Finite Element Convergence for Singular Data

Ridgway Scott

Massachusetts Institute of Technology

Received April 4, 1973

Abstract. Convergence of the finite element solution u^h of the Dirichlet problem $\Delta u = \delta$ is proved, where δ is the Dirac δ -function (unit impulse). In two dimensions, the Green's function (fundamental solution) u lies outside $H¹$, but we are able to prove that $||u - u^h||_{L^2} = O(h)$. Since the singularity of u is logarithmic, we conclude that in two dimensions the function log r can be approximated in L^2 near the origin by piecewise linear functions with an error $O(h)$. We also consider the Dirichlet problem $\Delta u = f$, where f is piecewise smooth but discontinuous along some curve. In this case, u just fails to be in H^{ξ} , but as with the approximation to the Green's function, we prove the full rate of convergence: $||u-u^h||_1 = O(h^s)$ with, say, piecewise quadratics.

1. Introduction and Statement of Results

We consider the elliptic-boundary value problem:

$$
Au = f \quad \text{in} \quad \Omega
$$

\n
$$
Bu = 0 \quad \text{on} \quad \partial\Omega
$$
 (1)

when f has two kinds of singularities:

- i) f is the Dirac δ -function (unit impulse) at some point x_0 in Ω .
- ii) f is piecewise smooth but discontinuous on some submanifold of Ω .

The first case, $f = \delta_{x_0}$, corresponds in physical problems to the idealization of a point load at x_0 , and the second case corresponds to a discontinuous loading.

The finite element approximation u^h is defined as usual via the energy inner product $a(\cdot, \cdot)$ associated to A -for smooth f, the solution u to (1) satisfies:

$$
a(u, v) = (f, v) \quad \text{for all } v \text{ in } V. \tag{2}
$$

V is the completion in the Sobolev space $H^m(\Omega)$ of all smooth functions v that satisfy the boundary conditions $B v = 0$, where m is the highest order of derivatives occuring in $a(\cdot, \cdot)$ and half the order of A. Given a subspace S^h of V, we define u^h to be that function in S^h that satisfies:

$$
a(u^h, v) = (f, v) \quad \text{for all } v \text{ in } S^h. \tag{3}
$$

When S^h consists of continuous piecewise polynomials, (3) makes sense even when f is the δ -function. It becomes:

$$
a(u^k, v) = v(x_0) \quad \text{for all } v \text{ in } S^k. \tag{3'}
$$

However, the true solution u may be too singular for convergence in energy to occur. Indeed, if the dimension of Q is n, then:

$$
a(u, u) = \infty \quad \text{whenever} \quad n \geq 2m.
$$

This is the case for the problems of plane stress and plane strain: $m = 1$ and $n = 2$. However, we may ask if u^h converges to u even though the m-th derivatives cannot. That this is the case was first proved by I. Babuška $[1]$, $[2]$. His results yield, for the case $m = 1$, $n = 2$:

$$
\|u - u^h\|_0 \leq c_s h^{1-\epsilon}, \quad \text{any} \quad \varepsilon > 0
$$

if $\partial\Omega$ is smooth, and in case $\partial\Omega$ is only Lipschitzian, the exponent decreases to $\frac{1}{2} - \varepsilon$. We will deal only with the smooth case, where we are able to improve Babuška's estimate by removing the ε . And we obtain a similar result in any number of dimensions *n*, for elliptic equations of any order 2*m*. For $\frac{n}{2} \ge 2m$, the Green's function u does not lie in L^2 , but we prove convergence in suitable negative norrns.

When f is piecewise smooth, but discontinuous on some submanifold of Q , f lies only in $H^{\frac{1}{2} - \epsilon}(\Omega)$, any $\epsilon > 0$. This allows for convergence in energy of u^h to u , but we would expect the rate to be $h^{m+\frac{1}{2}-\varepsilon}$ since u is in $H^{2m+\frac{1}{2}-\varepsilon}(\Omega)$. However, we prove in Section 3 that the ε again disappears in the error estimate:

$$
\|u - u^h\|_m = O(h^{m + \frac{1}{2}})
$$
\n(5)

as long as S^h approximates to order $2m + 1$.

