II,~,~, h 
__ c It,7 lt-,~ II ~ 11,,�89 h 
-- c11,711~,c~II,711~-~c~, 

using (S~) and (R2). Thus, 

ll,TIl~-�89 ~-Cll-II-,~, z~, a ~ k  <--r. (2.22) 

This result can be combined with (2.17), (2A8), and (2A9) to show that 

II~ll~.~-~cll~ll~,~h~. ~ ~ k ~ r ,  (2.23) 
with 

C=C ( ~-Ou z-z~(oa,' [lu[]z-z'(u)) " (2.24) 

Let 

~,~ au 0W (2.25) 
~ ~ 1 7 6  ~t �9 

Then 

<a,V%Vv>+~<%v>--<~u (W)%v)er,=O, v~.W. 
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Hence, the choice v =~v + (X --  9 + au/at) E .W implies that  

11~4,.,,~, <Cin~ Z--9+ ~ ,,.,o, 
cOu 

<-c[ll~l~,.(,~,+_ ,,,.-'inf Z +-~- H,(~)] 

where C is of the same form as in (2.24). The same argument that  was used to 
lift the/an (D) estimate of ~ to an L ~ (D) estimate can be used again with the only 
change being the redefinition of G to be Og/Ou(W) to obtain the inequality 

[, 1", Ilwll,-.(,~-<- c "11,-,,(,~)+ ~ -  ,_,,(,~) 
The estimates (2.23) and (2.26) combine to give 

~u 

where C is of the form in (2.24). 

We collect the L 2 estimates in the following way. 

Theorem 2.3. Let d i m ( Q ) ~  3 and assume that  the trace inequalities (TI) 
and (T2) and the regularity inequalities (Rt) and (R2) hold. Let ~ ----d/h be taken 
from an S[ family. Let the solution u of ( t . t )  be such that  the norms in (2.24) 
are finite. Then, a constant C of the form (2.24) exists so that  

11'71l,,(,~,+ w ~,(,~)--<C[ll"ll,,,,,~,+ ~ ,.,,c,~,]h ~, t_<k_<,. 

3. HI Estimates for the Continuous-Time-Galerkin Method 

The most natural  estimate that  can be derived for the error 

= u -  u (3.t) 
between the solution u of (1.10) and the solution U of (1.tt) is a bound in 
L 9 (0, T;  H 1 (~)), since this bound can be obtained without limiting the subspace 
Jr '  of H ~ (~) in any way. In the case that  ~g satisfies the Bramble-Schatz condition 
(S~) then the bound will be of optimal order in the parameter  h. The estimate 
will be derived making use of the projection W(., t )Edt '  defined by  (2.t). 

Let 
~=W--U, ~l=u--W. (3.2) 

Then, it is easy to see from (2.1) tha t  

( ~ff-t , v l + (aVW, Vv)--(g(W), v)~ 

= (  ~t ,v)  + (aVu, Vv)--(g(u), v)os~ 
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Eq. (t.11) can be subtracted from (3.3) to obtain the relation 

at +<aVe, Vv) - (g(W)-g(U) ,  v)o~ V\ Ti-' / 
(3.4) 

Since ~ (., t )E~ ' ,  it can be used as the test function in (3.4); then (1.9) and (1.t9) 
imply that  

1 d 
2 d t II~ libca, + m [I ~ [~(a, - K II~ llbr 

(3.5) 

Assume that  the domain Q is such that  the trace inequality (TI) holds. Then, 

K II ~ lib c~ a~ < ~,,, 11 ~ II~/, ca~ + q II ~ llb,a~ 
and 

~r/ 2 

Thus, for 0 < t ~ T, 

II ~ <0 lib ca, + ~ II ~ lib co, ,~ -o, c~,) < c [ll ~ H~, co,, ;,-, ~) + l[ ~ (o) lib ca) 

