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Summary. A numerical method is treated for solving singular boundary value
problems with solutions that can be represented as series expansions on a subinterval
near the singularity. A regular boundary value problem is derived on the remaining
interval, for which a difference method is used. Convergence theorems are given for
general schemes and for schemes of positive type for second order equations.

1. Introduction
Consider the differential equation
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on the interval 0 < x =< 1. By letting one or more coefficients f,(x) be infinite at
x =0 the equation becomes singular there. Since there are singular components in
the solution we demand that # and its derivatives up to a given order  shall exist
and be bounded for 0 =< x < 1. Under this restriction it is assumed that a unique
solution is determined by the boundary conditions
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where s may be less than #.

The method treated in this paper consists of a series expansion at a small
interval near x =0 and a difference method at the rest of the interval. For that
purpose we assume that there is a positive constant é such that the smooth part
of the general solution to (1.1) can be written

u(x) = ZI“,'R.' (%) + R4 (2), s=n (1.3)
f==
for 0 < x <8, where R, (%), ..., R (x) are linearly independent solutions to L% =0,
and where R, () is a particular solution to (1.1). R;(x) consists of one or more
terms of the form ¢ (x) D, a,x*, where ¢ () is an elementary function and the
k=0

@, s are recursively defined (see the example in Sec. 2). The derivation of R (%)
in general is treated in [2]. It is assumed that df R, (x)/d #? exists at x =0, with ¢
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defined above. The boundary conditions could make sense without this last
restriction, but for a well posed problem, R;(x) can always be defined such that
it is fulfilled. This will be explained in the next section where a simple example
is treated.

Our method is briefly described as follows: We first calculate approximations of
R;(x). Then using (1.3), we formulate a new regular problem on the interval
[4, 1] with boundary conditions given at x =§. We then solve this problem by a
difference approximation, solve for the coefficients «; and calculate # on [0, §]
using (1.3).

If a difference approximation is used on the whole interval [0, 1] the conver-
gence rate will be very poor. Jamet [4] studied the equation

d?u c du

e —Tx=0, 0<0<1,TZ0, (1.4)

with boundary conditions #(0) =1, #(1) =0, and gave an error estimate ~A'~*
for the standard three point approximation. Ciarlet ¢f al. [1] later developed a
Ritz-Galerkin method with an error estimate ~A*~" for a slightly generalized
problem.

We will show that with a centered 7-order accurate difference approximation
on [4, 1] we get a convergence rate ~ 4’ on the whole interval provided R;(x) are
calculated with 7-order accuracy.

2. Formulation of the Regular Problem

We will first study the Eq. (1.4).
The general solution is obtained by formally differentiating
w(x)=a"Y a5, ay=+0.
k=0
Possible values of 7 are determined from the indicial equation
m(m—1-+0)=0.

Accordingly, for 0 ==1 the general solution can be written
oo o0
u(x) =0y 2 ay 8% +op 217 ) ag, 4* (21)
k=0 k=0

where the coefficients are determined recursively from

Ta1,k~2

M= FR—1%o) (2.2a)
. E=2,3,...
Tag,k—2
ﬂ2k=—k*m (2.2b)

a50:1' a,~1=0, 1:=1,2.
For ¢ =1 we get the general solution of the form
oo oo e}
U=0; 2, @G +oy (lnx PATAES) bkxk) (2.3)
k=0 k=0 F=2

with a,, defined by (2.2a) and where b, are uniquely determined by the a;'s.

