On the Total Absolute Curvature of Closed Curves in Manifolds of Negative Curvature

Dedicated to Professor Wilhelm Klingenberg on his 50th birthday

Y6tar6 Tsukamoto

On the total absolute curvature of smooth closed curves, the following theorems are well known.

Theorem A. ([2, 3]) *The total absolute curvature of a smooth closed curve c in a Euclidean space, is greater than, or equal to 2n. It is equal to 2n if and only if c is a convex plane curve.*

Theorem B. ([4]) *Let M be a complete simply connected Riemannian manifold with non positive sectional curvature. Then the total absolute curvature of a smooth closed curve c in M, is greater than, or equal to* 2π *.* It is equal to 2π , if and only if c is the boundary of a 2-dimensional totally *geodesic submanifold isometric with a convex domain of a Euclidean plane.*

In this paper we prove the following conjecture proposed by Professor N. H. Kuiper in a lecture in april 1973 at Kyushu university.

Theorem 1. *Let M be a complete simply connected Riemannian manifold with negative sectional curvature. Then the total absolute curvature of a smooth closed curve in M is greater than 2n.*

Corollary. *The total absolute curvature of a smooth closed curve in a hyperbolic space is greater than 2 n.*

In order to prove this theorem we use the following three theorems

Theorem. (Synge, cf. [1]) *Let N be an immersed 2-dimensional submanifold of M and* σ *be a curve of N such that* σ *is a geodesic of M. Let P be the plane section of N tangent to* σ *at x, K(P) be the sectional curvature of M with respect to P and* $G(x)$ *be the Gaussian curvature of N at x. Then* $G(x) \le K(P)$ *. The equality* $G(x) = K(P)$ holds if and only if the plane *section field P is parallel along a in M.*

Theorem. (Hadamard-Cartan, cf. [1]) *Let M be a complete simply connected Riemannian manifold with non positive sectional curvature.* Then, for any point p of M , the exponential mapping \exp_p is a diffeomor*phism of* M_p *onto M, where* M_p *is the tangent space to M at p.*

Theorem. (Gauss-Bonnet) *Let M be a compact orientable 2 dimensional Riemannian manifold. Let D be a simply connected region on M bounded by a piecewise differentiable curve c consisting of m differentiabte curves. Then we have*

$$
\int\limits_c k_g ds + \sum\limits_{i=1}^m (\pi - \alpha_i) + \int\limits_D G dA = 2\pi ,
$$

where G is the Gaussian curvature of the surface M, k_a is the geodesic *curvature of c, dA is the area element of M, s is the arc-length parameter of c and* $\alpha_1, \ldots, \alpha_m$ are the inner angles at the points where c is not dif*ferentiable.*

Proof of Theorem 1. Let $c: [0, l] \rightarrow M$ be a smooth closed curve with arc-length parameter. We can assume that the subarc $c/([l-\varepsilon, \Pi(0, \varepsilon])$ is not geodesic for a small positive number ε . We set $p = c(0)$. Since \exp_p is the diffeomorphism of M_p onto M , we have a smooth closed curve \tilde{c} : $[0, l] \rightarrow M_p$ that is the lift of c by exp_p, i.e., exp_p (\tilde{c}) = c. Let $g(t)$ be the line segment from $0 = \tilde{c}(0)$ to $\tilde{c}(t)$ in M_p . Then we get the family of line segments $g(t)$, $0 \le t \le l$, which generates a surface \tilde{S} of M_p with the boundary \tilde{c} , i.e., $S: [0,1] \times [0,1] \ni (s,t) \rightarrow t\tilde{c}(s) \in M_p \cdot S$ is a piecewise immersed 2-dimensional surface in the sense of the following lemma.

