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1. Introduction

Here it is shown that the image I of a semianalytic set under a proper (real)
analytic mapping of (real) analytic manifolds admits a locally-finite partition &
into connected submanifolds P such that

QcClos P and dimQ@<dimP  whenever P+Qe? and QnClosP+4g.

Such a partition is called a stratification of I. A subset 4 of an analytic manifold M
is called semianalytic if M can be covered by open sets U such that U n A is a union
of connected components of sets g~ {0} ~h~'{0} for g and & belonging to some
finite family of real-valued functions analytic in U. Although semianalytic sets
admit, by well-known arguments (3.2 or [6, pp. 150-153]), stratifications, the
analytic image of even a compact analytic manifold may fail to be semianalytic
([6, p. 135]).

For any proper analytic mapping f: M — N, there are, by 4.4, stratifications &
of M and 9 of N so that for each Se %, f(S)e .7, f|S is one-one whenever dim f(S) =
dim S, and S = 4 whenever S " A #+ &. It follows from 4.0, 4.2, and 2.5 that the num-
ber of components of A~ f~!{y} is locally bounded for ye N. These stratifications
may be refined to satisfy Whitney condition (B) ([8, § 31); the proof, being com-
pletely analogous with Lojasiewicz’s treatment of the semianalytic case [6, pp. 143~
153] is omitted. In [18, 3.1, 3.3] such stratifications of images under consecutive
projections in Euclidean space lead readily to CW decompositions.

Stratification theory has developed chiefly through the work of H. Whitney,
R. Thom, and J. Mather. An excellent treatment and list of references is given in
[8] It is the goal of this paper to clear up the ideas of [11, III B-C] where many
of the present results are stated without formal proof. Although we will, except
in§ 5, refer only to the classical local stratification of semianalytic sets as established
in [4, §11-15] or {6,§13], other interesting facts about semianalytic sets are
exposed in [1, 3.4.5-3.4.11], [2], [3,§2], [4-7], [8,§4], [12-18],[6] being the
most basic.
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After having written the manuscript, the author learned of the interesting
work of Hironaka, [12] and [13] on subanalytic sets, which are sets that locally
are analytic images of relatively compact semianalytic sets. Using his theory of
the resolution of singularities, he establishes a Whitney stratification of subanalytic
sets; because of differences in proofs as well as the discussions of § 2 and § 5, our
article may be of independent interest.

Our notation is in accord with [1, pp. 669-671] with the following eight
conventions.

For any family o/ of sets we let | J /= { ) Aand [} /= ) 4.

Aesd Aecd
For any two families &/ and # of subsets of the same set, we say &/ is compatible

with # if AcB whenever Ae s/, Be#, and AnB+@.

For any function f: C — D, we identify f with the subset {(c,/(c)): ceC} of
CxD.

For any subset ‘E of a topological space, we define the frontier of E, denoted
Fron E, as (Clos E)~E.

All our manifolds are assumed to be paracompact.

By a submanifold F of a differentiable manifold we always mean a properly
imbedded submanifold; hence, F~Fron F=2.

For any differentiable mapping g: M — N of differentiable manifolds, we let
rank g: M - Z,

(rank g) (@)=dim (Dg(a) [Tan (M, a)]) for aeM.

We let dim & = —1, and, recall, for any nonempty subset G of a metric space,
the Hausdorff dimension of G,

dim G =sup {p: #?(G)>0}=inf {o: #°(G)=0},

where 57, for p=0, is p dimensional Hausdorff measure ([1, p. 171]). We also
use the notation dim G whenever G is a nonempty subset of a differentiable
manifold and the above formula does not depend on the choice of Riemannian
metric. For example, if the function g above has rank g=k, then dim g(M)=k
because, by the rank theorem ([ 1, 3.1.18)], M may be covered by countably many
open sets U so that g(U) is a k dimensional submanifold; hence, #°[g(U)]1=0
for ¢ >k for any Riemannian metric on N.

2. Stratification and Mappings

Suppose M is a differentiable manifold. A stratum in M is a connected submani-
fold of M.

A locally-finite partition & of M is called a stratification of M if each S in &
is a stratum such that

(#*) TcFronS and dim T<dimS whenever Te. and TnFronS=+g.

For any mapping f: M — N of Hausdorff spaces, a stratification of f is a pair
(¥, 7 ) such that & is a stratification of M, 7 is a stratification of N, and, for each
Se &, f(5)e 7, f1S is differentiable, and rank (f|S)=dim f(S).

A stratification (&, 7)) of f is said to be one-one if f|S is one-one for all Se.¥
with dim f(S)=dim S.
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2.1. Theorem. Suppose # is a collection of differentiable manifolds, and for each
Med, o/ (M) is a family of subsets of M satisfying the following four conditions:

(1) The sets &, {x}, M, || B, [\ %, and M ~| | # belong to /(M) whenever
xeMe M and B < (M) is locally-finite.

2) If M,Nedl, Ces/ (M), Ded(N), E,Fe/(MxN), uis the projection
mapping of M x N onto M, and u|Clos E is proper, then M x Ne 4,

CxDed(MxN), p'(Ded(MxN), uEyesd(M),
and

(NxM){(y, x): (x, y)eF}ed (N x M).
(3) If M, N and p are as above and Ge.o/(M x N) is a stratum, then
G {a: rank (u|G) (a)<sup {rank (u|G) (b): beG}}

is contained in some at most (dim G)— 1 dimensional member of o/ (M x N).

