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Abstract. In order to better conform to curved boundaries and material interfaces, 
curved finite elements have been widely applied in recent years by practicing en- 
gineering analysts. The most well known of such elements are the "isoparametric 
elements." As Zienkiewicz points out in [18, p. 132] there has been a certain parallel 
between the development of "element types" as used in finite element analyses 
and the independent development of methods for the mathematical description of 
general free-form surfaces. One of the purposes of this paper is to show that the 
relationship between these two areas of recent mathematical activity is indeed quite 
intimate. In order to establish this relationship, we introduce the notion of a "trans- 
finite element" which, in brief, is an invertible mapping T from a square parameter 
domain ~ onto a closed, bounded and simply connected region ~ in the xy-plane 
together with a "transfinite" blending-function type interpolant to the dependent 
variable / defined over ~. The "subparametric," "isoparametric" and "super- 
parametric" element types discussed by Zienkiewicz in [18, pp. t37-1381 can all 
be shown to be special cases obtainable by various discretizations of transfinite elements 
Actual error bounds are derived for a wide class of semi-discretized transfinite elements 

(with the nature of the mapping ~" �9 ~ - ~  ~ remaining unspecified) as applied to two 
types of boundary value problems. These bounds for semi-discretized elements are 
then specialized to obtain bounds for the familiar isoparametric elements. While we 
consider only two dimensional elements, extensions to higher dimensions is straight- 
forward. 

1. Introduction 

The conventional  finite element method (FEM) involves the par t i t ioning of 
a polygonal domain ~ into rectangular  and/or t r iangular  elements. Quite often, 
however, a s t ructural  engineer is faced with a boundary  value problem over a 
nonpolygonal domain ~ .  The first step in a finite element solution then requires 
tha t  the boundary,  a ~ ,  of ~ be approximated by a polygonal arc. Obviously, 
the accuracy of the FEM is l imited by  the accuracy of the polygonal approxima- 
t ion to ~ .  At worst, the convergence of the FEM may  be destroyed if boundary  
conditions are not  handled properly. For  example, see [2] for a discussion of 
what  has been termed the "Babuska paradox." 
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Ergatoudis, Irons and Zienkiewicz [6, t71 have developed various curved 
parametric "finite elements" which circumvent the above dilemma. In [9] and 
below, the authors extend the notion of parametric elements and remove the 
"element  of chance" referred to in [17, p. 3821 from the derivation of the bivariate 
(and multivariate) interpolation formulae which underlie the finite dimensional 
parametric techniques. 

In Section 2, we introduce the concept of transfinite interpolation by  which 
we mean interpolation methods which match a given function on a nondenumer- 
able set of points. We then use such transfinite formulas in Section 4 to generate 
certain [inite parameter interpolation formulae as cases of special interest. These 
serve as the basis for the Ritz spaces involved in the numerical implementation 
of the trans[inite element method. Discretization error bounds for these numerical 
methods and for two specific boundary value problems are developed in Section 5. 
As special cases of these results for the Lagrange transfinite elements, we obtain 
error bounds for isoparametric elements. Finally, in Section 6 we explore iso- 
parametric trans]inite elements in which the same transfinite interpolation formula 
is used both for the mapping of the independent variables and the approximation 
of the dependent variable. The finite parameter isoparametric elements of [t 7, 181 
precipitate as special cases. 

In another paper [91, we consider the application of transfinite interpolation 
methods to domain mapping and mesh generation problems associated with the 
geometric aspects of the finite element method. 

2. Transfinite Interpolation Schemes 

In this section we review a class of interpolation schemes which will serve 
later as the basis for subsequent analyses. We refer to this class of interpolation 
formulae as being transfinite, since their precision sets (i.e., the set of points 
in the domain of the independent variables s, t on which the interpolant matches 
the original function) are nondenumerable. In particular, the transfinite schemes 
which we consider are of the type referred to as "blending-function methods" E81. 
Approximation error bounds are also given for several special but important 
cases; namely, the transfinite Lagrange interpolation schemes. 

Let / be a continuous function of two independent variables with domain 

SP: [0, h] • Eo, hI in the st-plane. We seek approximations ] ~ /  which inter- 
polate / on certain (denumerable or nondenumerable) point sets contained in ~ .  
To accomplish this, we will rely on the algebraic theory of multivariate approxi- 
mation developed in [7]. 

By a proiector, # ,  we mean an idempotent linear operator from the linear 
space 3-  of all continuous bivariate functions [, with domain ~ ' ,  onto a subspace 
of functions. For example, if the operator ~ is defined by the formula 

#, E/I = (t  - s /h) / (o, t) + (s/h) / (h, t), (t) 

then ~ ,  is both linear: 

[ / +  g] = ~ [/1 + ~ Eg] 
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and idempotent :  

@, ~ [13 = (~ - ~/h) @, [ I L : o  + (s/h) ~ [1]1~=~ 
= (t - s/h) 1 (o, t) + (s/h) 1 (h, t) 

= ~ ,  [1]. 
In  the expression for the projector ~ ,  s is the operational variable and t 

is essentially a parameter.  I t  is easy to verify tha t  the projection ~s [/] inter- 
polates / along the lines s = 0 and s = h. 

Throughout  this paper, we restrict our at tention to the class of projectors 
of the following type :  

~ [1] = Y. 1 (so t) ~o~ (s) (2) 
i = O  

where 0 = s o < s I < ... < s,~ = h and 

~ , ( s ) = H ( s - s j ) l H ( s , - s j ) ,  O<--i<--m (3) 
j#i i#i 

are the fundamental  (cardinal) functions for Lagrange polynomial interpolation [5]. 
In the context of transfinite interpolation, the functions {gi(s)}~=0 are called 
the blending/unctions [8]. The projection ~ Ell interpolates to / along the m lines 
s=s  o O<i<m, in the s t-plane. Since ~ [[] coincides with / at a nondenumerable 
number  of points, this is a simple example of a transfinite interpolation scheme. 
However, we shall reserve the term "transfinite bivariate Lagrange interpolat ion" 
for the more general class of methods of Theorem t. 