Lemma. Let (x^1, \ldots, x^n) be an orthonormal coordinate system of M. *We set* $\tilde{c}(s) = (\tilde{c}^1(s), \ldots, \tilde{c}^n(s))$. Then \tilde{S} is not of maximal rank = 2 *at* (s, t) *if and only if t = O, or*

$$
\frac{\tilde{c}^1(s)}{\tilde{c}^1(s)} = \cdots = \frac{\tilde{c}^n(s)}{\tilde{c}^n(s)}
$$

hold, where $\dot{\tilde{c}}^i(s) = d\tilde{c}^i(s)/ds$. Hence the surface \tilde{S} can be decomposed into *two crescent shapes and fan shapes, as in Fia. 1, each of which is an immersed 2-dimensional submanifold except its boundary minus 2, i.e.,*

 $\tilde{S} = \tilde{S}_1 \cup \cdots \cup \tilde{S}_k \cup \cdots \cup \tilde{S}_r$, where \tilde{S}_1 is the crescent shape $O\tilde{P}_1$, \tilde{S}_k is the fan *shape* $O \tilde{P}_{k-1} \tilde{P}_k$ *and* \tilde{S}_y *is the crescent shape* $O \tilde{P}_{y-1}$ *.*

Proof of lemma. Since $x^{i}(t\tilde{c}(s)) = t\tilde{c}^{i}(s), i = 1, ..., n$, we have

$$
\frac{\partial}{\partial t} = \sum_{i=1}^{n} \frac{\partial x^{i}}{\partial t} \cdot \frac{\partial}{\partial x^{i}} = \sum_{i=1}^{n} \tilde{c}^{i}(s) \cdot \frac{\partial}{\partial x^{i}},
$$

$$
\frac{\partial}{\partial s} = \sum_{i=1}^{n} \frac{\partial x^{i}}{\partial s} \cdot \frac{\partial}{\partial x^{i}} = \sum_{i=1}^{n} t \tilde{c}^{i}(s) \cdot \frac{\partial}{\partial x^{i}}.
$$

Hence $\partial/\partial S$ and $\partial/\partial t$ are linearly independent at (s_0, t_0) if and only if $t_0 = 0$ or

$$
\frac{\dot{\tilde{c}}^1(s_0)}{\tilde{c}^1(s_0)} = \dots = \frac{\dot{\tilde{c}}^n(s_0)}{\tilde{c}^n(s_0)}
$$

hold.

For the crescent shape \tilde{S}_1 we consider a sequence of the following figures ${}^{2}P_{1}^{(n)} {}^{2}Q_{1}^{(n)} {}^{1}Q_{1}^{(n)}$, $n=1,2,...,$ in S_1 , as in Fig. 2, which we call $S_1^{(n)}$, $n = 1, 2, \ldots$, where ${}^{2}P_1^{(n)} = \tilde{c}({}^{2}l_1^{(n)})$, $0 < {}^{2}l_1^{(n)} < l_1$, $\lim {}^{2}l_1^{(n)} = l_1$, ${}^{1}Q_1^{(n)}$ is the point on \tilde{c} that is at ε_n -distance from 0, ${}^2\tilde{Q}_1^{(n)}$ is the point on the line segment $O^2P_1^{(n)}$ that is at ε_n -distance from 0, and each point of the arc $2Q_1^{(n)}$ $Q_2^{(n)}$ is at ε_n -distance from 0 on S_1 , lim $\varepsilon_n = 0$. Then the surface $\tilde{S}_1^{(n)}$, $n = 1, 2, \ldots$, is an immersed 2-dimensional submanifold of M_p . Now we set $S = \exp_p S$, $S_1 = \exp_p S_1$, $S_k = \exp_p S_k$, $S_y = \exp_p S_y$, $S_1^{(n)} = \exp_p S_1^{(n)}$, ${}^2P_1^{(n)} = \exp_p {}^2P_1^{(n)}$, ${}^1Q_1^{(n)} = \exp_p {}^1Q_1^{(n)}$ and ${}^2Q_1^{(n)} = \exp_p {}^2Q_1^{(n)}$, $n = 1, 2, \ldots$ We denote the inner angles at ${}^2P_1^{(n)}$, ${}^1Q_1^{(n)}$ and ${}^2Q_1^{(n)}$ in $S_1^{(n)}$ by $\beta_1^{(n)}$, $\beta_2^{(n)}$, and $\beta_3^{(n)}$ respectively and denote the inner angles at P and P_1 in S_1 by θ_1 and β_1 respectively. By Gauss lemma we have

$$
{}^{2}\delta_{1}^{(n)} = \frac{\pi}{2} \quad \text{and} \quad \lim_{n \to \infty} {}^{1}\delta_{1}^{(n)} = \frac{\pi}{2}.
$$
 (1,1)

