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Summary. Recently, a number of closely related techniques for error esti- 
mation and iterative improvement in discretization algorithms have been 
proposed. In this article, we expose the common structural principle of all 
these techniques and exhibit the principal modes of its implementation in a 
discretization context. 
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1. Introduction 

During the past years, there have been numerous attempts to estimate the error 
of discretization methods or, equivalently, to improve the accuracy of their 
results. Two approaches have proved to be widely applicable: Richardson 
Extrapolation and Deferred Correction. Both can be used in an iterative 
fashion; the most notable difference between the two is the fact that Deferred 
Correction proceeds on the original grid of the discretization while Richardson 
Extrapolation needs repeated grid refinement and yet produces answers on the 
original grid only. 

Recently a further technique of iterative improvement has been suggested. 
Presumably it has been used informally on various occasions; its conscious use 
-wi thou t  iteration and for error estimations on ly -was  promoted by Za- 
dunaisky in [1-3] and at the 1973 Dundee conference; following this meeting 
Stetter [4] formalized the procedure and conceived its iterative application. 
Detailed analyses of particular applications were then made by Frank [6, 7], 
Frank and Ueberhuber [8, 9, 11] and Frank, Hertling and Ueberhuber [10, 12]. 
Lindberg [16], in generalizing the Deferred Correction approach, independently 
arrived at one version of the general technique. While Stetter had suggested to 
call the technique Differential Correction, Frank and Ueberhuber introduced 
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the term Defect Correction. In Section 5 of this paper we shall see that the 
wellknown Iterated Deferred Correction (or Difference Correction) technique of 
Fox (e.g. [13]) and Pereyra (e.g. [14, 15]) can be interpreted as a special case of 
the general principle of Iterative Updating Defect Correction. 

In order to see the general principle and its ramifications more clearly, we 
shall study it at first without reference to discretizations or to differential 
equations. Actually, Iterative Defect Correction may be a very powerful tech- 
nique in other areas of Mathematics as well. The Examples in the following are 
only of a demonstrative nature. Realistic implementations of Defect Correction 
have been discussed in many of the quoted references and numerical results have 
also been presented there. 

2. The Basic Principle 

Consider two normed linear spaces E and E ~ and a continuous (generally non- 
linear) mapping F: E- - ,E  ~ Let F be bijective between a domain X c E  and a 
domain Y c E  ~ with 0~ Y, and assume that in all our operations we shall never 
leave these domains (in an application this has to be checked). Our aim is to find 
a good approximation to the unique solution x * s X  of 

F x = O  (2.1) 

with the aid of an approximate inverse G: Y ~ X ;  C, is also assumed to be 
bijective and continuous. (~ may be considered as the solution operator of an 
approximation 

F x = 0  (2.2) 

of (2.1). 
To obtain an estimate for the error of Xo:=G0, we form the defect do: = F x o  

and compute ffo:=Gdo (see Fig. 1). Thus Y0 is the approximate solution of the 
equation F x  = d o which is a "neighboring problem" of (2.1) whose exact solution 
x o is known. If we assume that the error generated by our approximate solution 
operator G is nearly the same for the two problems we obtain 

x o - x *  ~X o - x  o. (2.3) 

This idea may either be used to estimate X o - X *  by (2.3), or to obtain an 
improved approximation (see Fig. 1) 

xl". =Xo-(~o-Xo). 

But then the process may be repeated (i=0,  1, 2 . . . .  ): 

~i'.= G F x  i = Gd,, (2.4) 

xi + 1" = xi - (xi - Xo) = (I - GF) x~ + x o ; (2.5) 

this is the principle of Iterative Defect Correction (IDeC), version A. 
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Fig. 1. Defect correction, version A 

xl ,'J~/ ./."~, dl 

xo.Wr/~ F .!do 
Fig. 2. Defect correction, version B 

x* of (2.1) is a fixed point of (2.5) (remember that Xo,=G0); therefore (2.5) 
will converge to x* if I - G F  is a contraction in X, and the rate of convergence 
will depend on the (local) Lipschitz constant. Obviously, P must reflect the local 
behavior of F sufficiently well. 

The defect d o = F x  o may also be used in another way: We may attempt to 
obtain a better approximation to the unique element l* e Y which satisfies 

l* = x*. (2.6) 

By virtue of the "neighbouring problem" idea (see Fig. 2) l~:= - d  o = l o -  d o is a 
better approximation to l* than the initial value lo=0. Thus x~:=Gl  1 permits 
the estimate X o - X  1 for Xo-X*; also the process may be continued iteratively 
(i=0, 1, 2 . . . .  ): 

li+ 1 : = l i - d i = l i - F x i ,  (2.7) 

xl + 1: = G ti + i- (2.8) 

This is version B of the IDeC principle (cf. Fig. 2); it was already suggested in 
Stetter [4]. 

When we substitute (2.8) into (2.7) we obtain 

li+ 1: = ( I -  FG) li (2.9) 

which establishes version B as a dual of version A (cf. (2.5)); if we had started 
from F x = l o ,  lo:~O , we would have had to add l o in (2.7) and (2.9) and the 
duality would have been complete. 

