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1. Introduction 

Here it is shown that the image I of a semianalytic set under a proper (real) 
analytic mapping of (real) analytic manifolds admits a locally-finite partition 
into connected submanifolds P such that 

Q c C l o s P  and d i m Q < d i m P  whenever P + Q e ~  and Q n C l o s P 4 : ~ .  

Such a partition is called a stratification of I. A subset A of an analytic manifold M 
is called semianalytic i fM can be covered by open sets U such that U n A is a union 
of connected components of sets g -  ~ {0} ~ h-  ~ {0} for g and h belonging to some 
finite family of real-valued functions analytic in U. Although semianalytic sets 
admit, by well-known arguments (3.2 or [6, pp. 150-153]), stratifications, the 
analytic image of even a compact analytic manifold may fail to be semianalytic 
([6, p. 135]). 

For  any proper analytic mapping j !  M ~ N, there are, by 4.4, stratifications 
of M and J of N so that for each SeSP, f (S)eY,  J]S is one-one whenever d imf (S)=  
dim S, and S c A whenever S n A # ~. It follows from 4.0, 4.2, and 2.5 that the num- 
ber of components of A oaf-1 {y} is locally bounded for yeN. These stratifications 
may be refined to satisfy Whitney condition (B) ([8, w 3]); the proof, being com- 
pletely analogous with Lojasiewicz's treatment of the semianalytic case [6, pp. 143- 
153] is omitted. In [18, 3.1, 3.3] such stratifications of images under consecutive 
projections in Euclidean space lead readily to C Wdecompositions. 

Stratification theory has developed chiefly through the work of H. Whitney, 
R. Thorn, and J. Mather. An excellent treatment and list of references is given in 
[8]. It is the goal of this paper to clear up the ideas of [11, III B-C] where many 
of the present results are stated without formal proof. Although we will, except 
in w 5, refer only to the classical local stratification ofsemianalytic sets as established 
in [4, w 11-15] or [6,w 13], other interesting facts about semianalytic sets are 
exposed in [1, 3.4.5-3.4.11], [2], [3,w [4-7], [8,w [12-18] , [6]  being the 
most basic. 

* Research partially supported by National Science Foundation grant GP 29321. 
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After having written the manuscript, the author learned of the interesting 
work of Hironaka, [12] and [13] on subanalytic sets, which are sets that locally 
are analytic images of relatively compact semianalytic sets. Using his theory of 
the resolution of singularities, he establishes a Whitney stratification of subanalytic 
sets; because of differences in proofs as well as the discussions of w 2 and w 5, our 
article may be of independent interest. 

Our notation is in accord with [1, pp. 669-671] with the following eight 
conventions. 

For  any family s~' of sets we let U ~4= Q) A and ('] d =  (~ A. 
A~o~ A~.a/ 

For any two families d and ~ of subsets of the same set, we say d is compatible 
with ~ if A c B  whenever A ~ r  B ~ ,  and Ac~B+~.  

For any function J! C---, D, we identify f with the subset {[c,J(c)): c~C} of 
C x D .  

For any subset E of a topological space, we define the fi'ontier of E, denoted 
Fron E, as (Clos E)~  E. 

All our manifolds are assumed to be paracompact. 
By a submanifold F of a differentiable manifold we always mean a properly 

imbedded submanifold; hence, F c~Fron F =  ~. 
For any differentiabte mapping g: M--* N of differentiable manifolds, we let 

rank g: M ~ Z, 
(rank g) (a)= dim (Dg(a) [Tan (m, a)]) for a c m .  

We let dim ~ = - 1, and, recall, for any nonempty subset G of a metric space, 
the Hausdorffdimension of G, 

dim G = sup {p: )fP(G) > 0} = inf {a: JJg"(G) = 0}, 

where ~P ,  for p > 0 ,  is p dimensional Hausdorff measure ([1, p. 171]). We also 
use the notation dim G whenever G is a nonempty subset of a differentiable 
manifold and the above formula does not depend on the choice of Riemannian 
metric. For  example, if the function g above has rank g =-k, then dim g(M)= k 
because, by the rank theorem ([1, 3.1.18)], M may be covered by countably many 
open sets U so that g(U) is a k dimensional submanifold; hence, J t~ [g (U L]=0  
for e > k for any Riemannian metric on N. 

2. Stratification and Mappings 

Suppose M is a differentiable manifold. A stratum in M is a connected submani- 
fold of M. 

A locally-finite partition 5/' of M is called a stratification of M if each S in 5~ 
is a stratum such that 

( * ) T c F r o n S  and dim T < d i m S  whenever T~5 p and T n F r o n S ~ .  

For any mapping f :  M---, N of Hausdorff spaces, a stratification o f f  is a pair 
(5 r J-) such that 5 P is a stratification of M, ,Y-- is a stratification of N, and, for each 
Ss  5P, f(S)e~-,J]S is differentiable, and rank ( f  IS) = dimf(S).  

A stratification (5 ~, g )  o f f  is said to be one-one iff[S is one-one for all S~,9 ~ 
with dim f(S)=dim S. 
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2.1. Theorem. Suppose Jr is a collection of differentiable manifolds, and for each 
M e ~ t ,  ~ ( M )  is a family of subsets of M satisj),ing theJbllowing four conditions: 

(1) 7he ,sets ~, {x}, M, (..)~, (-] ~,  and M ~  ~ o~ belong to o~(M) whenever 
x e M e~/l[ and ~ c d ( M )  is locally-finite. 

(2) I f  M, NeJg ,  C e ~ ( M ) ,  De,~(N),  E, F e ~ ( M  • N), p is the projection 
mapping o f M  • N onto M, and p[Clos E is proper, then M x N e l l ,  

C x De ,~ (M x N), p-~ (D)e.~'(M • N), p ( E ) e d ( M ) ,  
and 

(N x M)c~ {(3', x): (x, y ) e F } e ~ ( N  • M). 

(3) i f  M, N and p are as above and G e ~ ( M  x N) is a .stratum, then 

Gc~ {a: rank (/~IG)(a)<sup {rank (/~[G)(b): beG} } 

is contained in some at most (dim G ) -  1 dimensional member oJ~C(M x N). 

