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On the total absolute curvature of smooth closed curves, the following 
theorems are well known. 

Theorem A. ([2, 3]) The total absolute curvature of a smooth closed 
curve c in a Euclidean space, is greater than, or equal to 2n. It  is equal 
to 2n if and only if c is a convex plane curve. 

Theorem B. ([4]) Let M be a complete simply connected Riemannian 
manifold with non positive sectional curvature. Then the total absolute 
curvature of a smooth closed curve c in M, is greater than, or equal to 2n. 
It  is equal to 2re, if and only if c is the boundary of a 2-dimensional totally 
geodesic submanifold isometric with a convex domain of a Euclidean plane. 

In this paper we prove the following conjecture proposed by Professor 
N. H. Kuiper in a lecture in april 1973 at Kyushu university. 

Theorem 1. Let M be a complete simply connected Riemannian 
manifold with negative sectional curvature. Then the total absolute curvature 
of a smooth closed curve in M is greater than 2n. 

Corollary. The total absolute curvature of a smooth closed curve in a 
hyperbolic space is greater than 2 n. 

In order to prove this theorem we use the following three theorems 

Theorem. (Synge, cf. [1]) Let N be an immersed 2-dimensional sub- 
manifold of M and a be a curve of N such that a is a geodesic of M. Let P 
be the plane section of N tangent to a at x, K(P) be the sectional curvature 
of  M with respect to P and G(x) be the Gaussian curvature of N at x. 
Then G(x) ~= K(P). The equality G(x)= K(P) holds if and only if the plane 
section field P is parallel along a in M. 

Theorem. (Hadamard-Cartan, cf. [1]) Let M be a complete simply 
connected Riemannian manifold with non positive sectional curvature. 
Then, for any point p of M, the exponential mapping expp is a diffeomor- 
phism of Mp onto M, where Mp is the tangent space to M at p. 
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Theorem. (Gauss-Bonnet) Let M be a compact orientable 2- 
dimensional Riemannian manifold. Let D be a simply connected region 
on M bounded by a piecewise differentiable curve c consisting of m dif- 
ferentiabte curves. Then we have 

ikgds+ ~ (rc-oq)+ f GdA=2=, 
c i = 1  D 

where G is the Gaussian curvature of the surface M, kg is the geodesic 
curvature of c, dA is the area element of M, s is the arc-length parameter 
of c and ~t 1 ..... ct,, are the inner angles at the points where c is not dif- 
ferentiable. 

Proof of Theorem 1. Let c : [0 ,  l]--,M be a smooth closed curve with 
arc-length parameter. We can assume that the subarc cj ([ t -  e,/] [0, ~]) 
is not geodesic for a small positive number e. We set p = c(0). Since 
expp is the diffeomorphism of Mp onto M, we have a smooth closed curve 
2: [0, l]+Mp that is the lift of c by expp, i.e., expp (~)= c. Let g(t) be the 
line segment from 0 = 2(0) to ~(t) in Mp. Then we get  the family of line 
segments g(t), 0 <  t < l, which generates a surface S of Mp with the 
boundary & i.e., S ' [ O , l ] x  [O, 1]~(s,t)--+t~(s)~Mp.S is a piecewise 
immersed 2-dimensional surface in the sense of the following lemma. 

Lemma. Let (x 1 ..... x") be an orthonormat coordinate system of M. 
We set ~(s)= (~l(s) ..... Y'(s)). Then S is not of maximal rank = 2 at (s, t) 
if  and only if t = O, or 

~l(s) ~"(s) 
~(s) e"(s) 

hold, where •(s)= dei(s)/ds. Hence the surface S can be decomposed into 
two crescent shapes and fan shapes, as in Fi#. t, each of which is an im- 
mersed 2-dimensional submanifold except its boundary minus 2, i.e., 

= '~(Lk_ I ) 

o 
Fig. 1 
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= S r w " "  ~'SkW"" wSr, where S~ is the crescent shape OP l, Sk is the fan 
shape 0 Pk- , l~k and S,, is the crescent shape 0 ~,_ ~. 

