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Abstract. Convergence of the finite element solution u h of the Dirichlet problem 
z] u = ~ is proved, where ~ is the  Dirac ~-function (unit  impulse). In  two dimensions, 
the Green's funct ion ( fundamental  solution) u lies outside /-/x, bu t  we are able to 
prove tha t  I[u --  u h ill ~ = 0 (h). Since the s ingulari ty of u is logarithmic, we conclude tha t  
in two dimensions the funct ion log r can be approximated in L * near  the  origin b y  
piecewise l inear  functions with an  error 0 (h). We also consider the  Dirichlet problem 
A u = / ,  where / is piecewise smooth b u t  discontinuous along some curve. In  this case, 
u jus t  fails to be in  HO, b u t  as with the approximat ion  to the Green's  function,  we 
prove the full rate of convergence: I]u--uhH1 = 0  (hE) with, say, piecewise quadratics.  

1. In t roduc t ion  and  S ta tement  of Resul ts  

We  consider  the  e l l i p t i c -bounda ry  va lue  p rob lem:  

A u = /  in  Q 

Bu=O on 8Q (1) 

w h e n  / has two k inds  of s ingular i t ies :  

i) / is the  Di rac  d - func t ion  (un i t  impulse)  a t  some po in t  x o in  D. 

ii) / is piecewise smooth  b u t  d i scon t inuous  on  some s u b m a n i f o l d  of Q.  

The  first  case, / ~ o ,  corresponds  in  phys ica l  p rob lems  to the  idea l iza t ion  
of a po in t  load  a t  x o, a n d  the  second case corresponds  to a d i s con t inuous  loading.  

The  f in i te  e l emen t  a p p r o x i m a t i o n  u ~ is def ined  as u sua l  v i a  the  ene rgy  i n n e r  
p roduc t  a ( .  , �9 ) associa ted to  A - - f o r  smoo th  /, t he  so lu t ion  u to  (t) sat isf ies:  

a (u, v) = (/, v) for all  v in  V. (2) 

V is the  comple t ion  in  the  Sobolev  space Hm(Q) of all s m o o t h  func t ions  v t h a t  
sa t i s fy  the  b o u n d a r y  condi t ions  B v = 0, where  m is the  h ighes t  o rder  of de r iva t ives  
occur ing  in  a ( �9  �9 ) a n d  half  the  order  of A.  G iven  a subspace  S h of V, we define u h 
to  be  t h a t  f unc t i on  in  S h t h a t  sat isf ies:  

a (u h, v) = (/, v) for all  v in  S h. (3) 

W h e n  S h consis ts  of c o n t i n u o u s  piecewise po lynomia l s ,  (3) makes  sense even  
w h e n  / is t he  r I t  becomes:  

a (u*, v) = v (xo) for all  v in  S*. (3') 



318 R. Scott 

However,  the true solution u m a y  be too singular for convergence in energy to 
occur. Indeed, if the dimension of ~2 is n, then:  

a (u, u) = oo whenever n ~ 2m. 

This is the case for the problems of plane stress and plane strain: m = l and n ---- 2. 
However,  we m a y  ask if u h converges to u even though the m-th derivatives 
cannot.  Tha t  this is the case was first proved by  I. Babu~ka It ], [2]. His results 
yield, for the case m ----1, n ----2: 

[lu--u~i]o <=c, hl-*, any  e > 0  

if 3/2 is smooth, and in case 3Q is only Lipschitzian, the exponent decreases 
to  ~ - - e .  We will deal only with the smooth case, where we are able to improve 
Babugka 's  estimate by  removing the e. And  we obtain a similar result in any  

n 
number  of dimensions n, for elliptic equations of any  order 2m. F o r ~ - ~  2m, the 

Green's function u does not  lie in L *, but  we prove convergence in suitable negative 
norrns. 

