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Nonzero-Sum Stochastic Games with Unbounded Costs: 
Discounted and Average Cost Cases 

LINN I. SENNOTT 
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Abstract: We treat non-cooperative stochastic games with countable state space and with finitely 
many players each having finitely many moves available in a given state, As a function of the current 
state and move vector, each player incurs a nonnegative cost. Assumptions are given for the expected 
discounted cost game to have a Nash equilibrium randomized stationary strategy. These conditions 
hold for bounded costs, thereby generalizing Parthasarathy (1973) and Federgruen (1978). Assump- 
tions are given for the long-run average expected cost game to have a Nash equilibrium randomized 
stationary strategy, under which each player has constant average cost. A flow control example 
illustrates the results. This paper complements the treatment of the zero-sum case in Sennott (1993a). 

Key Words: Nonzero-sum stochastic games, discounted and average cost stochastic games, flow 
control queueing models 

1 Introduction 

Nonzero-sum non-cooperative stochastic games on a countable state space are 
treated. In each state, each of the K ( < ~ )  players has finitely many moves from 
which to choose. As a function of the current state and move vector, a non- 
negative cost is incurred by each player; the costs may be unbounded above on 
the state space. The game then transitions to another state, where the transition 
probabilities are a function of the current state and move vector; termination of 
the game is not allowed. 

The existence of a randomized stationary strategy that is a Nash equilibrium 
is of interest. Such a strategy allows randomization among the allowable moves, 
where the randomization is a function only of the given state. A Nash equilib- 
rium strategy has the property that no single player has an incentive to unilater- 
ally deviate from the strategy, given that the other players continue to follow the 
strategy. 

In Section 2 assumptions are given for the existence of a Nash equilibrium 
in the expected discounted case. These assumptions hold when the costs are 
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bounded, thus generalizing results of Parthasarathy (1973) and Federgruen 
(1978). Section 3 illustrates this result with a flow control model. 

In Section 4 we treat the long-run average expected cost case and give assump- 
tions that guarantee the existence of a randomized stationary strategy that is a 
Nash equilibrium. In Section 5, the verification of these assumptions is discussed. 
As a corollary, a theorem of Rogers (1969) and Sobel (1971) for the finite state 
case is obtained. In Section 6, the average cost results are applied to the flow 
control model. 

The notion of a (zero-sum) stochastic game was introduced by Shapely 
(1953). Independently, Fink (1964), Takashashi (1964), Rogers (1969), and Sobel 
(1971) proved the existence of a randomized stationary Nash equilibrium for 
finite state discounted stochastic games. For a countable state space, finite move 
sets, and bounded cost functions, Parthasarathy (1973) proves the existence, 
while Federgruen (1978) proves the existence in the case of a countable state 
space with compact metric action spaces and bounded costs. The discounted 
case is also treated by Sobel (1973) under the assumption that the state and 
move spaces are compact metric and the set of players may be infinite. Useful 
survey papers include Parathasarathy and Stern (1977) and Raghavan and Filar 
(1991). 

In the average cost case, it has been proved by Rogers (1969) and Sobel (1971) 
that if the state space is finite and every stationary strategy is unichain, then a 
Nash equilibrium randomized stationary strategy exists. Federgruen (1978) has 
treated the average cost case under the assumption of bounded costs. The 
approach taken is to examine the relative value functions. The assumptions 
made are rather strong. Our analysis is also based on the relative value functions 
and builds on work of Sennott (1989) and (1993b) on the existence of average 
cost optimal stationary policies in Markov decision chains. Other recent treat- 
ments of the average cost case are Borkar and Ghosh (1992), Ghosh and Bagchi 
(1992), and Nowak (1992). 

2 The Discounted Case 

Consider a non-cooperative stochastic game with players 1, 2 . . . .  , K and a 
countable state space. When the game is in state i, player k has a finite nonempty 
set Ak(i ) of moves available. The players each non-cooperatively choose a move, 
which results in a vector m = (a~, a 2 , . . . ,  aK) of moves, such that ak ~ Ak(i). 
Given the current state i and move vector m, the game transitions to statej  with 
probability Pij(rn), where }-'j Pij(rn) = 1. 

The cost vector C(i, m) associates with each allowable pair (i, m) a K-tuple of 
costs; player k incurs nonnegative cost Ck(i, m). Costs may be unbounded above 
in i. 
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A strategy for a particular player is a rule for choosing moves that may depend 
on the history of the game (all states, through the current state, and moves of all 
palyers), and may be randomized. A strategy is a vector 0 = (01, 02, . . . ,  Or), 
where Ok is a strategy for player k. 

