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Summary. A transformation method is developed which may be used to 
solve various types of boundary value problems on three-dimensional regions 
with an arbitrary boundary. The implementation of the method is illustrated 
in the solution of a potential flow problem. All computations are performed 
on a cubic mesh in a rectangular region. 
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Introduction 

In many engineering problems, a primary difficulty in implementing finite dif- 
ference schemes is dealing with complicated computational regions having ir- 
regular boundaries. One method of circumventing this problem is to transform 
the original physical region onto a rectangular or other type of canonical region, 
and then solve the problem on the canonical region. This method has been used 
to solve various two-dimensional fluid flow problems by Chu [2] and Thomp- 
son etal. [-9] and [-10]. An alternate approach, employed by Winslow [11], 
Godunov and Prokopov [5], Amsden and Hirt [1], and Hirt et al. [-6], is to use 
the transformation to construct a curvilinear mesh on the original region and 
then solve the problem on the curvilinear mesh. 

The success of transformation methods for two-dimensional problems leads 
one to the consideration of such methods for three-dimensional problems. In 
this report a three-dimensional transformation method will be developed and 
tested by numerically solving a potential flow problem where analytic solutions 
are known. However, before any numerical considerations, the basic concept 
is analyzed for general applicability. If it is desired to solve a partial differential 
equation on a simply-connected region by transforming to a rectangular region, 
then the transformation should be a homeomorphism (one-to-one, continuous, 
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and continuous inverse) which is differentiable and has a nonvanishing Jacobian. 
This requirement restricts the use of many simple algebraic transformations in 
regions with irregular boundaries. 

As a final note some attention is given to the generalization of this method 
to higher dimensions. It appears that it would have limited application to physi- 
cal problems, although it may be of some theoretical interest. 

Transformation to Rectangular Region 

Let D be a simply-connected region in xyz-space bounded by one surface. Let 
R be a rectangular region in u v w-space given by 

R =  {(u, v, w)lal <u <b 1, a 2 < v <b2, a3 < w < b 3 } .  

Suppose that the boundary of D, denoted by QD, and the boundary of R, denoted 
by OR, are homeomorphic and such a homeomorphism is defined by the equations 

u=hl (x ,  y, z) 

v=h2(x, y, z) (1) 

w = h3(x, y, z) 

for (x, y, z) on 0D. In order to avoid difficulties at the boundary in the proofs of 
the following theorems, additional assumptions will be imposed on the boundary 
correspondence. We assume that 0D is analytic and the transformation from 
OD to OR is differentiable except possibly on subsets of OD which correspond to 
edges of OR. As will be evident later, no numerical difficulties were encountered 
when this smoothness condition was violated. The image of the points (x, y, z) 
in D are defined to be the points (u, v, w) where u, v, and w are solutions of the 
following system of elliptic partial differential equations 

V2u =A (u, v, w) 
V 2 v =f2 (u, v, w) (2) 

VZw=f3(u,v, w) 

where 172 denotes the Laplacian operator and f~, f2, f3 are functions defined in 
uvw-space. As in the case of a single equation (see Courant and Hilbert [3, 
pp. 369-374]), the system (2) with Dirichlet boundary conditions (1) will have 
a solution under the appropriate smoothness and boundedness hypotheses. 

Simple conditions can be imposed on the functions f l , f2,fa to guarantee that 
the image of every point in D is an element of/~ = R u ~R. Namely, u < al implies 
fl  (u, v, w)< 0 and u > bl implies fl(u, v, w)> 0 with the analogous relations holding 
for f2 and f3. Since al and b 1 are the maximum and minimum values of u in R, 
we are assuming a weak form of the maximum and minimum principles. Note 
that if f l = f 2 = f 3 = O ,  then u, v,w are harmonic implying that D maps into R. 
The above condition does not limit the utility of the transformation method. In 
practice it is the values of f i ,  f2, f3 on/~ which one perturbs to produce a trans- 
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formation with high resolution, or some other essential property, in critical 
subregions of R (see Thompson et al. [10]). 

F rom now on we will work under the assumption that sufficient conditions 
hold so that a transformation T, defined by (1) and (2), exists which maps 
b = D  u 8D into /~. In general, the Jacobian of T may vanish on a nonempty 
subset of D. This will not happen for harmonic transformations as the next 
theorem indicates. 