When / is piecewise smooth, but discontinuous on some submanifold of ~2, 
] lies only  in H�89 any  e > 0. This allows for convergence in energy of u h to u, 
but  we would expect the rate to be h ~+�89 since u is in Hs'~+�89 However,  
we prove in Section 3 tha t  the e again disappears in the error est imate:  

flu = o  +t) (5) 

as long as S h approximates to order 2m + 1. 

One consequence of our results is an approximation theorem for certain singular 
functions. For  example, the singularity near x 0 of any  solution of zJ u----~,, in 
two dimensions is logarithmic. Thus  by  (3), the function log r in the plane can 
be approximated by, say, continuous piecewise linear functions in L z with an 
error 0 (h). This seems, at  first, to violate a saturation theorem, since log r does 
not  lie in H 1 near the origin. Such a theorem would state tha t  if a function v in 
H ~-x can be approximated in the H ~-x norm by  functions v h in H ~ with an 
0 (h) error, then v must  be in H ~. This s t rong saturat ion theorem is false, but  
under  the additional assumption tha t  H vh ]I,~ remains bounded as h-+0,  the theorem 
is true. (The proof is by  showing tha t  the difference quotients of v remain bounded 
in H'~-I.)  This weak saturat ion theorem thus shows tha t  the piecewise linear 
functions tha t  approximate  log r near the origin mus t  be unbounded in H 1. 

Isaac Fried [3] has considered a related approximat ion theorem for singular 
functions, calculating the error in interpolat ing the function r ~ for non-integer x. 
The singulari ty in a crack problem behaves like r�89 and in [3] it is shown tha t  r�89 
differs from its interpolate by  O (h t) in the H ~ norm, even though r�89 lies outside 
HJ near the origin. Thus  the error in the finite element method is also O (h t) 
in the energy norm for the crack problem. In  Section 4, we s tudy  the approxima-  
t ion of singular functions in a general way, but  restricted to a regular mesh 
(Sections 2 and 3 have no mesh restriction). 

Our  methods in Section 3 apply to the general case when f is globally C k-1 
bu t  fails to be C k on some submanifold (which does not  have to be smooth).  
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I lies in H k+~-* (/2), but  we can prove tha t  the error in the finite element method 
behaves as if I were actually in Hk+�89 without the e. Because this general case 
is not  as physically meaningful as a discontinuous 1, we do not  mention it further. 

2. Convergence for the k-Function 

We imagine S ~ to be a space of piecewise polynomials ill a "tr iangulat ion"  
of /2 :  /2 = w e# Each function in S ~ is to be continuous in /2  and a polynomial of 
degree _< K in each element e i. For  simplicity, we will assume tha t  each e i m a y  
be mapped by  an affine t ransformation T i onto a reference element eref, although 
our  results apply when there is more than one reference element and when T i 
is isoparametric. We will also need to assume tha t  the elements are of comparable 
size and shape, which insure by  demanding tha t  entries in the Jacobian of T i are 
bounded by  ch -1. 

In  addition to these assumptions on the tr iangulation and S h, we will say tha t  
S h approximates to degree k in V if for each smooth u in V: 

inf Ilu-v[1 , <=chk-'[lu[[k for 0--<s--<m. (6) 
yES h 

This approximation condition, aside from the difficulty the boundary  imposes, 
s imply means tha t  in each element ei, ally polynomial of degree --< k -  1 can be 
represented by  some function in S h. We will ignore the boundary  difficulties, for 
we feel tha t  our  results will apply to several different techniques that  are used to 
handle curved boundaries:  isoparametric elements, penal ty  functions, inter- 
polated boundary  conditions, etc. 

Our basic assumption on the energy inner product  a ( �9 �9 ) is tha t  it be coercive 
over V: 

[a(v, v) [~ ] lv l ]  ~ for all v in V (7) 

for some positive ),. When u is smooth, this inequality guarantees the convergence 
in H "  (/2) of u h to u. We recall this well-known fact in the following lemma. 