Fix a number ~ ~ (0, 1). Since the discount factor a will be fixed throughout 
Sections 2 and 3, we suppress it in our notation. Given initial state i and strategy 
vector 0, define the expected discounted cost to player k under 0 by 

Vk(i' O) = E ~  ~ ~"(Cg(X"' M")IX~ = i)) (1) 

where X, is the state, and M, the move vector, at time n. 
A (pure) stationary strategy is a vector f = ( f l ,  f2, . . . ,  fK). If the game is in 

state i, then player k will choose move fk(i) e Ak(i). A randomized stationary 
strategy is a vector 2 = (21, 22, . . . ,  2r). If the game is in state i, then player k will 
choose move a k e Ak(i ) with probability 2k(i)(ak). Let P(Ak(i)) be the set of all 
probability distributions on Ak(i). Note that 

K 

2 ~ A = 1--[ l~ P(Ak(i)) , (2) 
i k = l  

which is a compact metric space. For  the duration of the paper, f will refer to a 
generic stationary policy and 2 to a generic randomized stationary policy. 

Let 0 be a strategy, k a fixed player, and assume that the game is in state i. The 
notation O\ka indicates that the other players operate under 0, whereas player k 
chooses a e Ak(i ). The notation may easily become quite cumbersome. Other 
terms in an expression will usually indicate that player k is the one referred to. 
Hence, if no misunderstanding can occur, this will be simplified to O\a. 

The quantity Ck(i , 2\a) denotes the expected one-step cost to player k, if ,~\k a 
is employed, and it is a convex combination of costs associated with the vectors 
m\a  = (a 1 . . . . .  ak_ 1, a, ak+l, . . . ,  aK). The quantity Pij(2\ka ) denotes a transition 
probability under 2\ka. 

The strategy in which all the players except k follow 2, whereas k follows the 
randomized stationary strategy 6, will be denoted 2\k6 (or 2\6). The quantities 
Ck(i, 2\6) and PU(2\k6) are defined in the obvious way. 

Now assume that every other player follows 2, but that player k is free to 
follow any strategy. Then the best that k can do is denoted Vk(i, 2\). Note that 
no misunderstanding can result since the subscript tells us that we are dealing 
with player k. We then have 

Vk(i, 2\)  = inf Vk(i, 2\0) , (3) 
0 

where 0 refers to any strategy that player k may follow. 
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If the other players follow 2, then player k is faced with a Markov decision 
chain. Then Vk(i, 2\) is the minimal nonnegative solution of the discount opti- 
mality equation 

= inf {Ck(i, 2\6 ) +~ ~'j Pij(2k6)VK(j, 2 \ ) } ,  for all i . (4) 

Moreover, any stationary policy that realizes the right side of (4) is optimal for 
player k (Bertsekas (1987)). 

The optimization criterion to be used in this paper is a generalization of the 
concept of a Nash equilibrium. 

2.1 Definition: A randomized stationary strategy 2 is an a-discounted equilib- 
rium point (~-DEP), for initial state i, if Vk(i, 2\) = Vk(i, 2), for 1 < k < K. 

This implies that no single player has an incentive to unilaterally deviate from 
2. The following assumptions will guarantee the existence of a randomized 
stationary ct-DEP with finite value for all initial states. The postulated functions 
in the assumptions are assumed finite. To avoid confusion, superscripts are 
sometimes used to denote sequences. 

Assumption DI: Assume that 2" ~ 2. Then there exist functions Rk(i ) such that 
Vk(i, 2"\) < Rk(i), for all i, k, and n. Moreover, ~jPu(m)Rk(j) < 0% for all i, k, 
and m. 

Assumption D2: Assume that there exists a nonnegative function Uk(i) <_ Rk(i) 
satisfying the discount optimality equation (4) for 2 \  and all k. Then Uk(i)= 
Vk(i, 2\), for all i and k. 

If there exists an upper bound C on the components of all the cost vectors, 
then we may take Rk(i ) ==- C/(1 -- ~), and Assumptions D1 is satisfied. Within the 
class of bounded functions, it is known that the solution to the discount opti- 
mality equation is unique (Ross (1983)), and hence Assumption D2 also holds. 
In this case, there exists a randomized stationary ~-DEP (Parthasarathy (1973) 
or Federgruen (1978)). 

2.2 Theorem: Assume that Assumptions D1 and D2 hold. Then there exists a 
randomized stationary strategy that is an ~-DEP. 
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Proof:  As in Federgruen (1978), the following theorem is employed: Let S be a 
compact convex nonvoid subset of a Hausdorff linear locally convex topological 
space. Let q0 be an upper semi-continuous (usc) set-valued map taking s ~ S to a 
closed convex nonvoid subset of S. Then there exists a point s* ~ ~0(s*). (The map 
09 is use if given s, ~ s, x, ~ x, such that x ,  E q)(Sn) for all n, it follows that 
x ~ q)(s).) This theorem was proved independently by Fan (1952) and Glicksberg 
(1952). 