Theorem 1. I f  fl =f2 =f3  =0,  then the Jacobian of the transformation T does not 
vanish in D. 

Proof Suppose that the Jacobian 

u uy 

V x Vy V z = 0 

W x W y  

at some point Po=(Xo,Yo, Zo) of D. Then there exists constants cl,c2,c3 such 
that the gradient Vs of the function s=clu+c2v+c3w vanishes at Po. The 
following results on spherical harmonics and level sets are stated without proof. 
The proofs may be found in Kellogg [7, pp. 273-275]. Let L be the level set 
(or equipotential set) i n / )  defined by 

L = {P Is(P) = s (Po)} �9 

Since s is harmonic in D, it can be written in some neighborhood of Po as 

o0 

s(P)= s( Po) + ~ H,( P - Po) 
i = 1  

where Hi is a spherical harmonic of order i. Now Fs = 0 implies H1 = 0 at Po and L 
cannot consist of a single analytic surface element or sheet. Let S 1 and $2 be two 
sheets containing the point Po. In some neighborhood N of any point where 
Fs~0,  L n N is a single sheet. Since L is a compact subset o f / ) ,  the sheets $1 
and S 2 can be continued in L to ~D. By the prescribed boundary correspondence, 
L n dD is a simple closed coutour C which separates dD into two components. 
Since D - ( S  1 u $2) has more than two components, at least one of the compo- 
nents K must have ~K contained in $1 w S 2 . The harmonic function s is constant 
on 0K and hence must be constant on K. However, since K is open, s must be 
constant on D. This violates the boundary conditions on u, v, and w. 

The following result holds for more general transformations than considered 
in this report. In fact it is likely that the theorem follows as a corollary of some 
known theorem on transformations with nonvanishing Jacobians. However, a 
direct proof  can be obtained from the ideas developed in the proof of Theorem 1 
and is included for completeness. 

Theorem 2. I f  the Jacobian of the transformation T does not vanish in D, then T 
is a differentiable homeomorphism of D onto R. 
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Proof Since the transformation is a solution of the system of partial differential 
Equations (2), it will be differentiable on D. It is therefore sufficient to show that 
T is one-to-one and onto. Suppose T is not one-to-one. Then there exists two 
points P~ and P2 in D such that 

T(Px) = T(P2)=(Uo, Vo, Wo). 

Define the following level sets in/) .  

L1 = {PIu(P) =Uo}, 

L z = {P Iv(P) = Vo}, 

L 3 = {PIw(P) = Wo}. 

Let K = L 2 ~ L 3 and P be a point in K c~ D. Considerable use will be made of the 
Inverse Mapping Theorem (IMT) which may be found in any multivariable 
calculus text; e.g., [4, p. 185]. One consequence of the IMT is the fact that there 
is a neighborhood N of P such that K n N is a smooth curve C. Now suppose 
the curve C is continued on K in both directions to 0D. From the assigned 
boundary correspondence, K contains only two points of 8D. Assume the two 
endpoints of C coincide. Then the function u, restricted to C, has an extremum 
at a point Q of D. Thus u is not one-to-one in any neighborhood of Q and since 
v and w are constant on C, the transformation T is not one-to-one in any neigh- 
borhood of Q. This contradicts the IMT. Therefore the smooth curve C has the 
two points of K n OD as endpoints. Now consider the two points P~ and Pz of D 
where T(Pa)= T(P2). Since P~ and P2 belong to L I ~ L z n L 3 ,  there exist smooth 
curves Ca and C2 in K which contain P~ and P2, respectively, and have endpoints 
K n S D .  Since K is locally a smooth curve, the two curves C 1 and C 2 cannot 
intersect at a point of D unless they coincide. In the case C~ = C2, the curve C1 
contains an arc A in D with endpoints P~ and P2. The function u, restricted to A, 
will have a relative extrema on A which again leads to a contradiction as above. 
Now suppose C1 and C2 have only endpoints in common. Let S be the surface 
in L 2 bounded by the closed curve C~ w C 2. The set L 1 ~ S contains the point 
P~ and hence, in some neighborhood of P~, is a curve C O in S having P~ as one 
endpoint. Suppose that Co is continued as a subset of L1 on the surface S until 
Co intersects C1 u C z at a point P3. Now 8D n (La n L 2 n L 3 )  is the empty set 
and hence Pa is in D. Since T(P~)= T(P3), a contradiction of the I M T  follows as 
before. The same results used in the proof  that T is one-to-one can be used to 
prove that the mapping is onto. Suppose (Uo, Vo, Wo) is an arbitrary point of R. 
Let L z and L 3 be the level sets as previously defined. It has been shown that 
K = L 2 n L  3 contains a smooth curve C whose endpoints are the two points of 
K n 8D. The function u assumes its maximum and minimum values at the end- 
points of C and since u is continuous on C, it will assume the value u 0 at some 
interior point Po of C. Since Po~LlnL2,  T(Po)=Qo. 