(4) For any Me.# and locally finite B < o/ (M) there is a stratification of M
contained in o/ (M) and compatible with 2.

Then for any M, Ne #, any locally finite families € = o«/(M) and % < .o/(N),
any continuous map g. M — N, and any open Le .of (M) such that ge.o/(M x N) and
g|Clos L is proper, there exists a stratification (¥, 7) of f =g|L such that ¥ = .of (M),
T <A (N), & is compatible with €, and T is compatible with 9.

Proof. Let u: M x N> M and v: M x N — N be the projection maps, and let
I=dim (M x N). Since f=gnu "(L)es/(M x N), there is by (4) stratification
%, of M x N compatible with {f} U {u~'(C): Ce%}. Having chosen stratifications
PPy P (MxN)of M xN so that Z, is compatible with Z, , | and the
functions rank (u|P) and rank (v|P) are constant whenever Pe #, and dim P2k +1,
we choose, for each Ge%, with dim G=k, an atmost k—1 dimensional set
Z ;e (M x N) containing

G n{a: rank (u|G) (a) <sup {rank (u|G) (b): beG} or
rank (v|G)(a) <sup {rank (v|G)(b): beG}}
select a stratification 2« .o/(M x N) of M x N compatible with
P ulZ;: GeZ,dim G=k},
and obtain the stratification
P 1=(#N{P:dim P>k} (2N {Q: dimQ=k})cd(MxN) of MxN

compatible with 2, such that the functions rank (u|P) and rank (v|P) are constant
whenever Pe#,_, and dim Pz k.

For every Pe &, with P < f, u|P is a diffefomorphism, and rank (v| P} is constant.
Moreover {v(P): f> Pe,} is a locally-finite subfamily of .« (N) because v|Clos f
is proper. Selecting a stratification .7 < «/(N) of N compatible with

PU{v(P): foPe?,}
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and letting & be the family of all connected components of u[ P ~v~'(T)] where
foPeZ, and v(P)> TeZ, we infer from (4) that & is locally-finite and from (1),
(2), and the rank theorem ([ 1, 3.1.18]) that the pair (%,.7) satisfies the theorem.

2.2, Theorem. Suppose M and of satisfy 2.1 (1) (2) (3) (4) and the three additional
conditions:

(5)Re..

(6) For any M, M,, M5, ..., M, e, M, x--- x M_e.#, and the function which
sends (X, ..., x,,)e M, x---x M, onto

(- (Ocys X2 X3)s oo ) Xp)E( (M x M,) x M) x )X M

induces a bijection between
AM;x-xM,) and ((---(M;xM,)x M;)x--)x M,).

(7) For every Me#, {(x,x): xeM}eo/(M x M) and there is a locally finite
covering A of M by compact sets K in o/ (M) for which there is a continuous one-one
map @: K —R" for some n such that peo/(M x R").

Then for L, M, N, 4, 9, f, and g as in 2.1, there exists a one-one stratification
(&, T) of [ satisfying the conclusions of 2.1.

Proof. Replacing € by € U, we assume 4 —%. We will verify inductively
that there exists, for each ke{0, 1, ..., dim M}, a stratification (¥, Z,) of f such
that &, c.o/(M) is compatible with €, 7, = «/(N) is compatible with &, and f|S
is one-one whenever Se¥, and dim f(S)=dimS< k. With (¥, 7) as in 2.1, let 7
be a stratification of N compatible with 7" U {g(FronS): Se#} and %, be the
family of components of S f ~'(T) for Se ¥ and TeJ,. Let

A=, {S: dim[(S)=dimS =k}.

For each ReZ, (f|R): R—f(R) is a differentiable covering map because
g(FronR), having dimension less than k, does not intersect f(R). Moreover,
R {S: f(85)=f(R)} is a finite family, and there is an integer j(R) so that

card(RNf~1{y})=j(R) whenever yef(R).
Letting pg: M7= M, pelx,, ..., X; ) =X, for (x,, ..., X;x JeMI®, fr=fop. and
Gr=R™n{(x;, ..., X;5): fx)="" =f(x;) and x,# x, for ISh<iZj(R)},

we infer that f(R)=f,(G), pxlClosG, is proper, and Gpeof (M/®) by (6), (7),
and 2.1 (1) (2). By (7) we may choose an integer n(R) and a continuous one-one
map @g: ClosR—>R"® with ¢y e/ (M xR"®). For integers ne{l,2,..., n(R)},
ie{l,.... j(R)},and je{1, ..., j(R)}, we let @~ - R"® - R be given by

(Pf, 25Xt o5 Xjr) =€, [@r(X;)— ‘PR(xj)] for (xi,..., xj(R))e RI®);

hence of ;1 {0} et (M/™) by (5), (6), (7), and 2.1 (1) (2). Let 2, <./ (M/®) be a
stratification of M/® compatible with

{Gryu{ofii{0}:ne{l, .., n(R)}; i, jefl, ..., j(R)}}.
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Then & ={p(Q): ReER, Gx>Qe2,} is a locally finite subset of (M), and we
may, by induction, choose a stratification (¥, %,) of f such that % <c.o/(M) is
compatible with &, U & (and hence with %), , < &/ (N) is compatible with 2, and

f1S is one-one whenever Se%; and dim f(S)=dimS<k—1.