Lemma 1. Let the operator A in (1) be properly elliptic, and let B = (b 1 . . . . .  b,,) 
be normal, covering boundary conditions. Assume that a ( �9 �9 ) is coercive. Then i] S h 
approximates to degree k in V: 

llu-u*L_-<chS- frtL_2  tor 2m<_s<-k. (1o) 

Under  certain conditions on an adjoint problem to (!), it  is known tha t  u* 
converges even faster to u in lower norms. To state these conditions precisely, we 
separate the boundary  conditions B in ( t ) in to  the essential boundary  conditions, 
E, and the natural  conditions, N. (The essential boundary  conditions are those in 
which the order of differentiation is less than m = {  order of A.) Consider now the 

adjoint problem to (2), to find u* in V such tha t :  

a (v, u*) = (v, ]) for all v in V. (8) 

The solution u* satisfies an adjoint boundary  problem to (t) :  

A ' u * = /  in Q 
(9) 

B * u * = ( E , N * ) u * = O  on 0/2 
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where the adjoint  natural  conditions N ' u *  = 0 are determined by  an integration 
by  parts. 

Lemma 2. Suppose that the adjoint problem (8) is regular in the sense that: 
[]u*l],+2m~cs[]/[I , ]or s ~ O .  Then /or 2 m - - k < ~ s ~ m :  

I[u -uh[I, <=ch'~-'llu -u%.  (aa) 
Both  lemmas will be used in proving convergence for singular da ta  in the 

following theorem. 

Theorem 1. Under the hypotheses in Lemmas a and 2, i /  u solves (]) in the sense 
o] distributions/or ] = O,, and u h solves (3'), then: 

n 

_ n (4 ' )  Ilu-uhll,<=C(Xo)fl'-~-" /or 2 m - - k < s < 2 m  2 

i / k ~ 2 m .  1 The constant c(xo) goes to +~o  as x o approaches 052. 

Proo[. We begin by  approximating 0~~ by  a sequence Oh with the following 
properties: 

a) for each v in S h, (6h, v) = v (x0) 

b) llohllo = o  (h-": ')  

c) lla - a ~ l l .  --  o (h'-"/*), ~ < r_< k 

d) Oh----O outside the element e in which Xo lies. 

Postponing the construct ion of Oh, we define an intermediate function U h as 
the solution to (t) for [ = ~,. I n  variational form, U h satisfies: 

a ( U  h, v) = ((~h, v) for all v in V. (t2) 

Condition a) states tha t  0 and ~h are identical linear functionals on S h, so 
we m a y  view u h also as the finite element approximation to U h. Thus by  Lemma t 
and 2: 

n 

It u~ - uhll, _-< ch~'-sllahll0 =o ( : ' -  w-'). 
We now estimate u -  U h. Our immediate  impulse is to appeal to elliptic 

regulari ty theory  to conclude: 

l l u -  uhl[ ,_ c, l l ~ - 0 h l [ , - = .  (13) 

That is, we would hope that the solution u to (I) is related to the data [ by: 

I lul l ,_c, l l / l l , - ,~.  03 ' )  
Inequality (13'), however, is not true for s <=m--�89 

We will show that (13) is indeed true, but with the constant c, depending on 
the distance of x o to ~Q. Once we prove (13), the theorem is completed using the 
triangle inequality: 

I[ u - ~h II, -~ II u - u ~ II, + [[ u ~ - ~h II, 

1 For 2m - - 2  <:k < 2m, we have to include an e in the final error estimate. 
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and condition c): 

We turn now to the proof of (13). 

In  solving elliptic problems with singular data,  one mus t  resort  to more arcane 
da ta  spaces than  the negat ive Sobolev spaces. The  approach suggested by  Lions 
and Magenes [4] is to introduce the space 

Ilvll = Z I[ot=tD~vllo<~176 
l~l<r 

where 0 is a smooth function such tha t :  

c1~-- d(~Sx)s ~c2 for all x in 12. 

d (x, OX2) denotes the distance f rom x to ~/2. 3 - ' ,  for r >--0, is defined to be the 
dual of 3"  with the dual norm. We quote the following theorem from [4] (Theo- 
rem 6.3 of Chapter  2) : 

Lemma 3. Let the operator A in (1) be properly elliptic, and let B = (bl . . . . .  bin) 
be normal, covering boundary conditions [or A.3 Then/or any / in w-,,  r >- O, there 
is a distribution solution u to (1) which satisfies." 