Throughout  the remainder of this report, it will be assumed that the Jacobian 
of T does not vanish. Thus an inverse transformation will exist. 
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Inverse Transformation 

In most of the two-dimensional problems which have been solved using a nu- 
merical transformation method, it is not the transformation from the physical 
region D to the rectangular region R that is constructed, but rather the trans- 
formation from the region R to the region D. Our work proceeds in the same 
direction. The first task is to invert the system of Equations (2). That is, to find 
an equivalent system with u, v, w as independent variables and x, y, z as dependent 
variables. 

Define the matrix M by 

Xu Xv 

M =  Yu Yv Yw �9 
Z u Z v Z w 

Then the determinant of M, which is the Jacobian of T-1 and will be denoted 
by J, is a nonvanishing, real-valued function defined on R. 

Theorem 3. The functions u, v, w satisfy the system (2) / f  and only if the functions 
x, y, z satisfy the system of quasilinear elliptic equations 

O~ll Xuu + 2 0~12 Xuv + 2 ~13 Xuw + ~22 Xvv + 2 ~23 Xvw + ~33 Xww 

+ JZ[A x,,+ f2x,,+ f3Xw]=O 

~11 Yuu + 2 0~12 Yuv + 2 7t3 Yuw + ~22 Yvv + 2 ~23 Yvw + ~33 Yww (3) 
+ d2[f~y~+ f2yv+ f3yw]=O 

~ 1 z. .  + 2 0~12 Zuv + 2 ~13 Z.w + 0~2 2 Zvv -~ 2 ~23 Zo ~ + ~33 Zw~ 

+ J 2 [ f l z . +  f2z~+ f3z~]=O 

where 
3 

O~]k= 2 ~mJ [~mk 
m=l 

and fljk is the cofactor of the (j, k) element in the matrix M. 

Proof. Let u, v, w be solutions of (2). Suppose s is a function defined on D. By the 
chain rule, 

S x = s  u u x + s  v v x + s  wwx,  

Sy = SuUy + SvVy + SwWy, 

S z ---SuUzq-SvVzq-SwWz, 

and 

V2s=(u~ +%2 +uz)2 s . ,+ 2(u~v~+uyvy+uzv~)s,~ 

S~w + (v,~ + v r + v~) sv~ +2(U~Wx+UrWy+UzW~) 2 2 2 

+2(vxw~+vrwr+Vz%)Sw+(w ~ 2 +% + w~) s,,,w 

+ V2us~+ V2vs~+ VZws~. 
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By substituting s = x, y, and z in each of the first three equations, expressions can 
be found for the partial derivatives of u, v, and w with respect to x, y, and z in 
terms of the partial derivatives of x, y, and z with respect to u, v, and w. If these 
values are substituted in the last equation, V2u, V 2 v, and 172 w are replaced by 
fx, fz, and f3, and then s is replaced by x, y, and z, the result is the system of 
Equations (3). It is well known that the type of a partial differential equation is 
preserved under a transformation with a nonvanishing Jacobian. Thus V 2 s = 0  
transforms into an elliptic equation and hence the system (3) is elliptic. 

Conversely, suppose, x, y, z are solutions of (3). Then again computing V z s 
and setting s=x,y,  and z, we obtain three equations which together with (3) 
yield the system 

(flu--f1) x,+(V z v- f2)  xv+(Uw- f3 )  xw=0, 

(172 U-- fl ) Yu-I-([ 72 v--f2 ) yvq-([ 72 w--f3 ) y w = 0 ,  

(V2u-A) z, +(VZv- f2) zv +(V 2 w - f 3  ) Zw=0. 