Fig. 2

By the construction we have

$$
\lim_{n \to \infty} \beta_1^{(n)} = \beta_1 \tag{1,2}
$$

Since $\tilde{S}_1^{(n)}$ is an immersed 2-dimensional submanifold of M_p , $S_1^{(n)}$ is also immersed in M. So we can apply the Gauss-Bonnet formula for $S_1^{(n)}$. Then we have

$$
\frac{\int\limits_{\Omega_{\Gamma}^{(n)} 2P_{\Gamma}^{(n)}} k_g ds + \int\limits_{2Q_{\Gamma}^{(n)} 1Q_{\Gamma}^{(n)}} k_g ds + \int\limits_{S_{\Gamma}^{(n)}} G dA + (\pi - \beta_{\Gamma}^{(n)}) + \frac{\pi}{2} + (\pi - {^{1}}\delta_{\Gamma}^{(n)}) = 2\pi,
$$
\n(1,3)

where k_q is the geodesic curvature of the respective curves on $S_1^{(n)}$, G is the Gaussian curvature and dA is the area element of $S_1^{(n)}$. And we have

$$
\lim_{n \to \infty} \int\limits_{2Q^{(n)} \downarrow Q^{(n)}} k g \, ds \geq -\theta_1 \,. \tag{1,4}
$$

For the fan shape \tilde{S}^1 we consider a sequence of the following figures $1P_k^{(n)} P_k^{(n)} P_k^{(n)} Q_k^{(n)} P_k^{(n)}$, $n = 1, 2, ...,$ in S_k as in Fig. 3, which we call $S_k^{(n)}$, $n = 1, 2,...,$ where ${}^{1} \tilde{P}_{k}^{(n)} = \tilde{c}({}^{1} {l}_{k}^{(n)})$, ${}^{2} \tilde{P}_{k}^{(n)} = \tilde{c}({}^{2} {l}_{k}^{(n)})$, $l_{k-1} < {}^{1} {l}_{k}^{(n)} < {}^{2} {l}_{k}^{(n)} < l_{k}$, $\lim_{k \to \infty} I_k^{(n)} = I_{k-1}$, $\lim_{k \to \infty} I_k^{(n)} = I_k^{-1} Q_k^{(n)}$ is the point on the line segment $O^T P_k^{(n)}$ that is at ε_n -distance from O, $^2Q_k^{(n)}$ is the point on the line segment $O^2P_k^{(n)}$ that is at ε_n -distance from O and each point of the arc ${}^2\tilde{Q}_k^{(n)}$ ${}^1\tilde{Q}_k^{(n)}$ is at ε_n -distance from O on S_k , $\lim_{n \to \infty} \varepsilon_n = 0$. Then the surface $S_k^{(n)}$, $n = 1, 2, \ldots,$ is an immersed 2-dimensional submanifold of M_p . Now we set $S_k^{(n)} = \exp_p \tilde{S}_k^{(n)}$, ${}^1P_k^{(n)} = \exp_p {}^1\tilde{P}_k^{(n)}$, ${}^2P_k^{(n)} = \exp_p {}^2\tilde{P}_k^{(n)}$, ${}^1Q_k^{(n)} = \exp_p {}^1\tilde{Q}_k^{(n)}$ and ${}^2\tilde{Q}_k^{(n)} = \exp_p {}^2\tilde{Q}_k^{(n)}$, $n =$ ${}^{1}Q_{k}^{(n)}$, and ${}^{2}Q_{k}^{(n)}$ in $S_{k}^{(n)}$ by $\alpha_{k}^{(n)}$, $\beta_{k}^{(n)}$, ${}^{1}\delta_{k}^{(n)}$ and ${}^{2}\delta_{k}^{(n)}$ respectively and denote the inner angles at P, P_{k-1} and P_k in S_k by θ_k , α_k and β_k respectively. By Gauss lemma we have

$$
{}^{1}\delta_{k}^{(n)} = {}^{2}\delta_{k}^{(n)} = \frac{\pi}{2}.
$$
 (k,1)

