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Summary. A numerical method is treated for solving singular boundary value 
problems with solutions that  can be represented as series expansions on a subinterval 
near the singularity. A regular boundary value problem is derived on the remaining 
interval, for which a difference method is used. Convergence theorems are given for 
general schemes and for schemes of positive type for second order equations. 

1. Introduction 

Consider the differential equation 

d n u d n - x 

L u - -  ~ + l , _ x ( x )  ~ + " .  +/o(X)U = F ( x )  (t.1) 

on the interval  0 < x ~ 1. B y  letting one or more coefficients/ i  (x) be infinite at  
x = 0 the equation becomes singular there. Since there are singular components in 
the solution we demand tha t  u and its derivatives up to a given order p shall exist 
and be bounded for 0 < x ~ t .  Under  this restriction it is assumed tha t  a unique 
solution is determined by  the boundary  conditions 

I ] . -1  I ] 
A , i [ ~ - j , = o +  ~,  B*/ [~3-] ,=x  = g t ,  l = t , 2  . . . . .  s, (1.2) 

= i = 0  

where s m a y  be less than  n. 

The method  t reated in this paper consists of a series expansion at  a small 
interval near  x = 0 and a difference method  at  the rest of the interval. For  tha t  
purpose we assume tha t  there is a positive constant  8 such tha t  the smooth par t  
of the general solution to ( t . t )  can be wri t ten 

u(x) = Y. ~R~(x) +R,+l(x), s <n (1.3) 
i = 1  

for 0 < x ~ 6, where R x (x) . . . . .  R s (x) are linearly independent  solutions to  L u  = 0 ,  
and where Rs+ x (x) is a part icular  solution to (t A). Ri (x) consists of one or more 

terms of the form ~b(x) ~. akx k, where ~b(x) is an elementary function and the 
k = 0  

ak's are recursively defined (see the example in See. 2). The derivation of R i(x ) 
in general is t reated in [2]. I t  is assumed tha t  dPRi(x)/dxP exists at  x = 0 ,  with p 
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defined above. The boundary conditions could make sense without this last 
restriction, but for a well posed problem, R~ (x) can always be defined such that  
it is fulfilled. This will be explained in the next section where a simple example 
is treated. 

Our method is briefly described as follows: We first calculate approximations of 
R~(x).  Then using (1.3), we formulate a new regular problem on the interval 
[~, t J with boundary conditions given at x = ~. We then solve this problem by  a 
difference approximation, solve for the coefficients as and calculate u on [0, ~] 
using (1-3). 

I f  a difference approximation is used on the whole interval [0, t ] the conver- 
gence rate will be very poor. Jamet  [4] studied the equation 

d2u a du  
dx  ~ "~ x d x  r x = 0 ,  0 < a < t , z ~ 0 ,  (1.4) 

with boundary conditions u ( 0 ) =  t ,  u (t) = 0 ,  and gave an error estimate ~ h  1-" 
for the standard three point approximation. Ciarlet et al. [t ] later developed a 
Ritz-Galerkin method with an error estimate --~h*-* for a slightly generalized 
problem. 

We will show that  with a centered r-order accurate difference approximation 
on [8, t ] we get a convergence rate ,-~h' on the whole interval provided R~ (x) are 
calculated with r-order accuracy. 

2. Formulation of the Regular Problem 

We will first study the Eq. (1.4). 

The general solution is obtained by formally differentiating 

u(x)--x" ~ a,x k, ao4:O. 
k = 0  

Possible values of m are determined from the indicial equation 

m ( m - -  t + a )  = 0 .  

Accordingly, for a =t = 1 the general solution can be written 

u/x) /21) 
k = 0  k = 0  

where the coefficients are determined recursively from 

zax,k-~ / (2.2a) 
a r k - -  k(Y2T-~)  k =2,  3 . . . .  

�9 a~,k-2 (2.2b) ask= ~(k ~ i ~ J  

ai0 = t ,  a a = 0 ,  i-----1, 2. 

For a = t we get the general solution of the form 

u =~1 alex k + ~  lnx axkx k + b~x k (2.3) 
k = 0  

with al~ defined by  (2.2a) and where b k are uniquely determined by  the axk's. 

22* 
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For  this part icular  example, the series expansions are valid on the whole 
interval (0,1 ] ; in general we need the expansions on (0, 8] only. 

If  a ~ t we must  have m s = O, and only one boundary  condition can be pre- 
scribed. If  0 < a < l both components  of the solution are bounded, two boundary  

conditions must  be prescribed, bu t  cannot contain ~ ~=o" 

Consider now the inhomogenous problem 

d~u a d u  
d x~ + x d x - - - -  xl-~ cos x - -  (2 - -  a) x -~ sin x. (2.4) 

The general solution to (2.4) for a ~ t is u = e l  + e ~ x l - ~ +  xl-~ cos x where 
the first two terms are solutions to the homogenous problem. If  t < a  < 3, the 
solution is bounded iff ~ = - -  1, therefore it can be writ ten u = el + xl-~ (cos x --  t), 

d u  [ could be entered into the 
1 

which is on the form (1.4) with s = t .  ~ j , = 0  formally 

boundary  conditions, but  can always be subst i tuted by  the constant  O. 
These arguments  can easily be generalized to more general cases, and therefore 

the assumptions made in the previous section are reasonable. 
We will t ransform the problem into a problem on the interval [8, t] ,  and 

therefore boundary  conditions mus t  be derived at x = &  To achieve that,  the 
differentiated forms of the expansion (1.3) are first substi tuted for u (i) (0) in (1.2). 