The matrix M is nonsingular and the trivial solution of the system of equations 
is equivalent to (2). 

In the construction of the transformation of R onto D, the one-to-one bound- 
ary correspondence (1) furnishes boundary conditions for the elliptic Equa- 
tions (3) of the form 

x = gl  (u, v, w) 

Y = g2 (u, v, w) (4) 

2 = g 3 ( u  , V, W) 

for (u, v, w) on OR. The construction of T-x is equivalent to solving an elliptic 
boundary value problem with Dirichlet boundary conditions. It should also 
be noted that the coefficients ei~ in (3) depend only on the derivatives and not 
on the values of the functions u, v, w. This result may be used to prove that the 
solution of (3) with boundary values (4) is unique (see [3], pp. 323, 324). 

Potential Flow with Symmetry 

The problem of determining the potential function for the flow of an ideal fluid 
about a finite body in an infinite fluid region has been studied extensively. The 
only restriction we impose is that the fluid region have at least one plane of 
symmetry. Thus we include all axisymmetric problems where many exact solu- 
tions are available and the accuracy of our numerical method can be tested. The 
potential function will be computed using finite difference techniques and a 
free stream condition will be assumed on some sphere far from the body. Because 
of symmetry, only half of the truncated fluid region is used in the calculations. 

The transformation is indicated in Figure 1. Under the inverse transformation, 
the horizontal faces of the rectangular region map to the body and the hemi- 
spherical outer boundary. The vertical faces map to the plane of symmetry. 



Transformation of Three-Dimensional Regions 

u 
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Let ~b be the potential function defined on /9. Assume a unit free stream 
velocity in the direction of the positive y axis. Then V 2 ~b = 0 in D, ~b = y on the 
outer boundary and ~b.=0 on the body and the plane of symmetry where n 
denotes the exterior normal on ~D. In the region R, the equation and boundary 
conditions become 

o~11~) u u -}- 2 0c12 ~) u v + 2 0~13 ~) u w W ~ 2 2 ~) v v -k- 2 0~ 2 3 ~) v w -b o~ 3 3 ~g w w 

+J~Ef~O.+A4~o+A~,;I=O on R, 

~b=y 

0~13 (~u At- ~23 ~v -[- 0C33 ~w = 0 

(~12 ~u "~- 0~22 ~bv --~- 0~23 ~w = 0 

0~11 ~uq-Oc12 ~v-J-~13 ~ w = 0  

if w = b  3 

if w = a  3 

if v=~2 or b 2 

if u = a  1o rb1 .  

(5) 

(6) 

The following procedure was used to construct an approximation to the 
potential function. For these examples, take f~ = f 2 = f 3 = 0 .  A cubic mesh was 
placed on/~. The equations in (3) and (5) were converted to difference equations 
using second order central differences. The boundary conditions in (4) and (6) 
were used with second order central differencing for all derivatives in the equa- 
tions except where a neighboring mesh point was outside of/~ in which case the 
derivative was replaced by a first order forward or backward difference. The 
derivative conditions in (6) degenerate at certain edges of ~R and there an average 
value for the function was chosen. The system of equations was solved by non- 
linear SOR with an initial free stream potential function. 

Three body configurations are included. The first is a sphere. The exact 
solution is well known and our computed value is compared with the exact 
value. The second body is an ellipsoid with axes ratio 1:2:4 and the third is the 
union of two circular cones joined at a common base lying in the xy-plane. In 
all cases the outer boundary was the sphere of radius e 2. Various surfaces and 
cross-sections are shown in Figures 2 and 3. The mesh in these figures is the 
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0 < z <  1, u=�89 I - a l )  

Table 1. Maximum difference in successive iterates after n iterations 

n Spherical body Elliptical Conical 

mesh potential error mesh potential mesh potential 

10 2.63014 1.17530 0.12645 1.70716 0.77372 1.34065 0.55443 
20 2.19094 0.77492 0.05571 0.47050 0.20634 0.37055 0.18059 
30 ~25112 0.08907 0.03191 0.11962 ~02564 0.06961 0.01985 
40 0.03266 0.00840 0.01756 0.01681 0.00144 0.00580 0.00181 
50 0.00377 0.00194 0.01565 0.00061 0.00049 0.00095 0.00159 
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image of the cubic mesh in/~. Although no computing was done on this mesh, 
it is advisable to examine its general appearance since extreme aspect ratios and 
nonorthogonality may slow iterative convergence and increase discretization 
error. 