The map q) will be defined on A, which is a compact (hence closed) convex 
subset of 

K 

1-I 1-I . (5) 
i k = l  

This is a product of locally convex linear topological spaces, and hence is 
a locally convexlinear  topological space. Given 4, i and k, let Bk(i, 4\) be the 
subset of Ak(i) consisting of moves that realize the minimum on the right of (4). 
Define 

K 

q)(2) = l~ l~ P(Bk(i, 2\)) . (6) 
i k = l  

Clearly q)(2) is closed and convex; we show that the map is usc. By p. 124 of 
Fan (1952), it is sufficient to show that the coordinate maps q)(2)k are usc. So fix 
a player k and assume that 2" ---, 2 and 6" ~ 6 such that 6" ~ c0(2") for all n. We 
must show that 6k ~ ~0(2)k. 

Since fie ~ ~O(2")k, it follows that 

Vk(i, 2"\) = Ck(i, 2"\6") + ~ ~ Pq(2"\f")Vk(j, 2"\) 
J 

<_ Ck(i, 2"\a) + a ~. Pij(2"\a) Vk(j, 2"\) , for a ~ Ak(i ) . (7) 
J 

It follows from Assumption D1 that Vk(i, 2"\) is a sequence in the compact 
metric space I-[i [0, Rk(i)]. Hence there exist a nonnegative function Uk( i )< 
Rk(i ) and a subsequence nm such that 

lim Vk(i, 2 " " \ )  = Uk(i) , for all i . (8) 
m ~ o o  
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We now take the limit in (7) through values n m. Assumption D1 and the 
dominated convergence theorem yield 

u~(i) = c~(i, 2 \~) + ~ Y, P,j(,t \,~)u~(j) 
J 

< Ck(i, 2\a) + ~ ~ P~j(2\a)Uk(j) , for a e Ak(i) . (9) 
J 

Hence Uk(i.ksatisfies the discount optimality equation for 4\. By Assumption D2, 
it follows that Uk(i) = Vk(i, 2\) ,  and equality is achieved at 6k. 

We must show that fig(i) e e(Bk(i, 4\)). From (9), it follows that 

Vk(i, 4 \ ) =  ~, ,Sk(i)(a){Ck(i, 2 \ a  ) +Cr ~., Pij(2\a)Vk(j,  2 \ ) } ,  for all i . (10) 

Consider the bracketed terms. If a ~ Ak(i ) -- Bk(i, 2\), then the term is greater 
than Vk(i, 2\), whereas if a e Bk(i, 2\), then the term is equal to Vk(i, 2\). This 
implies that if 6k(i)(a) > 0, then we must have a e Bk(i, 2\), and hence 6k(i) 
e(B~(i, 4\)). 

This completes the proof that r is usc, and hence there exists 4" e (p(2*). For 
a player k, this means that 2*(0 employs only actions in the optimal set Bk(i, 2*\). 
In the Appendix, we have proved that any policy with this property (including 
history dependent and/or randomized policies), is optimal. This implies that 
Vk(i, 4"\) = Vk(i, 2"), and hence 4" is an ~-DEP. 

3 An Example for the Discounted Case 

Consider a distributed packet communication system with K sources, each with 
its own infinite capacity buffer. The sources generate packets independently of 
each other; the number of packets generated by source k in any slot is governed 
by a probability distribution (p~), j > 0. The state of the system is given by a 
vector i = (i 1, i 2 . . . . .  it), where ik is the number of packets currently in buffer k. 

The system is served by a single server, and the service time of a packet is one 
slot. In each slot the server chooses, at random, the buffer to serve from among 
the nonempty buffers. Observe that on average, each source will receive service 
at least onece very K slots. If there are empty buffers, then on average, the 
nonempty ones will receive service at a higher rate. 
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We may think of the sources as playing a non-cooperative game. Each source 
may make decision a -- 1 to allow its generated packets into its buffer, or a = 0 
to reject (and lose) those packets. Thus for move vector m, it follows that mk = 1, 
if k chooses to admit packets, and mk = 0, if k chooses to reject packets. 

Source k incurs a nonnegative holding cost Hk(ik)"on its current buffer 
contents and a positive cost Dk for rejecting packets. Hence Ck(i, m) = Hk(ik) + 
Dk(1 -- ink). We will assume that Hk(Ok) = 0. For  ik > 1, let Lk(ik) = Hk(ik) + 
Hk(ik -- 1) + " "  + Hk(1), and let Lk(Ok) = O. 