For  completeness and later reference, we display the analogous formula 
for ~ [/]: 

- i  [1] - l(s, tj) ~j(t) ,  (4) 
j=o 

where 0 = to< t l <  ""  < t~ = h and 

~ j ( t ) = H ( t - t i ) l l l ( t j - h ) ,  o<i<=n. (5) 
i4=i i * j  

Probably  the most  well-known class of formulae for bivariate interpolation- 
approximation are the (tensor product) bipolynomial Lagrange interpolation 
jormulae. This class of formulae is obtained as the product of the above defined 
projectors ~ and ~ in (2) and (4), respectively: 

(6) m n 

= X X/(s,, tj) ~,(s) ~j(t). 
~=o i = o  

The product operator ~ g~t is itself a projector and #s ~t [/] interpolates / 
at the ( m + l ) ( n + Q  points (si, ti), o~i<_m, O<=j<=n. 

Nora bene: Although the precision sets of ~ and ~ t  themselves are trans- 
finite, the precision set of ~s ~ is a finite point set. 

There is a second and stronger way to compound the projectors ~ and ~t. 
The Boolean sum [7] 

~s |  ~, + ~, - -  ~ ' ,  ~ ,  (7) 
is also a projector and serves as a basis for the following result. 

8* 
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Theorem 1. Transfinite Bivariate Lagrange Interpolation. 

Let ~ and ~ t  be defined as above, then 

interpolates f along the lines s = s i, O <_ i <_ m and t = t i, O <~ j ~ n. 

Proof. Use the expressions (2), (4) and (6) to verify that  

| ~, [/] (s~, t) = l(s~, t), o -< i _< m 

| ~t [/] (s, ti) = l (s, tj), 0 <= ] <= n. Q.E.D. 

Various extensions and generalizations of Theorem 1 are immediate. For 
example, the theorem remains valid if the projector ~ is taken to be the cubic 
spline interpolation projector in the operational variable s and ~ t  is taken to 
be a trigonometric polynomial interpolation projector [7]. All that  is really essential 
is that  the functions 9i (s) and ~pi(t) in (2) and (4) satisfy the cardinality con- 
ditions ~q(s~)----6~k (i, k = 0 ,  t . . . . .  m) and~0i(tt)=6i~ (j, l = 0 ,  1 . . . . .  n). Also, one 
need not restrict the domain of f to be a square. In [11 for instance, transfinite 
interpolation formulae over triangular domains were derived. 

We now develop bounds on the approximation error associated with trans- 
finite bivariate Lagrange interpolation schemes. Let ~s  ~ I - -  ~ and ~e ~ I --  ~t 
(where I is the identity operator) be the remainder projectors [7] associated 
with ~s and ~ t  respectively. The remainder associated with the product operator 

I - -  ~ : ,  = I -- ( I  - -  ~ s )  ( I  - -  ~ , )  
(9) 

Similarly, the remainder associated with the transfinite Boolean sum operator 
~ |  is 

i - ~ |  = i  - ( i  - & ) |  ( i  - & )  
= ~ , ~ , .  (to) 

We now seek bounds on #~s ~ t  []], or equivalently / -  ~ s @ ~  [/], and its 
various derivatives. The analogous results for ] -  ~ ~ [/] will follow directly 
from our development in Section 4. 

Theorem 2. Let /EC (m+1,"+1)(5r and ~ @ ~ [ f ]  be the transfinite bivariate 
Lagrange interpolant defined by (8). There exist constants trek and e~z such that 

(1t) 
O<_k<_m and O<_l<_n. 

[Here and below gIk, O =_ ak+lg/Osk Off.] 

Proof. Let D Ip,q) be the operator defined by 

D (p'q) [g] =g(P'q). 

Then, from (2) and the above hypothesis on ], it follows that  ~ and D (~ commute 

D(~176 0- -< l - -<n+ t .  (12) 
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That  is, fix t (arbitrarily), then for all s 

( ~  [/])10,;/(s, t) = #,  [/(o,;i] (s, t). 

With ~s  - -  I --  ~s we also have tha t  

D (~ ~ = D(O,Z) _ D(O,~) 

= D(~ --  ~ D(~ = ~s  D(~ 

Hence D (~ and ~ commute also, for 0--< l_< n + t. 

From (t3) and from [1t, p. 289], it follows that  for O<_k<_m 

liD Ik'') at Eli IIo~ = ]1 n(k' o )a ,  El(o,s)] Iloo 
< ~,,,,, r l l < "+ ' ,% hm+ 1-k 

where s~k ~ t / (m  - - k +  t ) ! .  

Now ~ --  ~ ~ ---- ~ - -  ~ ~ = ~t a s  yields 

(1 - ~ 0 ~ ,  [ l ] P , ~ )  = ( t  - @~ [ l I P '  ~) - (~  [1] - @~ ~, [I])('~' ~) 
= D(O,,)(b(k, o) a s  [1] --  D(k' o) ~t a ,  [1] } (! 5) 

= D(O,,){D(k, 0) ~ ,  [/] _ ~t D(k'~ ~s  [lJ } 

where we have used the fact tha t  ~ D(k'~ (k'~ ~ .  

But  the last display line in (t 5) is the l-th derivative with respect to t of the 
error in Lagrange interpolation in the t variable to the function D(k,~ 
That  is, 

(1 _ ~ | ~ [l])(k, z) = D(O,:) a t  in(k, o) a ,  [I] J (15') 

and from [11, p. 289] we have for O<--_l<_n 

I1(1 - .~ | ~, [1])(~'~)11~o --< * . ,  I[ D(~ D(k'~ [1] Ino  
= e,. IID('~,'+l).~s El3ll| h"+ l - '  (16) 

where e~ t ~ t / (n --  l + 1 ) !. 

Eqs. (t6) and (14) then yield ( t i) .  