(4) For an), MEJ//I and locally finite ~ c ~ r  there is a stratification of M 
contained in ,~(M) and compatible with ~.  

Then Jor an); M, NeJlg, any locally finite Ji~milies ~ c ~ ( M )  and ~ c ~ ( N ) ,  
any continuous map g: M -~ N, and any open Le~C(M) such that g e d ( M  x N) and 
g lClos L is proper, there exists a stratification (5 e, J )  o f f=  g IL such that S~ ~ ~ (M) ,  
J ~ ~r 5f is compatible with cg, and 9- is compatible with ~.  

Proof Let/~: M x N ~ M and v: M x N ~ N be the projection maps, and let 
l=  dim (M x N). Since f = g  c~ ~t- ~ ( L ) e d ( M  x N), there is by (4) stratification 

of M x N compatible with {f} w {/~-~ (C): CeCg}. Having chosen stratifications 
~ ,  ~ + ~ . . . . .  @ ~ d ( M  x N) of M x N so that ~ is compatible with ~ + ~ and the 
functions rank (/~IP) and rank (vlP) are constant whenever P e ~ and dim P > k + 1, 
we choose, for each G e ~  with dim G=k,  an atmost k - 1  dimensional set 
Z ~ e . ~ ( M  x N) containing 

Gc~ {a: rank (piG) (a)<sup {rank (piG) (b): beG} or 

rank (v[G)(a) <sup {rank (v[G)(b): beG}} 

select a stratification ~ c ~ ' (M x N) of M x N compatible with 

~k ~ {Z~: G e ~ , d i m G = k } ,  

and obtain the stratification 

~k_l =(~@kc~{P: dimP>k})u(~ d i m Q < k } ) c d ( M x N )  of M x N  

compatible with ~k such that the functions rank (pIP) and rank (v[P) are constant 
whenever P e ~ - i  and dim P>k.  

For every P ~ ~o with P c f  #[P is a diffeomorphism, and rank (v[P) is constant. 
Moreover {v(P): f ~  PeSo} is a locally-finite subfamily of ,~(N) because vlClosf  
is proper. Selecting a stratification .Y-- c,~'(N) of N compatible with 

u {v(P): f ~  PeSo} 
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and letting 50 be the family of all connected components of p [P n v-~(T)] where 
f ~ P e ~ o  and v (P)~  Te~,,  we infer from (4) that ~ is locally-finite and from (1), 
(2), and the rank theorem ([1, 3.1.18]) that the pair ( ~  ,Y--) satisfies the theorem. 

2.2. Theorem. Suppose rill and s~ satisfy 2.1 (1) (2) (3) (4) and the three additional 
conditions: 

(5) R~J//. 

(6) For any M t, M2, M 3 . . . . .  Mm @J/[ , M l x -.. x M , , ~ J / ,  and the function which 
sends (x I . . . . .  x , , )e  M 1 x ... x M,,  onto 

(( I " "((Xl , X2) , X3) . . . .  ), Xm)E('''((M l • M2) • M3) • ") X M m 

induces a bijection between 

d ( M ,  •  x M,,) and d((..-((M, • M2) • M3) x . . . )  • M,,). 

(7) For every M 6 J L  {(x, x): x ~ M } ~ ( M  •  and there is a locally f in i te  
covering ~ of  M by compact sets K in .&(M) Jot which there is a continuous one-one 
map q~: K - , R " J b r  some n such that ( p c d ( M  • R"). 

Then for  L, M,  N, cg, 9 ,  f and g as in 2.1, there exists a one-one stratification 
(5~, J - )  o f f  satisfying the conclusions of  2.1. 

Proo f  Replacing cg by cg u~ , ,  we assume jy-=cg. We will verify inductively 
that there exists, for each k~{0, 1 . . . . .  dimM}, a stratification (5~k, J~) o f f  such 
that 5~kc.~C(M ) is compatible with ~, ~ c d ( N )  is compatible with 9,  and f l S  
is one-one whenever S~5~k and d i m f ( S ) = d i m S <  k. With (5~, J-) as in 2.1, let Jo 
be a stratification of N compatible with Y u {g(FronS): S~5 ~} and 5: o be the 
family of components of S n f  - 1 (T) for S ~ 5: and T ~ J  o. Let 

~ = 5 : 0 n  {S: d i m f ( S ) = d i m S = k } .  

For each R ~ ,  (fiR):  R - * f ( R )  is a differentiahle covering map because 
g(FronR), having dimension less than k, does not intersect f (R) .  Moreover, 

n {S: f ( S ) = f ( R ) }  is a finite family, and there is an integer j (R)  so that 

card(R n f - l  {y})=j(R) whenever y ~ f ( R ) .  

Letting PR: MJ(R)-~ M,  Pa(Xl . . . . .  Xj(R) ) = X~ for (X 1 . . . . .  Xi(R))E MJ(R)' JR = f o  PR' and 

G R = R i~g~ n {(x I . . . . .  , XjtR)): f ( x t )  . . . . .  f ( x j (m)  and x h ~ x i for 1 < h < i <j(R)}, 

we infer that f (R)=fH(Gg) ,  PR[CIosGR is proper, and GR6,~c~(MJ(R) ) by (6), (7), 
and 2.1 (1) (2). By (7) we may choose an integer n(R) and a continuous one-one 
map q~R: CI~ with qgRE~I(MxRn(R)). For integers n6{1,2 . . . . .  n(R)}, 
i t  { 1 . . . . .  j(R)}, and j e  { 1 . . . . .  j(R)}, we let ~0 R " R ~gl -~R be given by n,i,j" 

R ~On, i,j(Xl . . . . .  x j (R) )=e  n �9 [q)R(Xi)-- ~OR(Xj) ] f o r  ( x  1 . . . .  , Xj(R))~RJ(R); 

hence ~-  q~,,~,; {0}~d(M ; ~ )  by (5), (6), (7), and 2.1 (1) (2). Let ~ n ~ d ( M  ~n)) be a 
stratification of M ;~a) compatible with 

R - I  {GR}w{~O.,i, ~ {0}: n~{1 . . . . .  n(R)}; i,j~{1 . . . . .  j(R)}}. 
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Then g={Pk(Q): Re~l,  GR~Qe~QI~} is a locally finite subset of ag(M), and we 
may, by induction, choose a stratification (5~k, Ykk) of f such that 5~kcd(M ) is 
compatible with 5e o vo~ (and hence with cg~ ~ c ag(N) is compatible with 9 ,  and 

f IS is one-one whenever S e ~  and d imf(S)=  dim S < k -  1. 