Suppose Se¥, and dim f(S)=dimS=k. Then ScRnp,(Q) for some Re#
and G, >QeZ,. To show that f1|S is one-one, and complete the proof, we verify
that fz|Q is one-one.

If not, there is a point yef(R), a set Rnf~"{y}=1{x, ..., X;}, and a permu-
tation ¢ of {1,2,...,j(R)} different from the identity so that (x,, ..., x;.,) and
(Xz(1) +++» X4(jiry) DOth belong to Q. Accordingly e, - [or(x, ;) —@x(x)]+0 for
some je{l, ..., j(R)} and ne{l, ..., n(R}}. Defining

I={1,.., j(R)} n{i:signe, - [@p(x)—@p(x)]=signe, - [epix, )~ @xlx)]},
we observe that j¢I, that a(j)el, and that for each ie{l, ..., j(R)},

signe, [(PR(X(;(;‘)) - (PR(xa(j))] =signe, - [pp(x)— (Pk(x,‘)]
because Q is connected and {Q} is compatible with {¢f Jl {0}}. Using the equation

€, [(pR(xa(,‘))'_(PR(xj)] =€, [(PR(XG(“)—‘ ¢R(xo(j))] +e,- [(pR(xo'(j))— (PR(xj)]

for every iel, we infer that o(f)cI, hence o(I)=I, which contradicts that
a(j)el ~a{l).

2.3. Applications. By [10, Theorem 1], Theorem 2.2 may be used with 4
equal to the class of Euclidean spaces and /(M) equal to the family of semi-
algebraic subsets of M.

By [9, p. 67, Theorem 1] and the proper mapping theorem ([9, p. 129, Theo-
rem 2]) we may apply 2.1 with .# being the class of paracompact complex mani-
folds and .« (M) being the smallest family of sets satisfying 2.1(1) and containing
each connected component of the regular points of every holomorphic subvariety
of M. However, here the conclusion of Theorem 2.2 fails because holomorphic
mappings may not admit one-one stratifications in o/ (M). For example, since the
complement of any two dimensional strata S in o/ (C} is a discrete set, the restriction
to S of the function which maps z to z?2 is not one-one.

Next suppose 4 is the class of paracompact real analytic manifolds. Inasmuch
as the projection of a compact semianalytic set may fail to be semianalytic ([6,
p. 135]), we may not use Theorem 2.1 with /(M) being the class (M) of semi-
analytic subsets of M. In §4 we will verify 2.1 (3} (4) for the smallest collection of
families (M) > (M) for Me# satisfying 2.1 (1) (2).

2.4. Lemma. Suppose M is a connected m dimensional Riemannian manifold,
0<k=<m-—\, E is a closed #* null subset of M, & is a finite disjointed family of k
dimensional connected submanifolds in M ~ E whose frontiers lie in E, and 9 is the
family of components of M~(EuUl J#). Then card¥9<sup{l,2 card #}, and
F<ClosG whenever Fe#, Ge¥, and F nClosG + &.

Proof. First note that if X is a closed #™~! null subset of M, then any two
points 4, b in M ~ X may be joined by a curve in M ~ X. In fact, if M is an open
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ball in Euclidean space and C is an open ball about b in M~ X, then there is, by
the argument of [3, 2.7, p. 83] a closed half-line outside of X which joins a with C.
In general there are open coordinate balls U, U,, ..., U, in M with aeU,
UnU+a,U,nU,+9,...,U_,nU=+2 and bel,.

In case k<m—1, it follows that M ~(Eu UEF ) is connected. Moreover any
Fe%, being a submanifold of [M ~(Eu Ug'*)] U F, lies in Clos[M ~(Eu Ugf‘)].

In case k=m—1, it suffices to modify the argument of [3, 2.7] by replacing
R'*, f(4)~X,and X by M, | )%, and E and noting in the proof of (2) that, instead
of a half line L, there is a curve in M ~ E joining b with C.

2.5. Theorem. If A and of are as in 2.2, M, Ne#, g: M—> N is continuous,
ged (M x N), and Aco/ (M) is relatively compact, then the number of components
of Ang="{y} is bounded for yeN.

Proof. We use induction on dim 4. In case dimA<0, A is finite by 2.1 (4). We
now assume [=dimA =1 and the corollary is true for dimensions less than I
Choose, by 2.1, a stratification (¥, ') of g[Clos A4 so that ¥ < .o/ (M) is compatible
with {4}. By induction it now suffices to show that the number of components of
Sng~'{y} is bounded for ye N whenever A>Se% and dimS =1 Let k=dimg(S).

Suppose for contradiction that there is a countable subset Y of g(S) so that the
number of components of Sng~'{y} is unbounded for ye Y. We may assume,
by 2.2 (7), that M and N are Euclidean spaces and, by replacing M, S, and g by
M x N, {(x, g(x)): xeS}, and the projection of M x N onto N, that g is an ortho-
gonal projection of R™ onto R” for some m and x.

Let p: R">R* be an orthogonal projection so that p(Tan[g(S), y])=R*
whenever yeY. Since, by the rank theorem, the points of Y have disjoint neighbor-
hoods relative to g(S) which are mapped homeomorphically by p, the number of
components of S (pog)~'{p(y)} is unbounded for ye Y.