Version B may also be written as an iteration in X; (2.8) and (2.7) imply 

x, + 1: = G(/, -d i )  = d (F  - F) x i ; (2.10) 

this may be confronted with version A in the form (cf. (2.5)) 

x i+ 1: = x i -  (GFx  i -  GO) = ( d F -  GF) x i + dO. (2.11) 

From (2.10) and (2.11) it is obvious that the two versions are equivalent if d 

is an affine mapping 

0 y  = G 0 +  Goy," d ~ s  [Y, X];  (2.12) 
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F need not be linear for this equivalence. With a non-linear G, on the other 
hand, the sequences {xl} obtained from versions A and B will generally differ. 

If G is Frechet-differentiable, one may wish to "linearize'' it, i.e. replace it by 
(2.12), with G~." = G'(0). This causes the two versions to coincide. 

Examples. 1) Iterative Improvement in Linear Algebraic Equations: X = Y= ~" ;  
F y = A x - b ;  CJy is the result of applying the numerically obtained triangular 
decomposition of A to the righthand side b + y. 

2) Simplified Newton method (in Banach spaces): Let F: X ~ Y be Frechet- 
differentiable and take Fx:=Fz+F'(z)(x-z),  z~X fixed, so that Gy:=z-  
F' (z)- 1 (F z - y). Then (2.10) and (2.11) become x i + 1: = xi - F' (z)- 1 F x i . 

3) Defect correction does not depend on local linearization: Consider the 
non-linear boundary value problem 

a) x"(t)-eX(~ on ( - 1 ,  +1), (2.13) 

b) x ( -  1 ) = x ( +  1)=0,  

to define F: Cr - -  1, + 1-1--. CI - -1 ,  + 1] x ~2.  To obtain an approximate prob- 
lem, take an approximation for e x in the interval - 0 . 4  < x_< 0 (where x*(t) wilt 
lie), say eX~0.99+0.81x, and define (2.2) by 

a) x"(t)-O.81x(t)-0.99=O on ( - 1 ,  +1), 
(2.14) 

b) x ( - 1 ) = x ( + l ) = 0 ;  

(2.14) is not a local linearization of (2.13). Since the Green's function of the 
differential operator in (2.14) is known, the integral representation of G can be 
used to compute the x~, i=0,  1,2 .. . .  at least numerically. The sequence con- 
verges quickly to the solution x* of (2.13). 

Note that the linearity of (2.14) is not required by the method but it is 
convenient for the evaluation of G. 

3. Approximate Solution in a Subspaee 

As a step towards studying IDeC in a discretization setting, we now assume that 
is not one-to-one between Y and X but maps Y into a proper subspace of E 

whose intersection with X we call ~, and that x*6~. The image of ~ under F we 
denote by H (Fig. 3). H is not a linear manifold in Y if F is nonlinear. (To 
visualize this situation assume that E and E ~ are spaces of continuous functions 
but that G always produces a polynomial of degree < N.) The restriction of G to 
H is assumed to be bijective from H to ~; the restriction of F to ~ is naturally 
bijective from ~ to H. 

Figure 3 shows that version A of IDeC may be carried out as previously 
since ~ is a domain in a linear space. With ~o=G0 (greek letters denote 
elements in ~), (2.5) becomes 

{i+ 1: = ( I -  GF) ~i + 4o ; (3.1) 
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Fig. 3. Defect correction in a subspace 
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convergence now depends on the Lipschitz constant of the restriction of the 
mapping I - G F  to ~ which we assume to be < 1. 

The unique fixed point ~ ' 6 ~  of (3.1) is no longer characterized by (2.1). 
Instead ~* satisfies 

GF~=~o=dO=6Fx* , (3.2) 

i.e. the defect d* of r and 0 are mapped into the same element ~oe~ by G. The 
distance between 4" and x* depends only on the relations between F and G (or 
F) but not on the way in which r is computed (e.g. by IDeC). 

Thus, if IDeC is applied in the situation of Figure 3 two independent types 
of errors arise: 

a) the truncation error 41-4" of the iteration (3.1), 
b) the approximation error ~*-x*  characterized by (3.2). 

The error 4~-x* of the iterates will generally decrease only as long as 
I1~-~*11 >> 114"-x*ll. 

Version B of IDeC can no longer be formulated in a general situation of this 
type (cf. Fig. 3): The unique element l*eH which satisfies d l*=~* (cf. (2.6)) 
cannot be reached by linear combinations of elements in H. 

However, it is often possible to decompose the mapping G into a projection 
A ~ of Y into a linear subspace of E ~ and a mapping/~ which is bijective from an 
appropriate domain H ~ in this subspace to S: 

~ry=P A~ (3.3) 

In this case, we may form hi: = - A ~  4oO-t ~ in place of 11 and continue (cf. (2.7) 
-(2.10)) 

2i+ i: = 2 i - A ~  ~i=(I-A~ 2i (3.4) 

o r  

~i + a" = / ~  21 + 1 = / ~ ( ~  - A OF) ~i, (3.5) 
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where ~: E ~ H ~ is the inverse of F. (3.4)/(3.5) is the appropriate form of version 
B of IDeC in this case. 

The situation (3.3) arises whenever G is of the form (2.12), or when its image 
is finite-dimensional. 