Proof of  lemma. Since xi(t?(s)) = tgi(s), i = 1 ... . .  n, we have 

dt 0t dx ~ dx ~ ' i = 1  i = 1  

~ - i ~x* ~ _ ~ t d ( s )  ~ 
~s ~s Ox ~ Ox ~ " i = 1  / = 1  

Hence t?/OS and t?/t?t are linearly independent at (s o, to) if and only if 
t o = 0 o r  

 l(So) 
~1 (So) Y(So) 

hold. 
For  the crescent shape $1 we consider a sequence of the following 

fi . . . . . .  2 b(,,) 2r~(,,) It3(,,) . . . . .  ~ ~1 ~ 1 ,  n = l , 2  .... , in ~1, as in Fig. 2, which we call 
S(~"', n = 1, 2 ..... where 2 ~ . ) =  ~(2/(,,), 0 < 2/(.) < ll, l i ra  21(~")= 11, ~(~(~") is 

the point on ~ that is at e.-distance from 0, 2(~(.) is the point on the line 
segment 0 2 ~  ") that is at e.-distance from 0, and each point of the arc 
2(~(.) ~(~(.)is at e.-distance from 0 on S~, l i m e .  = 0. Then the surface 

S~"),n= 1, 2 ..... is an immersed 2-dimensional submanifold of  M~. 
N o w  we set S = e x p p S ,  S l = e x p  vS1, S k = e x p  vSk, Sr=expp. S,, 
S(I.) . . . .  ~(n) 2p~n)_ex . .  2~,n) x n { . ) _ e x . .  I n c . ) a n d  2 n ( " ) - e x , ' .  2~1.~ 

" ~ F p  1 , 1 - -  F p  1 , Y-.-1 - -  F p  ~ 1  Y-el - -  l ~p  ~-,1 , 

n = 1, 2 .....  We denote the inner angles at 2~.), IQ~) and 2Q~.) in S~ "> 
by fl~), ]6~ "1, and 26~") respectively and denote the inner angles at P and 
P~ in S~ by 01 and fl~ respectively. By Gauss lemma we have 

rc 16~. ~ rc 
26~")= ~-  and .-,®lim = --'2 (1,1) 

Fig. 2 
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By the construction we have 

lira fl(~") = fl , .  (1,2) 

Since S(1 ~) is an immersed 2-dimensional submanifold of Mp, S(1 ") is also 
immersed in M. So we can apply the Gauss-Bonnet formula for S(~ "). 
Then we have 

j kgds+ f kads+ ~ GdA 

~e(7 , (1,3) 
" ~ a ~ . ) ) _  , 

+ ( " -  ~?))+ 5- + ( " -  - 2 .  

where kg is the geodesic curvature of the respective curves on S~ "), G 
is the Gaussian curvature and dA is the area element of S~ "). And we have 

lira f kg ds > - 01. (1,4) 

For the fan shape ~1 we consider a sequence of the following figures 
1~,) 2~.)2~,)1(~.) ,  n =  1, 2 ..... in Sk, as in Fig. 3, which we call S~'), 

1 ~  n) ~ 1 (n) 2 ~ n )  ~ 2 (n) 1 (n) 2 (n) n = 1 , 2  ..... where ~ =C( lk ) ,  ~ =C(IR) ,  lk- t < Ik < lk < lk, 
limlt ") = I _1, lira Z l~k"' = lk, 1Q~k')is the point on the line segment O 1 ~") 

that is at e:distance from O, :(~tk') is the point on the line segment O 2~,) 
• 2 ~(n)  1 ~(n)  that is at e,-distance from O and each point of the arc Qk QR is at 

e:distance from O on Sk, lira ~. = 0. Then the surface S~k "), n = 1, 2 .... , 

is an immersed 2-dimensional submanifold of M_. Now we set 
q,(n) . . . .  ~(n)  I D ( n )  . . . .  l i ~ n )  2 D ( n )  . . . .  2 ~ ( n )  1/-}(n~" . . . .  1/'~(n) ~r~cl  
~ k  - - ~ " ~ l J p ~ k  , ~ k  - - ~ A I ~  v l k  ~ • k  - - ~ A I F D  ~ k  ' ~ k  - - ~ A I J a  -~k  ~ ' ~  

2Q(k") = exp. 2Q(k'), n = i, 2,:... We denote the inner angles at t~"), 2~,), 
1 (n) ~i' (n) (n) (n) n) 1 (n) 2 (n) Qk, and Qk in Sk by a k , / ~ ,  5k and 5k respectively and denote 
the inner angles at P, Pk-~ and Pk in SR by Ok, ak and //k respectively. 
By Gauss lemma we have 

:-~-, (k,1) 