Ot L'(O,~; Z,(~)) + 

I t  follows easily from the Gronwall lemma that  

[Iv Io, r;  n,  ca)) I1r co, T;L, Ca>~ + I1r 

<_-c [ll~(o ) IlL r + ~ ,  ~ -  ~,<o. T;,.,(a,)+ II'~ lib ~o. ~ 
Hence, 

Ur 7-;.,..,c~,~ + IIr i• :,';,',,~a,/ 

where we used the triangle inequality, (3.7), and the fact that  

O~ 
Iln I1~(o, :,-;~,,.o,)z c [llnlbco, ~',L,(a,)+1 =.(o, 

Assume that  g is such that  (2.7) holds. Then it follows from (2.4) and (2.8) tha t  

IIr + IIr [ (/ ,)' ( inf I1. -  x, llS,(a~)* a 
< c  Re(0)II,,(a~ + '~ ' ("~'r  (3.9) 

+ -~- - -  Z~ L'la) ' 
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Let ~ :-~s162 be chosen from an S~ family and retain the other hypotheses 
from above. Assume that  U (0) is selected so that  

IIr IIL.C,~ -----% Cll/ll,,,~,~h*; (3.ao) 
this can be done by using the projection of ] into-/r with respect to either L 2 (-Q) 
or H 1 (22). Usually (3.10) can be obtained by interpolating / into J/h;  this is almost 
always the easiest way to initialize the Galerkin problem. I t  then follows from 
Theorem 2.t, (3.8), and (3.10) that  

I1r <o, ~,~.co>) + IIr T,...~)> < Ch ~-~ , l<--k<--r, 

Theorem 3.1. Let the trace inequality (TI) hold and let O~g/OtOu and OZg/Ou 2 
be bounded. Let .W~ be selected from an S~ family. Let/EHk(-Q), t = k  ~ r ,  and 
assume that  U(O) satisfies (3.t0). Then there exists a constant C1 such that  the 
error r = u  -- U can be estimated by the inequality (3.11). 

Note that (3-1 t) is optimal in the exponent on the parameter h. It  should also 
be noted that  the bound (3.t 1) implies that  

as well, if Ht(O,Q) can be defined. 

4. L 2 Estimates for the Continuous-Time-Galerkin Method 

The principal result of this paper concerning the continuous-time-Galerkin 
method is embodied in the following theorem. 

Theorem 4.1. Let dim (-Q) ~ 3 and assume that  .(2, a (x), and g (x, t, u) are such 
that  the trace inequalities (Tt) and (T2) hold and the elliptic regularity in- 
equalities hold for 2 sufficiently large. Let gEC3(-Q • IO, T] • IR) have bounded 
derivatives of order less than or equal to three. Let d/h be selected from an S~ 
family, where r ~ 2. Suppose that  for some k, 1 ~ k ~ r, 

. ~ L  ~ (0, T; H~(-Q)), 

0u (4.t) 
0-7 ~ L '  (o, T;  ~ (-Q)) n L ~ (0, T ;  We(0-Q)). 

Then there exists a function C (u), with the dependence on u expressible in terms 
of the norms of the three spaces in (4.t), such that  (u being the solution of (1.t0) 
and U that  of ( I . t l ) )  

II- - u Ik~ co, r ; , .  ~,~ ---- c ( . )  h *, (4.2) 

provided that  U (0) is chosen so that 

Itl - -  f (0)IIL'~,~ Z C Ill II-' .,> h'~" (4.3) 

I t  should be noted that  there is an immediate corollary of Theorems 3.t and 4.1 
and standard interpolation theory [7]. 
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Corollary 4.2. Assume the hypotheses of Theorem 4.1. Then 

Ilu-vll~.co.T;,,.(~))__c(,,)h~-'. o ~ _ s ~ ,  ~_~k__,, (4.4) 

with C (u) of the same form as in Theorem 4.1. 

The proof of Theorem 4.1 is simple, given the preliminaries that  have been 
covered. If follows trivially from (3-7) that 

I1 ~ IILo (o, ~-,,.,(~)) ~ c [ll~: (o)Ilk.c,,)+ IIw I1,-= co, ~; ~,c~)> 
(4.5) 

-~- - ~  L,(0, T;Lt(a))]" 
Now, (4.3) and (2.t 5) imply that 

II~ (o)il,...,,~,, < oh,,, 

and (4.t), (2.t5), and (2.27) imply that  

O~ 

with the proper form of the constant being clear from the inequalities of Section 2. 
Thus, (4.2) is proved. 