3.1 Proposition: Assume the Following: 

i) max sup {JIP] > O} = J < oo. 
k j 

ii) lim ~"Lk(i k + n J) = O, for all i and k. 
n ---~ ot~ 

Then Assumptions D1 and D2 hold, and hence there exists a randomized 
stationary strategy that is an e-DEP. 

Proof:  Let e be the strategy for k that always rejects packets. Then Vk(i , 2\)  < 
Vk(i, 2\e). The latter is bounded above by the cost of emptying buffer k, plus the 
additional discounted cost of keeping it empty. Since k receives service, on 
average, at least once every K slots, the expected time in each state of the first 
passage will not exceed K. Hence 

Vk(i, 2\)  < K(Lk(i~) + Dkik) + - -  -- 1 - ~ - :  Rk(i) " (11) 

Since no more than J packets may be generated by any source in a given slot, it 
follows that the summation is over a finite set, and hence Assumption D1 holds. 

To verify Assumption D2, assume that Uk(i) < Rk(i) satisfies (4). It is known 
that Vk(i, 2\)  < Uk(i). Hence it is sufficient to prove the reverse inequality. From 
reasoning similar to Theorem 2.2 of Ross (1983), it is sufficient to prove that 

lim inf ~"E(~\y) (Rk(X,) IX o = i) = 0 , (12) 
n ~ o o  

where f is the discounted optimal stationary policy from (4). 
Now X ,  <_ i + n J, and hence E(z\y)(Rk(Xn)[X o = i) < Rk(i + n J). It then 

follows from (11) and (ii) that (12) holds. 
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4 The Average Cost Case 

L.I.  Sennott 

Given strategy vector 0 and initial state i, define the average expected cost to 
player k under 0 by 

j,(i, 0) = lim sup 1E o (Ck(Xt, Mr)IX o = i) , 
n'-,~ n k,t=o 

(13) 

where X~ is the state, and M t the move vector, at time t. Given 2, letjk(i, 2\) = 
infoJk(i, 2\0), where 0 refers to any strategy that k may follow. 

4.1 Definition: A randomized stationary strategy 2 is an average expected cost 
equilibrium point (AEP), for initial state i, ifjk(i, 2\) = jk(i, 2), for all k. 

This implies that no player has an incentive to unilaterally deviate from the 
strategy 2. The following assumptions will guarantee the existence of a random- 
ized stationary AEP under which each player has constant average cost. In 
referring to the discounted case, recall that the discount factor was suppressed 
in the notation. The postulated functions and constants are finite. 

Assumption AI: Assume that for each e e (0, 1), there exists an e-DEP 2,. 
Let hk,~(i) = Vk,,(i, 2,) -- Vk,,(0, 2,), where 0 is a distinguished state. Let 0t(n) be 

a sequence of discount factors converging to 1 such that 2,(,) ~ r/. (Recall that 
randomized stationary strategies lie in the compact metric space A. Hence any 
sequence of e-DEP has a convergent subsequence.) 

Assumption A2: There exist nonnegative functions Mk(i) such that hk.,(,)(i) < 
Mk(i), for all i, k, and n. Moreover, ~ j  Po(m)Mk(j) < o% for all i, m, and k. 

Assumption A3: There exist nonnegative functions Lk(i ) such that --Lk(i)< 
hk,,(,)(i), for all i, k, and n. Moreover, ~'4 Pi~(m)Lk(J) < 0% for all i, m, and k. 

Assumption A4: Assume that for all k, there exist a constant jk and function hk(i), 
w i t h - L k ( i  ) <<_ hk(i ) <_ Mk(i ), satisfying the average cost optimality equation 

Jk + hk(i) = Ck(i, q) + ~. Pij(q)hk(j) 
J 

for all i . (14) 

Then jk --jk(i, q) =jk(i, q\), for all i and k. 
The major result may now be stated. 
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4.2 Theorem: Assume that Assumptions A1-A4 hold. Then the randomized 
stationary strategy t/is an AEP. For player k, the value of the average expected 
cost under t/is Jk" 

Proof: We may write (4) as 

(1 - c0 Vk,.(0 , ).~) + hk,.(i ) = Ck(i, 2.) + ~ ~ Po(2~)hk,~,(j) 
J 

=mina {Ck(i, 2 . \ a ) +  c~ ~:j Pij()..\a)hk,~(j)}. (15) 

Let i = 0 in (15). It follows easily from Assumption A2 that (1 - ~(n)) V~,.(.)(0, 
2.(.)) is bounded. Hence there exist a subsequence of ~(n) (call it fl(n) for nota- 
tional convenience) and numbers Jk such that 

lira (1 - fl(n))Vk,a(.)(O, 2p(.)) =Jk , for  1 < k _< K . (16) 
n--* oo 

Now hk, a(,)(i) is a sequence in the compact metric space I-Ikl--Ii[--Lk(i), 
Mk(i)]. Hence there exist a subsequence of fl(n) (call it e(n)) and functions hk(i ) 
such that 

lim hk,~(,)(i ) = hk(i ) , for all i and k . .(17) 
n ~ o o  

Now take the limit in (15) through values ~ = e(n). Using (16), (17), and the 
dominated convergence theorem yields (14). It then follows immediately from 
Assumption A4 that t/is an AEP with constant average value jk for player k. 