I[ u fr ,_ , c r[ / 

We now apply  L e m m a  3 to u -- U h, and we are left to es t imate  [16 - -  ~h IIz,-,=. 
But  if O l ( ( O ,  then for distr ibutions with support  in/21, the H - ' ( Q )  and 3 - "  
norms are equivalent.  In  fact,  llvL~_,<-_cd(~, ~ ) - ' l l v l l - ,  if supp v ( O  1, where c 
depends only o n / 2  and the choice of 5. B y  d), the support  of 8h is contained in 
some s ( ( / 2  for h sufficiently small, and thus (t 0) is proved.  The  constant  c (xo) 
in the theorem can be es t imated by  c(xo)=0 (d(xo, a/2)s-~m). 

We now construct  Jh- Let  e be an element containing x o (there m a y  be more  
than  one if x o lies on an edge or is a vertex).  Then T maps  e to the reference 
element e~f. Let  ~ be the polynomial  of degree K such tha t :  

f P (y) ~ (y) = P ( T  (xo)) 
eref 

for all polynomials  P of degree K.  The mapp ing  T (xo)-+ ~o is continuous, so we 
conclude tha t :  

sup [~o (y)[ __< C 
3' E t'ref 

regardless of the position of x o in e. Define 6~ by:  

{[oTl~v(Tx) in e 
6h (x) = outside e 

where IT[ is the de terminant  of the Jacobian  of T. Changing variables, we have:  

f ~Sh(x)v(x)dx = f qJ(y)v(T-~y)dy =v(x0)  
�9 f ~  r  

2 We also assume that  (1) has a unique solution for every smooth / to simplify the 
exposition. 
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and condition a) is proved. Our assumption on the Jacobian of T says tha t :  

sup I~h (x) l --< c l T I = 0 (h-"). 
x E ~ Q  

Squaring and integrating over e, we prove b). 
o 

To prove c), we consider the inner product  (8 - -  8,, ~0) for ~ in H '  (f2). By  the 
Bramble-Hilbert  Lemma, there is a polynomial P of degree k - -1  such tha t :  

I[~o-Pllo:<Ch'[l~l[,,. r<=k 

" n (14) 
sup I ~ ( x ) - P  (x)l =< c h ' - ~  li~ll .... r > ~ -  
X E e  

where the subscript e indicates tha t  the integrations take place over e only. Thus:  

(~ - ~h, ~o) = ~o (x0) - P (x0) - f ~h (~o - p) 
e 

n 

and since I[~tlo = 0 ( h - Y ) ,  we  conclude from (14) that:  

n 
r - - - -  $,g 

I ( ~ - ~ , ~ ) l -  ~ c h  ~11~11,, ~<r____k 
and this proves c). 

Remark 1. The contrast  between the ~ - "  and H - '  norms is exemplified by  ~, 
as we let x-+OD. Indeed 

tt 

[l~,[l_,=<Cld(~, a~)'-~ 
II~,[l~ __>c, log (d(x, 0Q)). 

In solving (1) for ] = ~,, it is the Sobolev norm that  predicts what  happens as 
d(x,  8Q)-+0:  using Poisson's formula to  solve A u = d ,  in the unit  disc, u = 0  on 
the unit  circle, one finds tha t  the solution u~ does converge to zero as d (x, OD) -+0. 

Remark 2. We showed tha t  the finite 'element approximation u h to  a singular 
function u m a y  be viewed as the finite element approximation to a smoother  
function U h. Thus if our problem were to investigate for a singularity, we would 
be fooled b y  the smoothness of u h if h were not  small enough. This suggests the 
importance of an a priori knowledge, through error estimates, of the order of 
magni tude  of the error u - - u  h. 