Fix a point xeSng~'(Y). Since (pog)[Tan(S, x)]=R¥ there are orthogonal
projections h: R™— R’ and q: R' > R* so that goh=pog and h[Tan(S, x)]=R"
By 2.1 (3), 2.2, there is a stratification (2, #) of h so that 2 is contained in </ (R™),
2 is compatible with {S}, and h|Q is one-one whenever Q€2 and dimQ =1 Then,
for some S > Q€ .2, the number of components of

Qn(gon) H{p(i=0n(pog)~ " {p(»}

is unbounded for yeY. By induction, /=dimQ=dimh(Q), and the number of
components of h(@) g~ ' {p(y)} is also unbounded for yeY.If & is a stratification
of Fronh(Q) so that rank(g|B) is constant for all Be%, then we may, by the rank
theorem, apply, for each yeY,2.4 with M =q~' {p(y)},

# ={components of Bng~'{p(y)}: Be# and dim B—rank(gq|B)=I—k—1},

and E=Fron h(Q)~U97; we conclude that the number of components of
Bng~'{p(y)} for yeY is unbounded for at least one Be%, contradicting the
inductive assumption, with 4 and g replaced by B and q.

3. Semianalytic Sets

3.1. Lemma. Suppose o/ is a family of subsets of a locally compact space M
which is closed under finite union and finite intersection and & is the family of all §
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such that M can be covered by open sets U so that U S is a union of connected
components of sets A~B for A and B belonging to some finite subfamily of . If
B < is locally-finite, then | | Be ¥, (\Be S, and M ~| | Be S,

Proof. Clearly | | €% To see that (| B €%, we observe that if E isa component
of A~ Band F isa component of C~ D, then E N F is open and closed relative to —
hence a union of connected components of —(4~ B)n(C~D)=(4 C)~(Bu D).
Moreover,

M~E=M~A)uBu U {components of A ~ B other than E}.
Thus M~ ) Be¥.

3.2. Inasmuch as the product and the sum of the squares of two real-valued
analytic functions is analytic, hypothesis 2.1 (1) holds, by 3.1, for the class (M)
of semianalytic subsets of M. Since the cartesian product and composition of
analytic mappings is analytic, 2.2 (5) (6) (7) and 2.1 (2) —excluding that u(E)e (M)
—are easily verified for & (M). Moreover 2.1 (3) (4) for (M) will follow from
3.2(3)(5) below.

Recall from [3, §2] that a subset G of an m dimensional analytic manifold,
which is a connected component of g='{0}~h~'{0} for some R™ ‘'-valued
function g and R-valued function h analytic in a neighborhood of ClosG such that
(rank g)|G =m—l is called an [ dimensional analytic block in M.

We will need the following five facts which are consequences of Lojasiewicz’s
local decomposition of semianalytic sets ([4, §15] or [6, §13]).

(1) If A is a semianalytic subset of M, then

dim A =sup {k: there is an open subset U of M so that

U n A is a k dimensional analytic submanifold},

and Fron A is semianalytic with dim Fron A <(dimA4)— 1.

(2) If M is connected and E is a proper analytic subset of M, then dimE<
(dimM)— 1.

In fact, if dimE=dim M, then IntE+& by (1) and E=M by analytic conti-
nuation.

(3)If M and N are analytic manifolds, u: M x N—-M is the projection map,
and G is a connected analytic submanifold of M x N, then

Z;=G {a: rank (u|G)(a) <sup{rank (u|G)(b): beG}}

is a proper analytic subset of G. Moreover, if G is an analytic block in M x N, then
Z is semianalytic.

In fact both statements follow from the argument of [3, 2.9].

(4) If A and B are semianalytic strata in an analytic manifold M with B Fron A4,
then there is a closed, at most (dim B)— 1 dimensional semianalytic set Z% so that
every point be B~ Z} has arbitrarily small neighborhoods W such that W B is
contained in the closure of each component of Wn A.

In fact, if 4 and B are members of a Lojasiewicz normal decomposition
([6, §137), then this condition holds at every be B. In general M may be covered
by a locally-finite family % of open semianalytic sets U for which there is a normal
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decomposition 2, of U compatible with {4, B}; hence U n B is the union of an
atmost (dimB)—1 dimensional semianalytic set ¥, and dimB dimensional
members I'e P, with '« BnFron4 for some A>4€9,,.

(5) For any locally-finite family o of semianalytic sets in M, there is a strati-
Sfication of M into relatively compact analytic blocks which is compatible with <.

In fact, it will be sufficient to prove, by induction on dim U&{, that there is a
stratification & of M compatible with o7 so that each Se.% with dim S <dim Uﬂ
isa relatively compact analytic block in M; for we may then replace &/ by .o/ U {M}.
In case dim( Jo/ = —1; hence o/ =2, let & ={M}. We now assume that 0<[=
dim { Jo Sm=dimM, and, by (1), that | )./ is closed.

