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Abstract. A Newton-type algorithm has been presented elsewhere for solving non- 
linear inequalities of the form [ (x) ~ O, g(x) = O, and quadratic convergence has been 
proved under very strong hypotheses. In this paper we show that the same results 
hold under a considerable weakening of the hypotheses. 

1. Introduction 

In [Robinson (1972c)], a Newton-type algorithm was presented and its 
convergence analyzed for the problem of finding an x* in a reflexive real Banach 
space X solving [ (x*) EK where K is a closed convex cone in a real Banach space 
Y and / maps X into Y. When one specializes these results to the case in which 
X and Y are finite dimensional and K is the negative orthant, it appears that 
the hypotheses needed for these results are very strong; it is assumed, for example, 
that the rows of the Frechet derivative m a t r i x / '  (x) of / at x are nonnegatively 
linearly independent, which means that the inequality/ '  (x) h =< b must be solvable 
for every b and which, when / is linear, rules out the possibility that the region 
described by the inequalities is bounded. This difficulty arises because the results 
are based on the main theorem of [Robinson (t972b)] which concerns perturba- 
tions of sets of linear inequalities; it is this latter theorem which uses the above 
restrictive hypothesis. In [Daniel (t972)], however, we presented perturbation 
results which allowed us to eliminate this restrictive hypothesis; by using this 
new result here, we can strengthen the result of [Robinson (1972c)] on Newton's 
method for inequalities. 

A somewhat similar algorithm to that studied here was presented for the 
finite dimensional case in [Pshenichnyi (1970)]; the hypotheses used to deduce 
convergence are quite different, however. 

We shall now consider the problem of finding an x* which solves 

t(x)<o 
(t.1) g(x) =o 

where [ and g map ]R n' into ]R m' and ~ "  respectively, for some integers n', m', 
and r', and have continuous Frechet derivatives given by the matr ices/ '  (x) and 
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g' (x), respectively. For brevity, we shall no longer remind the reader of the di- 
mensions of various vectors and matrices; the dimensions are always such that  
the indicated operations are well-defined. For convenience, we use a fixed norm, 
H" [I, chosen as the Euclidean norm: Ilxlt~ = ~ lxi[ 2. 

As in [Robinson (1972c)] and as is usual in the analysis of Newton methods, 
we shall be able to give a Kantorovich-type theorem, which says that,  based on 
local information at some point x 0, we can determine that  a solution to Eq. (1.1) 
exists and that  a sequence we generate converges to such a solution. In the present 
analysis the constants in such a theorem become very complicated and only 
obscure the trend of the arguments. For convenience, then, we shall be somewhat 
casual in our statement of the main result; the interested and patient reader 
can keep track of all the various constants himself if he wishes to see a more 
precise statement. 

In the next section we shall describe the algorithm and begin its analysis, 
assuming that  certain linearizations of the system in Eq. (1.1) can be solved. 
Section 3 treats the question of the solvability of these linear systems, while 
Section 4 presents the main result. No numerical examples will be found in this 
paper; two examples were presented in IRobinson (1972c)]. 

2. The Algorithm 

We now describe the algorithm as presented in ERobinson (t972 c)l for solving 
Eq. (1.t). 

Let x o be given. Having found x~, for n --__ 0, choose x~+ x to 

(2.1) minimize I[ x --  x, ]l 

over the set S, of x solving 

/(x.) +/'(x~) ( ~ - ~ )  <=o 
(2.2) 

g(x.) + g' (x~) ( x -  x~) =o.  

Since the set S~ defined by  Eq. (2.2) is a convex polyhedron, clearly a unique 
x~+x exists provided that  S~ is nonempty. Actually, other norms, such as the 
/1 or lo0 norms, could be used as well here since linear programming could be used 
to provide a particular solution; we adhere to our choice of the Euclidean norm, 
however. 