One consequence of our results is an approximation theorem for certain singular functions. For example, the singularity near x_0 of any solution of $\Delta u = \delta_{x_0}$ in two dimensions is logarithmic. Thus by (3) , the function $\log r$ in the plane can be approximated by, say, continuous piecewise linear functions in L^2 with an error $O(h)$. This seems, at first, to violate a *saturation theorem*, since $\log r$ does not lie in $H¹$ near the origin. Such a theorem would state that if a function v in H^{m-1} can be approximated in the H^{m-1} norm by functions v^h in H^m with an $O(h)$ error, then v must be in H^m . This strong saturation theorem is false, but under the additional assumption that $||v^h||_{\infty}$ remains bounded as $h\rightarrow 0$, the theorem is true. (The proof is by showing that the difference quotients of v remain bounded in H^{m-1} .) This weak saturation theorem thus shows that the piecewise linear functions that approximate log r near the origin must be unbounded in $H¹$.

Isaac Fried [3] has considered a related approximation theorem for singular functions, calculating the error in interpolating the function r^{α} for non-integer α . The singularity in a crack problem behaves like $r^{\frac{1}{2}}$, and in [3] it is shown that $r^{\frac{1}{2}}$ differs from its interpolate by $O(h^{\frac{1}{2}})$ in the H^1 norm, even though $r^{\frac{1}{2}}$ lies outside $H^{\frac{2}{3}}$ near the origin. Thus the error in the finite element method is also $O(h^{\frac{1}{2}})$ in the energy norm for the crack problem. In Section 4, we study the approximation of singular functions in a general way, but restricted to a regular mesh (Sections 2 and 3 have no mesh restriction).

Our methods in Section 3 apply to the general case when f is globally C^{k-1} but fails to be C^k on some submanifold (which does not have to be smooth). f lies in $H^{k+\frac{1}{2}-\epsilon}(\Omega)$, but we can prove that the error in the finite element method behaves as if f were actually in $\overline{H}^{k+\frac{1}{2}}(\Omega)$, without the ε . Because this general case is not as physically meaningful as a discontinuous f , we do not mention it further.

2. Convergence for the δ -Function

We imagine S^* to be a space of piecewise polynomials in a "triangulation" of Ω : $\Omega = \cup e_i$. Each function in S^k is to be continuous in Ω and a polynomial of degree $\leq K$ in each element e_i . For simplicity, we will assume that each e_i may be mapped by an affine transformation T_i onto a reference element e_{ref} , although our results apply when there is more than one reference element and when T_i is isoparametric. We will also need to assume that the elements are of comparable size and shape, which insure by demanding that entries in the Jacobian of T_i are bounded by ch^{-1} .

In addition to these assumptions on the triangulation and S^h , we will say that S^h approximates to degree k in V if for each smooth u in V:

$$
\inf_{v \in S^h} \|u - v\|_{s} \leq c h^{h-s} \|u\|_{h} \quad \text{for} \quad 0 \leq s \leq m. \tag{6}
$$

This approximation condition, aside from the difficulty the boundary imposes, simply means that in each element e_i , any polynomial of degree $\leq k-1$ can be represented by some function in S^h . We will ignore the boundary difficulties, for we feel that our results will apply to several different techniques that are used to handle curved boundaries: isoparametric elements, penalty functions, interpolated boundary conditions, etc.

Our basic assumption on the energy inner product $a(\cdot, \cdot)$ is that it be coercive over V :

$$
|a(v, v)| \geq \gamma \|v\|_{m}^{2} \quad \text{for all } v \text{ in } V \tag{7}
$$

for some positive γ . When u is smooth, this inequality guarantees the convergence in $H^m(\Omega)$ of u^h to u. We recall this well-known fact in the following lemma.

Lemma 1. Let the operator A in (1) be properly elliptic, and let $B = (b_1, \ldots, b_m)$ be normal, covering boundary conditions. Assume that $a(\cdot, \cdot)$ is coercive. Then if S^h *approximates to degree k in V:*

$$
\|u - u^h\|_m \le c h^{s-m} \|f\|_{s-2m} \quad \text{for} \quad 2m \le s \le k. \tag{10}
$$

Under certain conditions on an adjoint problem to (1), it is known that u^h converges even faster to u in lower norms. To state these conditions precisely, we separate the boundary conditions B in (1) into the essential boundary conditions, E , and the natural conditions, N . (The essential boundary conditions are those in which the order of differentiation is less than $m = \frac{1}{2}$ order of A.) Consider now the adjoint problem to (2), to find u^* in V such that:

$$
a(v, u^*) = (v, f) \quad \text{for all } v \text{ in } V. \tag{8}
$$

The solution u^* satisfies an adjoint boundary problem to (1) :

$$
A^*u^* = f \text{ in } \Omega
$$

$$
B^*u^* = (E, N^*)u^* = 0 \text{ on } \partial\Omega
$$
 (9)

where the adjoint natural conditions $N^*u^* = 0$ are determined by an integration by parts.