For each ae| o, there are, by [4, p.34] or [6, p.68], an open semianalytic
neighborhood U, of @ and analytic functions g,: U, —»R™ ' and d,: U,—R so that
U)o =g; {0}, (rankg,)(x)=m—I whenever d,(x)*+0, dim(d ' {0} » )<,
and the collection %, of components of U, n[({ o) ~d;'{0}]is finite and compat-
ible with . By [3, 2.2 (7)], there are, for ie{1,2,...}, g,eM and r,>0 so that
V.;=Ula;, r,) has compact closure in U, , the dimension of the frontier of

i—1
RC=Cm<Vi~ UClost>

j=1

is less than [ whenever Ce%,, and {V;: i=1,2, ...} is a locally-finite cover of M.
Choosing, by induction, a semianalytic stratification 7 of M compatible with

AnU nd;'{0}: dest,i=1,2, ..} U{FronR,.: Ce® ,i=1,2, ...
ai a, C a,

so that every TeZ with dim T<!is a relatively compact analytic block, it suffices,
by 2.4, to let
A={R;: Ce¥, andi=12,..},

L =[T n{T: T<(|JH)~|J#}]U R L {connected components of M~ | )./}

4. Semianalytic Shadows

A subset C of an analytic manifold M is called a semianalytic shadow if M
can be covered by open sets U such that U n C is a union of sets u(4)~ u(B) for
some analytic manifold N with projection map u: Mx N—»M and 4 and B
belonging to some finite family of relatively compact semianalytic subsets of
M x N. (Using a resolution of singularities, H. Hironaka has shown in [12] that
any semianalytic shadow is locally the projection of some relatively compact
semianalytic set; but we will not need this interesting result.) Noting that

wA) U (A)=p"[(M x N xN)n{(x, y, 2): (x, y)e 4 or (x, 2)e A'}],
AN (A)=p" [(IM x N xN)n{(x, y,2): {x, y)e A and (x, z)e A'}]
whenever AcM x N, A’ M x N’, and
u: MxN->M, uy: MxN->M, and y': MXNxN ->M
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are the projection maps, we infer from 3.1 and 3.2 hypothesis 2.1 (1) for the class
P (M) of semianalytic shadows in M. Moreover using 3.2 and the equality

W (A =p (M x N x N)n{(x, y, 2): (x, y)eA}]

where p: M x N x N'> M x N’ is the projection mapping, we readily verify 2.1 (2)
and 2.2 (5) (6) (7) for 2(M).

4.1. Theorem. For any analytic manifold and finite family € <P (M) with
Clos | J% compact, there are an analytic manifold N with projection p: M x N—N
and a subfamily o/ of some semianalytic stratification of M x N with | } s/ compact
so that

(1) Each Ae.</ is an analytic block with rank (u]|A) constant.

(2) Each Ce¥ is a union of connected components of sets pu{A4)~ u(B) for
some A, Be o

(3) For each pair A, Bes/ with BcFron A, every point b in B has arbitrarily

small neighborhoods W such that W B is contained in the closure of each component
of Wn A.

Proof. There are a finite open cover % of Clos% and, for each Ce¥ and Ue%,
an analytic manifold Nf along with the projection mapping u5: M x N5 —M and
finite family /5 of relatively compact semianalytic subsets of M x NS so
UANC is a union of components of uS(A)~ uS(B) for some A, Beo/S. Letting
N=T[lcce vea N§ and, for each Ce? and Ue, n§: MXN**MXNC be the
projection mapping and &g = {r5 ' (A): Ae S}, we obtain (2) with o/ replaced by

#={B: Be &S, Ce¥, UecU}.

To obtain a suitable stratification of M x N we use 3.2 (3) (4) (5) and downward
induction. Specifically with I=dim(M x N), we first choose a stratification &, ,
of M x N into relatively compact analytic blocks which is compatible with £.
Having chosen stratifications & |, &, ..., ¥, of M x N, we select a stratification
J; of M x N into semianalytic blocks Wthh is compatible with
Z=%,,9{Zy: BeS, , and dimB=i}

v{Zi: Ae¥, Be ¥, BeFron4, and dimB=i},

and let

L=[FTn{T: T=(JZ) V(. N {S: dimS<i})}]
U {components of B~ Z,~| J{Z3: Ae¥, BcFron4}: Be ¥, dimB=i}
ul&, 0 {S: dimS>i}].
Then o/ =% {S: Sc=Clos| &} satisfies the theorem.

4.2. Theorem. For any real analytic manifold M and locally finite family € of
semianalytic shadows in M, there is a stratification & of M compatible with € such
that each S in & is a semianalytic shadow contained in pg(Ag) for some analytic
manifold Ny, projection pg: M x Ng—M, and relatively compact semianalytic
stratum Ag in M x Ng with rank (uglAg)=dimS.

14 Inventiones math., Vol. 28
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Proof. Suppose that for ie{l,2,...} U, and V, are open semianalytic subsets
of some coordinate neighborhood w1th ClosI{ bemg a compact subset of U, and
(2 V,;=M. If one lets &, ={M} and finds inductively a stratification &< @(M )
of M compatible with

{FronV}u{CnClosV;: Ce¥u¥_,}
fori=1,2,..., then

|1C8

i

i-1
|0 {S ScV~ UV]}
=1

is a stratification of M in (M) compatible with ¥. Thus we may now assume
Clos U(g is compact, hence % is finite, and M =R™ and we need no longer insist
that A be relatively compact, only that pg[Clos Ag be proper.

Choosing N, u, and & as in 4.1, we note that any stratification of M compatible
with {u(4): Ae} is compatible with %. In case dim (| ) /) <0, u({ ] ) is finite,
and it suffices to let

& ={{x}: xepu(| Jo#)} U {connected components of M ~ u(( | =#)}

and, by 3.2, for each Se;, N, be any compact analytic manifold and 45=pug '(S).