( [ d i u  ] / This From now on the notat ion u li) (~) will be used for [ ~ ] ~ =  ./ gives a linear 

system of equations for u li) (t), i = 0 . . . . .  n, and the unknown coefficients ~i. The 
differentiated forms of (1.3) 

R 1 (6) 0h + . . -  + R~ (8) ~ = u  (8) - -  R~+ 1 (8) 

�9 (2.5) 
Ri --~) (~)~ + . . .  + R~"-'  (8) ~, = ,("-~)(8) -- RSy)(8)  

make it possible to express the ~i's as linear combinations of the u (i) (6)'s. This 
is t rue because the n-order Wronskian for the fundamental  solutions to L u = 0 
is nonsingular at  x = 8, and we can pick s equations out of (2.5) with a nonsingular 
mat r ix :  

R i  ",) (~) ~ + . . .  + Ri")(8)  ~ = u(',) (8) - -  Ri~)~ (8) 
. . . . . .  (2.6) 

R?.) (8) ~ + . . .  + R~")(8) ~,  = ~(")(~) - -  R ? ~ ( 8 ) .  

The so obtained expressions for ai are plugged into (1.2) (with (1.3) sub- 
st i tuted for u) and into the rest of the Eq. (2.5). In  tha t  way n linear equations 

B1 
ur (cs) = ~ .  

uO) 

u r (1) 

(2.7) 
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are obtained, where the elements of the matrix B~ and the vector G1 depend on 
R! i~ (0), R!")(8). 

When the solution to (1.1), (2.7) is obtained on [8, 1] the solution on I0, 8] is 
obtained by solving (2.5) for & = (~1 . . . . .  ,q)r and then using (1.3). 

We will make the assumption that  the original problem has a unique solution 
with the assumptions made in sec. t fulfilled. From the arguments above it is 
then clear that  this solution is also obtained as solution to the problem derived 
above. 

3. A Stability Theorem for the Regular Problem 

We will first concern ourselves with the question of how to get a numerical 
solution to the regular problem (IA), (2.7). The theory by  Grigorieff [3t and 
Kreiss [5] for difference methods can be directly applied here. We assume that  
the reader is familiar with the latter paper. We will look in some detail upon the 
way of treating the boundary conditions and the accuracy thereby obtained when 
using centered difference operators for approximating L. 

Let h be the steplength and define gridpoints z i = i h  + 8 --rh,  ~ = 0 ,  1 . . . . .  N, 
where r is an integer and depends on the width of the difference operator Lb. 
Using the notation v i =v  (xj), Ev  i =vj+  v hD+ v i = E  - - I ,  hD_ = I - - E ,  we make 
the following assumption on the approximation Lhv i =Fj :  

Assumption 8.1. That  part  of L h which approximates d~/dx ~ can be written 

/* 

QD~+ =- .~, )JiEiO~+ (3.t) 
1 = - - V  

where the yi's are independent of x,h. Furthermore the lower order terms of L h 
do not use more points than QD~+ does. If/~ = - - v  then L h is called compact. 

This assumption is not restrictive since all operators used in practice to our 
knowledge fulfill it. For example the standard second order approximation 
D+ D_ to # /d  x z can be written E-XD2+ and the corresponding fourth order operator 

h2 n~ D e is equivalent to ( 1 14 E _ I  I I )  D~. The D + D _ - -  ~ +  _ - - ~ E - S + ~  t---2 
discrete boundary conditions are written in the form 

Blhv =gz,  / = 0 ,  1 . . . .  (3.2) 

where Bib contains difference operators of order l and lower. Those boundary 
conditions which are of order => n can be written on the form (cf. [5]) 

~, Hil(h*+vi)=~l , l>=n (3-3) 
i=o 

where the equations are linearly independent, and where gl denotes the lower 
order terms. 

We want to study the solution Yi to 

QYi = 0 ,  i = v  . . . . .  N - - n  --/z (3.4) 

f f .H i l y i=~l ,  l > n  (3.5) 
i 
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and define the characteristic equation corresponding to (3.4) by 

~, 7 i u i = O .  (3.6) 

With the norm defined by Ilvl] =m.axlv/I ,  where the maximum is taken over 

all points where v is defined, we state the following theorem which is a special 
version of the results in [5]. 