Example. Consider again the BVP (2.13) and define an approximate problem 
(2.2) by (H m is the space of m-th degree polynomials): 

a) ~"(t)-0.81 ~( t ) -0 .99=0 on {-�89 0, 1 3}, 
b) ~ ( -  1 )=4(+  1)=0, (3.6) 

c) ~e//4, 

so that G maps Y into the finite-dimensional subspace 114 c E while F(//4) is not 
a subspace of E ~ The iteration (3.1) converges to the polynomial 4*E//4 which 
satisfies 

a) 4*"(t)-e~*(')=0 on {-�89189 
(3.7) 

b) 4 " ( -  1)=r  1)=0, 

1 1 i.e. 4" is the "collocation solution" of (2.13) on {-y,0,~}.  
Here, the projection A ~ in the decomposition (3.3) is to the IR 5 which may be 

considered a subspace of E ~ by interpreting the first 3 components as values at 
_!2,0, +�89 resp. of some three parameter linear set of functions from E ~ /~ 
computes the 5 coefficients of P t/e//4 from the linear system (3.6), with t/elR 5 on 
the right hand side. (Due to symmetry and (3.6b)this is effectively only a 2 x 2 
system.) Thus version B is possible in the form (3.5) and equivalent to (3.1). 

The "approximation error" in this example is the difference between the true 
solution x* of (2.13) and the collocation solution 4" which is independent of the 
way in which 4" is found and which limits the useful accuracy in the com- 
putation of 4*- 

4. Approximation by Discretization 

In a discretization, an infinite-dimensional original problem (2.1) is replaced by 
a sequence of approximate problems (NMN) 

~N 4 =0 (4.1) 

where ~u is a continuous mapping from E N into E ~ both of which are N- 
dimensional linear spaces. Furthermore, there are sequences of mappings A s and 
A ~ which project elements from E and E ~ into E N and E ~ resp. (see, e.g., the 
introductory sections of Stetter [5]). Concepts like consistency and convergence 
refer to limits as N ~  ~ .  In standard applications, E u and E ~ are spaces of 
functions on a grid ~ s ;  the grids ~ s  become arbitrarily fine as N ~  ~ .  

In the context of IDeC, we choose a particular value of N (i.e. a particular 
grid) and keep it fixed during the iterative improvement. Thus there is only one 
space E N and E ~ each and (4.1) is a fixed approximate problem, with a 
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continuous solution operator /~N (by assumption). We restrict ourselves to 
domains X N c E N and YN C E~ between which ~N and FN are bijective. 

In order to apply the defect correction approach in X N and YN, we must be 
able to associate with each ~eX  N a defect w.r.t. (2.1) which is an element of YN, 
For this purpose we may proceed thus (see Fig. 4): 

Fig. 4. Defect correction and discretization 

A ~ 

u 

Define a continuous mapping V which maps XN into a linear subset ff of X 
and a continuous mapping A~ Y~YN, with A~ Then define the defect 6 of 
an element ~EX N by 

,5:= A~ F V ~ =:4) ~ r (4.2) 

(In a standard application, V could generate a polynomial V~eX interpolating 
the values of ~ at the gridpoints; the defect d = F V ~ e Y  can then be formed and 
projected into a function on the grid.) 

For the purpose of IDeC, the only essential feature is that we have a 
continuous, bijective mapping ~N: X~--, YN (possibly after some restriction of 
X N or Y~) which defines defects. Then we may proceed completely within the 
finite-dimensional setting of X N and YN- In fact, if we propose that we are 
looking for the unique ~*eX N which solves 

ON r = 0 e E ~  (4.3) 

we have returned to the general situation of Section 2, with the original problem 
(4.3) in place of (2.1), and/~N in place of G. Thus both versions of IDeC may be 
used: Version A is 

~i+ 1: = ~ i - - ( ~  --  ~0) '  (4.4) 

with 

~,: = ~ 6 i = ~ 4~ N ~,, (4.5) 
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starting from ~o: = ~ 0 ,  while Version B becomes (cf. also (2.10)) 

2i + 1: = 2i - -  6i  = 2i - -  ON ~i = [ ~ N  - -  ON]  ~ i '  (4.6) 

(4.7) 

starting from 2o=0, ~0=fN 0. (The operation q3N--O N required for the updating 
of 21 may often be simpler than either SN or ON; see Example and Section 6.) 

Convergence to the solution r of (4.3) or the solution 2* of 

~ 2 = ~ *  (4.8) 

depends on the contractive power of ( I -  ~ ON): XN ~ XN or ( I -  ON/~N): Y~ ~ YN 
resp. Again, if ~ is linear both versions coincide. 

One important distinction between versions A and B may remain in the 
discretization context: Consider a discretization of Fx =d, de Y,, which requires 
values of the function d between gridpoints (the classical Runge-Kutta method, 
e.g.). Here, the mapping A ~ can no longer be explicitly evaluated nor can ON be 
defined by (4.2). 