4.3 Corollary: Assume that the costs are bounded and that Ihk,,(i)[ < N ,  for all 
i, k, and ~. Then Assumptions A2-A4 hold for all ~, and hence any limit point 
of ~-DEP is an AEP. 

Proof." If the costs are bounded, then Assumption A1 holds. Clearly, Assump- 
tions A2 and A3 hold. Finally, it follows as in Ross (1983, p. 93) that Assumption 
A4 holds. 

The requirement that hk,,(i) be uniformly bounded is very strong when the 
state space is denumerable. 



154 

5 Verification of the Assumptions for the Average Cost Case 

L. I. Sennott 

The major result of this section is a set of recurrence-type conditions that are 
sufficient for the validity of Assumptions A1-A4. We first make some general 
comments. Any strategy 2 induces a Markov chain on the state space, and mq(2) 
is the expected time of a first passage from i to j, under 2. If mio(;t) < ~ ,  for all 
i, then this implies that 2 induces a chain with a single positive recurrent class 
R(2) containing 0. Moreover, if the chain begins in i ~ R(2), then it will reach R(2) 
in finite expected time. 

Assume that there is a cost E(i) associated with state i, such that the expected 
cost eio(2) of a first passage is finite, for all i. If the process starts in state i, then 
by the delayed renewal reward theorem, the expected average E cost is obtained 
as a limit and equals ~j~R(z)E(j)nj(2) = eoo(2)/moo(2), where (7~i(2))ieR(;~) is the 
steady-state distribution on R(2). 

5.1 Proposition: Assume that the following conditions hold, for all i and 4: 

i) There exists a function B(i) such that mio(2) < B(i). 
ii) The B cost bio(2 ) of a first passage is finite. 

iii) There exist functions Mk(i) such that Ck,iO(2) < M,(i), for all k. 
iv) The Mk cost dk,~o(2) of a first passage is finite, for all k. 

Then Assumptions A1-A4 hold for all ~ ~ (0, 1). Hence any limit point of a-DEP 
is an AEP. 

Prbof: We verify that Assumption D1 holds. Fix a, k, and 2 and let f be a 
discounted optimal stationary policy for 2\. Then for i # 0, a standard argument 
gives 

Vk,~(i, 2\) < Ck, iO(2\f) + Vk,~(O, 2\) <_ M,(i) + Vk,~(O, 2\) . (18) 

(See p. 97 of Ross (1983) or p. 19 of Sennott (1986)). 
From (4), it follows that 

Vk,~(O, 4\) = Ck(O, 2 \ f )  + a ~ Poj(2\f)Vk,~(j, ,~\) , (19) 
J 

and using the first inequality in (18) yields 

(1 - a)Vk,~(O, 2\) _< Ck(O, 2 \ f )  + ~ Poj(2\f)Ck,jO(2\f) �9 (20) 
j #O 
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The quantity on the right of (20) equals Ck,oO(J~kf), which is bounded above by 
Mk(O ). We then define Rk.~,(i ) = Mk(i) + Mk(O)/(1 -- o0, for i r 0, and Rk,~,(O ) = 
Mk(O)/(1 - ~). 

We now verify the second statement of Assumption D1. Fix i, k, and m, and 
let e be a stationary strategy that chooses m in state i. Then 

dk,,o(e ) = Mk(i) + ~ P~j(m)dkjo(e) > ~ Pij(m)Mk(j)  �9 
j~o j~o 

(21) 

By (iv), the left side of (21) is finite, hence so is the right side. 
To verify that Assumption D2 holds, it is sufficient to verify (12) for Mk(') .  

N o w  

l l  in1 )) 
liminf,_.~o E'~\I ) (Mk(X")IX~ = i ) <  ,-.o~lim k n E , ~ \ i ) k L  Mk(Xt ) lXo  = i , (22) 

where the limit exists, and equals ~ z r j (2k f )Mk( j )  < 0% by the delayed renewal 
reward theorem. From this we see that (12) holds. 