By the construction we have

$$
\lim_{n \to \infty} \alpha_k^{(n)} = \alpha_k, \lim_{n \to \infty} \beta_k^{(n)} = \beta_k \text{ and } \alpha_k + \beta_{k-1} = 0.
$$
 (k,2)

Since $S_k^{\{n\}}$ is an immersed 2-dimensional submanifold of M_n , $S_k^{\{n\}}$ is also immersed in M. So we can apply the Gauss-Bonnet formula for $S_k^{(n)}$. Then we have

$$
\frac{\int\limits_{\Omega_{k}^{(n)}} k_g ds + \int\limits_{\Omega_{k}^{(n)}} k_g ds}{\int\limits_{S_{k}^{(n)}} G \cdot dA + (\pi - \alpha_k^{(n)}) + (\pi - \beta_k^{(n)}) + \frac{\pi}{2} + \frac{\pi}{2}} = 2\pi.
$$
 (k,3)

And we have

$$
\lim_{n \to \infty} \int\limits_{2Q_{k}^{(n)} \downarrow Q_{k}^{(n)}} k_g \, ds \geq -\theta_k. \tag{k,4}
$$

For the crescent shape S_y we consider a sequence of the similar figures ${}^{1}P_{y}^{(n)} {}^{2}Q_{y}^{(n)} {}^{1}Q_{y}^{(n)}$, $n = 1, 2, ...$ in S_y as in S₁ⁿ, as in Fig. 4, which we call $S_{\nu}^{(n)}$, $n = 1, 2, \ldots$. Then the surface $S_{\nu}^{(n)}$, $n = 1, 2, \ldots$, is an immersed 2-dimensional submanifold of M_p . Now we set $S^{(n)}_y=\exp_p S^{(n)}_y, ^1P^{(n)}_y$ $\lambda = \exp_n^{-1} \tilde{P}_{\nu}^{(n)}$, ${}^{1}Q_{\nu}^{(n)} = \exp_n {}^{1} \tilde{Q}_{\nu}^{(n)}$ and ${}^{2}Q_{\nu}^{(n)} = \exp_n {}^{2} \tilde{Q}_{\nu}^{(n)}$, $n=1,2,...$ We denote the inner angles at ${}^{1}P_{y}^{(n)}$, ${}^{1}Q_{y}^{(n)}$ and ${}^{2}Q_{y}^{(n)}$ by $\alpha_{y}^{(n)}$, ${}^{1}\delta_{y}^{(n)}$ and ${}^{2}\delta_{y}^{(n)}$ respectively and denote the inner angles at P and P_{y-1} in S_y by θ_y and α_y respectively. By Gaussian lemma we have

$$
{}^{1}\delta_{\gamma}^{(n)}=\frac{\pi}{2}\quad\text{and}\quad\lim_{n\to\infty}{}^{2}\delta_{\gamma}^{(n)}=\frac{\pi}{2}\,.
$$

By the construction we have

$$
\lim_{n\to\infty}\alpha_\gamma^{(n)}=\alpha_\gamma\,.
$$
\n(\gamma,2)

Fig. 4

Since $S_{\nu}^{(n)}$ is an immersed 2-dimensional submanifold of M_{p} , $S_{\nu}^{(n)}$ is also immersed in M. So we can apply the Gauss-Bonnet formula for $S_{\nu}^{(n)}$. Then we have

$$
\frac{\int_{1 \text{ P}_y^{(n)} 2Q_y^{(n)}} k_g ds + \int_{2 \text{ Q}_y^{(n)} 1Q_y^{(n)}} k_g ds}{\int_{S_y^{(n)}} G \cdot dA + (\pi - \alpha_y^{(n)}) + \frac{\pi}{2} + (\pi - 2 \delta_y^{(n)}) = 2\pi}.
$$
\n
$$
(\gamma, 3)
$$