Lemma 2. *Suppose that the adjoint problem* (8) *is regular in the sense that:* $||u^*||_{s+2m} \leq c_s||f||$, *for* $s \geq 0$. *Then for* $2m-k \leq s \leq m$:

$$
||u - u^h||_{s} \leq c h^{m-s} ||u - u^h||_{m}.
$$
 (11)

Both lemmas will be used in proving convergence for singular data in the following theorem.

Theorem 1. *Under the hypotheses in Lemmas a and* 2, *i/ u solves (]) in the sense of distributions for* $f = \delta_{x_0}$ and u^h solves (3'), then:

$$
||u - u^{h}||_{s} \leq c (x_{0}) h^{2m - \frac{n}{2} - s} \quad \text{for} \quad 2m - h \leq s < 2m - \frac{n}{2} \tag{4'}
$$

if $k \geq 2m$. *The constant c(x₀) goes to +* ∞ *as x₀ approaches* $\partial\Omega$ *.*

Proof. We begin by approximating δ_{x_a} by a sequence δ_h with the following properties:

- a) for each v in S^h , $(\delta_h, v) = v(x_0)$
- **b**) $\|\delta_h\|_0 = O(h^{-n/2})$
- **c**) $\|\delta \delta_h\|_{-\mathbf{r}} = O(h^{r-n/2}), \ \frac{n}{2} < r \leq k$
- d) $\delta_h=0$ outside the element e in which x_0 lies.

Postponing the construction of δ_h , we define an intermediate function U^h as the solution to (1) for $f = \delta_k$. In variational form, U^k satisfies:

$$
a(U^*, v) = (\delta_h, v) \quad \text{for all } v \text{ in } V. \tag{12}
$$

Condition a) states that δ and δ_h are identical linear functionals on S^h , so we may view u^h also as the finite element approximation to U^h . Thus by Lemma 1 and 2:

$$
||U^h - u^h||_s \leq c h^{2m-s} ||\delta_h||_0 = O\left(h^{2m-\frac{n}{2}-s}\right).
$$

We now estimate $u - U^h$. Our immediate impulse is to appeal to elliptic regularity theory to conclude:

$$
\|u - U^h\|_{s} \leq c_s \|\delta - \delta_h\|_{s-2m}.
$$
 (13)

That is, we would hope that the solution u to (1) is related to the data f by:

$$
\|u\|_{s} \leq c_{s} \|f\|_{s-2m}.
$$
\n(13')

Inequality (13'), however, is not true for $s \leq m - \frac{1}{2}$.

We will show that (13) is indeed true, but with the constant c_s depending on the distance of x_0 to $\partial\Omega$. Once we prove (13), the theorem is completed using the triangle inequality:

$$
||u-u^h||_s\leq ||u-U^h||_s+||U^h-u^h||_s
$$

1 For $2m - \frac{n}{2} \le k < 2m$, we have to include an ϵ in the final error estimate.

and condition c):

$$
\|\delta-\delta_h\|_{s-2m}=O\left(h^{2m-\frac{n}{2}-s}\right).
$$

We turn now to the proof of (13) .

In solving elliptic problems with singular data, one must resort to more arcane data spaces than the negative Sobolev spaces. The approach suggested by Lions and Magenes [4] is to introduce the space

$$
\varXi^r = \left\{ v \in L^2 \colon \|v\|_{\varXi^r} = \sum_{\{\alpha \mid \leq r} \|Q^{[\alpha]}D^\alpha v\|_0 < \infty \right\}
$$

where ρ is a smooth function such that:

$$
c_1 \leq \frac{\varrho(x)}{d(x, \partial \Omega)} \leq c_2 \quad \text{ for all } x \text{ in } \Omega.
$$

 $d(x, \partial\Omega)$ denotes the distance from x to $\partial\Omega$. Ξ^{-r} , for $r \ge 0$, is defined to be the dual of \mathcal{Z}^* with the dual norm. We quote the following theorem from [4] (Theorem 6.3 of Chapter 2) :

