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Formation of shock waves in gas-liquid foams 
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Abstract. The purpose of the present investigation is to ana- 
lyze the phenomenon of shock wave formation in gas-liquid 
foams and to explain the qualitative differences which are 
found when comparing results from shock tube experiments 
performed with foams and bubbly liquids. It is well known 
that oscillatory pressure waves in bubbly liquids may reach 
an amplitude twice as large as that of the original pressure 
impulse. However, experiments showed that pressure distur- 
bances in foams always attenuate without significant change 
in the wave pressure profile. In the present study this behav- 
ior is explained by analyzing shock wave formation using 
the Burgers equation which is derived from the conservation 
laws for a bubbly liquid. It is shown that the parameter of 
non linearity in the Burgers equation describing wave prop- 
agation in bubbly liquids is about 40 times higher than in 
foams. At the same time coefficient of bulk viscosity of a 
foam is about 103 times greater than that of a bubbly liquid. 
This explains why in shock tube experiments with foams 
shock waves are not detected while they are easily observed 
when bubbly liquids are used under similar conditions. 

1 Introduction 

The main difference between gas-liquid foams and the well 
known and investigated bubbly liquids is in the high (close 
to unity) gas content which characterizes gas-liquid foams. 
Foams are composed of a large number of gas bubbles sep- 
arated by thin liquid films and have a cellular quasi-ordered 
structure. The structure of foams can be well described by 
a polyhedral model whereby an elementary foam cell rep- 
resents an irregular polyhedron (see Bikerman (1973), w 
w and Kraynik (1988)). The liquid film junction regions 
called Plateau borders, determine the boundaries of polyhe- 
dral gas bubbles. Foams with a liquid content which does 
not exceed 0.1 are of particular interest. In such foams the 
thickness of the liquid film is much less than the radius of the 
gas bubbles. Stability of such a delicate structure is achieved 
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due to the presence of surfactants in the foam-forming liq- 
uid. Absence of this small amount of surfactants (about 1%) 
will lead to rupture of thin liquid films and a rapid bubble 
coagulation. Due to the very small amount of stabilizing sur- 
factants they have practically no effect on the properties of 
the foam-forming liquid. 

Propagation of pressure disturbances in foams can be de- 
scribed by the method developed for analyzing bubbly liquid 
flows (see, e.g., Miksis and Ting (1991), Nakoryakov et al. 
(1993)). However, it is essential to take into account the 
creeping liquid flow in the capillary network formed by the 
Plateau borders. This flow is caused by changes in the vol- 
ume of gas bubbles resulting from disturbances induced by 
the incident pressure wave. The latter process is complicated 
by other phenomena, e.g., viscous effects at the gas-liquid 
interface, inertial effects, surface tension, etc. 

It is well known that oscillatory pressure waves in bub- 
bly liquids may reach an amplitude twice as large as that of 
the original pressure impulse (see, e.g., Nakoryakov et al. 
(1993)). However, experiments showed that pressure distur- 
bances in foams always attenuate without significant change 
in the wave's pressure profile. Shock waves are formed due 
to interaction of two competing effects: nonlinearity and dis- 
sipation (and dispersion). As it will be shown later the pa- 
rameter of nonlinearity is much higher in bubbly liquids 
than in foams while the dissipation in foams is significantly 
higher than that found in a bubbly liquid. Therefore, shock 
waves in bubbly liquids can be observed in shock tubes of 

1 m length. The latter is impossible in foams since the 
length of shock wave formation in foams and the initial am- 
plitute of the incident pressure disturbance which results in 
shock wave formation, are considerably higher than in the 
bubbly liquid case. 

The purpose of the present investigation is to study the 
process of shock wave formation in gas-liquid foams and 
to explain the qualitative differences found while comparing 
results from shock tube experiments with foams with those 
obtained with bubbly liquids. 
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2 D e r i v a t i o n  o f  c o n s e r v a t i o n  e q u a t i o n s  f o r  g a s - l i q u i d  
f o a m s  

In the present investigation the cellular model of the multi- 
phase media (see, e.g., Miksis and Ting (1991)) is employed 
whereby the foam is modeled by a regular cellular structure. 
Each cell consists of a spherical gas bubble with radius R 
surrounded by a thin liquid film with outer radius R. .  The 
foam density pf  may be expressed as: 

pf  = pe(1 - / 3 )  +/3P9 (1) 

where Pe and pg are the densities of liquid and gas, respec- 
tively and/3 is the gas volume fraction in the foam. 

