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Abstract. Convergence of the finite element solution #* of the Dirichlet problem
4du =4 is proved, where 6 is the Dirac d-function (unit impulse). In two dimensions,
the Green’s function (fundamental solution) u lies outside H', but we are able to
prove that |lu — #*|rs =O (k). Since the singularity of u is logarithmic, we conclude that
in two dimensions the function log  can be approximated in L2 near the origin by
piecewise linear functions with an error O (k). We also consider the Dirichlet problem
Awu =F, where f is piecewise smooth but discontinuous along some curve. In this case,
% just fails to be in H$, but as with the approximation to the Green’s function, we
prove the full rate of convergence: [u—uh|, =0 (h¥) with, say, piecewise quadratics.

1. Introduction and Statement of Results

We consider the elliptic-boundary value problem:
Au=f in
Bu=0 on 08

when f has two kinds of singularities:
i) f is the Dirac d-function (unit impulse) at some point %, in £.
ii) fis piecewise smooth but discontinuous on some submanifold of 2.

The first case, f=4,,, corresponds in physical problems to the idealization
of a point load at x,, and the second case corresponds to a discontinuous loading.
The finite element approximation «* is defined as usual via the energy inner
product (-, -) associated to 4 —for smooth f, the solution # to (1) satisfies:

a(u,v)=(f,v) forallvin V. (2

V is the completion in the Sobolev space H™(£2) of all smooth functions v that
satisfy the boundary conditions Bv =0, where  is the highest order of derivatives
occuring in a( -, - ) and half the order of 4. Given a subspace S* of V, we define #*
to be that function in S* that satisfies:

a(u*, v) =(f,v) forall vin S (3)

When S* consists of continuous piecewise polynomials, (3) makes sense even
when f is the d-function. It becomes:

a(u*, v) =v(x,) forall vin S* (3
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However, the true solution # may be too singular for convergence in energy to
occur. Indeed, if the dimension of Q2 is %, then:

a(u, n) = oo whenever n=2m.

This is the case for the problems of plane stress and plane strain: m =1 and » =2.
However, we may ask if #" converges to # even though the m-th derivatives
cannot. That this is the case was first proved by 1. Babuska [1], [2]. His results
yield, for the case m =1, n =2:

o6 —utfp <c,p*—, any £>0

if 8L is smooth, and in case 952 is only Lipschitzian, the exponent decreases
to —e. We will deal only with the smooth case, where we are able to improve
Babuska’s estimate by removing the s. And we obtain a similar result in any

number of dimensions #, for elliptic equations of any order 2. For 2 = 2m, the

Green’s function % does not lie in L2, but we prove convergence in suitable negative
norms.

When f is piecewise smooth, but discontinuous on some submanifold of £,
f lies only in H¥—*(£2), any £> 0. This allows for convergence in energy of #* to #,
but we would expect the rate to be A”+¥¢ since » is in H2"+i~¢(2). However,
we prove in Section 3§ that the ¢ again disappears in the error estimate:

e — st} =0 (B +1) (5)

as long as S* approximates to order 2m +1.

One consequence of our results is an approximation theorem for certain singular
functions. For example, the singularity near x, of any solution of A« =4, in
two dimensions is logarithmic. Thus by (3), the function log 7 in the plane can
be approximated by, say, continuous piecewise linear functions in L% with an
error O(h). This seems, at first, to violate a saturation theorem, since log r does
not lie in H* near the origin. Such a theorem would state that if a function v in
H™! can be approximated in the H”~! norm by functions »* in H™ with an
O(h) error, then v must be in H”. This strong saturation theorem is false, but
under the additional assumption that ||v*,, remains bounded as 4 —0, the theorem
is true. (The proof is by showing that the difference quotients of v remain bounded
in H™~1) This weak saturation theorem thus shows that the piecewise linear
functions that approximate log 7 near the origin must be unbounded in #%.

Isaac Fried [3] has considered a related approximation theorem for singular
functions, calculating the error in interpolating the function #* for non-integer .
The singularity in a crack problem behaves like 7%, and in [3] it is shown that 7}
differs from its interpolate by O (4}) in the H* norm, even though 7* lies outside
H?} near the origin. Thus the error in the finite element method is also O (k%)
in the energy norm for the crack problem. In Section 4, we study the approxima-
tion of singular functions in a general way, but restricted to a regular mesh
(Sections 2 and 3 have no mesh restriction).