Lemma 3. Let the operator A in (1) be properly elliptic, and let $B = (b_1, \ldots, b_m)$ *be normal, covering boundary conditions for A.*² Then for any f in E^{-r} , $r \ge 0$, there *is a distribution solution u to* (1) *which satisfies."*

$$
||u||_{2m-r} \leq c||f||_{S-r}.
$$

We now apply Lemma 3 to $u - U^h$, and we are left to estimate $\|\delta - \delta_h\|_{\mathbb{Z}^{d-2m}}$. But if $\Omega_1 \subset \Omega$, then for distributions with support in Ω_1 , the $H^{-r}(\Omega)$ and Ξ^{-r} norms are equivalent. In fact, $\|v\|_{\mathcal{Z}^{-r}} \leq c d(\Omega_1, \partial \Omega)^{-r} \|v\|_{-r}$ if supp $v \in \Omega_1$, where c depends only on Ω and the choice of ρ . By d), the support of δ_h is contained in some $\Omega_1 \subset \Omega$ for h sufficiently small, and thus (10) is proved. The constant $c(x_0)$ in the theorem can be estimated by $c(x_0)=O(d(x_0, \partial\Omega)^{s-2m})$.

We now construct δ_k . Let e be an element containing x_0 (there may be more than one if x_0 lies on an edge or is a vertex). Then T maps e to the reference element e_{ref} . Let φ be the polynomial of degree K such that:

$$
\int_{e_{\text{ref}}} P(y) \varphi(y) = P(T(x_0))
$$

for all polynomials P of degree K. The mapping $T(x_0) \rightarrow \varphi$ is continuous, so we conclude that:

$$
\sup_{y\in e_{\text{ref}}}\left|\varphi(y)\right|\leq C
$$

regardless of the position of x_0 in e. Define δ_h by:

$$
\delta_h(x) = \begin{cases} |T| \varphi(T x) & \text{in } e \\ 0 & \text{outside } e \end{cases}
$$

where $|T|$ is the determinant of the Jacobian of T. Changing variables, we have:

$$
\int_{\Omega} \delta_h(x) v(x) dx = \int_{\epsilon_{\text{ref}}} \varphi(y) v(T^{-1}y) dy = v(x_0)
$$

² We also assume that (1) has a unique solution for every smooth f to simplify the exposition.

and condition a) is proved. Our assumption on the Jacobian of T says that:

$$
\sup_{x\in\Omega}|\delta_h(x)|\leq C|T|=O(h^{-n}).
$$

Squaring and integrating over *e,* we prove b).

To prove c), we consider the inner product $(\delta - \delta_h, \psi)$ for ψ in $\hat{H}^r(\Omega)$. By the Bramble-Hilbert Lemma, there is a polynomial P of degree $k-1$ such that:

$$
\|\psi - P\|_{0,\,\epsilon} \le c h^r \|\psi\|_{r,\,\epsilon}, \qquad r \le k
$$

\n
$$
\sup_{x \in \epsilon} |\psi(x) - P(x)| \le c h^{r - \frac{n}{2}} \|\psi\|_{r,\epsilon}, \qquad r > \frac{n}{2}
$$
\n(14)

where the subscript e indicates that the integrations take place over e only. Thus:

$$
(\delta - \delta_h, \psi) = \psi(x_0) - P(x_0) - \int_{\epsilon} \delta_h(\psi - P)
$$

and since $\|\delta_k\|_0 = O\left(h^{-\frac{n}{2}}\right)$, we conclude from (14) that:

$$
|(\delta-\delta_h, \psi)| \leq c h^{r-\frac{n}{2}} \|\psi\|, \quad \frac{n}{2} < r \leq k
$$

and this proves c).

Remark 1. The contrast between the E^{-r} and H^{-r} norms is exemplified by δ_x as we let $x \rightarrow \partial \Omega$. Indeed

$$
\|\delta_x\|_{-r} \leq c_1 d(x, \partial \Omega)^{r-\frac{n}{2}}
$$

$$
\|\delta_x\|_{\mathcal{S}^{-r}} \geq c_2 \log (d(x, \partial \Omega)).
$$

In solving (1) for $f = \delta_{r}$, it is the Sobolev norm that predicts what happens as $d(x, \partial\Omega) \to 0$: using Poisson's formula to solve $\Delta u = \delta_x$ in the unit disc, $u = 0$ on the unit circle, one finds that the solution u_x does converge to zero as $d(x, \partial\Omega) \rightarrow 0$.

Remark 2. We showed that the finite element approximation u^h to a singular function u may be viewed as the finite element approximation to a smoother function U^* . Thus if our problem were to investigate for a singularity, we would be fooled by the smoothness of u^h if h were not small enough. This suggests the importance of *an a priori* knowledge, through error estimates, of the order of magnitude of the error $u - u^h$.