The incident pressure wave, which travels through the 
foam, causes deformation of each of the foam cells and 
thereby induces a creeping fluid flow in the channels be- 
tween Plateau borders. The network of these channels can 
be viewed as a kind of porous medium. The fluid filtration 
flow in this porous medium causes dissipation and damping 
of the incident pressure wave. Since the fluid slip velocity 
at the gas-liquid interface is zero, due to the presence of 
surfactants [Bikerman (1973)], in the following we assume 
that gas and liquid flows have the same velocity. We further 
assume that the entire foam structure is not damaged by the 
incident wave, i.e., there is no annihilation or formation of 
cells. Then, since Pe >> Pg and liquid phase is considered in- 
compressible, the velocity of sound in the foam ey, is given 
by the following relation [Nakoryakov el al. (1993)]: 

~} _ ~ P s  (2) 

psZ 
where 7 is the specific heats ratio in the gaseous phase and 
Pf  is pressure in the foam. In the derivation of expression 
(2) the liquid phase is considered incompressible. Consider 
a variation of expression (2) with respect to parameters P,  
p, /5. Then, after some algebra, using basic relations from 
the theory of homogeneous mixtures (see, e.g., Miksis and 
Ting), we arrive at the following relation for speed of sound 
in foams: 

( (SP 1 " , / + 1 - 2 / 3 )  
e y = c o  1+ P0 2 -~ (3) 

where subscript 0 indicates the undisturbed state. In the fol- 
lowing index f is omitted from the equations. 

The propagation of a pressure wave in foam is governed 
by the following system of mass and momentum conserva- 
tion equations written in a homogeneous mixture approxi- 
mation: 

O--t + (up) = 0 (4) 

Ou Ou 1 0 P  
- ~  + U~x - p Ox (5) 

where u is velocity. Note that conservation equations (4), 
(5) are the averaged conservation laws where the averaging 
is performed over the foam volume. In the cellular model 
of foam which is used in this investigation the averaging 
in the conservation equations is carried over a cell with a 
characteristic size much smaller than a wave length. 

In order to close the above system of conservation equa- 
tions it is necessary to determine an equation of state for 
the foam, i.e., a relation between its density and pressure 
p = p(P).  In the case of shock wave propagation in bub- 
bly liquids such closure is achieved by using the Rayleigh 
equation [see, e.g., Miksis and Ting (1991)] which describes 
single bubble dynamics in an infinite fluid. This approxima- 
tion is valid for bubbly liquids since the bubble radius is 
much smaller than the mean spacing between bubbles. In 
a foam, air bubbles occupy almost the entire volume with 
only a thin liquid layer separating the bubbles. Therefore 
the approach based upon the use of the Rayleigh equation is 
not valid. In order to derive an equation of state for foams 
we apply the cellular model of foams, whereby the foam is 
viewed as a periodic structure of spherical cells with radius 
R..  Note that the gas volume fraction in foam, in this model, 

is fl = ~ -  . Recently similar cellular model was used by 

Amon and Denson (1984, 1986) to describe dynamics of 
polymeric foam growth. 

Due to the fluid inertia and the gas compressibility, the 
gas bubble in a foam cell experiences radially symmetrical 
oscillations. These oscillations cause a creeping fluid flow 
in the network of channels between the Plateau borders. 

At the gas-liquid interface a condition of balance be- 
tween the viscous shear stresses and pressures at both sides 
of the interface yields: 

1 d R  
P~(R) = Pg - 4#  R dt (6) 

where _R(t) - radius of the gas bubble, # - the dynamic 
viscosity of the liquid, Pe and Pg - pressures in liquid and 
gaseous phases, respectively. 