Theorem 3.1. Assume that  the roots of (3.6) satisfy lx~ I 4= t, and that the solution 
of (3.4), (3.5) fulfills 

[lY l[ < const max I gt[" (3.7) 

If the error w = u -  v is a solution of 

Lhw = h ' G  (3.8) 

Jh'gz, l ~ n --  t 
Bth w = [h,+,_l_lgt,  l >-- n (3.9) 

then it can be estimated by  

In particular (3.tO) is always fulfilled if L h is compact. 

Proof. This theorem is proved in [5] for the case that  all uk's are distinct. 
We refer to that paper and conclude that  the only additional difficulty with 
multiple ~ ' s  is in the construction of a gridfunction z/such that D'+ z~ = y / w h e r e  
y satisfies (3.4), (3.5), (3.7) and where [ID~_zl[<const h ~- '  max I ,1 for 

l > n  

Every other step in the proof is independent of the multiplicity of the uk's. 

By assumption 

[xkl<l Ixk[>l $=0 

where 
I~,1 Zconst max I~,1 

l>'n 

(0 ~ is here defined as 1). 
P 

For every given polynomial ~, a d  "~ it is possible to construct another 

polynomial ~. bi] ~ such that  
i=O 

D + h ( u  - - t )  -1 ~. b d i u  i = ~, al]~u i. 
i=O i~O 

By expanding the factors ( i + t )  i into a binomial series the coefficients b~ are 
obtained recursively by 

bp=% 

. . . . .  , 
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This procedure can then be repeated up to order n, and if a i =a,~,  we denote the 
so obtained coefficients with ahi. z then takes the form 

[ik-1 \ 
z 

I~1<1 '= 
[#,-1 ) 

n - t  ~ . +h Z ( Z ~,(~--U +n)' (~--~)-"~-~+",  
]~k[>l \ i=o 

and it is obvious that  our requirements on z are fulfilled. 

4. Centered Symmetric Compact Difference Methods 

We will first look at second order methods, and separate between even and 
odd n. 

For n even the difference operator L h is defined by substituting all differential 
operators according to 

d ~ 
dxt 

where 2 h D  o = E - - E - L  

We get 

[(D+ D_) z/* for l even (4A) 
- -  -+ IDo(D+D_)q-1}lz for l odd 

Lh v i = (D + D_)"l~v j -F ] , -x  (xi) Do (D + D_)('~-2}/% i + . . .  

-F]o(xj)vj = F ( x i ) ,  J = n / 2  . . . . .  N - - n / 2 .  

The grid is located so that  

= x , - 1  
{4.3) 

I = N h  --  [(q + 1)/2]h (Ix] = in teger  part  of x) 

where u{q}(l) is the highest order derivative occuring at the right. 

The boundary conditions could now be prescribed by simply substituting 
centered second order approximations for all u-derivatives oceuring in (2.7). 
However, there is a simpler way of treating the left boundary, avoiding the 
computing of R! 0 (0), l > 1. Instead of differentiating (t.3) we can directly use 
difference operators and get the difference analogue of (2.5) and of (2.6): 

3 7  R1 {x0) ~1 + . . .  + D~; R~ (x0) ~, = D2 (~0 -- R,+I {*0)) 
: (4.4) 

O:t e l  (x,) ~1 + . . -  + D~ R, (,0) ~s =O:~ (~0 -- R,+I (Xo)). 
The matrix of this system is nonsingular since it converges to the matrix of the 
system (2.6) when h-->0. The complete set of boundary conditions is now derived 
in exactly the same way as (2.7) was derived, we write this new set as 

-u (x0) 

B 2 D~+-lu (x~ = 0 2 .  (4.5) 
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(4.5) has infinite accuracy as long as D~+ Ri(O ), DI+ Ri(xo) are computed exactly. 
To obtain the boundary conditions for the difference approximation we substitute 

1/2 I ( D + D - )  vN-E{p+ll/2] for l even 
u q) (t) --> [Do(D+D_)(l_l}/2VN_tCp+l}/2] for I odd (4.6) 

in (4.5). 

The problem treated in Section 6 serves as an illustration of the derivation 
of the boundary conditions. 

I t  should be noted that  if only odd order derivatives u m (1) occur, accuracy 
is gained by locating x = l  in the middle of an interval and using compact difference 
operators. I t  causes trouble however, if one wants to use Richardson extrapolation 
with halting of the stepsize. 

The approximation Ri (x) of R i (x) is obtained by  truncating the corresponding 

series expansion ~. aikx  k, x = x  o, & . . . . .  xn_ 1. R~ ~1 (0) can be obtained exactly. 
k=0 

When v o, v 1 . . . . .  v2v have been solved for, the solution on [0, ~ is obtained by  
solving (4.4) with Ri(x i )  substituted by Ri(x i ) ,  and then using (t.3). 