It follows from Theorem 2.2 that there exists an ~-DEP 2,, for ~ ~ (0, 1), and 
hence Assumption A1 holds. It follows from (18) and (21) that Assumption A2 
holds. 

For i ~ 0, let T be the first passage time from i to 0, under 2,. By a standard 
argument (p. 97-98 of Ross (1983)), we have 

Vk.,(i, 2,) _> EZ,(~T)Vk,,(0, 2~) , (23) 

and hence 

/ ' 1  - ~ r ' X  
hk,~(i ) > -- Ex. \ /|~1 (1 -- ~)Vk,~(0, 2~) . (24) 

Since (1 - ~r)/(1 - ~) "[ T, it follows that the first term is bounded above by B(i). 
From (20) it follows that the second term is bounded above by Mk(O). Hence 
hk,,(i) >_ --Mk(O)B(i) ,  and we may define Lk(i) =: Mk(O)B(i). Set Lk(O) = 0. The 
verification that ~ j P o ( m ) B ( j )  < oo is similar to the reasoning for Assumption 
D1 and uses (ii). This proves that Assumption A3 holds. 

We will now verify that Assumption A4 holds. First consider an arbitrary 
randomized stationary strategy 6. Similarly to (22), we have, for all i 

l i m i n f  E~(B(X . ) lXo  = i) <_ lim E~ B(XO[Xo = i , 
n ~ o o  n --* o o  

(25) 
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and by (ii) and the delayed renewal reward theorem, it follows that the limit on 
the right exists and equals the finite constant average B-cost. This implies that 
the following two statements hold: 

Eo(B(X . ) iXo  = i) < ~ , for all n ; 

1 
lira inf-Ez(B(X,)lXo = i) = 0 . 

n---~ oo n 

(26) 

(27) 

Reasoning similarly, we have, for all i and k, 

E~(Mk(X . ) IX  o = i) < oo , for all n ; 

lim inf-1E~(Mk(X.)l X o = i) = 0 . 
n --* ot~ n 

(28) 

(29) 

Now assume that (14) holds and consider the first equality. This may be 
iterated as in Lemma A1 of Sennott (1989), where we use (26) to guarantee that 
the expectation of hk(') is never --oo. For an initial state i, this yields 

q L t = o  

hk(i ) 1 
E , [ h k ( X . ) ]  

n n 

hk(i) 
--- Jk + + 1E.ELk(X.)] . (30) 

n n 

Again by the delayed renewal reward theorem, the limit of the left side exists. 
Taking the limit infimum of both sides, and using (27), yields jk(i, rl) < Jk" 

If the other players play q, but player k is free to play any strategy, then player 
k faces an average cost minimization Markov decision chain. We claim that 
there exists an average cost optimal stationary policy for this problem. This may 
be shown by verifying that the hypotheses of Proposition 3.1 of Sennott (1993b) 
hold, for all strategies r/\e. These conditions follow immediately from our as- 
sumptions, and hence there exists a stationary policy f for k such t h a t j k ( ~ \ f )  < 
jk(i, tl\O), for any strategy 0 for k and for all i. 

Therefore to verify that Assumption A4 holds, it is sufficient to prove that 
Jk < A ( q \ f ) "  From (14), it follows that 

Jk + hk(i) ~ Ck(i, r l \ f )  + ~. P i j ( r l \ f )hk( j )  , for all i . (31) 
J 
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One may use (26) and (28) to show that -oo  < Er = i) < 0% for 
all t. Iterating (31) yields, for initial state i, 

1 ] 
M,) + hk(i ) 1 

E(q\s)[hk(X.)] 
?1 n 

hk(i ) 1 
> jg -~ E(,\ f)[Mk(X,)] �9 (32) 

n n 

Taking the limit supremum of both sides, the desired result follows from (29). 

5.2 Corollary: Assume that the costs are bounded and that (i) and (ii) of Propo- 
sition 5.1 hold. Then Assumptions A1-A4 hold for all e e (0, 1). 

Proof: Assume that Ck(i, m) < C, for all i, k, and m. We will verify that (iii) and 
(iv) of Proposition 5.1 hold. By (i), it follows that Ck, iO(2) < Cmio(2) < CB(i), and 
hence (iii) holds. Condition (iv) follows from (ii). 

The result may be used to prove a result of Rogers (1969) and Sobel (1971) (see 
also Federgruen (1978) and Stern (1975)). 

5.3 Corollary: Assume that the state space is finite. Assume that given any 
stationary strategy f and initial state i # 0, there is an f path from i to 0. Then 
Assumptions A1-A4 hold for all e ~ (0, 1). 