3. Convergence Rates for Piecewise Constant Data 

Suppose ] is a smooth function except on the set co C X2 where it is discontinuous. 
o) need not  be smooth;  in practice, it will be piecewise smooth, but  our only 
assumption is tha t  its dimension be n --  1, namely,  we demand tha t  the set 

o~ h = {x: d (x, ~)  < h} 

have measure 0 (h). We require ] and its derivatives to be bounded in ~Q--w, and 
this places ] in H�89 However,  when ] is t ru ly  discontinuous, it can not  be 
in H~(~?). Thus  the solution u to (1) for discontinuous ] can not  be in H~+~(Q) .  
However,  we have the following theorem for the convergence of the finite element 
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solution u h to u. Since we only consider convergence in energy, we just  assume 
tha t  a (  �9 - ) is coercive and tha t  (1) is regular as s ta ted in L e m m a  1. Under  these 
conditions, we prove:  

Theorem 2. suppose  S h approximates  to degree 2 m  + t in  V.  I / ]  is  smooth in  
- o ,  and [o, hl = 0  (h), the~: 

[I u - .h L --< c h"+~ sup I: <x) l + c' h -+ l  II/II,,~-o. 0 5) 
xE~Q 

Remark .  We conjecture tha t  a more careful analysis can reduce the right side 
of es t imate (15) to:  ch"+�89 ( sup  ] ] (x ) [+  I]/I]�89 we do not know (but 

xfig2 

would like to) if the  required approximat ion  order 2m + 1 can be reduced to  
2m + �89  For  example,  the space of piecewise quadrat ics  tha t  are zero outside a 

o 
polygon inscribed in f2 approx imate  to order { in H 1 (~Q), but  we are unable to 
prove  ]]u--uhlJl =O(hS) for discontinuous / using these elements. 

Proo/  o/ the Theorem. As in the previous section, we approximate  / b y  a 
sequence In with the propert ies:  

a) (], v) = ([h, v) for every v in S n. 

b) IIl~Ik---r189 sup I/(x) l +c'N~,~_o. 
xE.C2 

c) IIl-/,ll0 ~ h ~  sup il(x) l+c'hll/Ilx,,~_o. 
Define U h as the solution to (t) with da t a /h .  Using the  variat ional  form of (1) 
and a), we again find tha t :  

a ( U h - - u  h, v) = 0  for all v in S h, 

so t ha t  u h is also the finite element approximat ion  to U h. Thus  b y  L e m m a  a: 

IlU h - u h k  ~h'+'lllhll~. (16) 

Using the coerciveness of a ( . ,  �9 ), we have:  

r l l - -  uhll~ =< la ( u -  u., u -  V*)l--I(1-1~. u -  u")l. 
B y  a), (1 - - /h ,  u - -  U h) = (] - -  1~, ~ - -  U h - -  v) for any  v in S h. Using the approxima-  
t ion assumption only to order 2m, we find: 

I(/--/h, " - -  Uh) l--  -< ch' l l / - - /~  II0 II" --  U %  

Dividing by  Ilu - u~ll., we get:  

Ilu - u~ll. _-_ ~h" II1 - M 0 .  (a 7) 

In  view of propert ies  b) and c) and the  triangle inequality,  (16) and (17) combine 
to yield the theorem. 

The  construct ion of [h begins with a smoothing. We let ~7 be a positive C ~ func- 
t ion with  suppor t  in I x l ----< t such tha t  f ~7 = 1. We extend ] outside g2 by  zero, and  

Rn 

define an in t e rmed ia t e /h  by  convolution: 

7, = l . n ~ .  
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The notation ~h means ~h (x) = h-n~ (~-). We will first show that 7h satisfies b) 

and c), although it does not satisfy a). We will have to perturb it slightly to 
satisfy a). 