22¢
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For this particular example, the series expansions are valid on the whole
interval (0,1 ]; in general we need the expansions on (0, d] only.
If 0 =1 we must have ¢, =0, and only one boundary condition can be pre-

scribed. If 0 <<o <1 both components of the solution are bounded, two boundary
conditions must be prescribed, but cannot contain [%L—o'

Consider now the inhomogenous problem

d*u o du
Ihaiadhidl =_x1-—a

dx? x¥ dx

cosx — (2 —a) ™% sinx. (2.4)

The general solution to (2.4) for o1 is % =0, 4oy 2~ 2" cosx where
the first two terms are solutions to the homogenous problem. If 1<<¢ <3, the
solution is bounded iff «y = — 1, therefore it can be written # =0 - 21~ (cos x — 1),

which is on the form (1.4) with s =1. [%L=o could formally be entered into the

boundary conditions, but can always be substituted by the constant 0.

These arguments can easily be generalized to more general cases, and therefore
the assumptions made in the previous section are reasonable.

We will transform the problem into a problem on the interval {4, 1], and
therefore boundary conditions must be derived at x=4§. To achieve that, the

differentiated forms of the expansion (1.3) are first substituted for »%(0) in (1.2).

(From now on the notation «® (£) will be used for {%L_E.) This gives a linear
system of equations for %\’ (1), 1 =0, ..., #, and the unknown coefficients ;. The

differentiated forms of (1.3)

Ry (8)oy + +-+ + R (8) o, =u(8) — R 1 (6)
: (2.5)
R (@)o + -+ + RO (3) o =ul"(8) — RV (0)

make it possible to express the «,’s as linear combinations of the ! (8)’s. This
is true because the n-order Wronskian for the fundamental solutions to L# =0
is nonsingular at x = ¢, and we can pick s equations out of (2.5) with a nonsingular
matrix:
R (8)ay + -+ + REV(8) oty =u®) (8) — REP; (6)
: pooi : (2.6)
R{? (0)oy + -+ + + RE () e, = u (6) — RE; (9).

The so obtained expressions for o, are plugged into (1.2) (with (1.3) sub-
stituted for #) and into the rest of the Eq. (2.5). In that way » linear equations
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are obtained, where the elements of the matrix B, and the vector @1 depend on
RY (0), RY(8).

When the solution to (1.1), (2.7) is obtained on [4, 1] the solution on [0, 6] is
obtained by solving (2.6) for & == (ay, -.., &) and then using (1.3).

We will make the assumption that the original problem has a unique solution
with the assumptions made in sec. 1 fulfilled. From the arguments above it is
then clear that this solution is also obtained as solution to the problem derived
above.

3. A Stability Theorem for the Regular Problem

We will first concern ourselves with the question of how to get a numerical
solution to the regular problem (1.1), (2.7). The theory by Grigorieff [3] and
Kreiss [5] for difference methods can be directly applied here. We assume that
the reader is familiar with the latter paper. We will look in some detail upon the
way of treating the boundary conditions and the accuracy thereby obtained when
using centered difference operators for approximating L.

Let % be the steplength and define gridpoints x; =jh+6—rk, 1 =0,1,..., N,
where 7 is an integer and depends on the width of the difference operator L,.
Using the notation v; =v(x,), Ev; =v;,q, AD v;=E —I, hD_ =TI —E, we make

the following assumption on the approximation L,v;=F;:

Assumption 3.1. That part of L, which approximates d"/dx" can be written
©

QD% = X y;E'Dy (3.1)

==

where the y,’s are independent of x,4. Furthermore the lower order terms of L,
do not use more points than QD% does. If gy =—v» then L, is called compact.
This assumption is not restrictive since all operators used in practice to our
knowledge fulfill it. For example the standard second order approximation
D, D_ to d*/d x? can be written E -1D? and the corresponding fourth order operator

k2 . . 1 14 1
D,D_— - DYD* is equivalent to (- B+ 42 E-— = 1) D% The
discrete boundary conditions are written in the form
Byv=g, 1=0,1,... (3.2)

where B, contains difference operators of order / and lower. Those boundary
conditions which are of order = # can be written on the form (cf. [5])

N—n

7;0 H; (D%v)=§, Il=n (3-3)

where the equations are linearly independent, and where g, denotes the lower
order terms.
We want to study the solution y; to

Qy;=0, j=%...N—n—py (3-4)
ZHjyi=8, 1lzn (3.5)
7
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and define the characteristic equation corresponding to (3.4) by

2 y;# =0. (3-6)
With the norm defined by |v| =max|v,|, where the maximum is taken over
!

all points where v is defined, we state the following theorem which is a special
version of the results in {5].