Let k be a positive integer. Assuming inductively that the theorem is true
whenever there exist N, x4, and o/ as in 4.1 with dim u(( )#/) <k, we now suppose
dimp(| ) )=

Let #=o/ n{A4: dimu(A4)<k}. Using the projection

5: (MxNY*->M, 6&(a,b)=ula) for (a b)e(M x N)?,
and 3.2 (3) (5) we select a semianalytic stratification & of (M x N)? compatible with
={(Ax B)n{(a, b): p(a)=p(b)}: A, Beod ~ B}
so that rank (6| E) is constant whenever E€é&. Let
P=8&{D: Dc|)F and dimd(D)<kj}.

By induction there is a stratification § < P(M) of M, along with suitable Ny,
Up, Ag for T€T, so that T is compatible with

G={u(A)Nu(B): Acst, Be B} {u(A)nd(D): Ae, DePD}.

In fact, with P=(M x N)x (M x N)x (M x N)?, q: M x P— M being the projection
mapping, and £ being a stratification of M x P into analytic blocks as in 4.1
compatible with

3={(Mx[AxBx(MxNy1)n{(x,(a,b,c)): x=pula)=pu(b)}: Ac£, Be B}
U{(M x[Ax(MxN)x D) {(x,(a, b, ¢)): x=p(a)=5(c)}: Aco/, DeD}

so that rank (gq|P) is constant whenever Pe4 it suffices to apply induction with
%, N, 4, and o replaced by ¥={q(Q): Q€ 2}, B g, and 2N {P: Pc | 2}.
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It follows that dim u(Clos B)=dim Clos u(B) <k and
dim 6(Clos D)=dim Closd(D) <k
whenever Be# and De2; thus, | )%, |2, and hence | J%=u(l ) #)ud(l ) 2)
are compact. With
U=T ~{T: T<| ¥},
¥ ={connected components of u(4)~|)¥: Aet ~ B},

# = {connected components of M ~ u({ ) «/)},
uy = and A, e ~% chosen so that Vcu(4,) for Ve¥, and u, =p and Ay,
equalling M x {point in N} for We#, we complete the proof by showing, in the

following four steps, that the family & =% U ¥  U# of semianalytic shadows is a
stratification of M compatible with {u(A4): Ae</}.

Step L. ¥ is a disjointed family of k dimensional analytic submanifolds of M.
In fact, by induction on I=dim|( ], it suffices to show that

H=u(Jo)~u({J# n{B: dimB<D)~ ¥
is a k dimensional analytic submanifold of M because
Fron [u(4)~| )9l u(Fron A)uJ Ycu( 4 n{B:dimB<l}ul)¥

whenever Ae/ ~# and dim A=1.

Every ae(| ) o)~p~"({ ] 9) belongs to some member A, of o/ ~ %, and there
is, by the rank theorem [1 3.1.18], a connected, relatively open neighborhood R,
of a in A4, so that u(R,) is a k dimensional analytic submanifold of M. For any
xep(l ) Jz{) U? and any finite subset F of u~'{x} n| J &, there is an open neigh-
borhood U of x in M ~( ] % so that U n u(R ) is connected and U nFron u(R,)= 2
whenever ae F. Moreover if a, beF, then U nu(R,)=U nu(R,). In fact, otherwise
UnuR)Nu(R,), being a proper analytic subset of Unu(R,), would have
Hausdorff dimension less than k by 3.2(3). If (a, b)e D &, then

D=(A4,x A) iy, 2): n(y)=p(2)},
and there is a relatively open neighborhood D, , of (4, b) in
Dn([A4,np ' (U x[A4,np "t (U)])

so that 8(D, ,) is a dim 6(D) dimensional analytic submanifold of M In U n u(d)n
#(U,). Thus dim 8(D)<k and xed(D)< | ) %, a contradiction.
For every x belonging to H (which equals u({ ) &)~ ) ¥ in case I=k), the set
U{p {x}n4: ded ~%B and dimA=l}=p"" {x}n|J o
is compact, and the sets F and U above may be chosen so that

Unp(lJ #)=Unl) uR,).

aeF

Hence, H is a k dimensional analytic submanifold of M.
14% '
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Step IL. & is compatible with {u(A): Aesd}.

In fact, suppose Se&, Aes, and S pu(A)+2. Then S¢ #". We will show that
S < u(A) n the three remaining cases.

Casel. Se. Here Scu(l ) B)ud(| ) 2) and either S pu(4)npu(B)+2 for
some Bed, hence Scu(A)npu(B), or Snu(4)no(D) =& for some De, hence
S u(4) (D).

Case 2. Sev” and Snu(Fron A)=@. Here Aeo/ ~%, and § is a connected
component of u(B)~ U % for some Bes/ ~%. Let U be an open neighborhood of
S so that Unu(B)=UnS. Since p(A)~ pu(Fron 4) is a k dimensional analytic
submanifold of M, S~ u(A) is an analytic subset of S. Moreover S u(A) is not a
proper subset of S; otherwise, dim [S ~ u(A4)] <k, and, as before,

SouA)=UnpA)npB)cs() 2) =) %,
an impossibility.