Let Qh = {x E~2: d (x, ~2) ~ h). Then because convolution with flh reproduces 
constants: 

I [ t -  LIl,,,~,_~ <=ch,-,lllll,,,~_o, for o <=s <= ~. (~s) 
To get an estimate in the complement of Qh _ojh, observe that:  

sup I I * r  I < sup It(x)]. 
yED XED 

Squaring and integrating over f2 --~2hu w h we thus have: 

l i t -  Lll0,~-~.u~_-<ch~ sup It(x) l (t9) 
XED 

because the area of/2--Qht3o~h is O(h). To estimate derivatives in Q--Qhuo~h, 
we write: 

1 

where Thus: 

I[l, lll,~-~,u ~ < ch-~ sup 11 (~)1. (20) 
XED 

(18), (t9), and (20) prove tha t /h  satisfies b) and c). Now we modify it to satisfy a). 
We want a function gh such that 

a') ( /--  ~h, v) = (gh, v) for v in S h. 

b') llg, llo-~ ch+* sup 1(~) +c'hl l / Ik~-o. 
XED 

~') Ilg~ll, < ~h-~ sup t(~) +c'll/ll,,~-o. 
XED 

We define g~ on each element e i and then sum, making gh vanish at the edges of e i 

so that  this sum remains smooth, gh[ei will lie in/0p (ei) ' so we can use Poincare's 
inequality: 

IIg~llo-~chllg~ll, 
to prove b') from c'). I t  is obvious that /h = ] h  +gh satisfies a)-c). The construction 
of gh is via the following lemma: 

Lemma 4. Suppose F is a bounded /unction on e,e f. Then we may  f ind two 

/unctions 9 x, 9 S in [-I 1 (eref) such that: 

sup I D - r  (x) l__< C1 sup IF (x) l, (21) 
XEeref ~Eeref 
I~l<i 

I I :  I1,,,. -~ c, II F I1,, . .  (22) 
and such that f C P = f F P /or any polynomial P o/degree K.  

eref eref 
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Proo/. Let  E 1 be the  completion of C~~ in the C a norm given in (2t), and 

let E z b e / ~  (eref). E a is contained in/?/1 (e~f). Le t  ~K = {polynomials of degree K}, 
and define: 

N'={q~EEi: fq~P =0 for all P in ~K}. 

The  function F defines a linear form on ~K:  

P-+ f FP  
eref 

and this gives a (continuous) mapping  of L ~176 (e~) onto ~ * .  Taking  any  ~ in E ~, 
we m a y  similarly define a l inear form: 

P---> f q~ P, 
eref 

and this gives a (continuous, open) mapping  of E i onto ~ .  

Taking  quotients,  we have 
E~/N i ,~ ~ .  

Composing, we have  a continuous map  F - + ~  i of L~(era) onto E~/N ~, where for 
a n y  ~iE ~ :  

f F P =  f giP for a l l P i n ~ g .  
r ei.ef 

The norm of ~i in E~]N ~ is s imply the inf imum, over  all of ~0 i in ~ ,  of the norm 
of q~i. Since E i is complete, this inf imum is t aken  on by  some ~0 ~, and this ~0 i 
satisfies the requirements  of the lemma. 

To construct  gh on ei, we set F = ([ - -  ]h) o T/-1 and 

191~ if e i c n ( Q - Q h w o  h)~O 
gh=(9~o T i if ei(ah--o) I'. 

In  elements e i touching Q -  ~2hu ogh, we have:  

sup [D~'gh ( ' ) l ~  c h-X sup [] (x) - - ]h  (x) l ~  c' h -1 sup l/(x)[, 
xEe~ xEe~ xEfJ 

[ x l < l  

using (2t). (The Jacobian  of T i introduces the  factor  ch-1.) Away from o9 and OQ, 
we use (22) : 

Ug,, U,.,,, < c ' t l :  - L 11,,,,. 
The area covered by  elements near  OQ and o9 is 0 (h), thus:  

I[gh H1 <:ch-t sup I/(x) 1 §  

< sup I1( )1 

and this proves  c'). 