Theorem 3.1. Assume that the roots of (3.6) satisfy |x,| #=1, and that the solution
of (3.4), (3.5) fulfills
vl < const max |g,}. (3.7)

If the error w =% —v is a solution of

Lw=WG (3.8)
", I=n—1
Blhw = {hr+n—l-—1gl’ I>n (39)
then it can be estimated by
1] < const ¥ (HG" A (3.10)

In particular (3.10) is always fulfilled if L, is compact.

Proof. This theorem is proved in {5] for the case that all #,’s are distinct.
We refer to that paper and conclude that the only additional difficulty with
multiple »;’s is in the construction of a gndfunctlon z; such that D% z; =1y, where
y satisfies (3.4), (3.5), (3.7) and where |D', z| < const s*~ ’nlagx |8,] for i <mn —1.
Every other step in the proof is independent of the multiplicity of the x,’s.

By assumption

ig—1 e—1 ! X
Yi= lez<1<2 O'ks?) #h+ IZ> (g‘o ori (1 —N ‘f'”)’) N 3.11)

where
|oss| < const max |,
Izn

(0° is here defined as 1).
For every given polynomial Z a;7* it is possible to construct another

polynomial Z b;7* such that

D h(x—1)‘12b i = Za 7o,
=0
By expanding the factors (f 1) into a binomial series the coefficients b, are
obtained recursively by

by, =a,

by s =y s — (x—1)2 [(?)bp+(£f_1)bp_1+...+(f)bl,_‘-], i=1,2,..., .
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This procedure can then be repeated up to order %, and if 2, =0,;, we denote the
so obtained coefficients with &, ;. z then takes the form
tx—1

L I L [
[nk|<1

1=0
tr—1 ! .
1 % (E e -t en—twien
uk 1=

and it is obvious that our requirements on z are fulfilled.

4, Centered Symmetric Compact Difference Methods
We will first look at second order methods, and separate between even and
odd #.
For »n even the difference operator L, is defined by substituting all differential
operators according to

N {(D+ D_)#? for I even 1)
axt  \Do(D,D_)-V2  forlodd
where 24D, =F —E-L,
We get
Lyv;= (D D_y"®v; +f,_1 (%) De(D; D_)~ Dy, 4 ...
+holx)v;=F(x;), j=mn/2,...,N—n/2.
The grid is located so that
0T (43)

1=Nh—[(qg-+1)/2]h ([#]=integer part of x)
where #'9 (1) is the highest order derivative occuring at the right.
The boundary conditions could now be prescribed by simply substituting
centered second order approximations for all u-derivatives occuring in (2.7).
However, there is a simpler way of treating the left boundary, avoiding the
computing of RY(6), {=1. Instead of differentiating (1.3) we can directly use
difference operators and get the difference analogue of (2.5) and of (2.6):

D R, (%g)oy + -+ +D% R (%) g =D’ (“o —R,, (xo))
(4.4)
D* Ry (%g)oy + « -+ + D% Ry (%) oty = Dt (4 — Ry i1 (%))

The matrix of this system is nonsingular since it converges to the matrix of the

system (2.6) when £ —0. The complete set of boundary conditions is now derived
in exactly the same way as (2.7) was derived, we write this new set as

[ (%) ]
1:)1”114 (%)

(1)

=
Il
NG})

(4.5)

ur=D (1)
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(4.5) has infinite accuracy as long as D', R;(0), D", R;(x,) are computed exactly.
To obtain the boundary conditions for the difference approximation we substitute

W (1) {(D+ D_)’/zvN:[(p+1)/2] for I even (46)
Dy(D, D_)=12yy ninye; forlodd
in (4.5).