As has been kindly observed by the referee, one can modify the results of 
[Robinson (t972c)] in a straightforward manner so as to weaken the so-called 
GLI hypothesis in [Robinson (t972c)1 that  requires ur]'(xo)+vrg'(xo)=0 with 
u ~ 0 to imply u----0 and v = 0 .  One could divide the constraints defined by  [ 
into two classes (say considering which of the linearized constraints at xo are 
satisfied as equalities at xl) I and J such that  those in I satisfy the GLI hypo- 
thesis while those in J are satisfied in a sufficiently large ball about x 0 or x v 
The results of [Robinson (t972c)] would then show that  the method generates a 
sequence converging to an x* satisfying those constraints in I while those in J 
would be satisfied since x* could be assumed to lie ill the aforementioned ball 
associated with J .  Thus the results of [Robinson (t972c)~ can be emended in 
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this straightforward fashion. The difficulty with this approach lies in the defini- 
tions of the sets I and J .  Using only local information at x o or x 1 we must somehow 
select I so as to contain all those constraints which might be meaningfully active 
at the unknown solution x* or at any intermediate step of the iteration, and we 
must assume the GLI hypothesis for I .  In what follows we shall take a different 
approach to removing the GLI hypothesis o n / ,  yielding a convergence theorem 
different from that  of [Robinson (t972c)] and from that  just outlined; we now 
proceed to this analysis. 

For the moment  let us blithely assume that  S,, is nonempty; later we shall be 
able to guarantee this. To analyze the convergence of our method we need to 
estimate I[ %+1--  x,dl, the minimum in Eq. (2.1). I t  is clear that  x. solves the 
system 

l '  (x~) (x --  x~) _--< 0 

(2.3) g' (x,) ( x -  x~) = 0 

and that  the system of Eq. (2.2) is just a perturbation of this system with both 
being perturbations of the fixed system defining So; any results available on the 
perturbation of such systems should enable us to give bounds on [1%+1-- % [I. 
Before we can apply the results of this type from [Daniel (t972)], we need addi- 
tional hypotheses. 

there exists Xo in S O such that  
(2.4) 

/(Xo)+/'(Xo)(~o--Xo)<=--p,  with p > 0 .  

For any vector y, we denote by y§ that  vector each of whose components is 
given by the maximum of zero and that  same component of y. By Theorem 4.t6 
of [Daniel (1972)], there exist constants g and % > 0, depending on ]' (xo), g' (xo), 

t 

and p, such that  there exists x~+ 1 in S~ satisfying 

(2.5) II x,:+l - x,, II ~ e {llg (x,,)II + II [! ( x , , ) l  + li} (t + II x,, II) 

whenever the following three statements hold: 

(2.6) S, is nonempty, 

(2.7) rank [g' (x~)] = rank [g' (x0)], 

(~ + Ilx. II){llt' (~.) - / '  (~o)II + Ilg'(x.) - g '  (Xo)II + II/' (~o) ~o-/(~o) +/(x.)  
( 2 . 8 )  

- I' (#.) x~ II + lie' (~o) Xo - g  (Xo) + g  (~.) - g '  (~) ~. ll} --<*o. 

We wish to see what the estimate of Eq. (2.5) gives us. If 1' and g'  satisfy the 
Lipschitz conditions 

(2.9) I11' (~) - 1' 0,)II =< L II �9 - y II, lie' (,4 - g' (y)II ---< z. II �9 - y  II 

then we have, from the definition of x,, that  

lie (,~.)II = llg (x.) - Eg (x._~) + g '  (Xn_l) (x. --Xn_1) ] II----< �89 Z. II X. - -  ~._~II', 

Assume that  
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and 

+ r  (~.-1) (~. - x . - 0 ] } + l l  _~ I1{1 (x.) - l:l (~_, )  
+ r (~._,) (~, - ~_,)J}+ II + II [t (~.-1) + t '  (~,_,) (x. - ~ . - i ) ]  1 

Using these estimates and the fact tha t  x.+ i minimizes IIx-x.ll over  S~, we get 

(2.to) II ~,+1 - ~11--< r r  II ~o - ~ , - ,  I1' (1 + II ~11). 
For this estimate to be valid for all n, we need Eqs. (2.6), (2.7), and (2.8) to 

hold for all n;  since we shall have to assume Eq. (2.7) and since we shall address 
ourselves to  Eq. (2.6) in the next  section, we turn to Eq. (2.8). The expression 
there can be easily bounded by  (t +[[x, lD[lx~--xol[[2L+2Ll[x~l[+Ll[x,--xoll]; 
thus, to  satisfy Eq. 2.8), we need a uniform bound on I[x~[1 and a sufficiently 
small uniform bound on I [x~-  x 0 [1. We can derive such bounds by  induction. 
Since we have already assumed tha t  S O is nonempty,  we know tha t  x I exists, 
allowing us to  s tar t  an induction based on Eq.  (2.t0). If we define 