3. Transfinite Elements  

In  the previous section, we established a class of transfinite interpolation 
formulae based upon the use of Lagrange polynomial blending functions. The 
domain of the projections discussed in Section 2 was the square ~f: [0, hl • [0, h] 
in the s t-plane. Now, we describe how to construct transfinite interpolants over 
arbi t rary  curvilinear quadrilateral regions in the plane. 

Let  d ~ be a closed, bounded and simply connected region in the xy-plane 
whose boundary,  36 ~ is subdivided into four parametric curve segments. Let 

T(s, t) be a univalent (one-to-one) mapping of the square .9~ [0, h] • [0, h] in 
the s t-plane onto the region 8 in the xy-plane:  

~(s, t) = \y (x (s,Is' t)t))" 
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Since T is univalent and onto, the boundary of Sz maps onto the boundary 
of o ~ and the mapping is invertible. In [9], the authors consider in detail the 
construction of such mappings for arbitrary closed, bounded and simply connected 
regions @. 

- +  --> - +  - +  

Let the four parametric curves F(O, t), F(h, t), F (s, 0) and F(s, h) constitute 
the boundary of o z. The simplest, but very useful, mapping discussed in [9] is 
the vector-valued bilinearly blended map 

t) = l ~(s' O] = 0 -s /h) f (o ,  t) + (slh)~(h, t) 7(s, 
[y (s, t) ] 

+ (1 -- t/h) F(s, O) + (t/h) F(s, h) (t7) 
- -+  

- -  (t - -  s/h) (l - -  t/h) F ( 0 ,  0 )  - -  ( t  - -  s/h) (t/h) F(O, h) 

- (1 - t/h) (s/h) F~(h, o) - -  (t/h) (s/h) F(h,  h). 

By construction T maps 8Sz onto 8~. If we could also establish that the Jacobian 
is non-zero, 

y: ;: +o 
then we could conclude that T was at least locally invertible. However the 

determination of the validity of (t8) for the map 2~ in (t7), or any other T, 
is a separate problem and has been considered in [9]. The approach adopted 
there is heuristic: It  is guided by experience, geometric intuition and analysis, 
and is accomplished with the aid of computer graphics, i.e. actual visual inspection. 

To fix ideas, consider as a simple example of a univalent map, the region d ~ 
in Fig. t. The boundary of ~ is described by the four curves: 

F(O't)~ It+(t/h) V2 O<t<_h,= _ 

[~  .~(h, t) = t + (t/h) # 0 <__ t_< h, 

-+ [ Cos (s . /2  h) l 
F(s,  o) = [ Sin (s • /2h) l 0 < s <= h, 

[(t + 1/2) Cos (s ~12 h)] 
F(s,h) = [(t +V~ ) Sin(sze/2h)J O < s < h .  

The bilinearly blended map (t7) for this very simple case reduces to 

[(1 + (t/h) V~) Cos (s ~12hl] 
T(s, t) = (t + (t/h) V2) Sin (s z~/2h)l 

I t  is easy to confirm that 2~ is univalent and that the Jacobian is non-zero. 
In fact, it is easy to see that the /low lines of this map (i.e., the image in the 
xy-plane of the lines s=cons t  and t=const )  are just radial lines and circular 
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~+1~ 

Y 

I s = O l  
t 

~ + ~  

Fig. I 

.*- $ 

arcs joining corresponding points on opposite boundaries of the region o ~. In 
Section 6, we will see how (I 7) can be used to generate most  of the isoparametr ic  
elements considered in [17]. 

-4- 

Any univalent  map  T: ~9~--*d ~ provides a unique correspondence between a 
point  (s, t) E ~ and its image (x, y) ~o ~. Hence, if a function / (s, t) is defined for 

(s, t) E 9 ~ then via an a priori m a p  T we obtain a function, s a y / *  (x, y) defined 
for all (x, y) E~' b y  the identification 

t*(x(,,t), y(s,t))-/(s,t), (s,t)E~. 
Now, let ] be  defined for aII (s, t)E&~ let ~ , |  be t~e (m,n)-degree 

transfinite Lagrange interpolant  given by  (8); and let T:  ~9~ be any univalent  
map  of &o onto d ~. 

Definition. The function ~ |  defined for all (x, y)EN by  the identi- 
fication 

| ~ If]* (x (s, t), y (s, t) ) -= ~ | ~, [i] (s, t) 

together  with the mapping  . 5;P--->N is a transfinite element with domain o". 

I f  the primit ive function ]* is defined, as above, for all (x, y ) E ~  by  the 
relation ]*(x, y )~](s ,  t), then ~ |  [ ]]* interpolates ]* along the two sets of 

curves in N which are the images under T of the two families of lines s = si and 
t= t  i in ~9 ~ i.e., 

~|  t),y(s~,t))=[*(x(s~,t),y(s~,t)), i = 0 , 1  . . . . .  m 

~|  t i ) )=/*(x(s , t]) ,y(s ,  tj) ), i = 0 ,  t . . . . .  n. 

As we shall subsequent ly  see, essentially all of the conventional finite elements 
are obtainable as specializations of the transfinite elements just defined. In the 

very  special case when T is the ident i ty  m a p  (x=--s, y ~ t ) ,  one obtains a class 

of transfinite elements with the square domain [0, h] • [0, h]. Or, if we take  
to be the map  x=s,  y = s  t (which maps  the square ~9 ~  [0, h] • [O, h] onto the 
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s t-plane x y-plane 

Fig. 2. Bilinear blending over ~ together the map ~--> d induces the transfinite 
surface element ~s | 9~t If]* (x, y) over d with the properties that  ~ |  ~t If]* matches 
[* on the perimeter of 6 ~. The domain 6 ~ is an arbitrary closed, bounded and simply 

connected region in the xy-plane 

triangle with vertices (x, y)----(0, 0), (h, 0), (h, h~)), then we obtain a class of 
transfinite elements defined over  this tr iangle with the p roper ty  tha t  ~ O ~ []]* 
coincides with ]* along the set of m + t  parallel lines x=xi=--s ~ and the set of 
n + t radial lines defined by  y ~ s tj. 