I t  should be particularly noted that the only condition imposed on the subspaee 
-s was that it come from an $7, family, and it was shown that the optimal rate 
of convergence resulted. This is not always the case; for some hyperbolic problems 
it is known that something besides the Bramble-Schatz condition is needed for 
optimal convergence rates to occur. 

5. The Crank-Nicolson-Galerkin Method 

Both/ -P  (/2) and L ~ (/2) estimates will be constructed for the error ~ = u -- U 
between the solutions of (tA0) and U of (1.t3), the Crank-Nicolson-Galerkin 
method. Let W, ~, and ,/ retain their earlier definitions in terms of u and U. 
Also, let 

2 tn Vn I I v E ~ # , T ; x I =  X [Iv"l~rAt, = n A t ,  v(t"), 
0~tS<T 

Ilvk;,r = max IIv"llx, 
o_~ .~ r  (5.t) 

Ilvllb.,(o,T;Xl=o<,~<rllv.+q~At, v-+t  = �89 + v - + l ) .  

Again we shah estimate ~ in t~rms of ~/and dt~ and make strong use of the 
estimates of section 2 on ~ and @[0t. First, it follows from (2.t) that  

<a VW,,+t, Vv> + ;t <W-+t, v> -- <g(t, W),,+t, v>e a 
=<aVu"+�89 Vv>+~,<un+Lv>-<g(t,u)n+Lv>ea, vr 

I t  is clear from (t.10) that 

< Ou.+t \ , z / +  <a Vun+t, Vz> -- <g(t, u)n+�89 z>oa = o, zeH~(~2). 

16 Nmer. Math., Bd. 20 
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Hence,  a simple calculation shows tha t  

(d~W n, v)  + (a VW"+�89 Vv)  -- (g(tn+�89 W"+�89 v)oa 

= - (dt~' ,  v)  + a(n,+L v)  - (g(t ,+L w,+t)  -- g(to w),+t,  v)o n 

/ . .  a u - + J  \ (5.2) 

Substract ion of ( t . t3)  f rom (5.2) gives the equat ion for the evolution of ~: 

(d t~ ,  v )  + (a V~n+�89 Vv)  -- (g(tn+�89 W'*+�89 -- g(tn+�89 un+t), v)o ~ 

= - -  (d,n n, v> + ~(n'+t, v)  -- (g(tn+�89 W"+t) --g(t, Wp+�89 v )eo  (5.3) 

I n Oun+�89 \ 

Recall t h a t  
t~+X 

_nOUn+t\ i f  Ou atu - - ~  ) (x) = -- -~X/ ( t - - t " ) ( tn+x- - t )T i~ (x , t )d t ;  
lit 

thus,  we can es t imate  this t runcat ion t e rm  b y  

au.+�89 2 < (At)8 03u 
d t u n -  ~ L'(O) -- t20 ~ Lt{t~.tn+l;L*(O))" 

Also, 
0 7 ~ 

]]dt"n]~" a) ~--(At)-x 1-~- [Lt(t~,t~+l;L'(~2)) 

NOW, employ  v = ~ , + t  as the  test  function in (5-3) : 

(2A t)-~ ( l iP+ x II~,(,~ - l] r + m II ~"+~ll~o~ (o) - K II~-+~ II~,~0o) 

a ,  I' 
(5.4) 

t 
+ ~ IIg(t.+t, w . + ~ )  - -g ( t ,  w)"+*ll~,(0~l 

(Atp I ~u [1, 

After  having  used the t race inequal i ty  (Tt) ,  sum on n for n = O . . . . .  m, and  then 
use the discrete form of the  Gronwall  inequali ty.  I t  follows tha t  

II ~ 11~3, (o, r; v r + II ~ IP~, (o, r; ~ co~) 

< c [ll*~ + I1~ I1~, (o, r; L,r 

at LtIO, T;Lt(.O)) 27 (At)~ Ot ~ Lt(O,T;L*(i~)) (5.5) 

+ ]]g (t,+t, W-+t) - g (t, W p + t  ]~L~, (o, T; L'I~O))] " 

Note  t ha t  some terms on the right involve a discrete L * no rm and some the ordinary 
L * norm in t ime.  The  only t e rm tha t  requires a new t r ea tmen t  is the last  one. 