In version A of the IDeC algorithm we may simply bypass the domain YN 
and define ~ by a mapping/~ from Y to X N directly: 

8:=~d,=~rv~, .  (4.9) 

Version B, however, which constructs 2~ in YN needs an evaluation of A ~ or of 

�9 N �9 
We have yet to consider the relation between the limit ~* of our IDeC and 

the true solution x* of the original problem (2.1). Generally, Ax*= ~* will not be 
true (at least not for a simple-minded projection A: X ~ XN). To understand the 
relation between r and Ax*, we interpret (4.3)-which has been our repre- 
sentation of the original problem (2.1) in the finite-dimensional context-as 
another, more sophisticated discretization of (2.1). Then ~*-Ax* is the (global) 
discretization error of this new discretization for our particular value of N. Note 
that r is determined exclusively by the relation between O N and F: 

~* - A x* = (O~ 1 A ~  A) x* ,  (4.10) 

without any reference to the IDeC. 
Thus we have the same situation as in Section 3: The error ~-Ax* is 

composed of two independent parts: 

a) the truncation error ~ -  r of the iteration, 
b) the discretization error 4*-Ax* of the defect defining discretization (4.3). 

Since 

I LIr -Ax*LI- I[~,-~*111~ II~i -Ax*ll ~ ll~* -Ax*ll + I1~,- ~*11, (4.11) 

some knowledge about r is necessary for a considerate termination of 
the iteration. 
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Example. Consider the standard discretization of the BVP (2.13) 

a) ~-~[~(t,_l)-2~(t,)+~(t,+O]-er n=l(1)N-1, 

b) ~(to)=~(tu)=O, (4.12) 

and take (for simplicity) N=4, h=�89 (fixed) so that ~: 1134:={-1, -�89 
0,�89 Let V define the interpolating polynomials/ /4 and let A ~ restrict 
the function part of an element y~E ~ to { -3,1 0,3}.x 

Then A~ is the operator of (3.7) and the defect defining function ~4 
=A~ X4-~Y 4 can easily be found. In our simple situation, with ~( - �89  
~(+�89 and ~(+1)=0,  we obtain for the second derivative of the interpolating 
polynomial V~ 

(V ~)"(0) = - 10 ~ (0)+ -~-3z ~ (~.)1 

(V ~)"(�89 = 2~(0)  - ~ -  ~ ( ~ ) 1 6  1 

and 
. f - -  10~(0)  32 1 er +~- ~(~)- at t=O, 

u'4~=~ 2~(0)-~6 r189 ~(~) at t= +-3. (4.13) 

In the expression for ~ 4 - ~ 4  occurring in version B of IDeC (cf. (4.6)) the 
exponentials in (4.12) and (4.13) cancel. In version A which differs from version 
B since (4.12) is non-linear, a similar economy does not occur. 

Our "defect" will vanish precisely when 17~ is the collocation solution of the 
Example in Section 3; thus our present limit r is the restriction to ~34 of that 
polynomial and the "discretization error" ~*-Ax* is the error of the col- 
location on ~4.  

5. Updating the Defect Function 

With our reinterpretation of (4.3), IDeC has acquired a new aspect: It has now 
become an iterative technique for the solution of the more sophisticated discrete 
problem (4.3) which presumably could not have been solved directly. 

Furthermore, this interpretation suggests a possibility for extension: Since it 
is of dubious value to approach the solution ~* of (4.3) too closely (see (4.11)), we 
may rather wish to take only a few steps (or only one) towards solving (4.3) and 
then set up a new discrete problem (4.3) with an improved function ~N. We can 
now embark on a new IDeC, starting with our latest approximation to the old 
~*. This updating procedure may be repeated and become part of an overall 
iterative scheme. 

If we agree to update ~N, which is our means for computing the defect of an 
approximation 4, after each iteration, we must have a sequence of functions ~ :  
XN~ Yu, i=  1,2,.. . .  Iterative Updating Defect Correction (IUDeC) now takes 
the form 

~i + 1 : --,,~- ~i - -  ( ~  ~ , / +  1 ~i - -  ~ 0  ) (Version A) (5.1) 



434 H.J. Stetter 

or (cf. (4.6)) 

~i+l:_~.~i__~iN+l ffN~i__ ~ i+1] - [q~u- ~N 4i (Version B). (5.2) 

Both (5.1) and (5.2) are started with i = 0  and 4 o = ~ 0  which is the result of our 
original discrete problem (4.1). Note that only problems of the type ~N 4 = 6  are 
solved throughout so that no solution operator other than/~N appears. 

We have now to distinguish the solutions 4*eX N of the various problems 

q)~4 =0.  (5.3) 

In step (5.1), we have (cf. Section 2) 

ll41+ 1 -  4"§ 111 __<L~+I 114i-4"§ x I[ (5.4) 

and similarly in step (5.2) 

II)~i+ 1--)~?+ 111 ~g~+l  ll~e-2*§ x II (55) 

where L~ +, and L~ + 1  are Lipschitz constants for I - FN ~ §  and I - ~ + '  PN resp. 
Alternatively, (see (5.2)) we may consider version B in the form 

--4" l=ffN ~ '+l]4i--f fN[~N--(Di+lqY'* (5.6) 41+1 i+ [4~N- ~N -N ,~i+1 

and regard the contractivity of ~[qSN-q~+ 1], which may be advantageous 
because of the simpler structure of ~N" - 4'Ni+ 1 

If these Lipschitz constants are < 1 we progress in each step, but in each step 
towards a new goal 4"+1. Thus, IUDeC is reasonable only if the 4" have a 
consistent behavior, i.e. if they approach Ax*. Since (cf. (4.11)) 

1114"- Ax*l l -  It~i-4~' II I < 114i-3x* I1 < 114"- Ax* II + 114~- 4711 (5.7) 

a decrease in t14i-4"1[ should be supported by a decrease in l[4*-Ax*[l. 
Therefore the discrete problems (5.3) should have smaller and smaller global 
discretization errors (for our fixed N !) as i increases. 