3. Convergence Rates for Piecewise Constant Data

Suppose f is a smooth function except on the set $\omega \in \Omega$ where it is discontinuous. ω need not be smooth; in practice, it will be piecewise smooth, but our only assumption is that its dimension be $n-1$, namely, we demand that the set

$$
\omega^h = \{x: d(x, \omega) < h\}
$$

have measure $O(h)$. We require f and its derivatives to be bounded in $\Omega-\omega$, and this places f in $H^{1-\epsilon}(\Omega)$. However, when f is truly discontinuous, it can not be in $H^{\frac{1}{2}}(\Omega)$. Thus the solution u to (1) for discontinuous f can not be in $H^{2m+\frac{1}{2}}(\Omega)$. However, we have the following theorem for the convergence of the finite element

Theorem 2. Suppose S^h approximates to degree $2m + 1$ in V. If f is smooth in $\Omega - \omega$ and $|\omega^n| = O(h)$, then:

$$
||u - uh||m \le c hm+1 \sup_{x \in \Omega} |f(x)| + c'hm+1 ||f||1, \Omega - \omega.
$$
 (15)

Remark. We conjecture that a more careful analysis can reduce the right side of estimate (15) to: $ch^{m+\frac{1}{2}}(\sup |f(x)|+||f||_{\frac{1}{2},\Omega-\omega})$. However, we do not know (but would like to) if the required approximation order $2m + 1$ can be reduced to $2m + \frac{1}{2}$. For example, the space of piecewise quadratics that are zero outside a polygon inscribed in Ω approximate to order $\frac{5}{2}$ in $\mathring{H}^1(\Omega)$, but we are unable to prove $||u-u^h||_1 = O(h^{\frac{3}{2}})$ for discontinuous *f* using these elements.

Proof of the Theorem. As in the previous section, we approximate f by a sequence f_h with the properties:

a) $(f, v) = (f_h, v)$ for every v in S^h .

b)
$$
||f_h||_1 \leq c h^{-\frac{1}{2}} \sup_{x \in \Omega} |f(x)| + c' ||f||_{1, \Omega - \omega}.
$$

 $c)$ $||f-f_h||_0 \leq c h^2 \sup |f(x)| + c'h||f||_{1, \Omega-\omega}.$

Define U^h as the solution to (1) with data f_h . Using the variational form of (1) and a), we again find that:

$$
a(U^h - u^h, v) = 0 \quad \text{for all } v \text{ in } S^h,
$$

so that u^h is also the finite element approximation to U^h . Thus by Lemma 1:

$$
||U^h - u^h||_m \leq c h^{m+1} ||f_h||_1.
$$
 (16)

Using the coerciveness of $a(\cdot, \cdot)$, we have:

$$
\gamma ||u - U^h||_m^2 \leq |a(u - U^h, u - U^h)| = |(f - f_h, u - U^h)|.
$$

By a), $(f - f_h, u - U^h) = (f - f_h, u - U^h - v)$ for any v in S^k. Using the approximation assumption only to order $2m$, we find:

$$
|(f-f_h, u-U^h)| \leq c h^m ||f-f_h||_0 ||u-U^h||_m.
$$

Dividing by $||u - U^*||_{m}$, we get:

$$
||u - Uh||m \le c hm ||f - fh||0.
$$
 (17)

In view of properties b) and c) and the triangle inequality, (16) and (17) combine to yield the theorem.

The construction of f_h begins with a smoothing. We let η be a positive C^{∞} function with support in $|x| \leq 1$ such that $\int_{R^n} \eta = 1$. We extend f outside Ω by zero, and define an intermediate \tilde{f}_h by convolution:

$$
\tilde{f}_h = f * \eta^h.
$$

The notation η^h means $\eta^h(x) = h^{-n} \eta\left(\frac{x}{h}\right)$. We will first show that \tilde{f}_h satisfies b) and c), although it does not satisfy a). We will have to perturb it slightly to satisfy a).