The liquid pressure and liquid flow rate velocity V in 
the network of channels between the Plateau borders, are 
related by Darcy's equation [Dullien (1992)]: 

oP~ ~ y  
- -  - - -  (7 )  
Or k 

where k is the permeability of the foam. The integral mass 
balance equation reads: 

= 47rR2~--~ - ~ (8) 47rr2V 

where ~ = 1 - / 3  is a surface porosity, i.e., fraction of a unit 
cross-section of foam which is occupied by liquid. Note that 
the presence of surface porosity, o~ in the right-hand side of 
equation (8) is due to wall deformation of gas bubbles caused 
by squeezing liquid through the channels between Plateau 
borders. It is essential that Darcy's filtration flow described 
by equation (7) does not involve net flow through the foam. 
This expression describes a local flow in the vicinity of an 
oscillating bubble with zero volume average flow. Propaga- 
tion of shock waves through foams is associated with com- 
pressibility of gas bubbles. The attenuation of shock waves 
occurs due to local friction during fiRration flow through the 
Plateau borders and stretching/oscillations of liquid films. 
Note also that superficial velocity of fluid given by equa- 
tion (8) varies as r -2. It can be assumed therefore that the 
fluid velocity vanishes at the cell boundary, i.e., V ( R , )  = O. 
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The latter condition is in compliance with the condition of 
OP periodicity at the cell boundary TTIr=R. = 0 and Darcy's 

equation (7). 
Integrating equation (7) from R to R.  and using equation 

(8) yields 

dR 
- P ( R . )  + P~(R) = (1 -/3)(1 -/31/3)-~R (9) 

where P = P(/~.)  is a cell averaged pressure in a foam. 
Using the condition at the gas-liquid interface, Eq. (6), 

we find that 

[ 1 ( 1 - / 5 ) ( 1  k/31/3)Ro2] 1 d R _ p g _ p  (10) 
4# 1 + ~  R dt 

where Ro is the average equilibrium size of the gas bubble. 
It should be noted that the inertial term in Rayleigh equa- 

tion for bubbly liquids is much higher (by a factor e( ~,  
where 6 = R.  - R is the width of a liquid film) than a vis- 
cous term and causes wave dispersion and amplification of 
pressure in the oscillating wave front [Karpman (1974)]. In 
order to take into account the inertial effects during wave 
propagation in foams, the Darcy's equation (7) must be re- 
placed by the momentum conservation equation which takes 
into account pressure drop during fluid filtration: 

O(pgsU) O(pgsU 2) OPe txs2U 
- -  + - -  = - e  ( 1 1 )  

Ot Or Or k 

where U = V / e  is velocity of fluid in channels between 
the Plateau borders and e = 1 - /3 .  The nonstationary and 
inertial effects in momentum conservation equation (11) with 
Darcy's friction term can be neglected since the Reynolds 
number of the filtration flow in channels between the Plateau 
borders, Re = Peuk'/~ is very small [for details see, e.g., ,u ' 

Dullien (1992), w 
Since in the adopted model the number of bubbles per 

unit mass of foam remains constant and pg >> pg and the 
liquid phase is considered incompressible, 

1 d R  1 Op 
- ( 1 2 )  

R dt 3 p / 3 0 t  

Combining equations (10) and (12), results in the nonlocal 
equation of state for foam [see, e.g., Karpman (1974), w 
P = P(P, P), which can be written as follows: 

+ 6/~ = c26p + Ub@ (13) 
S,p 

where ub is the bulk viscosity of the foam: 

3~4# [ +41 ( I -  fl)(1 /31/3)R~] ub = 1 ~- (14) 

For further analysis it is essential to estimate the bulk viscos- 
ity, given by equation (14), for gas-liquid foams (/3 ~ 0.9) 
and for bubbly liquids (b ,-~ 0.1). For estimating the perme- 
ability of foam we use the Carman-Kozeny equation [Dullien 
(1992), p. 2431: 

k - R~ - / 3 ) 3  
720/32 (15) 

Then, from equation (14) one obtains ub(~ = 0.9)/Ub(/3 = 
0.1) "~ 103, i.e., the bulk viscosity of foam is 103 times 
greater than that of a bubbly liquid. In the following it is 
shown that this large difference which exists between the 
two bulk viscosities is the reason for the strong attenuation 
of pressure waves in foams. 