Our methods in Section 3 apply to the general case when f is globally C*!
but fails to be C* on some submanifold (which does not have to be smooth).
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f lies in H*+#=¢(0), but we can prove that the error in the finite element method
behaves as if f were actually in H*+#(0), without the &. Because this general case
is not as physically meaningful as a discontinuous f, we do not mention it further.

2. Convergence for the §-Function

We imagine S* to be a space of piecewise polynomials in a ‘‘triangulation”
of 2: 2= Ue¢;. Each function in S* is to be continuous in £ and a polynomial of
degree <K in each element ¢;. For simplicity, we will assume that each ¢; may
be mapped by an affine transformation 7; onto a reference element e, although
our results apply when there is more than one reference element and when T}
is isoparametric. We will also need to assume that the elements are of comparable
size and shape, which insure by demanding that entries in the Jacobian of T; are
bounded by ¢AL.

In addition to these assumptions on the triangulation and S* we will say that
St approximates to degree k in V if for each smooth % in V:

insfhl(u——v”5§chk“”u[[k for 0<s<wm. (6)
vE

This approximation condition, aside from the difficulty the boundary imposes,
simply means that in each element ¢;, any polynomial of degree =% —1 can be
represented by some function in S* We will ignore the boundary difficulties, for
we feel that our results will apply to several different techniques that are used to
handle curved boundaries: isoparametric elements, penalty functions, inter-
polated boundary conditions, etc.

Our basic assumption on the energy inner product a( -, - ) is that it be coercive
over

|a(w, v)|=y|ols forallvinV 2

for some positive y. When « is smooth, this inequality guarantees the convergence
in H™(Q) of #* to u. We recall this well-known fact in the following lemma.

Lemma 1. Let the operator A tn (1) be properly elliptic, and let B=(b,, ..., b,,)
be normal, covering boundary conditions. Assume that a( -, - ) is coercive. Then if S*
approximates to degree kin V:

4 — bl Sch g for 2m=s<E. (10)

Under certain conditions on an adjoint problem to (1), it is known that «*
converges even faster to # in lower norms. To state these conditions precisely, we
separate the boundary conditions B in (1) into the essential boundary conditions,
E, and the natural conditions, N. (The essential boundary conditions are those in
which the order of differentiation is less than m =1 order of 4.) Consider now the

adjoint problem to (2), to find #* in V such that:

a(v,w*)=(v,f) forallvin V. (8)
The solution #* satisfies an adjoint boundary problem to (1):

A*y*=f in Q

B*y*=(E, N¥)u*=0 on R
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where the adjoint natural conditions N*u* =0 are determined by an integration
by parts.

Lemma 2. Suppose that the adjoint problem (8) is regular in the sense that:
"u*IIS-i—2m "f" for s=0. Then for 2m —k<s=m:

e — ) S ok — ] (11)
Both lemmas will be used in proving convergence for singular data in the
following theorem.

Theorem 1. Under the hypotheses in Lemmas 1 and 2, if u solves (1) in the sense
of distributions for { =0, and u* solves (3'), then:

IMm— — —s
[u— sl Sc )b * jor 2m—k=s<2m—- @)

if k=2m.1 The constant ¢(x,) goes to + oo as xy approaches 0Q.

Proof. We begin by approximating 8, by a sequence §, with the following
properties:
a) for each v in %, (3, v) =v (%)
b) 8o =0 (A="")
c) |6—8,)_, =0~ "/2) 2 <r<k
d) ), =0 outside the element e in which x, lies.

Postponing the construction of 8,, we define an intermediate function U” as
the solution to (1) for f =4,. In variational form, U* satisfies:

a(U* v) =(8,,v) forallvin V. (12)

Condition a) states that é and §, are identical linear functionals on S* so
we may view #”* also as the finite element approximation to U* Thus by Lemma 1
and 2:

2m— r_
|U* — sl < ch=|8fp=0(n " *).

We now estimate # —U* Our immediate impulse is to appeal to elliptic
regularity theory to conclude:

"u_Uh“s Scs"a_(sh“s--mrr (13)
That is, we would hope that the solution # to (1) is related to the data / by:
Il =c.lfls—zm (13)

Inequality (13’), however, is not true for s <m — 4.