Selected output from the program written to solve the difference equations 
is presented in Table 1. A rectangular region with 19 x 19 x 20 equally spaced 
mesh points was used. For each configuration, the first column contains the 
maximum difference of the x, y, and z values after the (n - 1)th and nth iteration. 
The second column contains the maximum difference of the ~b values. For the 
spherical configuration, the third column contains the maximum difference 
between the computed value of qb and the exact value which is 

y[a  +�89 + y2 + zZ)-~].  

The maximum differences were taken over all interior points. For the spherical 
body, the maximum error on the surface of the body, excluding points on the 
symmetry plane, was about 0.02 or 2 7o of the free stream velocity after 50 itera- 
tions. The error at the outer boundary caused by the free stream assumption 
was nearly 0.01. A value for the potential function on the surface of the ellipsoid 
is given by Pien [-8] to be 1.12659y. Our computed values, after 50 iterations, 
differed by a maximum of 0.01 except on the symmetry plane. At the intersection 
of the body and the symmetry plane, errors increased to a maximum of 0.04 for 
the sphere and 0.03 for the ellipsoid. Increasing the number of iterations beyond 
n = 50 increased accuracy very little if any. 

The results of this simple example are encouraging. With less than 7500 points, 
we have attempted to solve a three-dimensional mixed boundary value problem. 
Still, when comparisons were made, the approximation was accurate to one 
decimal place. This is comparable to the accuracy of the integral equation 
methods reported by Pien [8]. 

Transformations in Higher Dimensions 

Since there are problems involving more than three unknowns, one might ask 
if this method could be useful in higher dimensions. In this final section, that 
possibility will be examined. 

Let D be a bounded region in the space of ordered n-tuples of real numbers 
(x 1 . . . . .  x,). Suppose that ~D is homeomorphic to the boundary of a rectangular 
region R given by 

R = {(ul, ..., u,)l ai < ui < bl, i = 1 , . . . ,  n}. 

Let T be a one-to-one transformation o f / )  onto /~ which has a nonvanishing 
Jacobian on D. Then T is a solution of the system 

V2 ui= f~(ul , ... , u,), i= 1, ... , n 

if and only if T-a  is a solution of the quasilinear elliptic system 

02xi z ~x~ 
~ k - - + J  ~,, fk(ut ,  �9 u,)~-uuk =0 '  i = l , . . . , n  

1 Our Ouk "" j ,k= k=l 
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where J is the Jacobian of T-1 and 

~jk = ~, flmj flmk 
m = l  

with fljk the cofactor of Ou k in the matrix 
LOuqJ 

The method would appear to generalize to higher dimensions, but there are 
limitations to its implementation. First of all it is necessary to define some homeo- 
morphism between dD and 8R which are (n-1)-dimensional  subsets. Secondly, 
the number of distinct terms in each equation defining the inverse transformation 
is n(n+ 3)/2. Also, the determination of the coefficient ~k requires the calculation 
of determinants of order n -  1. Consequently, any attempt to carry out the cal- 
culations in this report would be a formidable task for larger values of n. 

Conclusions 

A transformation method which has proven useful in two-dimensional fluid 
flow problems has been generalized to three-dimensions. The method may even 
prove more valuable in the construction of three-dimensional transformations 
since three-dimensional conformal mappings can only be used in trivial cases. 
Even the determination of simple algebraic transformations is more difficult 
since the three gradient vectors must be linearly independent at each point of the 
region. 

No attempt has been made to give a complete list of all variants of the method 
which may be used in solving other physical problems. In the study of time 
dependent problems, the physical domain may change with time so that the 
mesh functions may depend on the temporal variable as well as the spatial 
variables. For  example, free surface problems could be studied in the manner of 
Godunov and Prokopov [5] and Thompson et al. [10]. Transformations of 
certain multiply-connected regions can also be constructed provided appropriate 
branch cuts are made as in Thompson et al. [9]. 

The example is intended to be a test of the method and not an improved 
method for solving the stated potential flow problems. It illustrates how the 
method handles both Dirichlet and Neumann boundary conditions. In the 
transformations there are boundary points where the Jacobian vanishes and 
points where the body is not smooth. 
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