Suppose S e ~  and d i m / ( S ) = d i m S = k .  Then ScRC~pR(Q) for some R e ~  
and G R ~ Q e ~  R. To show that f l S  is one-one, and complete the proof, we verify 
that fgl Q is one-one. 

If not, there is a point yef(R) ,  a set R c~f-~ {y} = {x~, ..., x~m}, and a permu- 
tation a of {1, 2 . . . . .  j(R)} different from the identity so that (x~ . . . . .  xjcg~) and 
(x,,~ . . . .  ,X,,Ij~R~) ) both belong to Q. Accordingly e , .  [~pk(x~c~)-q~g(Xj)]+O for 
some j e  { 1 . . . . .  j(R)} and ne { 1 . . . . .  n(R)}. Defining 

I = { 1 . . . . .  j(R)} c~ {i: sign e,- [q~R(xi)- q~R(x~)] = sign %- [~Og(X~l~)- q~R(xj)] }, 

we observe that j r 1, that a(j) e I, and t hat for each i ~ { 1 . . . . .  j(R) }, 

sign e , .  [q)R(Xa( i ) )  - -  q )R(Xa( j ) ) ]  = sign e,- [~OR(Xi) - -  q )R(X j ) ]  

because Q is connected and {Q} is compatible with { -g- ~ {0} }. Using the equation t~n, i , j  

e, .  [q~R(X,,ci))-- ~0R(Xj) ] = e -  [tpg (x,{it)- tPR(X~o)) ] + e,- I-~pR(x,{j~)-- tPR(Xj) ] 

for every ie l ,  we infer that a(1)~1, hence a(1)=l, which contradicts that 
a(j) ~ I ,,~ a(l). 

2.3. Applications. By [10, Theorem 1], Theorem 2.2 may be used with ~ '  
equal to the class of Euclidean spaces and ~ ( M )  equal to the family of semi- 
algebraic subsets of M. 

By [9, p. 67, Theorem 1] and the proper mapping theorem ([9, p. 129, Theo- 
rem 2]) we may apply 2.1 with Jr being the class of paracompact complex mani- 
folds and ~'(M) being the smallest family of sets satisfying 2.1 (I) and containing 
each connected component of the regular points of every holomorphic subvariety 
of M. However, here the conclusion of Theorem 2.2 fails because holomorphic 
mappings may not admit one-one stratifications in s~C(M). For example, since the 
complement of any two dimensional strata S in s~l (C) is a discrete set, the restriction 
to S of the function which maps z to z 2 is not one-one. 

Next suppose ~ is the class of paracompact real analytic manifolds. Inasmuch 
as the projection of a compact semianalytic set may fail to be semianalytic ([6, 
p. 135]), we may not use Theorem 2.1 with ~t(M) being the class 5P(M) of semi- 
analytic subsets of M. In w 4 we will verify 2. t (3) (4) for the smallest collection of 
families ~ ( M ) ~ S e ( M )  for M e J ,  t satisfying 2.1 (1) (2). 

2.4. Lemma. Suppose M is a connected m dimensional Riemannian manifold, 
0 <_ k <_ m - 1, E is a closed 2,ug k null subset of M, ~,~ is a finite disjointed family of k 
dimensional connected submanifolds in M ~ E whose frontiers lie in E, and (~ is the 
family of components of M , - , ( E w U o ~  ). 7hen ca rd fq<sup{1 ,2ca rdN} ,  and 
F c C l o s G  whenever F e ~ ,  Ge~,  and F ~ C l o s G ~ .  

Proof First note that if X is a closed of" -~  null subset of M, then any two 
points a, b in M ~ X may be joined by a curve in M ~ X. In fact, if M is an open 
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ball in Euclidean space and C is an open ball about  b in M ~  X, then there is, by 
the argument  of [3, 2.7, p. 83] a closed half-line outside of X which joins a with C. 
In general there are open coordinate balls U 1, U z . . . . .  U, in M with aEU t, 
Ul O Uz :Jff J~, U2 ("I U3 ::~= ~,~ . . . . .  U,_ ~ n U, 4= ~, and be U,. 

In case k < m - 1 ,  it follows that M ~ ( E  w ~ ~ )  is connected. Moreover  any 
Feo~, being a submanifold of [ M ~ ( E ~  ~ ) ]  wF,  lies in C l o s [ M ~ ( E ~ 2  [_)~,~)]. 

In case k = m - 1 ,  it suffices to modify the argument of [3, 2.7] by replacing 
R '+ ~,J'(A)~ X, and X by M, U ~,  and E and noting in the proof of (2)that, instead 
of a half line L, there is a curve in M ~ E joining b with C. 

2.5. Theorem. i f ' J {  and ~ are as in 2.2, M, NEs/g, g: M ~ N  is continuous, 
gE,~I(M • N), and A E d ( M )  is relatively compact, then the number of components 
of A ~ g -  1 {y} is bounded Jor yeN.  

Proof We use induction on dimA. In case d i m A < 0 ,  A is finite by 2.1 (4). We 
now assume l=dimA>= 1 and the corollary is true for dimensions less than I. 
Choose, by 2.1, a stratification (5~, J - )  of glClosA so that 5 P c ~ ( M )  is compatible 
with {A}. By induction it now suffices to show that the number  of components  of 
S c~ g-~{y} is bounded for y E N whenever A ~ S E5 p and dim S = I. Let k = dim g(S). 

Suppose for contradiction that there is a countable subset Y of g(S)so that the 
number of components  of Sc~g - t  {y} is unbounded for yE Y. We may assume, 
by 2.2 (7), that M and N are Euclidean spaces and, by replacing M, S, and g by 
M x N, {(x, g(x)): xeS}, and the projection of M x N onto N, that g is an ortho- 
gonal projection of R" onto R" for some m and n. 