Fig. 2 graphically il lustrates the construction of a simple transfinite element. 

Under  the invertible mapp ing  T (whose form is unspecified), we have a one-to-one 
correspondence (s, t ) ~  (x, y). Suppose t ha t  the function [* defined over  @ is 
given and tha t  we wish to interpolate to [* on 8@. First, define the function f 
over  5 r by  the identification of values: ](s, t )~ /*  (x(s, t),y(s, t)). Then, con- 
s t ruct  the bilinearly blended interpolant  ~ |  ~ I/l* (x, y) ~ ~ Q  ~ []] (s, t) 
such tha t  

| ~, [/]* I~ --/* I~, 
which is the desired transfinite element wi th  domain 8. 

4. Discrete Approximations to Transfinite Interpolants 
In  order to develop practical  interpolat ion schemes for use in the Ritz method 

and other applications, the a rb i t ra ry  univar ia te  functions ] (s o t), 0_< i<--m and 
](s, ti), O<=j<=n in (2) and (4) mus t  be approx imated  in te rms of some finite 
numbe r  of scalar parameters .  In  this section, therefore, we derive several  finite 
pa rame te r  interpolat ion formulae which precipi tate  as approximat ions  to the 
transfinite bivariate Lagrange interpolants. 

Nota bene: The concept  of a transfinite element involves two notions: (a) the 

transfinite interpolat ion formula ~ |  ~ Ell, and (b) the mapping  . ~ - + o  ~ 
which provides the correspondence between [* (x, y) and l (s, t). In  this section and 
the next,  we consider methods  for approximat ing  the transfinite interpolant  by  
finite pa rame te r  interpolants ;  i.e., discrete approximat ions  to transfinite Lagrange 
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interpolants. We do not, however, assume anything about the nature of the 

map T: ~ - + ~  since it is, in general, totally unrelated to the interpolation 

scheme. In particular, the map T itself must generally be regarded as being 
transfinite, since it is not possible to obtain a finite parameter interpolatory 
map of ~ onto ~ (more pointedly, 0 ~  onto ae ~) for an arbitrary closed, bounded 
and simply connected domain d (cf. [9]). Thus, although we discretize the inter- 
polation formula used in defining an element, this element is still to be regarded 

as transfinite because of the, in general, transfinite nature of the mapping T 
(cf. Section 6). This idea is closely related to Zienkiewicz's remarks [18, pp. t37- 
I38] concerning sub-, super-, and isoparametric elements. 

The derivation of finite parameter interpolation formulas can be viewed as 
a two-stage decomposition: We first project f, via #~ |  to obtain the 
transfinite interpolant ~ |  The two components ~ [ f ]  and ~ [ f ]  are 
then approximated by finite parameter tensor product interpolants ~ [f] 
and ~ #~ [f] obtained by projecting with two new projectors ~ and ~ .  Hence 

(~9) 

where :~, = I -- ~ and ~ = I -- ~ .  

Consider expressions (2) and (4) for ~ [f] and ~ [f]. If ~s and ~ are chosen 
as projectors of the same class as ~ and ~ ,  respectively, then for example 

m 

= = X /(si ,  ~j) ~i (s) cpi(t) 
i = 0  i = 0  ]=0  

is an approximation to ~ []]. 
More specifically, suppose that ~ is determined by Lagrange interpolation 

at the points 0 = ~ 0 < ~ , < . - . < ~ - - - - - h  and ~ by Lagrange interpolation at the 
points O = t o < Q < . . . < t ~ = h .  Thus ~ [ / ]  can be obtained from (2) and (3) by 
putting bars over ~ ,  m, s i, and 9~. However, one is not free to choose the si 
and t-i arbitrarily if the projection ( ~  + ~ ~ -  ~ ~ ) [ f ]  is to interpolate 
to ] at a point set in S '~. To obtain an interpolatory formula, it is natural to 
require the containment relations {s,}<__{~,} and {ti}~{tj}. Even if this is not 
the case, however, one still obtains an approximation (but not, in general, an 
interpolation) to / .  In the former case, we deduce 

Theorem 3. Discrete Approximation of Transfinite Bivariate Lagrange Inter- 
polation. 

Let #,, ~, ~, and ~, b~ ~e/ined as a~o~e ~ith {s,}~{~,} ~nd {tf}~?f}. Then, 

interpolates to f at the (~  + t) (n + ~ ) -- (~  -- m) (~ -- n) points 

(si, ti), O<=i<=m, O<=i<=~ 
(2o') 

(~,,t~.), i~{~[~r o_-<i<~. 
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If m-----~ and n = ~ ,  then [(m, n, ~, ~) is the tensor product projection ~ ~ I/l- 
If m = ~ = n = ~ ,  then ](m, m, m, m) in the bivariate Lagrange polynomial inter- 
polant of ] which interpolates / at the (re+l)* points (s,,t#), O~i, iGm. In 
general, however, the point stencil described by Eqs. (20') is not a Cartesian 
product stencil. 

From the remainder formula 

= (s - ~ | ~ )  [13 + ~ ,  ~ Y} + ~ ,  ~ [/] 

which uses (t9) and (10), we can easily deduce the following 

Theorem 4. Let I~C(P,q/(~), p----max(m+1, m+~) ,  q=max(n+ t ,  ~+~) and 

If(! - h : ~ " %  <-- ~ II/~+'"llL h~+:-* 

+ ~=, ~., I I t~. .+, , .+,G h . -+ , ,+ , - , - ,  (22) 

+ ~ ~ ,  II1 ~+~' =+'~ I1~ h~+-+=-~-, 
-3 I- 8ra , ~I{I]('+I'~IF1}II~ hm+'n+ ~- l~ - I  

Remarks, ~. Fix m and n, Then for a l l ~ , ~ m + n + ~  

I1(, + - -  7) (', ~)11<~ - -  r "+"+~-'-') as h-+O.  (2~,) 

Hence, there is a limit to the improvement (in the asymptotic order) that one 
can realize at the second stage of decomposition by irtcreasing ~ and g, and 
this limit is determined by the accuracy of the original transfinite approximation 
to I. 