Let $\Omega^h = \{x \in \Omega : d(x, \partial \Omega) \geq h\}$. Then because convolution with η^h reproduces constants:

$$
||f - \tilde{f}_h||_{s, \Omega^h - \omega^h} \leq c h^{1-s} ||f||_{1, \Omega - \omega}, \quad \text{for} \quad 0 \leq s \leq 1. \tag{18}
$$

To get an estimate in the complement of $\Omega^h - \omega^h$, observe that:

$$
\sup_{y\in\Omega}|f*\eta^{h}(y)|\leq \sup_{x\in\Omega}|f(x)|.
$$

Squaring and integrating over $\Omega - \Omega^h \cup \omega^h$ we thus have:

$$
\|f - \tilde{f}_h\|_{0,\Omega - \Omega^h \cup \omega^h} \leq c h^{\frac{1}{2}} \sup_{x \in \Omega} |f(x)| \tag{19}
$$

because the area of $\Omega-\Omega^h\cup\omega^h$ is $O(h)$. To estimate derivatives in $\Omega-\Omega^h\cup\omega^h$, we write:

$$
D^{\alpha} f_{h} = f \ast D^{\alpha} \eta^{h} = f \ast \frac{1}{h} (D^{\alpha} \eta)^{h}
$$

where $(D^{\alpha} \eta)^{h}(x) = h^{-n} D^{\alpha} \eta \left(\frac{x}{h}\right)$. Thus:

$$
\|f_h\|_{1,\Omega-\Omega^{\mathbf{A}}\cup\,\Omega^{\mathbf{A}}} \leq c\,h^{-\frac{1}{2}}\sup_{x\in\Omega}|f(x)|.\tag{20}
$$

(18), (19), and (20) prove that \tilde{f}_h satisfies b) and c). Now we modify it to satisfy a). We want a function g_h such that

a') $(f-\tilde{f}^h, v) = (g_h, v)$ for v in S^h . b') $||g_h||_0 \leq c h^{+1} \sup_{x \in \Omega} f(x) + c'h||f||_{1,\Omega-\omega}.$ $\|e'\|_{\mathcal{S}_h}\|_1 \leq c\,h^{-\frac{1}{2}}\sup_{x\in\Omega}f(x)+c'\|f\|_{1,\Omega-\omega}.$

We define g_k on each element e_i and then sum, making g_k vanish at the edges of e_i so that this sum remains smooth. $g_h|e_i$ will lie in $\hat{H}^1(e_i)$, so we can use Poincare's inequality:

 $||g_h||_0 \leq c h ||g_h||_1$

to prove b') from c'). It is obvious that $f_k = \tilde{f}_k + g_k$ satisfies a)-c). The construction of g_h is via the following lemma:

Lemma 4. Suppose F is a bounded function on e_{ref} . Then we may find two *functions* φ^1 , φ^2 *in* $\hat{H}^1(e_{\text{ref}})$ *such that:*

$$
\sup_{\substack{x \in e_{\text{ref}} \\ |\alpha| \le 1}} |D^{\alpha} \varphi^1(x)| \le C^1 \sup_{x \in e_{\text{ref}} } |F(x)|, \tag{21}
$$

$$
\|\varphi^2\|_{1,\,\text{erf}} \leq C^2 \|F\|_{1,\,\text{erf}} \tag{22}
$$

and such that $\int \varphi^i P = \int F P$ for any polynomial P of degree K. **eref eref**

Proof. Let E^1 be the completion of C^{∞}_{0} (e_{ref}) in the C^1 norm given in (21), and let E^2 be $\hat{H}^1(e_{\text{ref}})$. E^1 is contained in $\hat{H}^1(e_{\text{ref}})$. Let $\mathscr{P}_K = \{$ polynomials of degree $K\}$, and define:

$$
N^i = \{ \varphi \in E^i : \int \varphi \, P = 0 \text{ for all } P \text{ in } \mathcal{P}_K \}.
$$

The function F defines a linear form on \mathscr{P}_K :

$$
P \to \int_{\epsilon_{\rm red}} FP
$$

and this gives a (continuous) mapping of $L^{\infty}(e_{ref})$ onto \mathscr{P}_K^* . Taking any φ in E^i , we may similarly define a linear form:

$$
P\to \int_{\epsilon_{\rm ref}} \varphi P,
$$

and this gives a (continuous, open) mapping of E^i onto \mathscr{P}_K^* .

Taking quotients, we have

 $E^i/N^i \simeq \mathscr{P}_\nu^*$.

Composing, we have a continuous map $F \to \bar{p}^i$ of $L^{\infty}(e_{\text{ref}})$ onto E^i/N^i , where for any $\varphi^i \in \overline{\varphi}^i$:

$$
\int_{\epsilon_{\rm ret}} FP = \int_{\epsilon_{\rm ret}} \varphi^i P \quad \text{for all } P \text{ in } \mathscr{P}_K.
$$

The norm of $\bar{\varphi}^i$ in E^i/N^i is simply the infimum, over all of φ^i in $\bar{\varphi}^i$, of the norm of φ^i . Since E^i is complete, this infimum is taken on by some φ^i , and this φ^i satisfies the requirements of the lemma.