Let p: R " ~ R  k be an orthogonal projection so that p(Tan[g(S),y])=R k 
wheneveryEY. Since, by the rank theorem, the points of Y have disjoint neighbor- 
hoods relative to g(S) which are mapped homeomorphical ly  by p, the number  of 
components  of Sc~(pog) -t  {p(y)} is unbounded for yE Y. 

Fix a point xESc~g-~(Y). Since (pog)[Tan(S, x ) ] = R  k, there are orthogonal  
projections h: R" -~  R z and q: R t - * R  k so that qoh=pog  and h[Tan(S,  x)] = R  z. 
By 2.1 (3), 2.2, there is a stratification (~, N) of h so that ~ is contained in d ( R " ) ,  
-~ is compatible with {S}, and hlQ is one-one whenever QE~ and d i m Q = l .  Then, 
for some S ~  QE~, the number  of components  of 

Q ~ (q o h)- l {p(y)} = Q ~ (p o g)-~ {p(y)} 

is unbounded for yeY. By induction, l=dimQ=dimh(Q),  and the number  of 
components  of h(Q)ca q-~{p(y)} is also unbounded for yeY. If ~ is a stratification 
of Fronh(Q) so that rank(qlB) is constant for all BeN, then we may, by the rank 
theorem, apply, for each yE Y,, 2.4 with M = q -  ~ {p(y)}, 

o~ = {components of B ~ q -~ {p(y)} : B �9 ~ and dim B -  rank (q] B) = l -  k - 1 }, 

and E = F r o n h ( Q ) ~ ;  we conclude that the number  of components  of 
Bc~q-l{p(y)} for y � 9  is unbounded for at least one B � 9  contradicting the 
inductive assumption, with A and g replaced by B and q. 

3. Semianalytie Sets 
3.1. Lemma.  Suppose ~ is a family of subsets of a locally compact space M 

which is closed under finite union and finite intersection and 5~ is the family of all S 
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such that M can be covered by open sets U .so that U n S is a union of connected 
components of sets A ~ B JOt A and B belonging to some finite subjamily of ~r I f  
J3 c 5P is locally-finite, then U ~ E 5~, (-] ~ E 5~, and M ~ U ~ E 5(. 

Proof Clearly U ~ES(. To see that (-] ~ E ~  we observe that ifE is a component 
of A ~ B and F is a component of C ~ D, then E n F is open and closed relative to - 
hence a union of connected components o f -  (A ~ B) n (C ~ D) = (A c~ C} ~ (B u D). 
Moreover, 

M ~ E = (M ~ A) w B u U {components of A ~ B other than E}. 

Thus M ~ ~ ~ES(. 

3.2. Inasmuch as the product and the sum of the squares of two real-valued 
analytic functions is analytic, hypothesis 2.1 (I) holds, by 3.1, for the class ~ ( M )  
of semianatytic subsets of M. Since the cartesian product and composition of 
analytic mappings is analytic, 2.2 (5) (6) (7) and 2.1 (2)-excluding that p(E)ESP(M) 
- a r e  easily verified for 5g(M). Moreover 2.1 (3) (4) for 5P(M) will follow from 
3.2 (3) (5) below. 

Recall from [3, w 2] that a subset G of an m dimensional analytic manifold, 
which is a connected component of g -~{0}~h- l{0}  for some Rm-t-valued 
function g and R-valued function h analytic in a neighborhood of ClosG such that 
(rankg)[G-= m - l  is called an I dimensional analytic block in M. 

We will need the following five facts which are consequences of Lojasiewicz's 
local decomposition of semianalytic sets ([4, w 15] or [6, w 13]). 

(1) I f  A is a semianalytic subset of M, then 

dimA =sup{k:  there is an open subset U of M so that 

U n A is a k dimensional analytic submanifold}, 

and Fron A is semianalytic with dim FronA < (d imA)-1 .  

(2) I f  M is connected and E is" a proper analytic subset of M, then dimE__< 
(dim M ) -  1. 

In fact, if d i m E = d i m M ,  then I n t E 4 : ~  by (1) and E = M  by analytic conti- 
nuation. 

(3) I f  M and N are analytic manifolds, p: M x N--* M is the projection map, 
and G is a connected analytic submaniJold of M x N, then 

Z~ = G c~ {a: rank(p]G)(a) < sup {rank(pIG)(b): beG}} 

is a proper analytic subset of G. Moreover, if G is an analytic block in M • N, then 
Z~ is semianalytic. 

In fact both statements follow from the argument of [3, 2.9]. 

(4) I rA  and B are semianalytic strata in an analytic manifold M with B ~ F r o n A ,  
then there is a closed, at most (dim B ) - 1  dimensional semianalytic set Z~ so that 
every point b E B ~ Z ~  has arbitrarily small neighborhoods W such that W n B  is 
contained in the closure of each component of  W n  A. 

In fact, if A and B are members of a Lojasiewicz normal decomposition 
([6, w then this condition holds at every b~B. In general M may be covered 
by a locally-finite family J//of open semianalytic sets U for which there is a normal 
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decomposition ~v  of U compatible with {A, B}; hence U ca B is the union of an 
atmost (dim B ) - I  dimensional semianalytic set Yv and dim B dimensional 
members F e ~  U with F c B n F r o n A  for some ADAm@ v. 

(5) For any locally-finite family ~r of semianalytic sets in M, there is a strati- 
fication of M into relatively compact analytic blocks which is compatible with d .  

In fact, it will be sufficient to prove, by induction on d i m U d ,  that there is a 
stratification 5~ of M compatible with ~ '  so that each S ~5 e with dimS < dim U d 
is a relatively compact analytic block in M; for we may then replace d by ~r u {M}. 
In case dim U d = -  1; hence d =  ~, let 5e=  {M}. We now assume that 0 <  l--- 
dim U d < m = d i m M ,  and, by (1), that U d is closed. 