4. Approximation of Singular Functions 

In  this section we will prove a general theorem for spline approximat ion  t ha t  
implies the results in Sections 2 and 3 for a regular  mesh. We hope this theorem 
will make  clear the " r e a s o n "  tha t  an e > 0 does not  appea r  in those error 
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es t imates .  The  "reason" becomes clearer  af ter  a Four ie r  t ransformat ion .  If,  for 
example ,  u solves A u = 8 ,  then  its Four ie r  t ransform ~(~) behaves  l ike 1~] -~ a t  

n 
infini ty.  Thus u has only 2 - -  ~- - -  e Sobolev der ivat ives ,  even though the  behav ior  

of ~ a t  in f in i ty  is fa i r ly  regular .  We  in t roduce  a new norm to reflect  th is  t ype  of 
behavior  more  accurate ly .  Le t  

E-l,' = sup I~ (~)P (t + l~l f f  + ~ 

Notice that for any e > O, II";- ,  <c ,c" l , ,  b , t  c , -~oo as ~-*0.  
We will s ay  t h a t  a funct ion ~ generates splines o! degree k if for all ]~] < k: 

E i~a~(~-J) =x~. (23) 

If  we define S h to  be functions of the  form:  

jE~" 

then  there  is a wel l -known approx ima t ion  theory  for S h in te rms of Sobolev 
norms (e.g., [5] on which the ideas of this  sect ion are based).  However ,  we will 
der ive a different  app rox ima t ion  theorem for S h in terms of our new norm, 
name ly :  

Theorem 3. I !  ~ EH* (R') has compact support and generates splines o! degree k, 
then." 

inf Hu --vii ,  < c , h ' - '  Uu], (24) 
y E S  h 

as tong as s < r ~ k -- ~ . 

Pro@ Fol lowing [5], we choose coefficients q~ such tha t3 :  

Y, q~a-~(e)=~ +O(l~l') near  ~ = 0 .  

I f v ( x ) =  ~ciq~(-~-- j ) ,  then: 

(~) = (h .Z  c;e-~';~) ~ (~). 
To define the  app rox ima t ion  to  u, we set :  

[ ~ 
- i ) .  We claim that  satisfies and  let  v (x) = ~ c i rP 

If  CJh denotes  the  cube - -  h '  h-  ' then  we have  to es t imate  three  in tegra ls :  

/1 ----- f la(~) - -  ~ (t:) [ ' ( t  +1 al')'da 
elk 

i ,= f la(~)l'O+l~lVd~ 
Rn--Clh 

Is=  f I~(a)l'O+lal*)'da. 
Rn--CII~ 

3 We will, for simplicity, assume tha t  ~ (0) 4= O. 
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Beginning with  the  first,  we have  (c denotes different  constants) :  

I1-- f l~(~)lSia-Yq~(h~)~(hS)12(a +lsl2:as 
C/h 

_~c f [a (s)[~ Ihs[~c'-s'+~(t + [sl~)sas 
C/n 

_-< ~h sc'-'~+" f lu (S) I s(t § ISls)'+":SdS 
C]h 

<=ch *l'-'~+" Eu:, f aS <=oh ~'-'~ Eu:,. 
C/h 

F o r  the  second, assuming h ~ t ,  we have:  

l ,  <=c[u] 2 f [S[-*C'- ' I -"dS.  
Rn--C[h 

In t roduc ing  po la r  coordinates  (~, 0) we f ind:  

oo 

ISl -~('-s)-'as <=c o -s( ' -s~- lao-  2(,--s) 
R n -- C/h h -x 

Thus, Is ~ c h "~l'-s) [u12,. 

The es t imate  of I a is more subtle.  B y  a change of variables,  

elk /.o 

In  [5], i t  is shown tha t  

Z [ ~  (hS § 2 at/')12 [h~ + 2 ~/'[ 2s = 0  (Ih~l,*). 
i+o 

Therefore:  

X,_----_ ca ~'-~'+~ f I a(~)l ~ ISl s'+~ < chS~'-*~ [u],*. 
Clh 

Summing  these es t imates  and t ak ing  a square root  yields the  theorem. 
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