The problem treated in Section 6 serves as an illustration of the derivation
of the boundary conditions.

It should be noted that if only odd order derivatives %% (1) occur, accuracy
is gained by locating x=1 in the middle of an interval and using compact difference
operators. It causes trouble however, if one wants to use Richardson extrapolation
with halfing of the stepsize.

The approximation &, (x) of R;(x) is obtained by truncating the corresponding

o0
series expansion 2 a;,x%, x=1x,, %, ..., %,_;. RY(0) can be obtained exactly.
k=0

When v, ,, ..., vy have been solved for, the solution on [0, 6] is obtained by
solving (4.4) with R;(x;) substituted by R, (x;), and then using (1.3).

To define L, for # odd we substitute

[ dluJ 3(D.D_)A(I+E)v; forleven 4
d Jemrpie ™ D, (D, D_)t=12y, for / odd (4.7)
and get

Lyv;=D, (D, D_)* WPy, f .\ (x;+hf2) 3 (D D_)*"2P( +E)v; 4 ... “s)

+f0(x;-—}-k/2)v,-=F(xj+h/2), f=m—12,..., N—1 —{n—1)/2.

If f;(x) and F (x) are known only at gridpoints, there values in between are taken
as meanvalues. Since the difference operators are properly centered at x;+-4/2
it is clear that L, has second order accuracy.

The location of the grid is again defined by (4.3), and the boundary conditions
as above.

Compact approximations of arbitrary high order accuracy can always be
achieved by differentiating the differential equation one or more times. Consider
for example the equation (1.4) and the second order approximation of #(® (x))

D.D_u(x)=u®(x,) + % u® (x;) +0 (). (4.9)

By differentiating (1.4) we obtain

[ [ 2
LSk B PR AR

W () =57 (0+2) +7] ) +

By using second order approximations for #® (x,) and (! (x;), and substituting
the right hand side of (4.10) for #® (x,) in (4.9), a fourth order approximation of
#® (x,) is obtained, which uses no more than 3 points. For #(x;) one can do in
the same way, and if fourth order approximations are used even in the boundary
conditions, a fourth order compact approximation is obtained.

In this way compact approximations with an # order accuracy can be con-
structed for all even » and arbitrary ».
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We can now prove the convergence theorem for the class of methods we have
described above:

Theorem 4.1. Assume that INQ,;(xj) are calculated as described above with
|R,(x,) —R,(x)|SOH), j=0,1,...,—1,i=1,2,...,s+1, (4.11)

and that u(x), f,(x), F (x) are sufficiently smooth. (This last assumption is used
throughout the rest of the paper.) Then there are constants K (), K, (6) depending
on & only, such that the solution to the r-order method described above satisfies

Ju—o| <K () (4.12)
and
org?golu—ﬂng(é)h’. (4.13)

Proof. The boundary conditions are derived by solving (4.4) for «, ..., &, and
plugging these into the rest of the equations. Since the R;(x)’s are infinitely dif-

ferentiable at x =4, (4.11) implies [D%, R;(%,) — D R;(x,)| <O ("), and therefore
the elements of the inverse

D" Ry (%) ... Dt Ry (%) ]7"

D" R, (%) ... D’ R (%)

have errors less than @ (#’). If r-order approximations are used for »% (1) and
RY)(0) are computed exactly, then it is clear that the boundary conditions have
r-order accuracy and (3.8), (3.9) are valid, G, g, being bounded functions. Since
L, is compact, (4.12) follows from Theorem 3.1.

Approximations &; of «; are obtained from (4.4) with R,(x;) substituted by
ﬁ,-(xi) and #; by v;, and we have

max|&; —a;| SO ).
(2

With »(x) defined for 0 <x =<4J by
v =2 B Ri(0) + Roia (0),
(4.13) is immediately obtained, and the theorem is proved.