For  each a E U d ,  there are, by [4, p. 34] or [6, p. 68], an open semianalytic 
neighborhood U~ of a and analytic functions g,: U--*R "-~ and d :  U ~ R  so that 
U. c~ U d c g;-~ {0}, (rankg.)(x) = m - I whenever d~(x) + O, dim(d~ -1 {0} ca U,~') < 1, 
and the collection <g of components of U n [ ( U d ) ~ d 2 1  {0}] is finite and compat- 
ible with d .  By [3, 2.2 (7)], there are, for ie{1, 2 . . . .  }, a~eM and r~>0 so that 
Vii = U(a~, r~) has compact closure in U., the dimension of the frontier of 

R c = C ca V//~ U Ctos 
j = l  

is less than 1 whenever Ce<g,  and {Vii: i =  1, 2 . . . .  } is a locally-finite cover of M. 
Choosing, by induction, a semianalytic stratification r of M compatible with 

{A ca U,, cad~, 1 {0}: A e d ,  i=  1, 2 . . . .  } u {FronRc: Ce.~I ,  i= 1, 2 . . . .  } 

so that every T e J -  with dim T< l is a relatively compact analytic block, it suffices, 
by 2.4, to let 

~ t=  {Rc: CeCgi and i=  1, 2 . . . .  }, 

5 r = [J-ca { T: T c  (U s~/)~ U ~} ]  u N u {connected components of M ~ U ~} -  

4. Semianalytic Shadows 

A subset C of an analytic manifold M is called a semianalytic shadow if M 
can be covered by open sets U such that U n C is a union of sets p(A)~p(B)  for 
some analytic manifold N with projection map p: M •  and A and B 
belonging to some finite family of relatively compact semianalytic subsets of 
M x N. (Using a resolution of singularities, H. Hironaka has shown in [12] that 
any semianalytic shadow is locally the projection of some relatively compact 
semianalytic set; but we will not need this interesting result.) Noting that 

p ( A ) u p ' ( A ' ) = p " [ ( M  x N x N')ca {(x, y, z): (x, y)~A or (x, z)~A'}], 

p ( A ) n p ' ( A ' ) = p "  [ (m x N x N ' ) n  {(x, y, z): (x, y )eA  and (x, z)eA'}] 

whenever A c M x N, A' c M x N', and 

p: M x N ~ M ,  p': M x N ' ~ M ,  and p": M •  
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are the projection maps, we infer from 3.1 and 3.2 hypothesis 2.1 (1) for the class 
~(M) of semianalytic shadows in M. Moreover using 3.2 and the equality 

#,--1 [#(A)] = p [(M x S x N')c~ {(x, y, z): (x, y)e A}] 

where p: M x N x N'--*M x N' is the projection mapping, we readily verify 2.1 (2) 
and 2.2 (5) (6) (7) for ~(M). 

4.1. Theorem. For any analytic manifold and finite family c g c ~ ( M )  with 
Clos U ~  compact, there are an analytic manifold N with projection p: M x N--* N 
and a subfamily ~ '  of some semianalytic stratification of M x N with Uxal compact 
so that 

(1) Each A ~ d  is an analytic block with rank (/~]A) constant. 

(2) Each CeCg is a union of connected components of sets I~ (A)~(B)  for 
some A, B ~ d .  

(3) For each pair A, B ~ d  with B c F r o n A ,  every point b in B has arbitrarily 
small neighborhoods W such that Wc~ B is contained in the closure of each component 
of Wc~ A. 

Proof There are a finite open cover J/L of ClosCg and, for each CeCg and Ue0g, 
an analytic manifold N c along with the projection mapping/~c: M x N C ~ M  and 
finite family s~ 'c of relatively compact semianalytic subsets of M x N c so 
Uc~C is a union of components of #C (A)~l~C (B) for some A, Be~r c. Letting 
N = I J c ~ , v ~ N  c and, for each C e ~  and U e ~ ,  nc: M x N - ~ M x N  c be the 
projection mapping and 9~ c = {nc-~ (A): A e~c}, we obtain (2) with d replaced by 

~ =  {B: B e ~  c, CeCg, Ue~//}. 

To obtain a suitable stratification of M x N we use 3.2 (3) (4) (5) and downward 
induction. Specifically with l=d im(M x N), we first choose a stratification ~+  
of M x N into relatively compact analytic blocks which is compatible with ~.  
Having chosen stratifications ~+1, @ .... N+~ of M x N, we select a stratification 

of M x N into semianalytic blocks which is compatible with 

~-~=N+I w{ZB: BeN+~ and d imB=i}  

w {ZJ: Ae N, Be N, B c  FronA, and dimB =i}, 

and let 

N =  [~~ r~ {T: Tc (U,.~v) u (U N+, n {S: dimS<i})}] 

{components o f B ~ Z , ~  U {zJ: A e @  B c F r o n A } :  Be N, d imB=i}  

[5~/+1 m {S: d imS>i}] .  

Then d = S P  0 ca {S: S c C l os  Ugh} satisfies the theorem, 

4.2. Theorem. For any real analytic manifold M and locally finite family cg of 
semianalytic shadows in M, there is a stratification 5r of M compatible with cg such 
that each S in 5r is a semianalytic shadow contained in #s(As) for some analytic 
manifold N s, projection I~s: M x N s ~ M ,  and relatively compact semianalytic 
stratum A s in M x N s with rank ( t@As) -d imS.  
14 Inventiones math., Vol. 28 
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Proof Suppose that for ie{1, 2 . . . .  } U i and V~ are open semianalytic subsets 
of some coordinate neighborhood with Clos V~ being a compact subset of U~ and 
(._)~= t V~ = M. If one lets ~0 = {M} and finds inductively a stratification ~ :~(M) 
of M compatible with 

for i = 1, 2 . . . . .  then 

{Fron V/} u { C c~Clos Vii: CeCff u ~_ t}  

is a stratification of M in ~(M) compatible with ~. Thus we may now assume 
Clos Uc~ is compact, hence ~ is finite, and M = R  m, and we need no longer insist 
that A s be relatively compact, only that #s[ClosAs be proper. 