2. Fix m and n. Then the "opt imal"  order in (23) is obtained from (22) by 
taking ~ = s ~ - m + n +  ~ and no smaller integer. 

3. Let ~ = m  and S~-n. Then, / '= ~ ~ [[] is the product projection as in 
(6) and we have from (2i) that 

I1(1 - ~, ~ [I;1):~"% ~ ~,,,k lIP "+~' % h, .+ ' -~ 
+ ~.,  I 17 ' "+ '% s, .+ ' - ,  (24) 

0Gk=-< m, 0~l--< n. Comparing (24) with (16) we observe the increased accuracy 
of the Boolean sum projection ~ [ / ]  over the tensor product projection 

~[[] .  Indeed, since the precision set of the operator ~ |  is a transfinite 
point set in St, it is expected to be more accurate than any finite parameter 
approximation in the class of schemes given by Theorem 3- 
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T a b l e  I 

] '0 ,  i, i, ~) 

i 

p1311/ - -  ~ e ~ [ l ] H o  o = d~(hP,) a s h ~ o  

pz 911/--  ~ s ~ t  [/]JJoo = r a s  h - -+O 

N = n u m b e r  of  p o i n t s  in  s t enc i l  

/(m, n, ~ ,  ~ )  = F u n c t i o n  d e f i n e d  b y  E q .  (20) 

Pl  = 4, Pz = 2, p z =  2, N =  4 

/ ( 1 .  t,  2, 2 3 

w 

Pl  = 4, P2 = 2, P 3 =  3, N - -  8 

[ ( I ,  t, 3, 3) 

Pl  = 4, P2 = 2, P3 = 4, N = 12 

]'~2, 2, 2, 2) 

Pl  = 6, Pz = 3, P3 = 3, N = 9 

7(2, 2, 4, 4) 

P l  = 6, p~ = 3, P3 = 5, N = 21 

f'(2, 2, 5, 5) 

P 1 = 6 ,  P ~ = 3 ,  P 8 = 6 ,  . N = 2 7  

/ (2 ,  2, 6, 6) 

PI  = 6, P~ = 3, p~ = 6, N = 33 
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4. See Table 1. This table shows seven simple stencils which are obtained 
from the two-stage decomposition scheme described by Theorem 3. The first 
stencil corresponds to ordinary bilinear interpolation, re=n=1 in (6), or 
m = n = m = n  = t in (20). The second stencil results from first using the bi- 
linearly blended transfinite formula 

#, | #,  I/~ = (1 - s/h) t (o, t) + (s/h) ! (1, t) 

+ (t - t / h ) / ( s ,  o) + ( t /h) / (~,  1) 

- (1 - s / h ) ( t  - t / h ) 1 ( o ,  o) - (1 - ~ l h )  ( t lh) / (o ,  h) 

- (s/h) (t - t/h) / (h, o) - (s/h) (tlh) 1 (h, h) 

obtained by taking re=n=1 in (8), and then approximating each of the four 
univariate functions (i.e., 1(0, t), !(h, t), [(s, 0) and !(s, h)) in this expression 
by parabolas of interpolation at the argument values 0, hi2 and h. The third 
stencil results from approximating the univariate functions in the bilinearly 
blended interpolant by interpolating cubic polynomials. The last four stencils 
arise from first using transfinite biquadratie interpolation (m = n :  2 in Theorem 1) 
followed by quadratic, quartic, quintic and sixth degree polynomial inter- 
polations, respectively, to the six univariate functions (i.e., [(0, t), [(hi2, t), 
/(h, t), ](s, 0), !(s, hi2) and !(s, h)) contained in the transfinite expression 

| #t E/I- Note that  some of these stencils belong to the so called "serendipity 
class" derived in [17] by different methods. (See also Section 6 below.) 

5. Discretization Error for Boundary Value Problems 

We now describe the application of transfinite elements to the approximate 
solution of boundary value problems via the Ritz method. The resulting numerical 
techniques will be termed transfinite element methods. These new methods include 
apparently all of the standard finite element and isoparametric finite element 
methods found in the literature for quadrilateral and curvilinear quadrilateral 
element domains ~*i. 1 However, the transfinite element methods are substantially 
more general since, for example, even though the local interpolant is a finite 
parameter  function, the domain ~i over which it is defined is generally to be 
considered arbitrary. The relation of (parametric) transfinite elements to iso- 
parametric finite elements is explored in the following section. 

Consider the second-order linear partial differential equation 

for (x, y)E~,  a simply connected, bounded domain in the xy-plane. Here aii, 
c and / are continuous functions of (x, y) in ~ ,  the closure of ~ ;  and 

2 2 

aii(x, y) =aii(x ,Y) ,  ~. aii~i~i>----#~, ~i real 
~,i=1 ~=t  (25') 

/~ ~ constant > 0, c(x,y)>=O. 
I Analogous transfinite methods for triangles can be developed on the basis of the 
interpolation schemes in [1 ]. 
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For  simplicity, we assume 
v ~ 0 on a ~ .  (26) 

The true solution v to (25)-(26) minimizes the functional 

F~ [w] - -  f {(w,, %) A (w,, wy) ~ + c w* -- 2I w} dx dy (27) 
#t 

over the Sobolev space I~V~I(~), [12, 21], where the 2 by 2 matr ix A is given in 
(25) and superscript t denotes transpose. 

Suppose ~ has been partit ioned into "curvil inear quadrilateral elements" 
o~ i (I=<j<_N). Assume the partit ioning is chosen such that  for each dj  there 

exists a univalent map 2~ i from ~ :  [0, hi] • [0, hi] onto o~i,* 

where 
hj ~_ m a x { [ ( ~  - ~)~  + (y~ -y~)~]~]  ( ~ ,  y~)cr  k = ~, 2} 

is the diameter of o~j. Of course other choices of h i are possible, as long as hi--*0 
if and only if the diameter of o~i-+0. Further,  assume that  for each i, 

-->. 