To define Lh for n odd we substitute 

d'u l I { ( D + D _ ) ' I ' ( I + E ) v  i for l even (4.7) 
dx* Jx=x~+h/z -+ [D+ (D+D_){~-I)/2vi for l odd 

and get 

Lhv i = D +  (D+ D_)I~-ll/2v i +1~_~ (x i +h/2)  �89 (D+ D_)1~-2}/2} (I  + E )  v i + ... 
(4.8) 

47~o(Xj -4-h /2)v j '~F(x j+h/2) ,  i = ( n - - t ) / 2  . . . . .  N - - t  - -  ( n - -  1)/2. 

I f  ]~(x) and F (x) are known only at gridpoints, there values in between are taken 
as meanvalues. Since the difference operators are properly centered at x i + h i 2  
it is clear that  L h has second order accuracy. 

The location of the grid is again defined by  (4.3), and the boundary conditions 
as above. 

Compact approximations of arbitrary high order accuracy can always be 
achieved by  differentiating the differential equation one or more times. Consider 
for example the equation (t.4) and the second order approximation of u (2) (xj) 

h* D+ D_ u (xi) ---- u{21 (xi) + ~ -  ur (xi) + # (h4). (4.9) 

By differentiating (t.4) we obtain 

[~ ] [~ ~ 
, , { , ) ( , ; )  = 7 , ,  + 7. (- - - ( 4 a o )  

By using second order approximations for u (~) (xi) and u (~ (xi), and substituting 
the right hand side of (4.10) for u (~1 (xi) in (4.9), a fourth order approximation of 
u ~2~ (xi) is obtained, which uses no more than 3 points. For u (1) (xi) one can do in 
the same way, and if fourth order approximations are used even in the boundary 
conditions, a fourth order compact approximation is obtained. 

In  this way compact approximations with an r order accuracy can be con- 
structed for all even r and arbitrary n. 
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We can now prove the convergence theorem for the class of methods we have 
described above: 

Theorem 4.1. Assume that _~r (xi) are calculated as described above with 

lYe~(xj)--R~(xi)l<=r i = 0 ,  t . . . . .  ~ - - 1 ,  i = t , 2  . . . . .  s + t ,  (4.11) 

and that u (x), /i (x), F (x) are sufficiently smooth. (This last assumption is used 
throughout the rest of the paper.) Then there are constants K 1 (6), K 2 (6) depending 
on ~ only, such that the solution to the r-order method described above satisfies 

II" -v i i  <Kl(~)h" (4.t2) 
and 

max u--vl<=K2(6)h'. (4.13) 

Proo/. The boundary conditions are derived by solving (4.4) for (Z 1 . . . . .  O~ s and 
plugging these into the rest of the equations. Since the R i (x)'s are infinitely dif- 

ferentiable at x ---- 8, (4.1 t) implies IDa_ h', (x0) -- D~_ R, (x0) [ --< 0 (h'), and therefore 
the elements of the inverse 

] D~ Rl ( x~ " " D~ R~ ( x~ ] 

[D~ R 1 (xo) D~t R~ (Xo) ] 

have errors less than ~ (h'). If r-order approximations are used for u l0 (1) and 
R! l) (0) are computed exactly, then it is clear that the boundary conditions have 
r-order accuracy and (3.8), (3.9) are valid, G, gl being bounded functions. Since 
L h is compact, (4A2) follows from Theorem 3A. 

Approximations ~i of ai are obtained from (4.4) with R i (xi) substituted by 
Ri (xi) and u i by vi, and we have 

With v (x) defined for 0 ~ x _< ~ by 

v (x) = Z ~iRi(x) + ~,+1 (x), 
i=1  

(4A3) is immediately obtained, and the theorem is proved. 

5. Higher Order Symmetric Non Compact Difference Methods 

If we want higher order approximations without using differentiated forms of 
(t A), non compact operators must be used. Even order differential operators can 
be formally written as 

~x2~ -- (D+ D_)  ~ ~, fl~(h'~D+D_) ~ 
~=o (5.t) 

=--D~O+(D+D-) ~ ~ flk(h2D+D-) k 
k = M + l  

where D~ 20 denotes a symmetric r = 2 (M + t) order approximation. 
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Odd order operators can be wri t ten 

Ox~l+~ =E-~D+ (D+ D_) l ~. flk (h~D+ D- )  ~ 
k = 0  c o  ( 5 . 2 )  

=--rqz~+l)'~, -r-E -~r~'+ (D+D_) l ~, fl,(h*D+D_)~. 
k = M + l  

We have 

Lemma S.1. h(, ~0 and D ?  '+x~ fulfill the root  condition ([ ~i] * t) of Theorem 3.1 
for any  r and l. 

Proo/. We apply (5.t) to the function e ~z~~ and obtain with ~ = z~coh 

oo 

(2~) z~= (2 sin~) 21 ~, flk ( - - t )~(2  sin~) 2~. 
k = 0  

If  0 =s in~ ,  then 
oo 

(arcsin 0) ~ ---- 02J Z flk ( - -  t )~ (2 0) 2~. (5.3) 
k = 0  

Since the coefficients in the power series for arcsin are all positive,/5 k must  have 
al ternating signs and flo = t.  