We  need to  show tha t  

IIg(t.+~, Wn+~)--g(t, W)n+tlk,(o ) = O((At) ')  
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in order to obtain global second order accuracy in A t. Let 

denote the second time difference associated with the step A t/2. Then, recall that  

ra+l 

0rv.+, f 4  (~  _lt.+J_sl) a'v - ~7 r (s)ds. 
tn 

Let VV be the piecewise-linear interpolation (in time) of {W"}; then 

t g(t"+L W . + t ) -  g(t, W).+t = - - ~  (At)'O~g(t, ~)n+�89 

t,,+l d* (5.6) 

=-• f tn 
N o w ,  

d' O'g Yen ' O*g W) (dtW")* + ~ u  (t, W) 0'7r dt' g (t, fir) ----Ot*'O'g (t, W) + 2 ~  (t, W ) d , -  . y f f r  (t, e t  a , 

t n < t "~ t n+l,  

and we have three integrals to consider, since the last term vanishes. If  we retain 
the assumption that  g has bounded second derivatives, then it is clear that  

IIg (t"+L W.+�89 - g (t, W)"+�89 
2 o W  ~ 

<--_C(At) a [At+ ~-t Lt(fa, tn+l;Lt(OfJ)) + ( ~ )  Lt(t a, t-+l; Lt(&O))]' 

and 

[[g(tn+�89 Wn+�89 -- g(t, W)n+�89 ~L~t(O, T; L*(OCt)) 

e w  [3 o w  ~ (5.7) 
<C(At) '  [1 + Ot L'(O,T;L'(Or~)) + (O-t-) L'(O,T;L'(OK~))]" 

Now, it follows from Section 2 that  

0W 2 
~ t -  L*(O, T; L'(Oa)) 

<--C OW 2 
-- ~ i - -  L'(O,T;H~(g2)) 

Ot Lt(O,T;HI(s + 
2 

where C x involves the L ~ (0, T; L ~ (00)) norm of Ou/Ot. For convenience in this 
argument, let us only consider the case when we can expect to get L 2 estimates; 
i.e., let (Tt), (T2), (RI), and (R2) hold and assume dim (12) =< 3. Let  ~ =~r be 
chosen from an S[ family. Note that,  since dim (012) __-2, Hi  (0Q)C L 4 (0~2) with 
continuous injection. Thus, it is also the case that  

0 W/2ll~ Ou ' 
1(Ot/llL.(O,T;LqOa)) ~-- C1( o r  IL,(o,r;n~(a))+][UI]L'(0'T;H~(a)0 

t6" 
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with Ca having the same form as above. The last few inequalities show that  

Ilg (t"+L w-+~) - g (t, w)-+* 11~.5,(o, r; L'Cea)) < C, (A t)', (5.8) 
where 

Ou z 4 Ou  4 

Note that  we can replace the L~,(O, T; L '  (D) )-norm on ~ by the L~(O, T; 
L~ (O) )-norm in (5.5), since 

II~k~,c0, T;LI{a))~-~ C][~l~.,~ (0, T;LI(a))~C [[[~IILI(0 ' T;LI(a))+ [I ~ -  LI{0, T;LI(a))] " 

These results can be combined to give the final estimate for ~: 

II Jl~3, (o, r; v ca)) + II ~ I1[~,r r; Ho' ca)) 
(5.~o) [ 2 ~ ~n 2 1 C < r [ll#(o)lib.,ca> +llnllvco. T;Lt(D)) 21- C:qt " L t (O ,T ;L . (O) ) I  - ~  Z(Zlt) 4 , 

where 
O-'u s 

Ca=C* +C 0 ~ -  L'(O,T;L'(a))" (SAQ 

I t  is now an immediate consequence of (SA0) and the bound on ~ and O~[at 
derived in section 2 tha t  the following theorem is valid. 