A special IUDeC algorithm has been proposed a long time ago and used 
extensively: The difference correction procedure of Fox (e.g. [13]) and its refined 
versions due to Pereyra and others (e.g. [17], [18]) are immediately recognizable 
as procedures of the form (5.2). Here, the operations q~+ 1 are formed by adding 
higher and higher order differences to the basic discretization (4.1). Thus the 4" 
become solutions of higher and higher order discretizations of (2.1) and 
It 4" - , t  x II decreases accordingly, at least for a sufficiently fine grid G N. This more 
general nature of Pereyra's Deferred Correction approach has been discovered 
independently by Lindberg [16] who has also applied it to new classes of 
problems. Our exposition shows that this use of an increasingly accurate defect 
defining function ~v can be naturally extended to all kinds of IDeC procedures 
in relation with discretization methods. There is no prerequisite on the form of 
the ~ ;  they may just as well be derived by interpolation and subsequent 
substitution into (2.1) (as in (4.2)) or yet by some other method. 
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At first, one may believe that IUDeC permits a (theoretically) arbitrarily 
close approximation of Ax*, with the aid of the solution operator ~ .  However, 
we remain in the same spaces X N and YN (i.e. on the same grid ~3N) throughout;  
hence there must be a limit to the accuracy achievable without knowledge of x*. 
E.g., if the formation of the q~ involves polynomial interpolation, we cannot go 
beyond a certain degree on a grid with N + 1 gridpoints. 

Thus there is a discrete problem 

�9 ~ = 0  (5.8) 

beyond which we cannot or do not wish to go. Then ~* takes the place of 4" in 
Section 4, and we may interpret IUDeC as an iterative technique for computing 
4*. Now the error ]]4*-Ax*H of (5.8) remains unaffected by all our manipu- 
lations and establishes the background against which the progress in the 
iterations has to be judged. 

On the other hand, we may also identify (5.8) with (4.3); then we find that we 
are able to use simpler defect defining functions cb~ in early stages of the 
iterations of Section 4 and possibly save computational effort. The efficiency of 
this approach will depend on the balancing of the terms in (5.7). 

6. Ways of Choosing the Defect Defining Functions 

For a given problem (2.1) and a given basic discretization (4.1) with solution 
operator ~ ,  the various IDeC or IUDeC algorithms are defined solely by their 
associated defect defining functions 4~ N or ~ . . . . .  cb~. Let us consider a few 
standard ways of choosing 4~ N when (2.1) is a system of ordinary differential 
equations on a fixed interval [0, T], with either initial or boundary conditions. 

I. Global Interpolation 

Here we use the approach (4.2) and define a continuous and piecewise differenti- 
able counterpart V4sX to our approximation ~eXN; for V~ we may form the 
defect by substitution into the differential equation and into the boundary 
conditions if they are not automatically satisfied. Polynomial interpolation 
(which was originally suggested by Zadunaisky) is a natural and compu- 
tationally simple way; however, one need not use one polynomial over the 
whole interval [0, T]. Instead one may define subintervals [tm-~, t,~], with a 
suitable number of gridpoints in each, and interpolate on each subinterval with 
a polynomial of an appropriate degree. 

Of course, continuity has to be enforced. Continuity of first derivatives 
across tr, is not necessary in first order systems if the piecewise continuity of the 
defect is taken into account in the numerical solution procedure fs. In higher 
order differential equations, one must either have the appropriate continuity of 
derivatives, or one may apply a technique devised by Frank [7]: He extends the 
definition of the original problem (2.1) by permitting solutions with jumps in 
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derivatives at the fixed points ~ .  To retain uniqueness, he specifies the jump 
sizes (to be zero) in additional "boundary" conditions. Thus, non-zero jumps 
contribute to the defect and influence the evaluation of ~ .  For details, see Frank 
[73. 

In conjunction with an IUDeC algorithm, the degrees of the piecewise 
polynomials (and the lengths of the subintervals) may be increased as the 
iteration proceeds. 

Other interpolation functions may be used where it is appropriate and 
computationally feasible. 

In the case of global interpolation, the solution ~* of (4.3) or ~* of (5.3) is 
characterized by the fact that its interpolation 17~) generates a defect in the 
differential equations (and possibly in the boundary conditions) which vanishes 
under the projection A o. Normally this will mean that the defect vanishes at the 
gridpoints of ~N. In this case, the discrete problems (4.3) or (5.3) are classical 
collocation problems and IDeC is a computational technique for the approxi- 
mate solution of a collocation method for the given ODE-problem (cf. the 
Examples in Sections 3 and 4). This connection between IDeC and collocation 
was first displayed by Frank and Ueberhuber [11]; it has played a prominent 
role in the use of IDeC for initial value problems with stiff ODEs (see Frank and 
Ueberhuber [9]). 