5. Higher Order Symmetric Non Compact Difference Methods

If we want higher order approximations without using differentiated forms of
(1.1), non compact operators must be used. Even order differential operators can
be formally written as

t o0
A —(D,D_} Y f(i*D, D_)"
= e (5.1)
=D® (D, D_)y D B (i*D,D_)
=B +1

where D" denotes a symmetric # =2(M +1) order approximation.
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0Odd order operators can be written

02i+1 =]
s =E?D,(D,D_) Z By (WD, D_)*
- (5.2)
=DV +ED, (D, D} 2 fi(#*D,D.)
k=M+1

We have

Lemma 5.1. D and D{#*+% fulfill the root condition (|| ==1) of Theorem 3.1
for any » and /.

Proof. We apply (5.1) to the function ¢'27* and obtain with £ =nwh

(28)% = (2 sing)¥ Z ﬂk(——1 (2 sing)?*,
If 0 =siné&, then

(arcsin )% Gz’Zﬁ (—1)*(26)2* (5.3)

Since the coefficients in the power series for arcsin are all positive, §, must have
alternating signs and By ==1.

The characteristic equation (3.6) corresponding to D" is

kizuoﬁk (¢ —24+%Y)k=0

If x =¢®, — 7 < 6 <, then this equation goes over into

3 Bu(—1)* (2 sin (02))* =0,
k=0

Since 8, have alternating signs and f, =1, this is impossible for any real 6, and
the lemma is proved for D{*. For odd order operators we get analogously the f,’s
defined by

(arcsin §)2+! = 02’+1Zﬂ( —1)k(26)%* (5.4)

and precisely as before we conclude that D?+! fulfills the root condition.

L, is now defined by substituting the 7-order approximation DY for &0+ as
in Section 4 and the grid is fixed by

0=% 1im
1=(N—[g+1)/2)—M)h if ¢>0 (5.5)
1=Nh i g=o0.

(#2 is the highest order derivative occurring in the boundary conditions at
% =1.) The operator Q defined by (3.1) is symmetric,i.e.y_,;;=¥,_;,7=0,1, ...,
(4 +-7v)/2 where u v is even. Therefore, if x, is a root of (3.6), then »;! is also a
root, which means that the number of x,’s inside the unit circle is equal to the
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number outside. Since the stability of the two point boundary value problem is
equivalent to the stability of both half line problems {cf. [5, Thm 3.5}, it then
follows that M extra boundary conditions must be given at each boundary.

We first consider the right half line problem and define the extra boundary
conditions at x ==3J by supplementing (4.4) with

_ZID'_{_R,-(xo)oc,-——D’+u0=D’+RS+1(x0), l=n,...,n+M—1.
=

Theorem 5.1, The approximation defined above with the condition veL, (4, 00)
is stable. Therefore if 1~2i(x1-),7'=0, 1, ..., n+M—1; 1=1,2,...,5+1 are
calculated as described in Sec. 4 with (4.11) satisfied, and if the right boundary
conditions are stable with an accuracy according to (3.9}, then the estimates
(4.12), (4.13) are valied.

Proof. The solution to (3.4) is

ig—1 . N
3= 3 5 o) A
e T<1

i=o
where %, denotes the multiplicity of », and where

i, =M.
[l<1

The boundary conditions are y,=§g,, 2D, y,=§, 1, ..., Where §; denote lower
order terms, and therefore y,, ¥,, ..., can be solved for explicitely. The determina-
tion of the g;,’s is now equivalent to the determination of the interpolating func-
tion for the points (0, ¥,), (1, ¥y), ... with "%, xeh¥, ..., 4%, ..., as basis functions,
where x,==¢% But this set of basis functions is linearly independent on any
x-interval and satisfies the Haar-condition. Hence, the interpolating function is
uniquely determined and the estimate (3.7) is valid.