The  characteristic equation (3.6) corresponding to D~ ~0 is 

M 

Z ~(~-2 +~-~)~=o. 
k = O  

If  z = e i~ - -  ~ ~ 0 ~ 7~, then this equat ion goes over into 

M 

~. fl~ (--1)k (2 sin (0/2))2k ~_ 0. 
k=0 

Since flk have al ternat ing signs and r0 = t,  this is impossible for any real 0, and 
the lemma is proved for De, 20. For  odd order operators we get analogously the fl~'s 
defined by  

oo 

(arcsin 0) 2z+1 = 021+1 ~ flk (--t)~ (2 0) 2~ (5.4) 
k = 0  

and precisely as before we conclude tha t  D zl+x fulfills the root condition. - - r  

L h is now defined by  subst i tut ing the r-order approximation D~ 0 for ~/a  x l as 
in Section 4 and the grid is fixed by  

t = ( N - - [ ( q + t ) / 2 ]  - - M ) h  if q > 0  (5.5) 

= N h  if q = 0 .  

(u Iq) is the highest order derivative occurring in the  boundary  conditions at  
x = t .  ) The operator  Q defined by  (3. t ) is symmetric,  i.e. y_ ,  + i -~ Yu- i, 1 = O, 1 . . . . .  

+v) /2  where p + v  is even. Therefore, if xk is a root of (3.6), then ~1  is also a 
root, which means tha t  the number  of ~ ' s  inside the unit  circle is equal to  the 
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number outside. Since the stability of the two point boundary value problem is 
equivalent to the stability of both half line problems (cf. [5, Thm 3.5]), it then 
follows that  M extra boundary conditions must be given at each boundary. 

We first consider the fight half line problem and define the extra boundary 
conditions at x = 8 by supplementing (4.4) with 

~. Dl+Ri(xo)~,--Dl+uo =Dt+Rs+x(Xo), l = n  . . . . .  n + M - - I .  
i=1 

Theorem 5. I. The approximation defined above with the condition v EL, (8, oo) 
is stable. Therefore if R~(xi), j '=O, t . . . . .  n + M - - l ;  i = t ,  2 . . . . .  s + l  are 
calculated as described in Sec. 4 with (4.11) satisfied, and if the fight boundary 
conditions are stable with an accuracy according to (3.9), then the estimates 
(4A2), (4.t3) are valied. 

Proo[. The solution to (3.4) is 

Y i =  ~' (i~l(Tki"i) ~lk' 
I~kl<X \ i=0  

where i k denotes the multiplicity of ~, and where 

y, 
t~kl<l 

The boundary conditions are Y0 =g~, hD+yo = g , + l  . . . . .  where gi denote lower 
order terms, and therefore Yo, Yl . . . . .  can be solved for explicitely. The determina- 
tion of the ak r is now equivalent to the determination of the interpolating func- 
tion for the points (0, Yo), (1, Yx) . . . .  with e a,x, xe a,x . . . . .  e a'~, . . . .  as basis functions, 
where ~r = e  ~. But  this set of basis functions is linearly independent on any 
x-interval and satisfies the Haar-condition. Hence, the interpolating function is 
uniquely determined and the estimate (3.7) is valid. 

By  the same arguments as in the proof of Theorem 4.t it is easily seen that  
the accuracy of the boundary conditions is according to (3.9) (actually higher order 
accuracy than necessary is obtained) and the theorem is proved. 

We will now give examples of stable boundary conditions to the right. 

Theorem 5.2. The left half line problem is stable for r = 4  with the extra 
boundary condition defined by a 3rd order accurate approximation of L u  = F  
at x = XN--~/2 which uses no other points than xN_~_ z . . . . .  x~. (By Theorem 3.t 
the accuracy is sufficient to give an overall 4th order convergence rate.) 

Proo/. From (5.3), (5.4) we get/50 ---- 1,/51 = - - n / 2 4  for the 4th order approxima- 
tion of O~/~x ". The characteristic equation (3.6) therefore is 

or equivalently 

which has the root 

n ( ~ _ 2 + n _ 1 )  = o  

- z + t = 0  (5.6) 
n 

= ( t 2  +n + Vt44 + 24n)/n > 1. (5.7)  
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The 3rd order approximation is defined by  

(D+D-)nl2( I -  24 h D_)VN_[(n+l)/2 ] 

for n even, and by  

E-~D+ (D + D_)(n-1)/2(I-- ~4 h2DZ__) VN_[(,~+I)/2] 

for n odd. Since the general solution in L 2 (--0% t) can be written v i =trail -y  we 
have only to show that  the characteristic equation corresponding to the operator 

I -- ~ h~D ~ _ 

( n ) ~ 2 n  n 
t - - - ~ -  + ~ -  ~ 24 - -0  (5.8) 

is not satisfied by ~ for any n > O. When multiplying (5.8) by  24/n and adding 
it to (5.6) we get the equation 

X2-- ;g  = 0  

which is not satisfied by nl, and the theorem is proved. 