Theorem 5.1. Let dim(O) ~ 3 and assume that  (TI),  (T2), (Rt) ,  and (R2) are 
valid. Let g (x, t, u) have continuous and bounded derivatives of order order less 
than or equal to three. Let ~ ' ,  be selected from an S~ family for some r ~ 2. 
Let the solution u of (tA0) satisfy the following constraints for some k such that  
t < _ k ~ r :  

u~L ~176 (0, T; Hk(~2)), 

O uu ~L' (0, T; H*(~2))nL ~176 (0, T; HO(OD)), (5A2) Ot 

08u 
0t* ~L'(0, T;L'(Q)) .  

l e t  U be the solution of the Crank-Nicolson-Galerkin equation (IA3). Then, there 
exist constants C and C (s), 0 ~ s  ~ l ,  depending on the norms of u, Ou/at, and 
03u/at a in the spaces listed above such that  

Ilu - Vllz3,(o ' r;L'(O)) < C  (n k + (A t)') (5.t3) 

and 
I lu -  uE~tto, rm.(a)) <C(s) (hk-, + (•0'), o < s  ~ t, (5A4) 

provided that  II ! --  V (0) Ik'ca> Z C I1! II-~ca> h~. 
We shall now consider the three modifications of the Crank-Nicolson-Galerkin 

equations tha t  were introduced in Section t. Fortunately, their analyses can be 
reduced in each case to tha t  of the Crank-Nicolson equation plus the consideration 
of a perturbation term. 
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6. The Extrapolated-Crank-Nicolson-Galerkin Procedure 

Let U now denote the solution of the Extrapolated-Crank-Nicolson-Galerkin 
Eq. (1.t5) for t = t ' ,  n > 2 .  Assume for the moment  that  U ~ U ~, and U* are 
known; we shall specify rules for finding these initial values later in this section. 
Also, assume all of the hypotheses of Theorem 5.t. 

Modify the evolution equation (5.2) for W to read 

(d:W' ,  v) + (a VW"+�89 Vv) -- (g(t.+i. 2W"-t  -- W.-O), v)e ~ 

= -- (d, ffL v)  + ).(~"+�89 v) -- (g(t"+�89 W.+t) --g(t, W).+�89 v)e o (6A) 

+ ( d,u" 3un+�89 ) at ,v  +(g(tn+�89 W"+�89 2 W " - i - W " - i ) , v ) o a  

for v6dla. Subtract (IA5) from (6A) and then use ~-+t as the test function v as 
before: 

(~ A t)-a (11~.+11[~,(o) - II~" I~,(~)) + ~ II~"+~l~o , - u 112 ~' -" ,  - ~ . -n l ~ , (0~ )  

at  V(~.,~.+x;L,(a)) 2 all~"+q[~'(~) 
0au 

l ']g(tn+�89 Wn+�89 W)n+t[]~'(a') + ~ -~-IlLs(..t~+x;L.(O), + 5  
(6 .2 )  + ~ IIg(t.+L w-+~) - g(t"+L 2 w . - ~  - w.-~)II~,c0~ 

The boundary term on the left-hand side of (6.2) can be handled by  the trace 
theorem (TI) without any subtlety, it then follows by essentially the same argu- 
ment as in Section 5 that  

tl ~ 1123~. (2 z~ *, T;La(*Q)) 

ii  ll -~- [[~]ll~/(2 AI~, T; L'(OI) -~- ~ -  Lt(g~t, T;L'[.O)) 
aSu 2 

+ ( A t ) '  ~ L'(~at, T;L'(OI) (6.3) 

+ljg(~,+L w.+t)  - g ( t ,  W)*+�89 ' T;L'(O~)) 

+ Ilg(t.+~, Wn+t) -- g (tn+i. 2 W . - t  -- Wn-t)]~.(~,,  T;L'(00)) 

+ (littler(a)+ IlealL~(~))~ t]. 

The three initial terms are different from the one in (5.5), and there is a new 
boundary term. However, 

Ilg (t"+L w-+~) - g  (t"+L 2 W'-~ - W . - t )  I[~,(~a) 

~_ K,t]  w - + ~  - 2 w - - t  + w - - ~ l ~ , ( a ~ )  

<*. K,  II W-+l -- 2 W. + w--11i~,[a~ + �89 ll w -  - 2 w- -~  + w- -~  IL~,(~). 