[Tj],ec~,q~(~),  i = t,  2, (28) 

where p and q are determined in Theorem 5 below. If, for example, Tj is the 
vector-valued bilinearly blended map given in (17), then (28) simply requires 

tha t  the boundary  segments F(O, t), F(h, t), F(s, 0) and F(s, h) be " s m o o t h " .  

If  Ji is the Jacobian matrix associated with Ti, assume that  

jy l  exists for each i, and that  
(29) 

~,h~maxmaxi l j~ l [ l=<>,<oo as h = m a x h j - + 0 . ,  

Using the discretized interpolants developed in Theorem 3, we define a finite 
dimensional space of functions with domain ~ by  

S (m, n, r~, ~) = {[*[/* satisfies (26) and for each o~ i there exists 

a n T ( m , n , ~ , ~ ) s u c h t h a t / * ( x ( s , t ) , y ( s , t ) ) = / ( m , n , ~ , ~ ) ( s , t ) ) .  (30) 

Note the S (m, n, ~,  ~) is a finite dimensional function space, the Ritz space, 
[t2], associated with the N elements determined by  the choice of m, n, ~,  ~. 

2 For example, in applications of isoparametric methods [18], the maps ~ are often 
constructed element by element. However, a more practical means of obtaining 

- +  

the Ty is described in w 6 and in the papers [9] and [19]. In these papers, Zienkiewicz 
and Phillips [19] apply isoparametric element methods to large sections (zones) of 
a given problem domain in order to introduce local curvilinear coordinates; whereas 
in [9], Gordon and Hall apply transfinite mapping techniques for the same purpose, 
i.e., to introduce a curvilinear coordinate system onto the problem domain ~. Such 
curvilinear coordinate systems obviously can be used to decompose ~ into curvilinear 
quadrilateral element domains ~i" 
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The transfinite element Ritz approximation to (25)-(26) is then defined as 
the function V(m, n, ~,  ~) in S (m, n, ~ ,  ~) such tha t  

F 1 IV] = min F 1 [w] (31) 
wE S 

where V~-- V(m, n, ~,  ~) and S = S  (m, n, ~,  ~), for fixed m, ~, n, ~. 

Recalling that  the Sobolev (energy) norm is 

we seek asymptot ic  (as h--~O)bounds on H v - g l l w ~ .  The main result of this 
section is 

Theorem 5. Let v be the true solution to (25)-(26) ; i.e., the solution determined by 

F lEv I=  min F l[w]. 
o 

Let V be the Ritz approximation to v from S(m, n, ~,  ~) and determined by (31). I /  
vEC(P,q)(~) where p = m a x ( m + t ,  ~ + t )  and q = m a x ( n + l ,  ~ + t ) ,  then 

[Iv - Vllw c  : r as h - + 0  (32) 

where d---- rain {~, ~, m + n + t }. 

Proo/. As in [20, p. 396] define 

D(9 ,  ~0)~ f{(9~,, 9y)A(~o,,~vy)'+cq;~v}dxdy 

o 

for 9 and ~o in W21(~). From [20, p. 396], with D ( z ) ~ D  (z, z), there exists a 
constant C such tha t  

[[v - -  V[[~v~(at, =< C D(v -- V) ~ C D(v -- V) (33) 

where V is any function in S. In particular, we choose l~(m, n, ~ ,  ~) to be the 

element in S (m, n, ~ ,  ~) determined by  the function v; i.e., V interpolates v at 
the specified mesh points. Note that  by  the chain rule and (28), if v~. C Ip'q~ (o~i), 
as a function of x and y, then vECIP'qt(5~j), as a function of s and t. 

Let  e = v -  V. Then 

D (e) = f {(e,, ey) A (e,, ey) t + c e ~} (x, y) dx dy 
at  

(34) 
---- ~. f {(~, e t ) [ J~IA(J~)  ~] (e~, , t )*+ c **} (s, t)I det J/] dsdt,  

where e~ means the partial  derivative Oe/Os regarded as a function of s and t. 

But ,  A is symmetric  and positive definite by  (2~'), hence it has a symmetric  
positive definite square root [4, p. t69]. Let  Y =  (es, e,), then 

V(J7 ~) A (l~l), y ,  _ y(j~a A�89 (J;~ At) ' Y' 

<_- IIA II " V:I  Y Y'. 
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Substituting into (34) 

D (e) ~ ~, f{]]A [[2 []J~[[~ {~ + e~} + c  ~} ] det ~] ds dt 

[m~ x][A]2 max+ t(max I lJ ix]~*,  , I1~ + 41L § IleL II+ll. <3~) 

�9 E f Jdet~.l dsat.  

But E f ]  det J+] ds d t =  E f dx dy = ]~1 ~ area of ~ .  
j ~ J# j  

From (33) and (35), we have 

Itv - V I l ~ c ~ ) <  M(~h){II~IL + 114IL + II~II+P (36) 
where M(yh) ={c I~1 m a x  [IlelL, ~ x  IIA I1~" r~]} +. 

The orders of convergence in (32) then follow from (36) and Theorem 4. 
Q.E.9. 

Let us next consider the plane strain elasticity problem [3, t0, 14, 16, 21]: 

Find u, v ELY,1 (:~) such that 

F~[u, vl ---- min F2[w 1, w2] (37) 
o 

wi e W~ (gt) 
where the potential energy is 

F, [w~, wzl = �89 f (~ -- ~ T)'e dx dy -- f ~' ~ dx dy, (38) 

~ = (wl, wz) t is the vector of displacements, T = IT, T, O, TJ ~, 

_ + |w~ ~ 
~(w~, w~) = ~ = [wlO,, w(~,o) 

k s, J +0 
is the strain vector, 

i/ i ay 2G v (1 -- v) 0 2G(t + v) 
e ( W l '  W2) ~ axy  - -  (1 - - 2 v )  0 0 (1 - - 2 v )  ~ (I - - 2 v )  0~ T 

2 

k O" z _1 V V 0 0 

is the stress vector, v is Poisson's ratio, G is the shear modulus, T(x, y) is the 
temperature distribution, 0r is the coefficient of thermal expansion and/~ = (X, y)t 
is the vector of body forces. For simplicity, let 

u ~ v  = 0  on ~.~. 