Choosing N, p, and d as in 4.1, we note that any stratification of M compatible 
with {p(A): A e d }  is compatible with ~. In case d i m p ( U d ) < 0 ,  p(U d )  is finite, 
and it suffices to let 

= {{x}: x e # ( U d ) }  u {connected components of M ~ p ( U~ ) }  

and, by 3.2, for each S e~, N s be any compact analytic manifold and A s = psL(S). 
Let k be a positive integer. Assuming inductively that the theorem is true 

whenever there exist N, p, and ~ as in 4.1 with d i m p ( U ~ ) < k ,  we now suppose 
d i m P ( U d ) = k .  

Let ~ = d c~ {A: dim #(A) < k}. Using the projection 

6: (M • N)2~ M, 6(a, b)=#(a) for (a, b)e(M x N) 2, 

and 3.2 (3) (5) we select a semianalytic stratification g of (M x N) 2 compatible with 

o~ = {(A x B)c~ {(a, b): p(a)=p(b)} : A, B e d  ~ ~} 

so that rank (#IE) is constant whenever Eer  Let 

~ = ~ c ~  {D: D c  U ~ and dim6(D)<k}. 

By induction there is a stratification J - ~  ~(M)  of M, along with suitable N r, 
#r, AT for TeJ-,, so that ~- is compatible with 

(r {/~(A)c~ #(B): A e d ,  B e ~ }  u {l~(A)c~6(D): A e d ,  De@}. 

In fact, with P = (M x N) x (M x N) x (M x N) 2, q: M x P-*M being the projection 
mapping, and ~ being a stratification of M x P into analytic blocks as in 4.1 
compatible with 

-~ = {(M x [Ax  B x (M x N)23)n {(x, (a, b, c)): x = #(a)= p(b)} : A eM, Be ~} 

u {(M x [Ax  (M x N) x DJ)n  {(x, (a, b, c)): x=p(a)=5(c)} : AE~t, D e ~ }  

so that rank (q[P) is constant whenever Pe~ ,  it suffices to apply induction with 
(g, N, p, and d replaced by ~ = {q(Q): Qe.~}, R q, and ~ c~ {P: P c  ~J .~}. 
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It follows that dim #(Clos B) = dim Clos/t(B) < k and 

dim 6(Clos D) = dim Clos 6(D) < k 

whenever B e ~  and D e ~ ;  thus, U ~,  U ~, and hence U f # = i t ( U ~ ) w f ( U ~  ) 
are compact. With 

~/ = {connected components of #(A)--~ U (~: A e d  ~ :~}, 

~q/-= {connected components of M ~  p(U~r 

p v = #  and A v e d ~  chosen so that Vcit(Av) for Ve~, and # w = #  and A w 
equalling M x {point in N} for We~,, we complete the proof by showing, in the 
following four steps, that the family 5 p = q/w ~ w ~W of semianalytic shadows is a 
stratification of M compatible with {#(A): A e d } .  

Step I. $/~ is a disjointed family of k dimensional analytic submanifolds of M. 

In fact, by induction o n / = d i m  U J ,  it suffices to show that 

H = p(U~r ~ It(U~r n {B: d i m B <  l})~ U f# 

is a k dimensional analytic submanifold of M because 

Fron [p(A)~ U f#] ~/z(Fron A) w U f# ~ p(U d ch {B: dim B < l}) w U f# 

whenever A e d  ~ and dim A = I. 

Every ae(  u d ) ~ p - ~ ( U  (#) belongs to some member A a of ~ r  and there 
is, by the rank theorem [1, 3.1.18], a connected, relatively open neighborhood Ra 
of a in A, so that p(Ro) is a k dimensional analytic submanifold of M. For any 
xe#( u ~r Uf# and any finite subset F of#  -1 {x} n U d ,  there is an open neigh- 
borhood U ofx in M ~ U f# so that U n p(R,) is connected and U n Fron it(R,) = 
whenever aeF. Moreover if a, beF, then U n it(R,) = U n p(Rb). In fact, otherwise 
U~it(R,)c~it(Rb), being a proper analytic subset of Unit(R,), would have 
Hausdorffdimension less than k by 3.2(3). If(a, b)eDeS,  then 

D c (A. x Ab) n {(y, z): it (y) = p (z)}, 

and there is a relatively open neighborhood D., b of (a, b) in 

Oc~([Aanit-'(U)] x [Abnit-'(U)] ) 

so that 6(D~, b) is a dim 6(D) dimensional analytic submanifold of M in U n/~(A,) n 
It(Ub). Thus dim 6(D)<k and xe6(D)~ U f#, a contradiction. 

For every x belonging to H (which equals p(U ~ r  f# in case l=k), the set 

U {it-~ {x}c'~A: A e s r  and d imA=l}=i t - '  { x } n U  sr 

is compact, and the sets F and U above may be chosen so that 

u it(U u,-, U it(R,,). 
a c e  

Hence, H is a k dimensional analytic submanifold of M. 
14" 
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Step IL 5 P is compatible with {p(A): A e J } .  

In fact, suppose S e Y ,  A e d ,  and Sn/~(A)4=~. Then SeeK. We will show that 
S c #(A) in the three remaining cases. 

Casel. SeOll. Here S c / ~ ( U  ~ ) u 3 (  u 9 )  and either Snl~(A)n#(B)4=~ for 
some B e ~ ,  hence Scl~(A)c~p(B), or Snl~(A)n6(D)4=~ for some D e ~ ,  hence 
S c lI(A)c~ 6(D). 

Case2. S ~ v  and S n / ~ ( F r o n A ) = ~ .  Here A e d ~ ,  and S is a connected 
component  o f # ( B ) ~  U ~ for some B e d ~  ~M. Let U be an open neighborhood of 
S so that UnI~(B)=UnS .  Since /~(A)~/l(FronA) is a k dimensional analytic 
submanifold of M, Sc~#(A) is an analytic subset of S. Moreover S ~ ( A )  is not a 
proper subset of S; otherwise, dim [S c~ p (A)] < k, and, as before, 

S n # ( A ) =  U c ~ # ( A ) n # ( B ) c 3 ( U  9 ) =  U ~ ,  
an impossibility. 

Case 3. Se 'V  and S n #(Fron  A) 4= Z. Here we use induction on dim A. Choosing 
B e d with B c Fron A and S (~ p (B) + ~, we apply Case 2 if S ~ p (Fron B)--- ~ or 
induction if S n ~ ( F r o n  B ) + Z  to infer that Sc# (B) .  