I t  follows simply that  

[[g (t"'{-t, W"+] )  - -  g (~-I-~, 2 W"-�89 - -  W " - ] )  [[~lt(f~At, T; L,[00)) 

__ff~ C ( z] ')* ll ~O'~ W HgLa(O, T;Lt(O~) ) " 
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The bounding of ~2W/at2 remains, and this will be facilitated by producing 
an estimate for ~2~/~t2. For our purposes it is sufficient that this term be bounded; 
it is not necessary that  it tend to zero with h. Eq. (2.t) can be differentiated twice 
with respect to time to give 

aV--eW, V v )  + Z \ T # - ,  v 

Thus, 

where 
(0g ag )0~u 02g 0,g 

R ---- -g~ (u) -- ~ (W) ~ + ~ -  (u) -- ~ (W) 

~92 g O u _ 2  ~2 g O W 
+ 2 T / ~ -  (u) ~ / -  atau (w) at 

O2g + ~ (u) ~ - )  2 I~u~ 02g 

Let v =02~/Ot ~ --  02u/Ot2e "~h. Then 

<C [ O~u 2 ] -- _ -~V n'(a) -{-HR[~'ioa)j HI(~) 

~ u  2 au 4 

c~'u :,(.) ] + - ~ -  + l .  

with C 1 being of exactly the same form as above. We have used Lemma 2.2 and 
the estimates immediately preceding for a W[~t and (~W/at) 2. Thus, 

au z a*u 1]. l 
Thus, it is clear from the above estimate and (6.3) that 

II ,~ Ik~,  (~ ~ ,, T; L. r + tl ~ ll}~,, (, ~,, T; H~ (s 
(6. 4) 

_~ c '  i:a,k + (A t),] + C i:ll~* ll[.(~) + A t (II,P II~o, ca) + II~n ll~c~))], 

with C' depending on precisely the set of norms of u, au/at, and O~u]Ot a indicated 
in (5A2) and the L2(0, T;/-/x(Q))-norm of a*u/Ot ~. Assume 

Oiu eL'(o, T; Hx(~)). (6.5) 
Ot ~ 

Let us consider the problem of specifying the three initial functions U ~ U x, 
and U ~ that  are needed to start up (~ A 5). Conceptually, the easiest method would 
be to use either an L*(Q) or a Ha(Q) projection of ] into Mr', so that 

II,~Olk,(a) ~r *, a .<k  ~ . ,  
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and then to follow with two steps using the Crank-Nicolson Eq. (1.t3), since 
(5. t 0) applied with T = 2 A t states that  

To do this would involve solving nonlinear algebraic systems for b a and U2; 
however, these systems can be iterated by successive substitution using almost 
exactly the same computer code as would be used for taking a time step by (1.t 5). 
Thus, no great loss of efficiency would occur if Crank-Nicolson were used for two 
steps. (This iteration converges for A t sufficiently small; the constraint on A t 
depends only on m, K, and CT, but not on Jg.) 

Alternately, a predictor-corrector procedure based on (t.13) could be used for 
two steps to find U 1 and U 2. This amounts, of course, to taking two iterations in 
the successive substitution discussed above and accepting the second iterate as 
the solution. I t  can be shown that  (6.6) is valid for U ~ and U ~ determined by the 
predictor-corrector procedure by a modest complication of the Crank-Nicolson 
argument, but  this will be left to the reader. (In fact, the predictor-corrector 
procedure could be used as the basic computing method to give an algebraically 
linear procedure. The error estimates would be of exactly the same form as those 
for the three algebraically linear procedures we analyze here. Since the computing 
requirements would be twice those for the other three, we have not presented the 
predictor-corrector method in this paper.) 

Given U ~ U ~, and U ~ by either of the methods mentioned above, we then have 

II~ IIL~(o, r; vial) + ll~llZ~#. T; m Iol) < c '  [h~ + (~t t)*]. 

Consequently, the following theorem has been proved. 

T h e o r e m  6.1. Let U be the solution of (t.15) starting from values U ~ U x, 
and U z satisfying (6.6). Assume (6.5) and the remaining hypotheses of Theorem 5.t. 
Then, there exists constants C and C (s), 0 <= s ~ t, depending on the norms in 
(5.t2) and (6.5) and the constant C 1 of (6.6) such that  the error bounds (5.13) 
and (5.t4) are valid. 