To construct g_h on e_i , we set $F = (f - \tilde{f}_h) \circ T_i^{-1}$ and

$$
g_h = \begin{cases} q^1 \circ T_j & \text{if } e_j \cap (Q - Q^h \cup \omega^h) = \emptyset \\ q^2 \circ T_j & \text{if } e_j \in Q^h - \omega^h. \end{cases}
$$

In elements e_i touching $\Omega - \Omega^h \cup \omega^h$, we have:

$$
\sup_{\substack{x\in e_j\\|\alpha|\leq 1}}|D^{\alpha}g_h(x)|\leq ch^{-1}\sup_{x\in e_j}|f(x)-\tilde{f}_h(x)|\leq c'h^{-1}\sup_{x\in\Omega}|f(x)|,
$$

using (21). (The Jacobian of T_i introduces the factor ch^{-1} .) Away from ω and $\partial\Omega$, we use (22) :

$$
\|g_h\|_{1,\epsilon_j} \leq C^2 \|f - \tilde{f}_h\|_{1,\epsilon_j}.
$$

The area covered by elements near $\partial\Omega$ and ω is $O(h)$, thus:

$$
\|g_h\|_{1} \leq c h^{-\frac{1}{2}} \sup_{x \in \Omega} |f(x)| + c' \|f - f_h\|_{1, \Omega^{\mathbf{a}} - \omega^{\mathbf{a}}}
$$

$$
\leq c h^{-\frac{1}{2}} \sup_{x \in \Omega} |f(x)| + c' \|f\|_{1, \Omega - \omega}
$$

and this proves c').

4. Approximation of Singular Functions

In this section we will prove a general theorem for spline approximation that implies the results in Sections 2 and 3 for a regular mesh. We hope this theorem will make clear the "reason" that an $\varepsilon > 0$ does not appear in those error estimates. The *"reason"* becomes clearer after a Fourier transformation. If, for example, u solves $\Delta u = \delta$, then its Fourier transform $\hat{u}(\xi)$ behaves like $|\xi|^{-2}$ at infinity. Thus u has only $2 - \frac{n}{2} - \varepsilon$ Sobolev derivatives, even though the behavior of \hat{u} at infinity is fairly regular. We introduce a new norm to reflect this type of behavior more accurately. Let

$$
[u]_s^2 = \sup_{\xi \in R^n} |\hat{u}(\xi)|^2 (1 + |\xi|^2)^{s + \frac{n}{2}}.
$$

Notice that for any $\varepsilon > 0$, $||u||_{s-\varepsilon} \leq c_{\varepsilon}[u]_s$, but $c_{\varepsilon} \to \infty$ as $\varepsilon \to 0$.

We will say that a function Φ generates splines of degree k if for all $|\alpha| < k$:

$$
\sum_{j \in \mathscr{Z}^n} j^{\alpha} \Phi(x - j) = x^{\alpha}.
$$
 (23)

If we define S^h to be functions of the form:

$$
v(x) = \sum_{j \in \mathscr{Z}^n} c_j \Phi\left(\frac{x}{h} - j\right)
$$

then there is a well-known approximation theory for S^h in terms of Sobolev norms (e.g., [5] on which the ideas of this section are based). However, we will derive a different approximation theorem for S^h in terms of our new norm, namely:

Theorem 3. If $\Phi \in H^s(R^n)$ has compact support and generates splines of degree k, *then."*

$$
\inf_{v \in S^h} \|u - v\|_{s} \leq c_s h^{r-s} [u], \tag{24}
$$

as long as $s < r \leq k - \frac{n}{2}$ *.*

Proof. Following [5], we choose coefficients q_{α} such that³:

$$
\sum_{|\alpha|< k} q_{\alpha} \xi^{\alpha} \widehat{\Phi}(\xi) = 1 + O(|\xi|^{k}) \quad \text{near} \quad \xi = 0.
$$

If $v(x) = \sum c_i \Phi\left(\frac{x}{h}-j\right)$, then:

$$
\hat{v}(\xi) = (h^n \sum c_j e^{-i\xi \cdot jh}) \widehat{\Phi}(\xi).
$$

To define the approximation to u , we set:

$$
h^{n}\sum c_{j}e^{-i\xi\cdot jh}=\hat{u}(\xi)\sum_{\alpha}q_{\alpha}(h\xi)^{\alpha}\quad\text{in}\quad\left[-\frac{\pi}{h},\frac{\pi}{h}\right]^{n},
$$

and let $v(x) = \sum c_j \Phi\left(\frac{x}{h} - j\right)$. We claim that *v* satisfies (24).