Let xeS. To see that xep(A), choose, since dim S = k >  1, a one-dimensional 
analytic submanifold L of S passing through x so that L ~ {x} has two components.  
Let b be an element of B n p -  1 {x}, B' be the connected component  of B n # -  ~ (L) 
containing b, and A' be a component  of A n/1-~ (L) whose closure contains b. 
By the rank theorem, A' and B' are analytic submanifolds, #(B') is a relative 
neighborhood of x in L, and B ' c C l o s  A' because /~-~ (L)c~ B c~Clos A is open 
and closed relative t o / ~ - t ( L ) n B .  Let 2 be a continuous function on L which is 
positive on one component  of L ~  {x} and negative on the other. Then 2o#, being 
both positive and negative on B', and hence on A', vanishes somewhere on A'. 
Thus {x} = 2  -~ {0} c# (A ' ) cp (A) .  

Step III.  Every member of 5 ~ satisfies the Jrontier property (.) of 2.0. 

In fact, suppose R e ~ ,  SeS~, and Rc~FronS4=~.  We will verify that 
R c F r o n S  and dim R < d i m  S. The cases R e ~  and Se~/ /or  R e ~  and Se~  

u ~W are eliminated because U ~//is closed, U (~//w ~//)is closed, and U ~ 
is open. We examine the four remaining possibilities. 

Case 1. ReOll and Se~ll. Here R c Fron S and dim R < d i m  S by induction 
because R and S belong to ~ .  

Case 2. R ~ ~U and S e ~t/~. Here dim R = k -- dim S, and we will derive a contradic- 
tion. For  each Q e ~ ,  let 

d ~ = i n f { d i m A :  Aes~' and Qc~p(A)4=~}. 

Suppose Q ~ ~//', A e s~, Q n p(A) 4 = ~, and dim A = d o. Then A e s~' ~ ~ and Q = # (A). 
Moreover  if P e ~  and P n F r o n Q 4 =  ~, then P n p ( A ) = ~ ;  otherwise, P=p(A), 
and P and Q would be disjoint relatively open subsets of the submanifold 
/2(A) ~ U ~, contradicting P ~ Fron Q 4= ~. It follows that P n #(B) 4= ~ for some 
B ~  Fron A, 

d~ ,<dimB<dimA=do  and P c F r o n Q  
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because P = P ~ #(B) ~ P ~/~ (Clos A) = P n Clos/~(A) = P n Clos [#(A) ~ U f#] = 
P c~ Clos Q. 

Assuming now that R e~" is chosen so that R n Fron S @ ~ (hence R c Fron S) 
and d R is maximal we infer that 

R n Clos [(Fron S) ~ R] 

c R y [ (  u f q ) w  u ~ / / ~ c ~ { P : R c ~ F r o n P ~  and P c ~ F r o n S ~ } ] = ~ .  

Fix two points, x e R  and yeS,  and let p: R m ~ R  k be an orthogonal projection so 
that dim p [Tan (R, x)] = k = dim p [Tan (S, y)]. By 3.2 (2) (3) 

Z s = S c~ {z: dim p [Tan (S, y)] < k}, 

is a proper analytic subset of S and has Hausdorff dimension less than k. By 
[3, 2.2 (7)] and the rank theorem we may choose a positive 

r <dist  (x, Clos [(Fron S )~R] )  

so that dim IS r~ Fron U (x, r)] < k and plR n U(x, r) is an analytic isomorphism. 
For  any component V of 

p [R ~ U (x, r)] ~ p [Zs] ~ p [S ~ Fron U (x, r)], 

p fS c~ U (x, r )n  p -  1 (V) is covering map with infinitely many sheets because 

R ~ p - 1  (V) ~ Clos IS n U(x, r) n p - t  (V)]. 

However then S n U ( x , r ) c ~ p - l { v } ,  for veV, is a relatively compact, infinite, 
zero dimensional semianalytic shadow, contradicting the theorem with k=0 .  

Case 3. R e ~  and S e f .  Here dim R < k = d i m  S, and Fron S c  U q / b y  Case 2. 
If R + R' e 6#, R ~ Clos R' ~ ~ and R' c Fron S, then dim R < dim R' and R c Clos R' 
c Fron S. Thus, replacing R if necessary, we may now assume 

K = U q l c ~ { R ' :  R ' + R  and R'~ClosS=I=~} 

is compact. Choosing A e d  so that Sc~/~(A)@~, and dim A = d  s (see Case2) 
we infer that A e ~r ~ ~,  S is a connected component of # (A) ~ (R w K) and 

S ~ # ( F r o n  A ) c  u {Sc~/~(B): Be~r and dim B < d i m A } = ~ .  

By the connectedness of R it suffices to show that R n Clos S is open relative to R. 
Fixing x e R n C l o s  S, we will find an open neighborhood U o f x  so that U c ~ R c  
Clos S in the two possible cases. 

If R ~  [/~(A)~/z(Fron A)] @~, then R c/~(A), and as before we may choose a 
finite subset F o f A n p  -~ {x} and an open neighborhood U o f x  in M ~ K  so that 
U n R  and Un~(R, ) ,  for aeF ,  are connected submanifolds, 

U n # ( A ) = U n U # ( R , )  and U n F r o n R = ~ = U n U F r o n l l ( R , ) .  
a e F  a e F  

Let Q be a connected component of U AS whose closure contains x. For each 
aeF,  either Q c/~(R,) or dim [Qn/~(R,)]  <k  because Q n/~(R~) is analytic in Q. 
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Since QcU,~r#(Ra) ,  we may find at least one aeF with Qc#(R, ) .  Similarly 
U n R c # ( R b )  for some beF. Either U n p ( R , ) =  Uc~#(Rb) or 

dim [U n #(R.) ~#(Rb) ] < k 

and, after shrinking U if necessary, 

Un#(R,)n/~(Rb)=Uc~6(D) for some D ~ ,  

hence RcS(D).  In any case UnRc t~ (R , ) .  Since Q, being a k dimensional sub- 
manifold, is open relative to ~(Ra) and 

U c ~ F r o n Q c U n F r o n S c U n ( R u K ) c R ,  

Q is a connected component of U n [kl(R~)~ R]. Thus by 2.4 with M = U c~/~ (R,), 
E = ~ ,  and o ~ = { U n R } ,  

U n R  c C l o s  Q c C l o s  S. 