3 D e r i v a t i o n  o f  B u r g e r s  e q u a t i o n  

Based on equation (12) the equation of state for foams, in 
the form of P = P(p, f)), was derived. Using the regular 
definition for the speed of sound, i.e., 

OP 
c Z = ( - f f f i ) s , p  (16) 

the conservation equations (4), (5) can be written as follows: 

op 
0--( + (pu) = 0 (17) 

OU OU C ap I/GDP'\ 02U 
0-7 + u-~z + p2 0X k-~P ) p Ox2 

(18) 

Equations (17), (18) have a solution in the form of a 
quasi-simple wave [Karpman (1974), w 

p(x, t) = p(u) + ~b(x, t) (19) 

where 

and 

dp _ p(u) 
(20) 

du c(u) 

dP  
du c(u)p(u) . (21) 

Function g)(x, t) is the solution to the follwing linear wave 
equation: 

o~ o~ 
o~ +~o~ =o 

Substituting (20) and (21) into equations (17), (18) results, 
after some algebra, in the following equation for quasi- 
simple waves: 

Ou 
+ 11.0.,17 + = 0X 2 (22) 0-7 c ~  ~ 

Since in a simple wave A p  = cpAu  equations (2) and (3) 
yield: 

7 + 1  - 2 / 3  
c = Co + u (23) 

2/5 

where Co is the sound velocity in an undisturbed foam. 
Combining equations (14), (22) and (23) results at the 

Burgers equation which describes wave propagation in a gas- 
liquid foam: 

OU OU OU l: b 02U 
O-7 + U-Ox + (C~ + FU) Ox - 2 Ox 2 (24) 

where Ub is a bulk viscosity of the foam and r '  is a nonlin- 
earity parameter defined by the following expression: 
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/ , _ 7 + 1 - 2 / 3  
(25) 

2/3 

Burgers equation (Eq. 24) describes pressure wave propa- 
gation, with steepening profile, in foams, i.e., the formation 
of a shock wave. The shock wave velocity is given by the 
following expression [Karpman (1974), w 

F + l  7 + 1  A P  
D = c o + T u ~ c 0 +  4"/ P0 (26) 

which can be derived from the Hugoniot relations for small 
pressure difference A p .  The shock wave width is given by 
the following relation: 

5 - 27UbP~ (27) 
c A P (  7 + 1) 

where A P  is the pressure jump across the shock wave. 
Shock waves are formed due to interaction between two 

competing mechanisms: non linearity and dissipation. The 
speed of  sound c, in foams and in bubbly liquids, is deter- 
mined by the following expression [see, e.g., Nakoryakov el 
al. (1993)]: 

1 (1 - ~)py ~bpy 
(28) 

where ~b = po/3/p is the gas mass fraction. In the case when 
/3 -,~ 0.1 and/3 ~ 0.9, i.e., in bubbly liquids and foams, re- 
spectively, the sound velocities are practically equal. How- 
ever, the non linearity parameter/~,  is about 40 times higher 
in a bubbly liquid than in a foam. It is of  interest to note 
that when heat transfer is taken into account the parameter 
7 is reduced and the nonlinearity p a r a m e t e r / ' ,  for foams, 
becomes even smaller than that of  a pure gas. Therefore, un- 
der such circumstances the length required for shock waves 
formation in foams is 40 times longer than in a bubbly liq- 
uid. At the same time the bulk viscosity of a foam is about 
103 times greater than that of  a bubbly liquid. This results in 
a very wide shock wave front as can be seen from equation 
(27). 

The above analysis explains why in shock tube experi- 
ments with foams shock waves are not detected while they 
are easily observed when bubbly liquids are used under sim- 
ilar conditions. 

In contrast to a pure gas and/or bubbly liquid cases, 
strong shock waves cannot propagate in gas-liquid foams. 

Therefore, propagation of strong shock waves in foams is 
accompanied by their destruction. The latter is the reason 
why foams are widely used for attenuation of strong pressure 
waves (Krasinski [1992)]. 

4 Conclusions  

The propagation of strong pressure waves in gas-liquid 
foams is analyzed. It is shown that propagation of pres- 
sure waves and their steepening in foams are governed by 
the Burgers equation similarly to a bubbly liquid. However,  
the parameter of  nonlinearity which determines the length of 
formation of a shock wave, is significantly higher in foams 
than in a bubbly liquid. The dissipation coefficient (bulk 
viscosity) of  foams is about 103 times higher than that of  
a bubbly liquid. The latter is caused by high viscous losses 
during fluid filtration through the porous structure formed 
by the gas bubbles. The present analysis explains why shock 
waves are not formed in foams while they are observed in 
bubbly liquids under similar experimental conditions. 
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