We now establish the following convergence results 

Theorem 6. Let u and v satis/y (37) and U, V in the space S (m, n, ~,  ~) satis[y 

F2(U, V) = min F2(w x, w~). 
~tES 
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I / u  and v belong to C(P. q) (~) where p = m a x  (m + t,  ~ + t) and q = m a x  (n + t,  g + t ), 
then 

max{[[(V --  U),I[L,, [[(V --  v)v[[L ,, [[(V --  U)y + (V -- V),][L,} = 0(yhh a) (39) 

as h - + 0  
where d = min {~, g, m + n + 1 }. 

Remark. The quantities bounded in (39) are the errors in the components 
of strain. Obviously, by  Hooke's  law [t6] the components of stress satisfy the 
same relation. Also, as in [3, Corollary to Theorem t 1, the errors in displacement 
components 

IIU-ullL, and IIV-vlL 
also are 6 (Vh ha) as h ~ 0. 

Proo/o/ Theorem 6. From [3, Eq. (16)], let 

D(q~,W) ~ k  f -#Odxdy = f -g tHedxdy  

H _  (1-2~) 
(! -~) o 

0 0 (1-2v)  
2 

v 0 0 

where 

v 

is a positive semi-definite matrix.  

The squares of the quantities bounded in (39) are bounded by  a constant 

times D(~f- -u ,  V--v)  where U(V) is the element in S(m, n, ~, ~) determined 
by  u(v). This follows from [3, Eq. (8)]. 

The proof now parallels tha t  of Theorem 5 and we only sketch its completion. 

Write ~ = U --  u and ~/= V --  v, then 

d(~, ~)H-g(~ e, r/)*= (~., ~,,, rl., r~y)A(~%, s:y, rl., %)* 
where 

A = 

(t--y) 0 o ! ] 
0 (1-2~) (1-2v)  

2 2 

0 (I -2v)  (1-2v)  
2 2 

o o (t-~1 
is positive semi-definite (with a positive semi-definite square root). o] 

L e t B =  j -1  , then 

O (~  --  u, P --  v) = f-e(~, n) H-e(~, ~t)'ax dy 

----- ~, f (~,, ~t, ~,, ~t) BA  B'(~:s, ~ ,  ~/,, ~,)'. ] det J/I ds dt 

:< [~J  max []A []3 max  ][J~l[[~ {[]~s][L + [l~Pl]oo + []~s2[]| + ][~[1~o}. 

The orders of convergence in (39) then follow from Theorem 4. Q.E.D. 
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We wish to emphasize that  Theorems 5 and 6 are independent of the nature 
of the maps Tj: ~-+@i" We have assumed nothing about these maps save that  
they are invertible. In particular, note that  the definition (30) of the Ritz space 
S (m, n, ~ ,  ~) is independent of the form of the mappings. In (32), the asymptotic 
behavior of the discretization error depends on 7h, which reflects the choice of 

the mappings {Tj}, and d which reflects the choice of Ritz space S. Note that  if 
each o~j is a square, then Tj is merely the identity map x ~ s, y ~: t and we have 

1 
T j : ~  I for all j and ~h :V  ~. Finally, we reiterate that  Theorems 5 and 6 

establish orders of convergence for isoparametric elements [t8] when the map- 
pings T i are chosen appropriately. 

The authors would like to thank one of the referees for bringing to our 
attention the paper [23]. In [231, as well as [24], Ciarlet and Raviart  have 
independently developed discretization error estimates for various Lagrange and 
Hermite type isoparametric finite elements. In essence, their results indicate 
that  conditions (28) and (29) are reasonable assumptions. For example, in [24, 
P. 4331 sufficient conditions are given for curved finite elements of type (2, Q) to be 

2-regular, which (cf. [24, p. 4261) implies, in turn, that  the associated map Ti 
satisfies (28) and (29) above. 

For the convenience of the interested reader, we now indicate the connection 
-__> 

between our generically designated map Tj and Ciarlet and Raviart ' s  map ~ .  

The "curved element" ~- is designated K in [23, 24] and their /~ is normally 

chosen to be the unit square [23, p. 245, Fig. 61. The map F h is constructed so that  

Defining G h to be the affine (expansive) map 

G~: ~ :  [o, hj] x [o, h;] ~ :  [o, I] x [o, I ]  
we note that  

Also, if the curved elements under consideration are k-regular, then /~ is a 
Ck+l-diffeomorphism and hence the Jacobian matrix 

where, as in [23, 24], D Ti is the Fr6chet derivative. By construction 

j #  = �9 D ~-1  

from which we conclude that  {IJilll~-<__ ]/2 h[]DFdl][~o<:2V2c-1, where c_ 1 is the 
constant in [24, p. 427, Eq. (2A6)1. Finally, we note that  the other assumptions 
in [24, Eqs. (2.t 7)-(2.t 8)] are necessary in their development to guarantee that  

if a scalar function v E C Ip' q) (oai), then v E C Ip' q) (~7), and such conditions are 

implicit in requiring that  our map 2"/satisfy (28). 

9 Numer. Math., Bd. 21 
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6. Isoparametric Elements 

The notion of an isoparametric finite element introduced by Ergatoudis, 
Irons and Zienkiewicz ill [6] is based upon the use of a single finite parameter 
interpolation formula for both the mapping T: ~c#-->oa and the definition of 
the dependent variable defined over 8. Thus far, in this paper we have persisted 
in keeping these two aspects separate. That  is, we have assumed that an invertible 
map of ~9 ~ onto 8 is given and have concentrated attention on the problem of 
interpolating to function values /*(x, y) given on certain point sets in 8. We 
now briefly describe a specialization of (parametric) transfinite elements which 
couples the mapping problem and the interpolation problem. These special 
formulas will be termed isoparametric transfinite elements, since they are the 
exact transfinite analogs of the familiar isoparametric finite elements [t8~. 