On the other hand, if R c~[/~(A)~#(Fron A)]=;~, then R n # ( F r o n A ) # ~ ,  
and we may choose B 6 ~  of smallest dimension so that R c~t~(B)+~; and B c  
FronA.  Then Rc/~(B), Sn#(B)=r  and R n # ( F r o n B ) = ~ .  For each b e B n  
/1-1{x}, there is, by 4.1, a neighborhood W b of b in ( M x N ) ~ # - ~ ( K )  so that 
B n W b is contained in the closure of each component of A n W b. Observing that 
A n W b n /~-  ~ (S) is nonempty, open relative to A n W b by the rank theorem, and 
closed relative to A c~ W b because 

(A n Wb) c~ Fron/1 - i (S) c (A c~ Wb) n/~-  1 (Fron S) 

c EA c~12-~ (R)] u[Wb ~ l~-t (K)] = N, 

we infer that B n WbcClos/~-t  (S). By the rank theorem and the compactness 
o f B n #  -~ {x}, there is a neighborhood U o f x  with 

U n # ( B ) c  U /~(Bn Wb); 
b E B ~ l ~  - l {x} 

hence U n R c U n/~ (B) c Clos S. 

Case 4. R ~ ql u ' f  and S t  ~/'. Here, as in Case 3 we may assume 

K =  u (~ R ' + R  and R'c~ClosS=t=~} 

is compact, infer that S is a component of (M ~ K) ~ R and apply 2.4 with M, E, o~ 
replaced by the component of M ~ K  containing S, ~, and {R}. 

Step IV. 5 p is a finite family. In fact 0//is finite because ~- is locally-finite and 
# (U  ~ )  is compact. By 2.4 and Steps I and III, the finiteness of"W will follow from 
that of o//and 3v. 

To show that 3r is finite, f~ a point Xse S for each S ~ 3v', note that 3v is countable, 
and choose an orthogonal projection p: R " ~ R  ~ so that dim p[Tan(S,  Xs)]=k 
for every S~3r ~. Then the set Z s, defined in the proof of Step III, has Hausdorff  
dimension less than k. Moreover Z s ~ ( M  ) because for any A e ~ r  with 
S c # ( A ) ,  

Z s = S n/~(A n {x: rank [(p o #)IA] (x) < k}) 
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and An{x:  rank[(po#)lA](x)<k} is a semianalytic subset of M by 3.2(3). 
Since, by Step III, Fron S ~ ( M )  and dim (Fron S)<k whenever S ~ ,  

Z = U P(Zs u Fron S) 
S ~  

is a compact at most k - 1  dimensional member of ~(Rk). By induction and 
Lemma 2.4 (or by [3, 2.4]), R k ~ Z  has only finitely many components. Inasmuch as 

p - '  {y} c~Clos U ~ =  U P-~ {Y} n ( S ~  Zs) 
Se~ 

is compact and discrete whenever y6Rk~Z ,  P[(U ~e-)~P -1 (Z) is a real analytic 
covering map with finite fibers. Therefore (U ~/')~P-1 (Z) has only finitely many 
components. Moreover every S ~  ~ contains some component of (U ~e~)~P - ~(Z) 
because, by the rank theorem, 

s n p -  1 ( z )  = Z s  w [ (s  ~ Zs)  n p -  1 ( z ) ]  

has Hausdorff dimension less than k. Thus ~ is finite. 

4.3. Corollary. I f  M and N are real analytic manifolds, It: M x N--* M is the 
projection mapping, and G is a semianalytic shadow stratum in M x N, then 

G n  {a: rank (#lG)(a)<sup {rank (/~]G)(b): beG}} 

is contained in an at most (dim G ) -  1 dimensional semianalytic shadow. 

Proof Letting r=sup  {rank (It[G)(b): beG} and Z =  G n  {a: rank(It[G)(a)<r} 
and applying 4.2 with M and r replaced by M x N and {G}, we infer, for each 
S~5 p with S ~ G  and dim S=dim G, that 

Z n S = S n I t s ( A s n  {a: rank [(pO#s)lAs] < r } e ~ ( M  x N) 

because D Its(C ) [Tan (A s, c)]--Tan (S, #s(C))=Tan (G, its(C) ) whenever c~ A s n  
Itsa(S). Since, by 3.2(2)(3), Zc~S has Hausdorff dimension at most (d imG)- l ,  

(U Sen{T: dim T<dim G } ) u U  {ZnS:  S~5 e, S=G, d imS=dim G} 

is an at most (dim G) -  1 dimensional semianalytic shadow containing Z. 

4.4. Corollary. For any analytic mapping g: M -~ N, any locally finite families cg 
os semianalytic shadows in M and ~ of semianalytic shadows in N and any open 
semianalytic shadow L ~ M  such that g[Clos L is proper, there exists a one-one 
stratification (5 e, J-) of f =glL into semianalytic shadows so that 5 a is compatible 
with c~ and 3" is compatible with ~. 

Proof Combine 4.0, 4.2, 4.3, and 2.2. 

5. Semianalytie Shadow Chains 

A k dimensional locally fiat chain T ([1, 4.1.24]) in an analytic manifold M is 
called a k dimensional semianalytic shadow chain if there exist a k dimensional 
semianalytic shadow A in M and a k - 1 dimensional semianalytic shadow B in M 
with 

s p t T ~ A  and s p t ~ T ~ B .  
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Then, by [4.4] and the reasoning of [1, 4.2.28], 

T= ~ rnB(~kl_B)/x~8 
B e N  

for some locally finite disjointed family N of k dimensional orientable, semianalytic 
shadow strata with orienting k vectorfields ~ and integer multiplicities m 8 for 
Be~.  Moreover by 4.0, 4.2, 4.3, and 2.5, the reasoning of [3, 2.9, w 4-w 5] carries 
over to give an analogous slicing and intersection theory for semianalytic shadow 
chains. 
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