By the same arguments as in the proof of Theorem 4.1 it is easily seen that
the accuracy of the boundary conditions is according to (3.9) (actually higher order
accuracy than necessary is obtained) and the theorem is proved.

We will now give examples of stable boundary conditions to the right.

Theorem 5.2. The left half line problem is stable for =4 with the extra
boundary condition defined by a 3rd order accurate approximation of Lu=F
at ¥ =xy_, which uses no other points than xy_,_,, ..., 5. (By Theorem 3.1
the accuracy is sufficient to give an overall 4th order convergence rate.)

Proof. From (5.3), (5.4) we get §y =1, B, =—n/[24 for the 4th order approxima-
tion of &*/9x". The characteristic equation (3.6) therefore is

”n -1y —
1— 51 (#—24x"1) =0
or equivalently )
”z_MK+1 =0 (5.6)

3
which has the root

x1=(12+n+|/144+24n)/n>1. (5.7)
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The 3rd order approximation is defined by

n

(Do D_)* (I — 2% BD%) oy_ iy

for # even, and by

_ n
E3D, (D, D_)n=v (I— 7y thz—) UN— (1))

for n odd. Since the general solution in L,(— oo, 1) can be written v; =ox|~~ we
have only to show that the characteristic equation corresponding to the operator
— P pepe
I—— - i2DZ
RN IV DT
(1 24)” T2 * 2 =0 (5-8)

is not satisfied by », for any # > 0. When multiplying (5.8) by 24/# and adding
it to (5.6) we get the equation
#2—%=0

which is not satisfied by #;, and the theorem is proved.
We will also treat the method of extrapolating at the boundary:

Theorem 5.3. Assume that » and # are such that (3.6) has no multiple roots.
Then the left half line problem is stable if the extra boundary conditions are
defined by

(AD_)~'D" vy=0, I=1,...,M. (5.9)

In particular, the problem is stable for all #>0 if » =4 or » =6. (The accuracy
of (5.9) is again sufficient by Theorem 3.1.)

Proof. By assumption the general solution to (3.4) in L, (— oo, 1) can be written
M -
v,-== Z Uk%%_N, kal>1-
Py

Therefore there is a non trivial solution satisfying (5.9) if and only if

(A—s)" ™1 (I—agy)* T2 (1 —upy)

_ n+r—2 :
Det (1. #) : =0.

Since », <=1 this is equivalent to

(=)™ (1—m)” ... (1 ‘_*MM)M—1
)M——2

Det (1:_x1 E =i H (xk'—x") =0

which is impossible.
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If r=4, then M =1 and there can be no multiple roots. If »=6 there are
multiple roots x if and only if there are multiple roots 7 to

Bo+Pun + B =
This is clear by the fact that the equation
#—2Fxl=y
has multiple roots only on the unit circle.
. From (5.3), (5.4) we get 8, = % (n + 352—), hence the condition for double roots
is
Bl Z)- im0

This is impossible for # > 0, which proves the theorem.

6. Approximations of Positive Type to Second Order Equations

In this section we consider the particular equation (1.4) with 0<<o <<1.

The general solution is given in Section 2 by (2.1), (2.2). The problem is well

posed with the boundary conditions
u(0) =
© (6.1)
u(1) =B.

The boundary conditions as described in Section 4 are derived from the system
R, (0)oy + Ry (0)ay =4
u(1) =B
Ry (0) oy + Ry (9) g =1 (%)
D Ry (%o)oy + D Ry (%) oo =Dy u ().