Case 3.Sev" and S n u(Fron A)+ &. Here we use induction on dim 4. Choosing
Be s/ with BcFron 4 and S u(B)+ &, we apply Case2 if S~ pu(Fron B)=# or
induction if S~ u(Fron B)+& to infer that S < u(B).

Let xeS. To see that xepu(A4), choose, since dim S=k =1, a one-dimensional
analytic submanifold L of S passing through x so that L ~ {x} has two components.
Let b be an element of BNy ~'{x}, B be the connected component of By~ "'(L)
containing b, and 4’ be a component of A nu~'(L) whose closure contains b.
By the rank theorem, A" and B’ are analytic submanifolds, u(B’) is a relative
neighborhood of x in L, and B'=Clos A" because = (L)Yn BnClos 4 is open
and closed relative to u~ (L)~ B. Let 4 be a continuous function on L which is
positive on one component of L~ {x} and negative on the other. Then Aoy, being
both positive and negative on B’, and hence on A4’, vanishes somewhere on A"
Thus {x}=A""{0} cu(4)cu(A4).

Step I Every member of & satisfies the frontier property (=) of 2.0.

In fact, suppose Re¥, Se&¥, and RnFronS+2 We will verify that
RcFron S and dim R<dim S. The cases Re?¥” and Se% or Re# and Se¥u

¥ UW are eliminated because | ) % is closed, | J (U ) is closed, and { ] #
is open. We examine the four remaining possibilities.

Casel. Re¥ and Sed. Here R<FronS and dim R<dim § by induction
because R and S belong to 7.

Case 2. Re¥ and Se¥". Here dim R =k =dim S, and we will derive a contradic-
tion. For each Qe let

dy=inf{dim 4: Aes/ and QN u(d)+2}.

Suppose Q€¥", Ae 4, QN u(A)+ &,and dim A=d,. Then Aeo/ ~% and Q = u(A).
Moreover if Pe¥” and PnFron Q=% &, then P u(A)=2; otherwise, P < u(A),
and P and Q would be disjoint relatively open subsets of the submanifold
w{A)y~ U %, contradicting P~ Fron Q@+ &. 1t follows that P pu(B)+ & for some
BcFron A4,

dp<dim B<dimA=d, and PcFronQ
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because P=Pnpu(B)< P u(Clos A)=Pn Clos u(4)=P n Clos [u(A4A)~ U Y=
PnClos Q.

Assuming now that Re¥” is chosen so that RnFron S+ & (hence R<=Fron S)
and d, is maximal we infer that

R Clos [(Fron S)~R]

cRnl(J%ul) ¥ n{P: RnFronP+@ and PnFronS+g}]=2.
Fix two points, xeR and yeS, and let p: R™— R* be an orthogonal projection so
that dim p[Tan (R, x)]=k=dim p[Tan (S, y)]. By 3.2(2)(3)
Zi=S8Sn{z:dim p[Tan (S, y)I <k},

is a proper analytic subset of § and has Hausdorff dimension less than k. By
[3, 2.2(7)] and the rank theorem we may choose a positive

r<dist (x, Clos [(Fron )~ R])

so that dim [SnFron U (x, r)]<k and p|[RnU{(x, r) is an analytic isomorphism.
For any component V of

p[RoU(x,r]~plZ]~p[SnFron U(x, r)],
plSnU(x, r)np~1(V) is covering map with infinitely many sheets because
Rp ' (V)<Clos [SnUx, ) np~ 1 (V)].
However then SnU(x,r)np~1{v}, for veV, is a relatively compact, infinite,

zero dimensional semianalytic shadow, contradicting the theorem with k=0.

Case 3. Re# and Se¥". Here dim R <k=dim S, and Fron S<( ] % by Case 2.
IfR+R e, RnClos R"+& and R'cFron §, then dim R <dim R"and R<Clos R’
< Fron S. Thus, replacing R if necessary, we may now assume

K={)#~{R: R'+R and R’ nClos S+ g}

is compact. Choosing Aes/ so that Snu(d)+2, and dim 4=d; (see Case 2)
we infer that Ae.of ~ 2, S is a connected component of y(A)~(R v K) and

SAu(Fron A)c ) {Snu(B): Be#/ and dim B<dim 4}=2.

By the connectedness of R it suffices to show that R Clos S is open relative to R.
Fixing xe R~ Clos S, we will find an open neighborhood U of x so that UnRc
Clos § in the two possible cases.

If R [u(A)~ pu(Fron A)j+ 2, then R < u(A), and as before we may choose a
finite subset F of 4~ pu~' {x} and an open neighborhood U of x in M ~K so that
UnR and Unu(R)), for aeF, are connected submanifolds,

Unp(4)=Un{JuR,) and UnFronR=g=Un{)Fronu(R).

acF aeF

Let Q@ be a connected component of U S whose closure contains x. For each
aeF, either Q= u(R)) or dim [Q nu(R,)] <k because Q nu(R) is analytic in Q.
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Since Q| J,er#(R,), we may find at least one acF with Q< pu(R,). Similarly
UnRcp(R,) for some beF. Either U u(R,)=U nu(R,) or

dim [U np(R,) nu(R,)] <k
and, after shrinking U if necessary,
UnpR)NuR,)=UnéD) forsome De,

hence Rcé(D). In any case U R < u(R,). Since @, being a k dimensional sub-
manifold, is open relative to u(R ) and

UnFronQcUnFron ScUnNn(RUK)<R,

Q is a connected component of U n[u(R,)~R]. Thus by 24 with M=U npu(R)),
E=#,and # ={UNR},

UnRcClos@cClos S.