(2.1t) S=ll~oll+2U~,--~oll and t----rr-II~,--xoll0+B), 
then we have 

(2.t2) i i x , -xd l__<~Li l .~ - .o [ i , ( l  + it.~[[)=< ~ L I [ . ~ -  .oii* (i + S ) < t i l x l - - . o i  I 

if S,  is nonempty  and if (1 + H xl ]])[I xl - -  xo ]] [2 L + 2 L [[ x i ][ + L ]] x~ --  x o I[] =< so. Thus, 
if I]xi-xo[I is small enough, in part icular  so tha t  t--<~, then Eq. (2A2) is valid 
and hence also 

IIx, II--< II ~oll + (1 + 0  I1~, -~oll--< Ilxoll + 2 Ilx~ -Xoll  = B (2.t3) 

and 

(2.14) IIx~- Xoll _~ (t + 0  IIx, - Xol[ _-< It-~- --=~ott. 

Thus we have the bounds we need for n = 2. Assuming S n to  be nonempty  for 
all n, the obvious induction yields more generally the crude estimates 

(2.15) IIx~+l- ~ II < t~ - '  IIx~ - ~o11, 

i[x.+xll < ilXol[ _~ a - t ~ + l  [ixx _ Xol[ < flXol[ + ~-1 - * o l l  
= t - - t  (2.t6) I - - t  
=< [[Xol [ +2[ [x  1 --Xol [ = B, 

t - t . + l  ,, 11"1-'oll  

provided tha t  

Thus, by  assuming tha t  [Ixx--xol[ is small enough, we conclude tha t  Eq. (2A0) 
holds for all n. We have essentially proved 



Newton's Method for Nonlinear Inequalities 385 

(2.19) Proposition. Assume, in addition to the general hypotheses,  tha t  
Eqs. (2.4), (2.6), (2.7), (2.9), and (2.tl)  hold. I f  [Ix 1 -xo l l i s  so small tha t  Eq. (2.t8) 
holds, then we have  [1 x.+x - -  x,  It - ~L II xo - xo_, It" <t + [I x. ll). 

Remark.  We note tha t  the Lipschitz condition in Eq. (2.9) need only hold in 
the ball of radius I1~1--xoll/0 - 0  about  x o. 

We must  now consider the crucial question of whether  or not S~ can be empty ;  
we address this in the next  section. 

(3.2) 

solve 

(3.3) 
where 

(3.4) 

3. The Solvability of the Linearized System 

The fundamenta l  es t imate  of Eq. (2.10) was derived on the assumption tha t  
S~ was nonempty ;  we mus t  now guarantee  this b y  showing tha t  the sys tem in 
Eq. (2.2) is solvable. To  do so, we require addit ional hypotheses.  First  we assume 
tha t  the linearizations of the equal i ty constraints  are not  degenerate;  more pre- 
cisely, we assume tha t  

(3.t) g'(x,,) is of full rank  for all n ~ 0 .  x 

Thus  we know tha t  the sys tems g' (x,,)h = b are always solvable; one m a y  take,  
for example,  h = [g' (x,)]# b, where A #  denotes the Moore-Penrose pseudo-inverse 
of the mat r ix  A. In  particular,  let 

h. = Eg' (x.)]*~ b. 

b~ = - g ( ~ )  - g '  (~)  (~o - ~ )  
and xo is as defined in Eq. (2.4). Since g(Xo) + g '  (xo) (Xo--Xo) = 0 ,  we have  

b. = b. + g  (Xo) + g '  (Xo) (~o - -  Xo) 

= ~g (Xo) --g(x.)]  + ~g' (Xo) - -g '  (x.)] (~o - Xo) + g '  (~.) (x. -- xo). 
Assuming then tha t  Si is nonempty  for t ~ i ~ n - - I  we can use Eqs. (2A5), 
(2.t6), and (2.t7) with n replaced by  n -  I to conclude tha t  

(3.5) lib. [] < c II~l - Xol[ (t + j[~o - ~oll) 

for some constant  c. This then  gives 

(3.6) IIh~ II < It [g' (x.) ]  [1" ~ II:~1 - ~o II (~ + II ~o - ~o II). 

Since g'  (x,) and g '  (xo) have  equal  rank and since 

[Ig' ( x . ) - g '  (Xo)1[ < Ll[x.--  xoll =< Lll~�89 

the pseudo- i~verse  of g ' ( ~ )  is near that  of g'(~o) for small  Ilxx--~olt. Thus,  for 
small enough I1"~ - x, ll. we have 

(3.7) IIh.ll<~ll~-~oll(a +H~o--Xo[[) for some constant  c. 