And we have

$$
\lim_{n \to \infty} \frac{\int_{2Q_{\gamma}^{(n)}} k_g ds \geq -\theta_{\gamma}, \qquad (\gamma, 4)
$$

and

$$
\theta_1 + \sum_k \theta_k + \theta_\gamma \geq 2\pi \,. \tag{0}
$$

By Synge's lemma $S_1^{(n)}$, $S_k^{(n)}$, and $S_\gamma^{(n)}$ have strictly negative Gaussian curvature everywhere. Let ∇ be the covariant differentiation of M and ∇' be the respective covariant differentiation with respect to the induced metric on $S_1^{(n)}$, $S_k^{(n)}$, and $S_\gamma^{(n)}$ for the sake of simplicity. Let X be the tangent vector of c, i.e., $X = c_*\left(\frac{d}{ds}\right)$ and we set $D = \frac{d}{ds}$.

The absolute curvature ρ of c and the absolute geodesic curvature ϱ_q of c on S_1^n , S_k^n , and S_n^n , can be expressed as follows:

$$
\varrho = |V_D X| \quad \text{and} \quad \varrho_g = |k_g| = |V_D^1 X| \,,
$$

where $|X|$ is the length of X. On the other hand we have $V'_bX = (V_bX)^T$, where $(V_D X)^T$ is the tangential component of $V_D X$. So we have

 $\varrho(s) \ge \varrho_a(s) \quad s \in [0, 1].$

By (1,1) ~ (1,4), (k,1) ~ (k,4), (y,1) ~ (y,4) and (
$$
\theta
$$
) we have
\n
$$
\int_{0}^{1} \varrho ds \ge \int_{0}^{1} \varrho_{g} ds \ge \int_{0}^{1} k_{g} ds
$$
\n
$$
= \lim_{n \to \infty} \int_{\Omega_{1}^{(n)} 2P_{1}^{(n)}} k_{g} ds + \sum_{k} \lim_{n \to \infty} \int_{\Omega_{k}^{(n)} 2P_{k}^{(n)}} k_{g} ds + \lim_{n \to \infty} \int_{\Omega_{k}^{(n)} 2Q_{k}^{(n)}} k_{g} ds
$$
\n
$$
= \left(\theta_{1} + \sum_{k} \theta_{k} + \theta_{\gamma}\right) - \lim_{n \to \infty} \left(\int_{S_{1}^{(n)}} G \cdot dA + \sum_{k} \int_{S_{k}^{(n)}} G \cdot dA + \int_{S_{\gamma}^{(n)}} G \cdot dA\right)
$$
\n
$$
> 2\pi.
$$
 Q.E.D.

We can get a generalization of Theorem 1.

Theorem 2. *Let M be a complete Riemannian manifold with negative sectional curvature. Then the total absolute curvature of a smooth closed curve contractible to a point is greater than* 2π .

In fact, if we consider the Riemannian universal covering manifold \tilde{M} of M and lift the closed curve contractible to a point in M into \tilde{M} by the covering mapping, then Theorem 2 follows immediately from Theorem 1.

Remark. We can get an alternative proof of Theorems A and B by analogous arguments.

Note added in proof. Recently F. Brickell and C. C. Hsiung proved the similar theorem by a different method.

Acknowledoement. The author should like to thank Professor N. H. Kuiper for his kind guidance.

References

- 1. Bishop, R. L, Crittenden, R.J. : Geometry of manifolds, New York: Academic Press, 1964
- 2. Borsuk, K.: Sur la courbure total des courbes fermées. Ann. Soc. Polon. Math. 20, 25t--265 (1947)
- 3. Fenchel, W.: Über Krümmung und Windung geschlossener Raumkurven. Math. Ann. 101, 238~252 (1929)
- 4. Szenthe, J.: On the total curvature of closed curves in Riemannian manifolds, Publ. Math. Debrechen. 15, 99-105 (1968)

Dr. Y. Tsukamoto Department of Applied Science Faculty of Engineering Kyushu University Fukuoka 812, Japan

(Received January 10, 1974)