We will show that (13) is indeed true, but with the constant ¢, depending on
the distance of %, to 2. Once we prove (13), the theorem is completed using the
triangle inequality:

”u _“h“s = "“ - Uh“s + [[ Ut —“h”s

1 For 2m — % <k < 2m, we have to include an ¢ in the final error estimate.



Finite Element Convergence for Singular Data 321

and condition c¢):

I8 —t-am=0 ().
We turn now to the proof of (13).
In solving elliptic problems with singular data, one must resort to more arcane

data spaces than the negative Sobolev spaces. The approach suggested by Lions
and Magenes [4] is to introduce the space

F=foern o= 3 [ol=Do], <o}
lal=r
where g is a smooth function such that:

6= 3(37(?7) <¢, forall xin 0,
d(x, 002) denotes the distance from x to Q. 57, for » =0, is defined to be the
dual of & with the dual norm. We quote the following theorem from [4] (Theo-
rem 6.3 of Chapter 2):

Lemma 3. Let the operator A in (1) be properly elliptic, and let B =(b,, ..., b,,)
be normal, covering boundary conditions for A.2 Then for any f in Z~, v =0, there
1s a distribution solution u to (1) which satisfies:

"u ”2m—r =c ”f "E—r.

We now apply Lemma 3 to » — U*, and we are left to estimate [0 — 8, |zi-am.
But if Q,¢cQ, then for distributions with support in £;, the H"({2) and Z—*
norms are equivalent. In fact, Jv]z—, <cd (@, 002)~"|v|_, if supp v<Q,, where ¢
depends only on £ and the choice of . By d), the support of §, is contained in
some £2,< ¢ 2 for A sufficiently small, and thus (10} is proved. The constant ¢(x,)
in the theorem can be estimated by ¢ (x,) =0 (d (%, 002)°~2™).

We now construct §,. Let ¢ be an element containing x, (there may be more
than one if x, lies on an edge or is a vertex). Then T maps e to the reference
element ¢ Let @ be the polynomial of degree K such that:

{ P(y) p(y) =P (T (%))

for all polynomials P of degree K. The mapping T (x,) — ¢ is continuous, so we
conclude that:

sup |g(y)[<=C
Y€ eret
regardless of the position of x, in ¢. Define §, by:
[T|@(Tx) ine
o) = {O outside e

where | T'| is the determinant of the Jacobian of 7. Changing variables, we have:
Qf@h(x)v(x)dx = [ o) v(T1y)dy =v(x)
et

2 We also assume that (1) has a unique solution for every smooth f to simplify the
exposition.
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and condition a} is proved. Our assumption on the Jacobian of T says that:
sug |8, (%) |=C|T|=0(h"").
x€

Squaring and integrating over e, we prove b).

To prove c), we consider the inner product (6 —d,, ) for ¢ in H (£2). By the
Bramble-Hilbert Lemma, there is a polynomial P of degree £ —1 such that:

Iy —Plo<ch|pl,.. r=k

(14)

sup |p(x) =P ()| =ch” % |pl., r>7

x€e

where the subscript ¢ indicates that the integrations take place over ¢ only. Thus:

(6 — 04 v) = () — P (%) — [ 8, (p — P)

and since |8,], =0 (¢ 2 ), we conclude from (14) that:

0= wlsch *lyl, G <rsk
and this proves c}.

Remark 1. The contrast between the Z~" and H~" norms is exemplified by 4§,
as we let x—>20. Indeed

16,]-, <cid(x,0Q)
10, [ls— = c, log (d(x, 29)).

In solving (1) for f =4,, it is the Sobolev norm that predicts what happens as
d(x, 902)—0: using Poisson’s formula to solve A% =4, in the unit disc, # =0 on
the unit circle, one finds that the solution #, does converge to zero as d (x, 6£2) —0.

Remark 2. We showed that the finite element approximation #* to a singular
function # may be viewed as the finite element approximation to a smoother
function U™ Thus if our problem were to investigate for a singularity, we would
be fooled by the smoothness of «* if  were not small enough. This suggests the
importance of an a priori knowledge, through error estimates, of the order of
magnitude of the error # —u*.

3. Convergence Rates for Piecewise Constant Data

Suppose f is a smooth function except on the set w C£2 where it is discontinuous.
w need not be smooth; in practice, it will be piecewise smooth, but our only
assumption is that its dimension be # — 1, namely, we demand that the set

o' ={x: d(x, w) <h}

have measure O (). We require f and its derivatives to be bounded in £ —w, and
this places f in H¥—*(£2). However, when { is truly discontinuous, it can not be
in H¥(Q). Thus the solution % to (1) for discontinuous f can not be in H2"+#(Q).
However, we have the following theorem for the convergence of the finite element
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solution #* to #. Since we only consider convergence in energy, we just assume
that a( -, - ) is coercive and that (1) is regular as stated in Lemma 1. Under these
conditions, we prove:

Theorem 2. Suppose S* approximates to degree 2m 41 in V. If | is smooth in
Q —w and |*|=0(h), then:

o6 — 4", < chmti sup F@) |+ B omo (15)
x€

Remark. We conjecture that a more careful analysis can reduce the right side
of estimate (15) to: cA™*#(sup |f(x)|+||f]; 0-o). However, we do not know (but
xeQ

would like to) if the required approximation order 2m 41 can be reduced to
2m +1. For example, the space of piecewise quadratics that are zero outside a

polygon inscribed in Q2 approximate to order § in bl (£2), but we are unable to
prove |u —u"|, =0 (h¥) for discontinuous f using these elements.

Proof of the Theovem. As in the previous section, we approximate f by a
sequence f, with the properties:

a) (f,v) = (f,, v) for every v in S%.
b) [fulh =ch™ sup [f(x) [+ a0

¢) [f—tulo = cht sup |f(x)[ 4 2|t 1, 0o

Define U* as the solution to (1) with data f,. Using the variational form of (1)
and a), we again find that:

a(U*—u* v) =0 forallvin S*
so that #* is also the finite element approximation to U* Thus by Lemma 1:
[0 sl < e+ (16)
Using the coerciveness of @( -, ), we have:
ylu—UME Z|a(w—Ut w—U"|=|(f—f, u—U¥]|.

By a), (f —f,,  — U* =(f — 5, # — U* —v} for any v in S* Using the approxima-
tion assumption only to order 2m, we find:

|(f = e = UM | s k™| —Fulon — U¥m-
Dividing by |u — U*|,, we get:
lu—U* |y s k™| —filo- (17)

In view of properties b) and c) and the triangle inequality, (16) and (17) combine
to yield the theorem.
The construction of f, begins with a smoothing. We let # be a positive C* func-
tion with support in |x| <1 such that [z =1. We extend f outside 2 by zero, and
Rn

define an intermediate f, by convolution:

7h=f*77h~
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The notation %* means 7*(x) =h~"y (%) We will first show that f, satisfies b)

and c), although it does not satisfy a). We will have to perturb it slightly to
satisfy a).
Let Q*={x€Q: d(x, 982) = h}. Then because convolution with #* reproduces
constants:
[ —Falsor-ar B |00 for O=s=<1. (18)

To get an estimate in the complement of 2* —w*, observe that:
sup |fxn*(y)| = sup |f(x)]-
yeQ xEQ

Squaring and integrating over 2 — Q" Uw" we thus have:

"f*‘!7;;"0,9—:.7»uwh§0kir S‘:E If(x)l (19)

because the area of 2 —2*Uw* is O (h). To estimate derivatives in 2 —Q*Uw",
we write:

D*f,=fxD* "—f*— (Dn)*
where (Dn)*(x) =h="D*7 ;). Thus:

[l o—or oo <ch ™t Sl:g £ ()] (20)

(18), (19), and (20) prove that 7, satisfies b) and c). Now we modify it to satisfy a).
We want a function g, such that

') (f—F*, v) = (g, v) for v in Sk,
"gh "o Schth sup f(x)+¢ h"f”l Q—or

) lesh=ch™ *Supf %) +¢'|fho-o

We define g, on each element ¢; and then sum, makmg &y vanish at the edges of ¢;
so that this sum remains smooth. g,|e; will lie in Hl( 7), so we can use Poincare’s
inequality:

lealo =chlenl

to prove b’) from ¢’). It is obvious that f, =7 + g, satisfies a)—c). The construction
of g, is via the following lemma:
Lemma 4. Suppose F is a bounded function on e.;. Then we may find bwo
functions @*, @? in m (€res) Such that:
sup |D* ¢! (x)| < Ctsup |F (%)], (21)
ZEeret

X €Eépet
ja]sl

|92 I eret S C2 F e (22)
and such that [ ¢* P = f F P jor any polynomial P of degree K.