(6.2)

From the last two equations (which correspond to (4.4)) we obtain
% (%) D Ry (%) — Ry(%g) Dy u(x)
Ry (#9) Dy Ry (%) — Ry(x0) Dy Ry (%)
Ry (%) D u{xo) — (”o)D+ R, (%)
Ry (%0) Dy Ry(%0) — Ry (%0) D1 Ry (%)
and since R, (0) =1, R,(0) =0 the discrete boundary conditions will be

oy =

d2=

Vo — }32(%) U= I?:(lxl) [jéz(xl) El (%) —‘ﬁz (%) El (%] (6.3)

uy =2~ (6.4)

where x; =0, vy =1.
Using the standard second order approximation

thi=D+D_vi+xiiDov,—w,-=o, j=1,2,...,N—1 (6.5)
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no more boundary conditions are needed. The theory from the previous sections
can now be applied, and we can immediately show Z2-convergence provided
R, (x), R, (%) are calculated sufficiently accurate. The d-dependence in the error
estimate is obtained by considering the truncation error of L,# which contains
terms proportional to A2u® (x) and to A2x714/® (x). From the representation (2.1)
we therefore get

Lemma 6.1. There is a constant ¢ such that the solution #(x) to (1.4), (6.1)
satisfies

|Lyu(x)|Sch?x2°,  j=1,2,...,N—1. (6.6)

The error estimate will therefore be proportional to 6=3-°42. The aim of this
section is to sharpen this to a 6~1~942 estimate. In order to do that, we will use
some of the results in [4]. We start with two lemmas given there:

Lemma 6.2. The operator L, is of positive type and therefore fulfills the
maximum principle:

L,v:=0= max v;,<max(0, v, Vn).
Vi = 2iEN—1 = (’ 1 N)

Lemma 6.3. Let d be a constant with d>1 41672 Then
Ly (%177 —d)>x737°(4 for 12h<x;<1—h. (6.7)
In the same way as in [4] we also define
#(x) =40k (3770 —71) — |10 (9)|
where ¢ is defined by (6.6) and w (%) ==u(x) —v(x). Then by (6.6),
Lyz(x)>ch?x~ 37— L,|w(d)|
— ol 5730 el (3)| 2 Ly =| Lo ()|

and therefore L, (z(x)4- w (%)) = 0. By the maximum principle we have z(x)4- w (x)
=max (0, —|w(d)| L w(d), z(1)) =0. Hence

| (x)| <|2(x)| S|z (1)[<4ch267 1% +w () (6.8)

for x =%, %3, ..., Xy
So, what still remains is an estimate of w (6) =w;.
We define
- M—1
Ri(x) =2 apa**h,  i=1,2;
k=0
M =0; uy=1—o0,
and use these as approximations of R,(x). From (2.2) it is easily seen that

|R;(x) —R;(x)|<consté¥, i=1,2, x=1x x,. (6.9)
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Taking L,v; =0 and (6.3) together constitutes a new operator, acting on v,, v,.
We denote this by Lf and prove:

Lemma 6.4. There are constants ¢, ¢, independent of § and % such that

|[LPw, | < e 8™ A1 4-c, 6737 R2. (6.10)
Pyoof. We have

LPw,=LBu, =D, D_u,+06Dyuty —tu, +h2T (h) (6.11)
where

oy, ok [ Ry(x) 5 Ralx)
= (o+ ) et v R - o)

— (Rl o A (R 0 — el R )|

We first estimate

Ry (%)
Ry(x)

o] -1

y  Reld —Raleo (1= Rt ) F ann)

(%) By (%)

(6 — h)2=0 (— @y py M A OM—1 + 0 (M242 5M~2 4 5M+1))
S=o(1+0(3))

— O (ay MBS <O (MY,

R,
R,

the last inequality following from (2.2b) for sufficiently large M.
In the same way we obtain

Ry (%o 3 R B
Ry (%) — R, gl)) Ry (%) — Ry (%) + 5 By (%)

< O(ay, MhM1 + ay MEM—Y) <O (RSMY).

The first part of (6.11) is estimated analogously to (6.6) by const 226727, and the
lemma is proved.