We will also treat  the method of extrapolating at  the boundary: 

Theorem S.3. Assume that  r and n are such that  (3.6) has no multiple roots. 
Then the left half line problem is stable if the extra boundary conditions are 
defined by  

(hD_)'-tD"_VN = 0 ,  l = t  . . . . .  M. (5.9) 

In particular, the problem is stable for all n > 0 if r = 4 or r = 6. (The accuracy 
of (5.9) is again sufficient by  Theorem 3.1.) 

Proo/. By assumption the general solution to (3.4) in Lz ( - -  oo, t) can be written 

M 

k=l 

Therefore there is a non trivial solution satisfying (5.9) if and only if 

F ( t - - ~ 1 )  n+r -1  (1--N2) n+ r -1  . . .  (t--~I~M) nq ' r -1 

Det [ ( t - - x l )  ~+'-2 
! 

kO - . . . . . . . . . . . . . . . . . . .  (1 - 

Since xk 4 = 1 this is equivalent to 

. . .  

Det (1--~1)M--2 = "4- H ( ~ r  
k>i 

i . . . . , . . . . . . . . . . ~  

which is impossible. 
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If  r = 4, then M = t and  there  can be no mul t ip le  roots. I f  r = 6 there are 
mul t ip le  roots  ~ if and  only if there  are mul t ip le  roots  ~7 to  

/~o +~lV +/~,v* =0 .  

This is clear b y  the  fact  t ha t  the  equat ion 

g - -  2 + ~ - 1 : 9 ~  

has mul t ip le  roots  only  on the  uni t  circle. 
n 2 2  

F r o m  (5.3), (5.4) we g e t / ~  = ~ -  (n + ~ - ) ,  hence the  condi t ion for double  roots  
is 

72 n +  - - ~ f f  = 0 .  

This  is impossible for n > 0, which proves the  theorem. 

6. Approximat ions  of Positive Type to Second Order Equations 

In  this  sect ion we consider the  pa r t i cu la r  equat ion (t.4) wi th  0 < a  < 1. 

The general  solut ion is given in Section 2 b y  (2A), (2.2). The  problem is well 
posed wi th  the  b o u n d a r y  condit ions 

u(o) = A  
u 0 )  = B .  (6A) 

The  b o u n d a r y  condit ions as descr ibed in Section 4 are der ived from the  sys tem 

R 1 (0) ~1 + Rz (0)*% = A 

u ( t )  = B  
(6.2) 

R~ (Xo) ~1 + R~ (Xo) ~ = u (Xo) 

D+ R 1 (xo) ~1 + D+ R 2 (Xo) ~2 ----- D+ u (Xo). 

F r o m  the  last  two equat ions  (which correspond to (4.4)) we obta in  

u (Xo) D+ R 2 (xo) --  R 2 (xo) D+ u (xo) 

{Xl = R 1 (Xo)D+ R 2 (xo) --  Rr (xo) D+ R x (xo) 

R 1 (xo) D+ u (xo) -- u (xo) D+ R 1 (xo) 
~ - -  R 1 (Xo) D+ R 2 (x0) -- R 2 (xo) D+ R x (Xo) 

and  since R x (0) = t ,  R 2 (0) = 0 the  discrete bounda ry  condit ions will be 

A 
~ ( ' o )  v~ [~,~(xl)~(Xo)-~(xo)~ (xl)] (6.3) Vo ~ ( ~ )  R~(x~) 

u N = B  (6.4) 

where x 1 = 6, XN = t .  

Using the  s t anda rd  second order  approx imat ion  

~7 
L h v i = D + D _ v  i + 7 i  Dovi--7:v  i = 0 ,  /" = 1 ,  2 . . . . .  N - - t  (6.5) 
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no more  boundary  conditions are needed. The  theory  f rom the previous sections 
can now be applied, and we can immedia te ly  show h2-convergence provided 
R1 (x), R~ (x) are calculated sufficiently accurate.  The  8-dependence in the error 
es t imate  is obta ined b y  considering the  t runcat ion  error of Lt, u which contains 
t e rms  proport ional  to h2u (41 (x) and to h~x-Xu 13) (x). From the representat ion (2.t) 
we therefore get 

Lemma 6.1. There is a constant  c such t ha t  the solution u(x)  to (1.4), (6.1) 
satisfies 

IL~,,(xj)i<ch~xi-8-`', i - - t ,  2 . . . . .  N - - l .  (6.6) 

The  error es t imate  will therefore be proport ional  to 8 -3 - ` ' h  *. The  aim of this 
section is to sharpen this to a 8 -x - ` ' h  * est imate.  In  order to do tha t ,  we will use 
some of the results in [4]. We s ta r t  wi th  two lemmas  given there:  

Lemma  6.2. The  opera tor  L ,  is of posit ive type  and therefore fulfills the 
m a x i m u m  principle: 