I As the referee has observed, the hypothesis can rarely be verfied a priori. 
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From the definition of h,, we see tha t  Xo + h. solves 

(3.8) g(x,) + g '  (x,) E(4o + & )  - x,] = o. 

Moreover, 

l(x.) + l '  (x.) [(4o + & )  - x , ]  = l(xo) +1'  (Xo) (40 -Xo)  + El(x.) - / (Xo) ]  

+ El' (x,,) - 1 '  (Xo)] (40 - Xo) + l '  (x.) (x0 - x.) + r  (x.) & 

=< - -  p + { [[ (x . )  - -  f (xo) ] + []' (x . )  - -  ]' (Xo) ] (4  0 - -  x0) + ]' (x . )  (x  o - -  in)  

+ I '  (x,,) &}. 

Assuming again tha t  S i is nonempty  for ! --< i ~ n -  t we again use Eqs. (2.15), 
(2.t6), and (2A7) and also Eq. (3.7) to find tha t  the expression above in curly 
brackets  can be bounded by c o II x~ --  x o I] (1 + []Xo --  Xo II) for some constant c o deter- 
mined by  ], g, and x o. Thus Xo + h ,  will satisfy Eq.  (2.2), tha t  is, S,, will be 
nonempty,  provided tha t  rain p~ >= co[Ix~- Xo]](l + [[4o--Xo[[), where the p, are 

the components  of the vector  p, and the induction can be continued. We have 
essentially proved 

(3.9) Proposition. Assume, in addition to the general hypotheses,  tha t  Eqs. (2.4), 
(2.9), and (3.t) are valid. Then there exist constants c o and el depending on f, g, 
and x0, such that  S,  is nonempty  for all n provided tha t  [[x~--Xo[ [ ~ el and 
m,in t,, _-> ~o IIx, - xo l l  (t + 114o - ~oll)- 

Proof. Eq. (2.7) holds because of Eq. (3.t). The  induction argument sketched 
above, combined with the result of Proposition (2A9), completes the proof. 
Q.E.D. 

4. T h e  Main  R e s u l t  

I t  is now a simple mat te r  to prove the main result. 

(4.t) Theorem. In addition to the general hypotheses,  assume tha t  Eqs. (2.4), 
(2.9), and (3A) are satisfied. Star t ing with Xo, let the algorithm described by 
Eqs. (2.t) and (2.2) be applied. Let  a c o and el be determined as in Proposition 
(3.9) and suppose tha t  [[xl--xoll<=e~ <=el for a certain e~ determined from ], g, 
and x o and tha t  miin p, >-- c o H xl - -  x0 [I (1 + [[ xo - -  xo I[)" Then the algorithm is well 

defined and generates a sequence {in} converging to a point x* solving Eq. (1.t). 
The  estimate of Eq. (2.t 5) is valid, and moreover  there are constants c and q < l 
such tha t  the error estimate [[x~- x* I] <-cq ~" holds. 

Proof. Under  our hypotheses we know tha t  the conclusions of Proposition 
(2A9) and Proposit ion (3-9) are valid, so tha t  Eq. (2.15) is valid, and we may  
take ,~ and thereby IIx~--Xol 1 so small tha t  t <  t ,  where t is defined in Eq. (2.t t) .  

Then, with q = t ,  we have ]fin+l--in]l--< Hxl-xoH - t qZ" by  Eq. (2A 5). The usual 
argument  shows 

= Ilxl - xollt q=...-~' q=,_~. < Ilxl - x o l l t  (t - q) q ~'' IIx.+=-x.II < 
$ = n  
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which implies tha t  {x,} is a Cauchy sequence and hence converges to some x*; 
the error estimate follows by let t ing m tend to infinity.  Tha t  x* solves Eq. ( t . t )  
follows from the cont inui ty  of/ ,  g, [', and  g' and the fact tha t  x,+ 1 solves Eq. (2.2). 
Q.E.D. 

Remark. As is usual with Kantorovich- type results, this theorem roughly 
states tha t  if x o comes close enough to solving our problem, where "close enough"  
is a complicated condition involving I lxl-xoll ,  then the algorithm will work and  
converge to a solution at least quadrat ical ly;  the condit ion on IIx~ - - x  o[I is natural ,  
since x o would in fact be a solution to the basic problem should x~ = x o. 
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