II. Local Interpolation 

To compute the value of the defect 6 at tn~N, w e  may consider values ~(t,,), 
#=0(1)m, with n u ranging over a neighbourhood of n, interpolate the r by a 
polynomial P,(t) of degree m and form the defect of P, in the differential 
equation at t,. This may be done for each t , ~  N, w i t h - i f  necessary-special 
provisions for points near the boundary of [0, TJ. 

In this approach a different polynomial P, is generally used for each t , ~  N, 
therefore we have no element V ~ X  to be used in (4.2). But we can still define 
the defect by means of the original problem, because with ODEs the evaluation 
of [Fx](t) requires information about x only at t. If the function F of the T 
original problem (2.1)contains a global operation (e,g~ ~ k(t,~7)x(~)d'~ / then the 
local interpolation approach is not feasible. \ o / 

It may be desirable to have the n u situated symmetrically w.r.t, n even near 
the boundary. This can often be achieved by an extension of ~ to arguments 
outside [0, T] as suggested by Fox [13]. 

I lL  Finite Differences 

In many situations it is possible to formulate very accurate discrete analoga (4.3) 
of (2.1); but their direct solution would require an enormous computational 
effort, particularly for nonlinear ODEs. We can now use these accurate finite 
difference approximations to define the defect of iterates in IDeC. Often, there is 
also a natural sequence of more and more accurate discretizations (5.3) which 
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can be used in an IUDeC algorithm. Note that q3 N and q~ in (5.2) may differ 
only by a combination of higher order differences; hence the term "difference 
correction" introduced by Fox is very suggestive. 

Actually, Fox [13] suggested and discussed this version of IUDeC as early 
as 1957 in its application to two-point boundary value problems. His use of 
central difference corrections corresponds to the local interpolation approach 
(see II. above) while further refinements by Pereyra (e.g. [18]) are more in the 
spirit of the global interpolation approach, though formulated in terms of 
differences throughout. It is clear that difference correction and polynomial 
interpolation are very similar and may actually lead to identical expressions for 
the defect in some cases. 

The advantage of the interpolation approach is its ease of application even in 
complicated situations. Lindberg [16] who has described the IUDeC principle 
in remarkable generality is quite limited in his applications by considering defect 
defining functions only in the form of finite difference operators. See also Frank, 
Hertling, Ueberhuber [12] for a discussion of this aspect. 

7. Order Considerations 

In the analysis of discretization procedures, one considers the rate at which 
certain quantities tend to zero if the grids r become arbitrarily fine (cf. 
beginning of Section 4). Ordinarily, the refinement of ~N is characterized by a 
meshwidth parameter h N and the rate of decrease is expressed in terms of powers 
of  h N. 

If we apply this analysis in relation to IDeC, we are considering the 
following situation: We have a fully defined IDeC-(or IUDeC-)algorithm on a 
given grid ~N, with mappings /~N and ~u or ~b~ between domains X u and Yu 
associated with ~u-  We now consider ~ u  and these mappings as elements of 
infinite sequences {~N}, {~}, {~b~} of such quantities where the refinement hu of 
~ u  tends to zero as N ~ .  Each quantity which arises in the course of our 
IDeC-algorithm has now become a function of N, and quantities or differences 
of quantities that tend to zero as N ~ ~ may be related to powers of h N. Only 
the quantities of the original problem (2.1) remain invariant in this limit process. 

In our previous analysis we have not denoted the reference to N with many 
quantities and we will retain this notation. But it should be kept in mind that an 
assertion like I[~i-~*Jl =O(  h~i+ 1)r) is meaningless for one IDeC-algorithm on a 
fixed grid; it is only an assertion about the limit behavior of the sequence of 
values 11~-4" II arising from the sequence of IDeC-algorithms defined above. 
Also e 1 =O(h p') and e2=O(hP~), with Pl >Pz, implies only the existence of an 
such that lell<le21 holds for all huE(0, h); but h may be far too small to be 
meaningful in any computation. Thus, results of an order analysis should be 
used only as guide-lines regarding the relative sizes of quantities. Finally, 
remember that in a statement like II~-Ax*l] =O(h ~) the choice of the norm is 
not irrelevant and that different norms may lead to different values of r. For the 
elements of the sequence {~--Ax*}u~N come from different spaces E u, with 
dim E u --. oo as N---, oo. (Cf. e.g. Section 2.2 of Stetter [5].) 
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The essential difficulty arising in an order analysis of IDeC-algorithms is the 
following: Since SN and ~N are both approximations to the same differential 
equation, their difference will normally amount to a high order difference 
operation (or a differentiation process after interpolation); consider, e.g., the 
original difference correction procedure of Fox [13]. In a naive analysis, the 
maximum norm of an r-th order difference quotient of some 4i in an IDeC- 
algorithm would increase like h - ' ;  but actually it remains bounded if the 
original problem is sufficiently smooth and the algorithm has been set up 
correctly. To establish this fact one has to ascertain that 41 possesses an 
asymptotic expansion in powers of h, with coefficients which are projections into 
X~ of smooth functions 0-~j in X independent of h: 

Ji 

4,=Ax*+ ~ hJA~,.j+fi~(h), with fii~XN, tlfiill=O(hS'+l). (7.1) 

The existence of such expansions for the solutions of many classes of 
standard discretization algorithms can be derived from general theorems (e.g. in 
Stetter [5]). If the discrete problems (4.1) and (4.3) resp. (5.3) belong to these 
classes then asymptotic expansions of type (7.1) exist for the starting element 4o 
of the IDeC algorithm and for the limit element(s) 4" resp. 4*. By subtraction, 
we arrive at an asymptotic expansion of the form 

do 

4 0 = 4 * +  ~ hJAeoj+Po(h), IlPolt =O(hS~ (7.2) 
J=O 

where we have assumed that the discretizations (4.1) and (4.3) are of orders/~ 
and p resp., with p>i6. 