L h v i > O ~  m a x  v i ~ m a x ( 0 ,  v v v~). 
2<i~_N--i 

Lemma 6.3. Le t  d be a constant  with d >  1 + 1 6 v  2. Then 

Lh(x] - 1 - ` ' - d )  > x 7 ~ - * / 4  for 1 2 h ~ x i ~ t - - h .  (6.7) 

In  the same w a y  as in [4] we also define 

z (x) =-- 4ch '  (x - x - "  - -  8 -~-` ' )  - - l w  (8) 1 

where c is defined b y  (6.6) and  w ( x ) = u ( x ) - - v ( x ) .  Then  b y  (6.6), 

Lhz (x) > ch z x -z-`" - -Lh lw  (~)1 

= c h,  x - 3 -  o + r l w @ 1  > I Lh u (x) l = I L~ ~ {x) l 

and therefore Lh (z (x) 4- w (x)) > 0. B y  the m a x i m u m  principle we have  z (x) 4- w (x) 
< m a x  (0, - -  I w (6) 14- w (6), z (t)) = 0. Hence  

I~ (*) I--< I ~ (x)I < I~ 0)1 < 4 ~ h, 8 -~-o  + ~ (~) (6.8) 

for x-~-x2, x3, . . . ,  x N. 
So, wha t  still remains is an es t imate  of w (8) = w 1. 

We define 
M - - I  

~(x)  = Y, a~x~+",, i = t ,  2; 
k = 0  

/~ =0 ; /~2  = t - - a ,  

and  use these as approximat ions  of R~ (x). F rom (2.2) it  is easily seen tha t  

[Ri(x  ) - -  Ri(x) I < const 8M, i = t ,  2, X = X  O, X l. (6.9) 



Boundary Value Problems 341 

Taking  Lhv 1 ----0 and (6.3) together  consti tutes a new operator,  acting on v 1, va. 
We  denote this b y  L~ and prove:  

Lemma 6.4. There are constants  cx, c a independent  of ~ and  h such t ha t  

ILgwx I ~<~ cl 8M-Xh-I -J-c2f~-3-~h 2. (6.t0) 

Proo/. We have  

L~w, -~ L~ ux = D+ D_ u~ --}-G ~-I Do~,I -- ~ ' i  "+ h-2 T (h) (6.1 t) 
where 

[ R, (*~) u~ +A -~* (~0) �9 ~'~ (xx)} 

,R,(.o) {R~ (Xo) R.(-o) })] - -  ~ R~x0-~) u~ + A R z (xx) �9 R, (x~) 

We first es t imate  

R~ (Xo) /~, (Xo) 
R~ (xx) -/~2 (xl) R, (x~) 

= _(~ - -  h) 1 - a  ( - -  a2M Mh ~5 M-x + ~ (M2h ~ ~5 M-2 + 6M+x)) 
~1-o(t + 0(~)) 

= g~ (aa U M h (~M--1) ~ (~ (h (~M--1), 

if M is chosen such t ha t  

II max  (Su, 

II < csha -x-  (6.t3) 

M >  21ogh 
= log~ - - l - - a .  (6.14) 

Proo/. From (6A0) we get 

( . , : a ( ~ - l h )  = [  ( G ) R,(XO) " o, _.L. lt2/O[l,_lt~M_l s l - - ~ -  wa 2 + z h a - - } - - ~  - & l h  - - ~ - - T - , ,  I ~ l ~ ' - ~ v -  - - - ' "  ~ I" 
"/~2 iX1) J 

(6.t2) 

for h ~ ho, h o > 0. 

Therefore 

the last inequal i ty  following f rom (2.2b) for sufficiently large M.  

In  the same way  we obtain 

R~ (Xo) R~(~o) ~ (xx) 
R1 (x~ R2 (xl) R1 (xl) - -  R1 (Xo) + R--~{xx ) 

~ d) (alm M h(5 M-1 + a2M M h ~ M-l) < 0  (h ~5M--1). 

The first pa r t  of (6At) is es t imated analogously to (6.6) by  const hac~ -3-*,  and the 
l emma is proved.  

We can now prove the  main result of this section: 

Theorem 6.1. There is a constant  c a independent  of c~ and h such tha t  the error 
w = u - - v  satisfies 



342 t3. Gustafsson 

Since 

we have 

with 

_~(xo) 
R2 (Sdl) - -  | "q- ~ (h ~-1) 

w 2 =~'W 1 -~- d7 (h (~M--I -~- h4 (~ -3-a) (6.t 5) 

~=1  "q-( t-  ~ ~-1 h) -1 iTh 2 _~ (1--0") h~ -1 -q-r (h2~-2)] > t 

for h sufficiently small. 

We now use the first inequality of (6.8) and get 

[w2] ~ [Zz[ = [4c h 2 [(~ + h) - l - a -  ~-I-~ _ _  ]Wi] ] 
--[4cn~-l-~ +q) h~-l+r 

Therefore, as a consequence of Lemma 6.4 and (6.15) 

h~-~lw~ I = const max (h(~ M-~, h4~-a-L h3~ -~-~) 

or equivalently 
[W 1 ] "~ const max ((t v, h z (~-1-,). 