Fig. 3 
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By the construct ion we have 

lim a~ ") -- ak, lim fl~") = flk and ak + ilk- 1 = 0 .  (k,2) 
? l ~ o o  R--* oo 

Since S(k ") is an immersed 2-dimensional submanifold of  M r S~k ") is also 
immersed in M. So we can apply the Gauss-Bonnet  formula for S~ "). Then 
we have 

~ k~ds+ [. gods 
l p l n )  2/~(,~1 2Q(n).  l ( ) ( n )  

~c ~ k  k ~ k  

And we have 

+ (k,3) 7~ 7[ 
5 G'dA+(7:-~i~))+(~-~i"))+ 5- + T = 2 ' '  

l i l n  I kg ds > - Ok, (k,4) 
2 0 ( - )  ~O(~)  

~ k  ~ k  

For  the crescent shape S~ we consider a sequence of the similar 
fi . . . . . .  1~.) 2r3t,) lr3(,) , _ 1,2 .... in S~ as in S]"), as in Fig. 4, which we 
call S~ "), n = 1, 2 . . . . .  Then the surface S~?), n = 1,2,. . . ,  is an immersed 
2-dimensional submanifold of Mp. Now we set S(?)=expp S~"), 1~,) 

l - n )  1 (n) l~ (n )  2 (n) 2 - (n~  =expp  ~ , Qv =expp  Q~ and Q7 =expp  Q~,  n = l , 2  . . . . .  We 
• 1 el) 1 (n)  2 (") b (n) 15(.) ~v denote the inner angles at ~ , Qv and Q7 y ~t~ , ~ and 2A(") 

respectively and denote the inner angles at P and PT_ ~ in Sv by 0~ and ev 
respectively. By Gaussian lemma we have 

1 t~(n)  - ~ 2 r ] ( n )  _ _  _~ ~-  and .-~lim _~ - ~ - .  (7,1) 

By the construct ion we have 

lira a~ ") = a~. 
n ~ o o  

(~,2) 

/AkPT- ! 

2Q(~ 

Fig. 4 
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Since S~) is an immersed 2-dimensional submanifold of Mp, S~ ") is also 
immersed in M. So we can apply the Gauss-Bonnet formula for S~ "). 
Then we have 

k a ds + ~ k. ds 

And we have 

and 

+ 
7[ 

G. dA + Oz - ~))  + T + (~ - 2:5(")~ = 2~ 

(~,3) 

lijn ~ k~ ds >= - 0,, (7,4) 
20(~) lO(n) 

01 + ~, O k + O~ > 2z~. (0) 
k 

By Synge's lemma S~ "), S~ "), and S~ ") have strictly negative Gaussian 
curvature everywhere. Let V be the covariant differentiation of M and 17' 
be the respective covariant differentiation with respect to the induced 
metric on ~'le("),Oke("), and S~ ") for the sake of simplicity. Let X be the tangent 
vector of c, i.e., X = c,(d/ds) and we set D = d/ds. 

The absolute curvature Q of c and the absolute geodesic curvature 
0g of c on S], S~, arid S~, can be expressed as follows: 

e=IFDXI and eo=ikol=i17~Xi, 

where IXI is the length of X. On the other hand we have V~X--(VoX) T, 
where (VoX) T is the tangential component of 17aX. So we have 

O(s) _----- Oo(s) s • [0, 1-]. 

By (1,1) ~, (1,4), (k,1) --, (k,4), (7,1) ~,, (7,4) and (0) we have 

l l 1 

I0as>= I 0ads>___ Ik, 
0 0 0 

= tim I kods + ~ lim I kods + lim I k, ds 

= ( 0 , + ~ 0 , + 0 , ) - l i m ( ~  G . d A +  X !~ G . d A +  I G.dA) 

> 2 lr. Q.E.D. 

We can get a generalization of Theorem 1. 

Theorem 2. Let M be a complete Riemannian manifold with negative 
sectional curvature. Then the total absolute curvature of a smooth closed 
curve contractible to a point is greater than 21L 
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In fact, if we consider the Riemannian universal covering manifold 
of M and lift the closed curve contractible to a point in M into 2~/by the 

covering mapping, then Theorem 2 follows immediately from Theorem 1. 
Remark. We can get an alternative proof of Theorems A and B by 

analogous arguments. 

Note added in proof. Recently F. Brickell and C~ C. Hsiung proved the similar 
theorem by a different method. 
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