Proof: It is well known that the assumption implies that mio(f  ) < 0% for all i. 
Let B - :  maxi~omaxfm~o(f) .  Since there are finitely many states and finitely 
many stationary policies, B is well-defined and finite. Moreover, moo(f  ) = 1 + 
~ir  Poj(f)mjo(f)  < 1 + B. We will show that these bounds also hold for ran- 
domized stationary policies. By Corollary 5.2, this will complete the proof. 

Given any 2 and i # 0, we first show that there is a 2 path from i to 0. For 
eachj  # 0, select a move vector m s such that 2(j)(mj) > 0. Select mo arbitrarily. 
Define f ( j )  = m s. By assumption, there exists n such that P~)(f)  > 0. Then it is 
easy to see that P~)(2) > 0. 

This implies that m~o(2 ) < 0% for all i. Now suppose the claimed result is true 
for i ~ 0. Since too0(2) = 1 + ~,,2(O)(m)~ir ) < 1 + B, we are fin- 
ished. Now define r(0) = 0, and for i # 0, define r(i) = mio(2). For each i # 0, 
select a move vector m* that realizes maxm~jPij(m)r(j) .  Select m* arbitrarily. 
This defines a stationary strategy f with the property that r( i )< 1 + 
~ j  Pii(f)r(j),  for all i r 0. A simple modification of the proof in Seneta and 
Tweedie (1985, p. 150) proves that r(i) < mio( f  ), and this completes the proof. 
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6 An Example for the Average Cost Case 

This is the example of Section 3, with the following changes. When the system is 
in state 0 (i.e. all components are 0), then each source must accept new packets. 
Moreover, we assume that sup{jtp f > 0} =: Jk < ~" The costs are the same as 
in Section 3. Let co k be the mean of the packet arrivial distribution for source k, 
and let o9~ ") be its nth moment. 

6.1 Proposition: Assume that the following conditions hold, for all k: 

i) We have pk > 0 and O~k < 1/K. 
ii) The holding cost Hk(ik) is bounded above by a polynomial of degree n (>  0), 

and O)(k n+2) < 00. 

Then Assumptions A1-A4 hold, and hence there exists a randomized station- 
ary strategy that is an AEP. 

We will verify that the hypotheses of Proposition 5.1 hold. We first set up 
some notation and prove some lemmas. Let j = (Jl . . . . .  JK) denote the numbers 
of newly generated packets in each slot, and let Q(j) be the probability of vector 
j being generated. If move vector m is chosen, then the dot product j �9 m is the 
total number of generated packets that are accepted into the system. The nota- 
tion jm denotes the vector with kth component equal to jkmk. 

If i ~ 0, then [i] denotes the number of nonzero coordinates of i. The notation 
e denotes a vector with i in a nonzero coordinate of i, and 0 elsewhere; there are 
Iil of these vectors. If the system is operating under 2 then the next state will be 
i + jm - e with probability [i1-12(i)(m)Q(j). 

For  the lemmas, we assume that the hypotheses of 6.1 hold, even though not 
every hypothesis is required in each lemma. 

6.2 Lemma: Let e =: 1 - ~kOgk . Then (i) of 5.1 holds with B(i) = (~kik)e -1, for 
i ~ 0 and B(0) = e -1. 

Proof: It is easily seen that any 2 induces a Markov chain with a communicating 
class containing I lk  [Ok, Jk]- The policy that always rejects will have this as its 
communicating class and other policies may have a larger class. 

We apply the result on p. 752 of Tweedie (1976) with test function y(i) = ~ k  ik. 
Let i be a state with at least one nonzero component. Then 
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Pi,(),)y(r) - y( i)  = ~ ),(i)(m) ~. Q ( j ) ( j  �9 m) - 1 
r lql j 

< ~ 2 ( i ) ( m ) ~ Q ( J ) ( ~ k J k ) - - l = ~ k  c o k - - l = - - e  �9 (33) 

It then follows that mio(2 ) < (~kik)e -1, for i v~ 0. Moreover ,  moo(2 ) = 1 + 
~,i,o Q(i)mio(2) < 1 + (1 - e)e - i  = e -1. 

6.3 Lemma: Fix 2 and an integer q > 2. Then ~,Po,(2)rg  = co(q), and for i ~ 0, 

r P~r(2)rg~--ig+q(C~ i~-l+q2(cO(kq)+l)(ik-t- 1)q-2 " (34) 

Proof: The first s tatement is clear. Now let i ~ 0. The next state is i + jm - e 
with probabil i ty I i[-i 2(i)(m)Q(j), and hence 

~Pi'(2)r~= ~ (qu)i~'I~ 1 ~=o ~ j (35) 