fret
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Proof. Let E* be the completion of C3°(e,4) in the C* norm given in (21), and

let E2 be H! (€res). B is contained in fIl(eref). Let & ={polynomials of degree K},
and define:
Ni={gpeE': [pP =0 for all P in P}
The function F defines a linear form on %y :
P> [FP
eret
and this gives a (continuous) mapping of L (e,) onto #%. Taking any ¢ in E,
we may similarly define a linear form:
P [oP,
€ret
and this gives a (continuous, open) mapping of E* onto 2.
Taking quotients, we have
E'|N* = 2§.
Composing, we have a continuous map F—> @ of L®(e,) onto Ef[N, where for

any ¢'€ g’ .
JFP= [ ¢P forall Pin Zy.
24

Cret ref

The norm of @' in E*/N* is simply the infimum, over all of ¢’ in @, of the norm
of ¢ Since E*is complete, this infimum is taken on by some ¢, and this ¢
satisfies the requirements of the lemma.
To construct g, on ¢;, we set F = (f — Fao T;' and
poT; if en(Q2— Qruet)F0
€= o T; if ¢C*—ah

In elements ¢ touching £2 — O*Uwt, we have:

sup |D%g, (x)| < chtsup |f(x) — fa(®) |<c'mtsup |f(x)],

xeey x€ef zeR

| =1
using (21). (The Jacobian of T} introduces the factor c41.) Away from w and 2%,
we use (22):

lexlh,; =C? 1 —Fall, e

The area covered by elements near 92 and w is O (%), thus:

lesl Sch—t Sl:g )|+ If =l os—or

<ch} sug [F(®)] ¢ [, 00
X€

and this proves c’).

4, Approximation of Singular Functions

In this section we will prove a general theorem for spline approximation that
implies the results in Sections 2 and 3 for a regular mesh. We hope this theorem
will make clear the “‘reason’ that an >0 does not appear in those error
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6

estimates. The ‘‘reason’ becomes clearer after a Fourier transformation. If, for
example, % solves Au =4, then its Fourier transform # (£) behaves like |£|-2 at
infinity. Thus # has only 2 — % — & Sobolev derivatives, even though the behavior

of 4 at infinity is fairly regular. We introduce a new norm to reflect this type of
behavior more accurately. Let

[t = sup [#(6)[*(1 e

c, [u],, but ¢,—>o0 as £ 0.

We will say that a functlon (D genemtes splines of degree k if for all |a|<k:
2 *P(x—g) =" (23)
jezn

If we define S* to be functions of the form:

v(x) = Z c,rcb(% —-7')

jegn
then there is a well-known approximation theory for S* in terms of Sobolev
norms (e.g., [5] on which the ideas of this section are based). However, we will
derive a different approximation theorem for S* in terms of our new norm,
namely:

Theorem 3. I} @H (R has compact support and generates splines of degree R,
then:
— < r—S
vlé’lsfk u—v], < c, b [u], (24)
as long as s<r§k—%.
Proof. Following [5], we choose coefficients ¢, such that3:

Y .8°® (&) =14+0([]") near &=o0.

lal<k
Ifo(x)=2¢ @( ) then:
0(6) =(Tee™ M B ().
To define the approximation to «, we set:
W Dot =a() g0 i [~ 5]
and let v(x) = Zc,&b(% —7'). We claim that v satisfies (24).
If C/h denotes the cube [ W h} then we have to estimate three integrals:
L= [|a(§) —d(B)*(1+]£[*as
Clh
L= [ [a@)P0+|&7)ds
RnZCth
Iy= [ [9@)P(1+]é]7)as.
RnZClh

3 We will, for simplicity, assume that 6(0) 3= 0.



Finite Element Convergence for Singular Data 327

Beginning with the first, we have (¢ denotes different constants):
I =C/£ |# (@) 2|1 —2q, (h&)* D (&) > (14 |€]2)° A&
écC/fh [ (&) |2 |E[PO—Hm (14 |E[2)0 s
gchﬂr—s)-&-r;/{ |u(E)[2(1 +|£ ]2y +ae

SchR—tny)? [ dE<ch2t—9 ]2
Clh

For the second, assuming # <1, we have:
L<clul; [ (g2 dg.
R%~Cjh

Introducing polar coordinates (g, 8) we find:

o0
—2(r-—-s)—n —2(r—s)—1 — ¢ 2(r—s) 3
[ 1l agc [omrritdg = St WO iy
RreZCh pact

Thus, I, <ch?0—9 [u]2.

The estimate of I, is more subtle. By a change of variables,

Io= [ |u() Xax her]* 2|98 +2m) {1+

Clh

2n] By
g+ 250 as.
In [5], it is shown that
2| B (hé 2|2 hE +27 (% =0 (|hE[).

j+0
Therefore:
Iy <ch2tr—s4n [ [4(&)|2|&]2+ Seh?r—9) i3,
Clh

Summing these estimates and taking a square root yields the theorem.
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