Since isoparametric (finite) elements are discussed in detail in [t 7, t8] we 
shall herin restrict the exposition to a very simple, but illustrative transfinite 
example based upon bilinearly blended interpolation. Suppose that the boundary 
of the region ~ onto which we seek to map the square 5 : =  [0, hi • E0, hi is 

.--> 

described by the four vector-valued functions F(0, t), F(h, t), F(s, 0) and F(s, h). 
Whatever the map T:  9a-+~ may be, it is obvious that  the four boundary 
segments of 8 must be the images of the four sides of the square [0, hi • ~0, hl. 
The simplest map which satisfies these constraints is the bilinearly blended 

transfinite map of expression (t7). The reader may easily verify that T(s, t) 
does, in fact, reduce to the four specified curves when the variables s and t range 
along the perimeter of 5 ~ 

As we have repeatedly emphasized throughout this paper, the interpolation 
method used to approximate the function ]* over 8 has, in general, no relation 

to the mapping formula T(s, t). But, by definition, in the special class of iso- 
parametric methods, precisely the same formula is used both to execute the 
map and to construct the interpolating approximation to the dependent variable 
z=/*(x,y)=-/(s,t) .  Thus, the simplest isoparametric transfinite element for 
curvilinear quadrilateral elements is given by the mapping formula (l 7) together 
with the bilinearly blended transfinite interpolation formula 

z (s, 0 = (t - s/h) / (o, t) + s /h ! (h, 0 

+ (t - t/h) 1 (s, o) + t lh t (s, h) 

- -  (1 - -  s/h) ( t - -  t/h) / (o, O) - -  ( t - -  slh) (t/h) / (o, h) 

- -  (s/h) 0 - -  s/h) t (h, o) - -  (slh) (s/h) t (h, 1,) 

which serves to define the dependent variable z over the region d ~. If the map 
of 5e-+6~ in Fig. 2 is imagined to be of the form (t7), then the element depicted 
there can be viewed as an example of a bilinearly blended isoparametric trans- 
finite element. 

More succinctly, if we let Xl=x ,  X , = y  and Xr---z, then the general class 
of isoparametric transfinite Lagrange elements can be described by  the generic 
formula 

x~(s, 0 = ( ~ , ~  ~,) [ tJ (s, t) (i = t ,  2, 31, 
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where the ]i represent the given functional information for the i-th variable 
and the projectors ~ and ~ are Lagrange-type projectors of the form described 
in Section 2 (see Theorem t). 

Having specialized to isoparametric transfinite schemes and now recalling 
the discretization techniques of Section 4, it is easv to see how to obtain the 
finite parameter isoparametric methods of Ergatoudis, Irons and Zienkiewicz. 
SpecificalIy, in the notation of this paper all of the (quadrilateral) isoparametric 
]inite element schemes described in El 7, 18] can be represented as 

X i ( s , t ) = ( ~ + ~ - - ~ ) [ f ~ 3 ( s , O  ( i = t ,  2, 3). 

In particular, recall the stencils in Table 1 of Section 4. 

Nora bene. Although isoparametric elements are capable of handling very 
complex geometries (i.e., oddly shaped regions 9t and, after decomposition, 

N 
subdomains 8 i such that U 8 i=9~)  and are therefore of great practical value, 

they have one very serious defect: Namely, the mapping T: ~ - - ~ 8  defined 
(implicitly) by the isoparametric formulas may not be one-to-one. That  is, there 
may be two (or more) points (s 1, tl) and (sz, tz) in 5r = [0, h I • [0, h] which map 
onto the same point (x*, y*) in 6 ~. Consequently, the dependent variable z will 
be double valued at the point (x*, y*)- -a  physically meaningless situation for 
variables such as stress, strain, temperature, etc. Zienkiewicz et al. have pointed 
out this deficiency for finite parameter isoparametric elements in [t81, and the 
same deficiency is also inherent in the isoparametric transfinite schemes above. 
Indeed, it is precisely this difficulty which motivated us to decouple the two 
aspects of parametric element definition; i.e., the mapping of the independent 
variables and the interpolation of the dependent variable. This paper is an adjunct 
to another paper [91 in which we examine mapping problems per se in much 
greater detail. 

However, [91 is quite different in its outlook than the present paper, for 
there we are interested in global maps by which we mean a single univalent 
mapping which maps the canonical domain ~9~ [0, 1] • [0, t~ onto the entire 
problem domain 9t. Given such a map, the sub-domains 8 i needed in the sub- 
sequent transfinite (or finite) element solution of a boundary value problem 

are defined as the images under T: ~ , ~  of rectangular sub-domains of 5 p. 
Or, more practically, the boundary segments of the element domains o~ i which 
need to be curved in order to conform to the exact geometry of the problem 
domain 9~ are taken to be the images of constant s or t lines in cp; whereas, 
those o* i which are not immediately proximate to 89t or to curved material 
interfaces interior to ~ (and hence need to be curved) are defined as quadri- 
laterals formed by joining the images of the vertices of a subrectangle in 5 ~ by 
straight line segments. (See also the last paragraph on p. 2t 7 of [231, and pp. 777- 

781 of [251.) In other words, the transfinite mapping function T is used as a 
generalized "mesh-generator" to define the subdomalns di. Since the subdomains 
arise from a transfinite map, they are themselves transfinite, in general. After 
defining the subdomains o~i, interpolation of the dependent variable over each 

9* 
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subdomain  m a y  be accomplished by  any  of the formulas derived earlier in this 
paper. Although the methods used to obta in  invert ible  maps of S ~ - + ~  are easy 
to describe and  to implement  in practice, they rely heavily upon geometric and 
heuristic reasoning and are greatly facilitated by  the use of computer  generated 
graphic displays. 
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