We can now prove the main result of this section:

Theorem 6.1. There is a constant ¢, independent of § and % such that the error
w =—u—7 satisfies

[ < c; max (6", A26~1) (6.12)
for A = hy, hy>0.
Therefore
| <cah?d=—7 (6.13)
if M is chosen such that
Mz 2B 1o (6.14)

Pyoof. From (6.10) we get

(1— 2o )y = [2 toh—(1— 287 A Ra) | L ppo(hr -1 4 g3,

2 Ry (%)
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Since
ﬁz(”o) _
= = O (B
Ry (xy) +ol )
we have
Wy =yw, +O(RSM 1+ 4157377) (6.15)
with

y=1+(1— 560 [+ (1—0)ho +O (2] > 1

for A sufficiently small.
We now use the first inequality of (6.8) and get

|| < [2] =[4c R[5+ A) 71— 671 — [wy|
=[4ca287 17 [— (1 +0) RO+ O (12673)] — [wy ||
=|w,| +0 (W62,

Therefore, as a consequence of Lemma 6.4 and (6.15)

h 671w, | = const max (h6M =1, hA§=3=C, }36—2—7)
or equivalently
lel < const max (,5M, X3 5—1_,,)'

When taking (6.8) into account, the first part of the theorem is proved. The
second part follows immediately from the inequality

M < ppo1—,

{6.14) shows that the number of terms in the expansions can be kept very low.
For example, if § =0.1 then a three times finer mesh demands only one more
term in R;(x).

7. Numerical Experiments

The numerical experiments (performed by Tom Smedsaas) were made on the
Eq. (2.4) with 0=1/2 and boundary conditions #(0) =0, % (1) =cos 1, which
has the solution % =2a'"°cosx. In order to make the experiment realistic, the
coefficients in the series expansion of cosx were generated recursively, with the
number of terms determined by (6.14). Three approximations were run:

Scheme 1: Compact second order approximation according to Sec. 4.
Scheme 2: Compact fourth order approximation according to Sec. 4.
Scheme 3% : Non-compact fourth order approximation according to Sec. 5.

As extra boundary condition at the right boundary for Scheme 3 a compact
fourth order approximation of L« was used at x =xy_,;. To make it 3rd order
accurate only, the term 4%/10 was added to F(xy_,).

The first three tables below show the maximum error wg,, = Jax, I“i —v,-[,
=1=

where the discretization is made over the whole x-axis such that x, =0, xy =1.
(The difference scheme is of course used on the subinterval [4, 1] only.)
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Table 1. wy,, for Scheme 1

N [
0.1 0.2 0.4
40 7.7°10~4 1.6 - 104 1.8-1078
80 1.7-10~4 3.8-107% 4.2+10°8
160 4.0+ 1075 9.4 -107¢ 1.0+ 1078
320 9.6-10"% 2.2-107° 2.510°7
640 2.4 1078 5.5-1077 6.1+ 1078
Table 2. wp,x for Scheme 2
N [}
0.1 0.2 0.4
40 1.5-107% 7.9-1077 3.7-10°8
80 7.2-1077 4.4-107% 2.1-107°
160 4.0-1078 2.6-107° 1.3 1071
320 2.3:10~° 1.6 - 10710 8.7-1012
640 1.4+ 10710 1.3-10™11 3.6-10712
Table 3. wp,y for Scheme 3
N é
0.1 0.2 0.4
40 8.2-1075 3.9-10"% 1.8-1077
80 3.6-1078 2.1-1077 1.0-1078
160 2.0-1077 1.2-1078 6.2-10710
320 1.2+10°8 7.6 - 10710 3.7-10711
640 7.4+10710 424011 2.5+-10712

There is obviously an A®-convergence in the first case, and an A4%convergence
in the other two, except for § =0.4 and large N which is due to rounding errors
(an IBM 370/155 computer was used).

The following table shows the §—*~°-dependence of the error as was derived
for Scheme 1 in Sec. 6.

Table 4. wy,y for Scheme 1, N = 640

8 0.025 0.050 0.100 0.200

Wax 2.8-107% 8.4-10"% 2.4-1078 5.5-14077
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