I t  should be mentioned that  the extrapolation 

2g (t n+�89 U n-�89 --g (t-+It, U--J) 

could just as easily have been employed as the one chosen. The results are the 
same and the proof is almost unaltered. Slightly less arithmetic is required per 
t ime step if U is first extrapolated and then g evaluated rather than vice versa 
if the flow rate g depends explicitly on the time, as it usually does in practice. 
This is why we chose our form of the extrapolation over the other. 

7. Linear izat ion  A b o u t  u n-�89 

For t = t  n, n > 1, let U be the solution of the equation (t.t6) resulting from the 
linearization of g about the most recently known average of the solution at two 
successive time levels; i.e., about U n-�89 As in the last section, assume that  the 
necessary initial values, namely U ~ and f-P, have been specified and assume the 
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hypotheses of Theorem 6.t. Write the evolution equation for W in the form 

(dtW~, v) + (a VW~+�89 Vv) 
/ ~g \ 

- kg(t.+L w. -~)+ ~ (t"+L w . - ~ ) ( w - + ~ -  w.-~), ~]~,~ 

= -- (dr *1% v) + 2(,~n+L v) -- (g(t'+L Wn+�89 --g(t, W)*+�89 v)e a (7.t) 

+ (  d,u" ~ ) o r  , v 

( ag (t,,+~ w,,-~)(w,,+~- w.-~) ,v)  + g(t"+L w,,+~) -g(t"+L w,,-t) - ~d ' oa 

for vEdt',. Only the first and last boundary terms in (7.1) are different from 
terms that we have already analyzed. We shall omit writing the time, since it is 
t "+~ in all cases. Then 

0g 
]( g(Wn--i) + ~ (Wn--') (Wn+�89 W'--'), ~n+�89 )Ot~ 

I Og \ 

_~ ~,,~-,,~.,~.),,~"+,,,L.,o., + 1 (~  (~--,)(~-+,- ~.-,), 2"+, )o.1 
Og 

+ ({~ffu (Wn-�89 ~ (U'-�89 (W'~+�89 ~"+�89 

t K1) [[~"-�89 (7.2) 

+ GIIW"+~ - w-- t lk ,  co~)Ur162 "+~lk~coa) 

t K~)llr189 ) 

since the injection of HI(O) into L~(0~2) is continuous, the injection of Ha(O) 
into H t (g2) is compact, and 

II "+' IL 
11. ~ 0w II w - + ~  - w - - ~  Ik'(~,) = ~ -  - g / -  a t  

* (0t~) 
OW 

G2-I(At)t--if/-  Ilv (m-i, ~,+1; L,(oa)) 

~--C(At)t( [lullL'(~ ~ I ~,(0, r;w(a)))" 

In particular, the coefficient of []~'+tl[~,r be taken smaller 
than m[8. 
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Next, we need to see that  the last term of (7.1) is O((A t )*+  ]Iv I~'(0o)). This is 
a consequence of the following estimate: 

_ Og (w . -~ ) (w .+~  W.-�89 ~L,(o~) I g(Wn+�89189 ~ 

1 
< V ml l (w-+~  - w"-~)*ll~,10~) 

2 \ Ot ] Lt(t"-l , t .+l;L'(O~)) " 

Hence, 

~z=-2 z IlkOt / I[L'(t~-X,~+Z;L'(00)) 
( ~ 0 '  <K,(~t), (~ 

= \ Ot ] HL*(O,T;L*tOg~)) 

~t  L*(O, T;H'(O)) " 
I t  then follows that  

1~1~3,r r v(o)) + II~llzs,(~, T; Ha(O>) 
(7.3) 

with C' again depending on the norms of u . . . . .  08u]Ot8 listed in Theorem 6.t. 

The evaluation of U z can again be accomplished by either solving the Crank- 
Nicolson equation for one step or by  using a predictor-corrector form of Crank- 
Nicolson for one step. In either case, 

[I ~1 [~t (0) "~ A t l[$t I~  (~) --<-- C [h zk + (A 0% (7.4) 

We have proved the following theorem. 