This order assumption also implies (cf. e.g. Stetter [5], Sectionl.l.2) that 

II(~N A -A~  ell = O(h~) (7.3) 

[I(~N A -A~  eI[ =O(h p) 

for any sufficiently smooth eeX. Some analysis will normally reveal the 
existence of mappings DN: X ~ Y such that 

( ~ N -  q)N) A e = h ~ A ~ N e (7.4) 

where D N may be expanded 

DN=D~ +hD 1 +h z D 2 + ... +hS D~ (7.5) 

with D r, j = O ( 1 ) J - l ,  independent of h and [ID~[I =O(1). (Consider, e.g. the 
expansion of a/~-th order difference in terms of derivatives.) 

Let us now consider the generation of r  N in Version B of IDeC, starting 
with the expansion (7.2). We will assume that all operations are sufficiently 
Frechet-differentiable. (4.6) becomes 

Jo 

21 = [~N--~N] 40 = [~3N-- q)N] 4" + [~N--(bN]'(4 *) ~ hJAeoj+ "" 

+ [~u -- ~N]'(4*) Po(h) + " "  ; (7.6) 
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the Frechet-Taylor expansion is terminated at an appropriate order by a 
remainder term. Substitution of (7.4)/(7.5) into (7.6) and collection of terms by 
powers of h yields an asymptotic expansion for 2t whose coefficients we denote 
by A~ 

By (4.3) and (4.8), [ ~ N -  ~N] 4" = 2* and, by (7.4), the lowest exponent of h in 
the expansion is now 2/~I 

Thus (7.6) leads to 

J1 
21=2"+ ~ hJA~ Ilax[l=O(hJ'+l). (7.7) 

j = 2 #  

We have in any case to assume that the discretization (4.1) is stable, which 
implies I1~(,~)11 =O(1) for all 2~ G sufficiently close to 0 (cf. e.g. Stetter [5], 
Section 1.1.4). Therefore we obtain from (7.7), with (4.7) and (4.8), 

gl 

4 1 = 4 " + G ( 2 . )  ~ hJA~ + ' ' ' .  (7.8) 
j=2/~ 

(7.8) suffices to establish II r 1 - ~* II = O(h 2 ~); but to obtain 

J1 
C t = ~ * +  ~ hJAelj+pt(h), Hp~[l=O(hJl+l), (7.9) 

j=2/~ 

we have to interpret the elements eu=P~(,,I*)A~ as projections of ele- 
ments which arise as solutions of variational problems associated with (2.1). 

A considerable amount of technical reasoning may be necessary to get from 
(7.6) to (7.7) and from (7,8) to (7.9) for a particular problem and particular 
discretizations (4.1) and (4.3). If these transitions are possible in the form stated 
above, we may continue the process (compare (7.9) with (7.2)) and arrive at the 
following order assertions: 

Let /~ and p be the order of (4.1) and (4.3) resp. Then in Version B of an 
IDeC-algorithm based upon (4.1) and (4.3) 

114,-4"tl = O(h(i+ ~ ) ,  i=  1(1)I, (7.10) 

where I depends on the order J0 of the remainder term in (7.2) and on the 
decrease in the order of the remainder term encountered in each iteration. 
Furthermore (cf. (4.11)) 

ii~i-Ax*ll =O(hmin(ci+lIP'P~), i=  1(1)I. (7.11) 

By a similar line of arguments, one arrives at the same assertions for the ~i 
arising in Version A of an IDeC-algorithm (compare Frank [7], Frank and 
Ueberhuber [8]). 

In an IUDeC-algorithm, we assume that (5.3) is of order p~ and that each 4" 
possesses an asymptotic expansion of type (7.1); this leads to expansions 

Y 

~ '+  1 - - r  * =  2 hJ.A~ij+~i(h), i=1,2 . . . . .  (7 .12)  
j = rain(p,, p,. 1) 
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Replace ~* by ~* and 2* by 2* in (7.2)-(7.9). If min(pl,p2)>2p, we may use 
(7.12) to turn (7.9) into an expansion 

J l  

~1=~*+ ~, hJ.Aelj+px(h), (7.13) 
j=2O 

with new coefficients e,~ and a new remainder term p~; the identification of 
(7.13) and (7.2) permits again a recursive argument and the following assertion 
holds: 

Let /~ and p~, i=  1,2 . . . . .  be the orders of the discretizations (4.1) and (5.3) 
resp. and assume that min(pi, p~§ Then in an IUDeC-algorithm 
based upon (4.1) and (5.3) 

I}~,-~*+ ~ll = O(h(~+ ')~), i =  1(1)I, (7.14) 

with I determined similarly as in (7.10). Furthermore (cf. (5.7)) 

II~,-Ax*ll =O(h('+l)r i=l(1)I. (7.15) 

The result (7.15) agrees with Pereyra's asymptotic results (e.g. 1-19]) for his 
Iterated Deferred Correction Algorithm for two-point boundary value problems. 
(7.15) has also been derived by Lindberg [16] using arguments and assumptions 
similar to ours. 