If *C*/*h* denotes the cube $\left[-\frac{\pi}{h}, \frac{\pi}{h}\right]^n$, then we have to estimate three integrals: $I_1 = \int\limits_{C/h} |\hat{u}(\xi) - \hat{v}(\xi)|^2 (1 + |\xi|^2)^s d\xi$ $I_2 = \int\limits_{R^n - C/h} |\hat{u}(\xi)|^2 (1 + |\xi|^2)^s d\xi$ $I_3 = \int\limits_{R^n - C/h} |\hat{v}(\xi)|^2 (1 + |\xi|^2)^s d\xi.$

3 We will, for simplicity, assume that $\hat{\Phi}(0) \neq 0$.

Beginning with the first, we have $(c \text{ denotes different constants})$:

$$
I_{1} = \int_{C/h} |u(\xi)|^{2} |1 - \sum q_{\alpha}(h\xi)^{\alpha} \Phi(h\xi)|^{2} (1 + |\xi|^{2})^{s} d\xi
$$

\n
$$
\leq c \int_{C/h} |\hat{u}(\xi)|^{2} |h\xi|^{2(r-s)+n} (1 + |\xi|^{2})^{s} d\xi
$$

\n
$$
\leq c h^{2(r-s)+n} \int_{C/h} |u(\xi)|^{2} (1 + |\xi|^{2})^{r+n/2} d\xi
$$

\n
$$
\leq c h^{2(r-s)+n} [u]_{r}^{2} \int_{C/h} d\xi \leq c h^{2(r-s)} [u]_{r}^{2}.
$$

For the second, assuming $h \leq 1$, we have:

$$
I_2 \leqq c [u]_r^2 \int_{R^n - C/h} |\xi|^{-2(r-s)-n} d\xi.
$$

Introducing polar coordinates (ϱ, θ) we find:

$$
\int_{R^n-C/h} |\xi|^{-2(r-s)-n} d\xi \leq c \int_{h^{-1}}^{\infty} \varrho^{-2(r-s)-1} d\varrho = \frac{c}{2(r-s)} h^{2(r-s)} \quad \text{if} \quad r>s.
$$

Thus, $I_2 \leq c h^{2(r-s)} |u|^2$.

The estimate of I_3 is more subtle. By a change of variables,

$$
I_{\mathbf{3}}=\int\limits_{C/h}\left|u(\xi)\sum q_{\alpha}\left(h\xi\right)^{\alpha}\right|^{2}\sum_{j\neq 0}\left|\varPhi\left(h\xi+2\pi j\right)\right|^{2}\left(1+\left|\xi+\frac{2\pi j}{h}\right|^{2}\right)^{s}d\xi.
$$

In [5], it is shown that

$$
\sum_{j\neq 0} |\hat{\Phi}(h\xi + 2\pi j)|^2 |h\xi + 2\pi j|^{2s} = O(|h\xi|^{2k}).
$$

Therefore:

$$
I_3\leq c\,h^{2(r-s)+n}\int\limits_{C/h} \big|\,\hat{u}\left(\xi\right)|^2\,\big|\xi\,\big|^{2r+n}\leq c\,h^{2(r-s)}\,[u]_r^2.
$$

Summing these estimates and taking a square root yields the theorem.

Bibliography

- 1. Babuska, I. : Error bounds for the finite element method. Numer. Math. 16, 322-333 (1971)
- 2. Babuska, I., Aziz, A. K.: Survey lectures on the mathematical foundations of the finite element method. Section 6.3.6, Proc. of the Conf. on the Mathematical Foundations of the Finite Element Method. NewYork: Academic Press t973
- 3. Fried, Isaac, Yang, Shok Keng: Best finite element distribution around a singularity. AIAA Journal 10, t244-t246 (1972)
- 4. Lions, J. L., Magenes, E. : Problemes aux limites non homogenes et applications, vol. t. Paris: Dunod 1968
- 5. Strang, G., Fix, G. : A fourier analysis of the finite element method. Proc. of the CIME summer school (1971), to appear

Ridgway Scott Department of Mathematics Massachusetts Institute of Technology Cambridge, Massachusetts 02139 USA