When taking (6.8) into account, the first part of the theorem is proved. The 
second part follows immediately from the inequality 

(~M =< h 2 ~-x- , .  

(6.14) shows that  the number of terms in the expansions can be kept very low. 
For example, if (5 = 0 . t  then a three times finer mesh demands only one more 
term in R i (x). 

7. Numerical  Experiments  

The numerical experiments (performed by Tom Smedsaas) were made on the 
Eq. (2.4) with a = 1 / 2  and boundary conditions u ( 0 ) = 0 ,  u(t)----cos t,  which 
has the solution u = x l - ~  In order to make the experiment realistic, the 
coefficients in the series expansion of cos x were generated recursively, with the 
number of terms determined by  (6.14). Three approximations were run: 

Scheme t : Compact second order approximation according to Sec. 4. 

Scheme 2: Compact fourth order approximation according to Sec. 4. 

Scheme 3 : Non-compact fourth order approximation according to Sec. 5. 

As extra boundary condition at the right boundary for Scheme 3 a compact 
fourth order approximation of L u  was used at x = x n _  v To make it 3rd order 
accurate only, the term hS/t0 was added to F (XN_x) .  

The first three tables below show the maximum error Wmax = max [u..--vii, 
O~_]~_N 

where the discretization is made over the whole x-axis such that  x o = O, XN = 1. 

(The difference scheme is of course used on the subinterval [~, t]  only.) 
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T a b l e  1. Wmax f o r  S c h e m e  t 

N 

0.1 0 .2  0 .4  

4 0  7.7 �9 10 -4  1.6 �9 10-4 1.8 �9 t 0  - s  
80  t . 7  �9 10 -4  3.8 �9 t 0  -8 4 . 2 .  t 0  -8 

160  4 .0  �9 10 -8 9.1 �9 10 -6 t . 0  ' t 0  -4  

320  9 . 6 "  t 0  -6  2 . 2 . 1 0  -8 2.5 �9 t 0  -v  
6 4 0  2 ,4  �9 10-4 5.5 " 10 -~ 6.1 �9 t 0  -8 

T a b l e  2. Wma x f o r  S c h e m e  2 

N 

0.1 0 .2  0 .4  

4 0  t . 5  �9 10 -~ 7 .9"  10 -~ 3.7 �9 10 -2 
8 0  7 .2  �9 10 -7  4 .4  �9 10 - s  2 . t  �9 t 0  -9  

t 6 0  4 .0  �9 10 - a  2 .6  �9 10 -9 t . 3  �9 t 0  - l ~  
320  2 .3  �9 10 - "  t . 6  �9 10 -1~ 8.7 �9 10 -12 
6 4 0  1.4 " t 0  - 1 0  t . 3  " 1 0  - 1 1  3.6  �9 10 -22 

T a b l e  3. wmax f o r  S c h e m e  3 

N 

0 , t  0 .2  0 .4  

4 0  8 . 2 -  tO-~ 3.9 �9 10 -6  1 . 8 . 1 0  -T 
80  3 .6"  10 -6  2.1 �9 10 -T 1 . 0 . 1 0  -8  

160  2 .0  �9 10 -~ 1.2 �9 10 -8  6 . 2 .  t 0  -1~ 
320  t . 2 .  t 0  - s  7.6 �9 10 -1~ 3.7 " 10 -11 
6 4 0  7 . t  �9 t 0  -1~ 4 . 2 "  10 - n  2 .5  �9 t 0  -22 

T h e r e  i s  o b v i o u s l y  a n  h ~ - c o n v e r g e n c e  i n  t h e  f i r s t  c a s e ,  a n d  a n  h 4 - c o n v e r g e n c e  

i n  t h e  o t h e r  t w o ,  e x c e p t  f o r  ~ = 0 . 4  a n d  l a r g e  N w h i c h  i s  d u e  t o  r o u n d i n g  e r r o r s  

( a n  I B M  370]t 55 c o m p u t e r  w a s  u s e d ) .  

T h e  f o l l o w i n g  t a b l e  s h o w s  t h e  6 - 1 - " - d e p e n d e n c e  o f  t h e  e r r o r  a s  w a s  d e r i v e d  

f o r  S c h e m e  t i n  S e c .  6 .  

T a b l e  4. Wmax f o r  S c h e m e  1, N = 6 4 0  

0 .025  0 . 0 5 0  0 . 1 0 0  0 . 2 0 0  

Wmax 2.8  �9 t 0  - 6  8 . 4  �9 t 0 - 4  2 . 4  �9 t 0  - s  5 . 5  �9 1 0  - ~  

Acknowledgement. I w a n t  t o  t h a n k  P r o f e s s o r  H e i n z - 0 t t o  K r e i s s  w h o  r e a d  a n d  
c r i t i c i z e d  t h e  f i r s t  v e r s i o n  o f  t h e  m a n u s c r i p t .  
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