Theorem 7.1. Let U be the solution of (1.16) starting from initial values 
U ~ and U z such that  (7.4) holds. Then, the conclusions of Theorem 6A follow 
from its remaining hypotheses. 

8. Extrapolation and Linearization 

For t = t ~, n ~ 2, let U denote the solution of (t A7), the result of linearizing 
about the projected value 2U"-�89 "-I in the evaluation of g at t = t  "+t. 
Assume that  U 1 and U ~ are computed in such a way that  

I]~1~,(o) + ~ t (II~F~(o~ + tl~al~(~)) < c [h~k + (~ t)% (8.1) 

Write the evolution equation for W in the form (g and Og/Ou being evaluated for 
t = t  "+�89 everywhere but  in g (W)"+ �89 

(dtW", v) + (aVW"+L Vv) 

I ~ ) _ g ( 2 W . - � 8 9  + ~  ( 2 w . - ~ - W . - I ) ( w . + ~ - e w . - t + W . - t ) , v  eo 

Ou.+t  \ 
=--(dt~%v)+,~(n,+Lv)--(g(W"+t)--g(W)"+�89 v)oo+ dtu" Oi , v /  

+ g(W-+t) --g(2Wn-�89 -- Wn-I) -- Ou (2W"-�89 -- Wn-t) (8.2) 

�9 (W"+t -- 2 W"- t  + W"-a), v .  ~on 
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for v Ed/h. Again it is necessary to treat only the first and last boundary terms. 
The first of these leads to the following three terms: 

[ < g  (2 w - - ~  - w - - 0 )  - g (2 u - - ~  - u - - ~ ) ,  ~ -+~)~  ~ I 

< K [I ~-+~ IIv (0~)112 ~'-~ - ~--n Ilv(o~), 

l (  ~--~gu (2 U"- '  - U"-') (,"+�89 - 2 , " - '  + ,"-~), ,"+�89 

K([l#n+�89 + 2[[~"-tlk,(0o) + [l#"-altvcoo))II#"+~[IL, cool, 

Og u " - , -  u"-,)) 2 w . - , +  " + ' ) o ,  ((~-~gu ( 2 w . - , - w - - , ) -  ~ (2 ( w - + , -  w-- , ) ,  

2KI] w-+�89 - 2 w--�89 + W"-] IIL'(eo)[[#"+�89 

0 3 W ~,(r--2,m+l;L,(0a)) _~ Z2 [l~"+~lf['(0~l + c ( A t p  ~ 

Notice that  no delicacy is required; errors that  are fourth order in A t for sufficiently 
smooth u are easily shown to be second order. Since the basic Crank-Nicolson 
process is only second order, there is no gain attached to being more painstaking. 
Similarly, the last term can be treated a bit cavalierly: 

I g (W"+~) - g (2 - w - - 0 )  Wn-�89 

Og 
(2 w - - J  - - 2 + w - - a )  ] Ou 

< 2]]g(W.+~) - g ( 2 W - - t  - w--~) 2 IlL, ion) + 2 KS [[ w - +  J - 2 w - - J  + w - - a  [[~,10~) 
< C' (A t)L 

where C' depends on the same collection of norms of u . . . . .  O3u[Ot a as in 
Theorem 6.1. 

The usual argument again shows that 
2 

[[~llLO~t(2,at, T; Lt{.O)) -t-ll~lgs,(~,, T; mI~>) 
.~ 2 < c '  Eh~k + (A t)q + C [ll~l[[,(~> + A t(ll~a [[~o~ (~) + I[~qlm (~))3, 

and the usual theorem results. 

T h e o r e m  8.1. If U is the solution of (t.t7) and U ~ U ~, and U ~ are chosen so 
that  (8.t) holds, then the remaining hypotheses of Theorem 6.t imply its 
conclusion. 

Computationally, (t.t7) is almost exactly equivalent to the extrapolation 
alone or linearization alone. Since it is a somewhat closer approximation to the 
Crank-Nicolson equation, the authors would tend to recommend it as the first 
choice for practical implementation. Obviously, there is nothing in the formal 
arguments given above to make us insistent on this recommendation. 
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