8. Simplifications for Error Estimation 

For an appraisal of the global discretization error {o-Ax*  of the approximate 
numerical solution 40 of (2.1), it would often be sufficient to obtain the correct 
order of magnitude and the sign of the error. In this case, defect correction 
should be applied in as "cheap" a form as possible and it may appear 
ineconomic to spend another application of ~ ,  even if some effort can be saved 
in the second application, e.g. by reusing Jacobians. 

Instead let us interpret ~ o = ~ 0  as an intermediate iterate ~i of an IDeC- 
iteration based on a simpler discretization 

~N~ =0  (8.1) 

of (2.1) than (4.1). We may then use the simpler solution operator /~N of (8.1) to 
compute ~i+, and to estimate the error of ~o=~i by 

~o-ax* = ~ i - a x * ~ ; - ~ *  ~ , - ~ i + 1  =~0-~+1. (8.2) 

Obviously, the validity of (8.2) rests on the assumption that the solution {* of 
(4.3) is sufficiently close to Ax* and that the IDeC-operator associated with (8.1) 
is sufficiently contracting: 

t1~o-ax* II _-__ lifo-~,+ 111 + It~*- Ax* II + il~i+ 1 -  ~*[1. 
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"= .~". ~x* I ~ 0 

1 i 

Fig. 5. Error estimation by a different operator 
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Still we have to be careful. In Version A, we now have (cf. (4.4)) 

= G , =  = (8.3) 

where/~u0 is normally not available. Thus, in place of one application of ~ we 
are faced with two applications of/~u. 

In Version B, we have (cf. (4.6)) 

~,+ ,: = ~ [4N- q~N] ~, =/~N [~N ~o- ~N ~o]. (8.4) 

Again ~s#o is not available; but for a sufficiently simple 4] u its evaluation 
should be very cheap. Thus for a judicious choice of (8.1), (8.4)/(8.2) should 
provide an economical way of estimating the global discretization error of #o 
with moderate accuracy; see also Figure 5. 

In initial value problems, one may, e.g., use the plain explicit Euler method 
for (8.1) (except when dealing with stiff problems). The values off(t,,#o(t,) ) will 
normally have been computed anyway for t , e ~  u, so the evaluation of q3 u Go is 
trivial. If the evaluation of the defect 0 0 = ~ N ~  o at  t ,_ ,  does not require 
information about r,,, the evaluation of (8.4)/(8.2) may even be done "in parallel" 
with the computation of #o so that an estimate of ~o(t,)-x*(t,) is available 
together with G0(t,). Such a procedure has been successfully implemented and 
tested by the author ([20]). 

Another possibility which might be particularly useful in boundary value 
problems consists in the use of a 4~ u which works on a coarser grid than ~3 u 
(naturally a'subgrid of ~N)- Thus the dimension of the system of simultaneous 
equations could be reduced, at the expense of obtaining an error estimate only 
on the coarser grid. The similarity with Richardson Extrapolation comes to 
one's mind; actually there is only a small step from here to a procedure which 
is a "Version B" of Richardson Extrapolation as we will explain in a separate 
paper. 

In Stetter [4], the suggestion had been made (although differently phrased) 
that~N=be some discrete approximation of a linearization of (2.1), which would 
make F u of the form (cf. (2.12)) 

" x = ] .  
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In this case, (8.3) or  (8.4) may be combined with (8.2) into 

~o-Ax*,~'~i-~i+l =f~ ~N r (8.5) 

However,  the application o f / ~  will normally involve Jacobians of  the original 
problem and thus it may  be expensive even with a primitive discretization (8.1). 

Example. Consider  the Example  in Section 4. For  N = 4 ,  h=�89 the value of  the 
solution 4o of  (4.12) at t = 0  is -0 .363428  (to 6 decimal places), and from (4.13) 
we obtain (q~4 ~o)(0) ~ -0 .010523.  

N o w  choose (4.12) with N = 2 ,  h = l ,  for $4.  Then (~o(+ 1)=0!)  

( ~ 4  ~ 0 ) ( 0 )  = - -  2~o(0) - er176176 0.031567. 

To find ~1(0) we have thus to solve (cf. (8.4)): 

- 241 (0) - e ~' (o) = _ 0.042090 

which yields 4 1 ( 0 ) ~ - 0 . 3 6 7 3 3 4  and -0 .003906  as our estimate for the error of 
Go(0) by (8.2). The true error  is -0 .004628.  

9. Conclusion 

In this paper  we have tried to exhibit the general structure of Defect Correct ion 
which is a basic principle of  Numerica l  Analysis. Discretization is a form of 
approximat ion  which does not  rely on linearization; therefore it is an excellent 
field for the application of  the Defect Correct ion Principle which also does not 
depend on linearization. It  is hoped  that this exposition may  help to understand 
the present implementat ions of  Defect Correct ion more  fully and that it may  
also point  the way towards  new applications. 
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