On the other hand, if R [u(4)~pu(Fron A)]=2, then R u(Fron A)+ 2,
and we may choose Be.sf/ of smallest dimension so that R u(B)+2 and Bc
Fron 4. Then Rcu(B), SHu(B)=@, and R u(Fron B)=@. For each be Bn
p~'{x}, there is, by 4.1, a neighborhood W, of b in (M x N)~pu~'(K) so that
Bn W, is contained in the closure of each component of 4~ W,. Observing that
AnW,np!(S) is nonempty, open relative to A W, by the rank theorem, and
closed relative to An W, because

(AnW,)nFron u= ' (S)yc(AnW,)nu~ ' (Fron S)
clAnp " (RJUIW, nu N (K)] =2,

we infer that Bn W,<Clos u~'(S). By the rank theorem and the compactness
of Bnpu~! {x}, there is a neighborhood U of x with

UnuB)e |} uBaW);

beBrpu~!ix}
hence UnRcUnu(B)=Clos S.

Case4. Re¥Y ¥ and Se# . Here, as in Case 3 we may assume
K={J(@u?)n{R: R*R and R'nClosS+ 2}

is compact, infer that Sisa component of (M ~ K)~R and apply 2.4 with M, E, ¥
replaced by the component of M ~ K containing S, &, and {R}.

Step IV. & is a finite family. In fact % is finite because 7 is locally-finite and
p({) ) is compact. By 2.4 and Steps I and I1J, the finiteness of #~ will follow from
that of % and 7"

To show that ¥ isfinite, fix a point x€ S for each Se 77, note that ¥ is countable,
and choose an orthogonal projection p: R™— R* so that dim p[Tan (S, x)]=k
for every Se?”. Then the set Z, defined in the proof of Step III, has Hausdorff
dimension less than k. Moreover Z;e (M) because for any Aco/ ~% with
Scpu(4),

Zs=Snp(An{x: rank [(popu)|A] (x) <k})
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and An{x: rank [(pop)|A] (x)<k} is a semianalytic subset of M by 3.2(3).
Since, by Step II1, Fron Se# (M) and dim (Fron S)<k whenever Se¥”,

Z= ) p(ZsuFron$)

Sev

is a compact at most k—1 dimensional member of Z(R*). By induction and
Lemma 2.4 (or by [3, 2.4]), R*~ Z has only finitely many components. Inasmuch as

p~  {y} nClos “VZSUVP_l {(y}In(S~Zy)

is compact and discrete whenever yeR*~ Z, pl(| ] #")~p~'(Z) is a real analytic
covering map with finite fibers. Therefore ({ ] #")~ p~!(Z) has only finitely many
components. Moreover every Se¥” contains some component of (( | ¥")~p~(2)
because, by the rank theorem,

Snp H2)=Zsu[(S~Z)np 1 (Z)]
has Hausdorff dimension less than k. Thus ¥” is finite.
4.3. Corollary. If M and N are real analytic manifolds, u: M x N - M is the
projection mapping, and G is a semianalytic shadow stratum in M x N, then
Gn {a: rank (¢|G)(a)<sup {rank (u#|G)(b): be G}}
is contained in an at most (dim G)— 1 dimensional semianalytic shadow.

Proof. Letting r=sup {rank (¢|G)(b): beG} and Z=Gn {a: rank (u|G)(a) <r}
and applying 4.2 with M and ¥ replaced by M x N and {G}, we infer, for each
Se% with Sc G and dim S=dim G, that

ZnS=Snug(Asn{a: rank [(uopg)|As]<r}eP(M x N)

because D ug(c) [Tan(4g, ¢)]=Tan (S, ug(c))=Tan (G, us(c)) whenever ceAgn
us 1 (S). Since, by 3.2(2)(3), ZNS has Hausdorff dimension at most (dimG)—1,

((J L n{T: dim T<dim G})u |} {ZnS: Se &, S=G, dim S=dim G}

is an at most (dim G)— 1 dimensional semianalytic shadow containing Z.

4.4. Corollary. For any analytic mapping g: M — N, any locally finite families €
os semianalytic shadows in M and @ of semianalytic shadows in N and any open
semianalytic shadow LM such that g|Clos L is proper, there exists a one-one
stratification (&, T) of f=g|L into semianalytic shadows so that & is compatible
with € and 9 is compatible with 9.

Proof. Combine 4.0, 4.2, 4.3, and 2.2.

5. Semianalytic Shadow Chains

A k dimensional locally flat chain 7T ([1,4.1.24]) in an analytic manifold M is
called a k dimensional semianalytic shadow chain if there exist a k dimensional
semianalytic shadow 4 in M and a k —1 dimensional semianalytic shadow B in M
with

sptTcA and sptcTcB.
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Then, by [4.4] and the reasoning of [1, 4.2.28],
T:: Z mB(%k[_B)/\éB

Be®

for some locally finite disjointed family £ of k dimensional orientable, semianalytic
shadow strata with orienting k vectorfields &y and integer multiplicities my for
Be#. Moreover by 4.0, 42, 4.3, and 2.5, the reasoning of [3, 2.9, §4-§ 5] carries
over to give an analogous slicing and intersection theory for semianalytic shadow
chains.
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