Fix 0 < u < q - 2, and consider (jkm, - ek) ~-u. Ifjk = 0, then this expression 
is bounded  above by 1, whereas if j ,  > 1, it is bounded  above by jg. Hence in 
either case, it is bounded  above by j~ + 1, and thus the expression in brackets 
is bounded  above by COrk q) + 1. For  u = q - 1, the expression in brackets is 
bounded  above by COk -- li[-l(~ee,) �9 If ik ~ 0, this is COg -- li[ -x < COg -- K -1. 
Hence 

(1) 
_ �9 "q-1 O ) ( q )  �9 Pi,(2)r~ < l~ + q o k -  z k + + 1 z~ 

r 

= i~ + q ( c o k - - 1 )  i q-1 + (co,q) + 1) ,~o q -u 2 it, 

(36) 

Since the quant i ty  in brackets is bounded above by q2, the result follows. 



160 L.I. Sennott 

6.4 Lemma: Fix k and let F(ik) be a nonnegative polynomial of degree q, where 
1 < q < n + 1. Let d~o(2) be the expected F cost of a first passage. Then there 
exist constants A and A* such that dio(). ) _< Ai~ +1 + A*(~s  is)e -1, for i r 0 and 
all 2. Finally, doo(2 ) _< F(Ok) + A~(k q+') + A'e-l(1 -- e) < ~ .  

Proof." For i ~ 0, we set up a test function y(i) = .ra, k A i q + l ,  where A is to be specified. 
It follows from (34) that 

P ~ r ( 2 ) y ( r )  - y ( i )  
l" 

(37) 

Let S(ik) denote the right side of (37), and consider S(is) + F(is). This is a 
polynomial of degree q, and A may be chosen so that the leading coefficient 
is negative. Then there exists a number N* such that is > N* implies that 
~ r  PirOv)y(r) - y(i) <_ - V(ik). 

For 0 _< i s <_ N*, it follows easily from (34) that ~ r  Pi,(2)y(r) is bounded. Let 
G be an upper bound. Let F be the maximum value of F(ik), for 0 <_ i s _ N*. It 
follows from the proof of Proposition 4 of Sennott (1989) that dio(2 ) _< Ai~ +1 + 
(G + F)mio(2). Then the first statement follows from 6.2. The second statement 
follows using the standard first passage equation for 0. By assumption ~O(k q+l) < 

Proof  of  6.1: Part (i) of 5.1 follows from 6.2. To verify (ii), apply 6.4 with 
F(ik) = ik. To verify (iii), observe that the cost to k in state i is bounded above by 
Hk(ik) + Dk <--F(ik), some polynomial of degree n. Hence by 6.4, there exist 
constants A and A* such that Ck, iO(2 ) < Ai'~ +1 + A * ( ~  i~)e -1 =: Ms(i ), for i 4: 0, 
and Ck,oo(2) _< F(Ok) + A~(k "+1) + A'e-l(1 -- e) =: Mk(O). 

It remains to verify that (iv) holds. This may be seen by an application of 6.4 
to the function i~, +1. 

Appendix 

Assume that we have a Markov decision chain with countable state space, finite 
nonempty action sets, and nonnegative costs. The discount factor ~ E (0, 1) is 
assumed fixed and will be suppressed in our notation. 
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The value function V(i) is the minimal nonnegative solution of the discount 
optimality equation 

V ( i ) = m i n { C ( i , a ) + ~ P i j ( a ) V ( j ) } , ,  ~ A(i) j for all i . (A1) 

Let B(i) = {a ~ A(i)la realizes the minimum on the right of(A1)}. Any stationary 
policy f with the property that f ( i )~ B(i), for all i, is e-discount optimal 
(Bertsekas (1987)). 

Now let 0 be any policy that restricts itself to actions in B(i), for all i. That is, 
0 may be history dependent and/or randomized, but when the process is in state 
i, then 0 only employs actions in the set B(i). 

Proposition: The policy 0 is a-discount optimal. 

Proof: Define Vo(i, O) - O, and for n > 1, let V,(i, 0) be the expected n-step 
discounted cost under 0. It will be proved by induction that for any policy 0 
defined as above, it follows that V,(i, O) <_ V(i), for all i and n > 0. This is clearly 
true for n = 0. 

Now assume that the claim holds for n - 1. If the process begins in state i, let 
v(i)(a) be the initial probability that 0 chooses action a ~ B(i), and let O(i,j) be 
the policy that applies, if the process begins in state i and then transitions to state 
j. Then 

Vn(i' 0) = a e ~'B(i) v(i)(a){C(i,a) + ~ ~j Pij(a)Vn_l(j, O(i,j))} 

<- ~ v(i)(a){C(i 'a)+a~PiJ(a)V(J)} ~ f o r a l l i .  (A2) 

The second line follows from the induction hypothesis, and the final equality 
follows since every term in the brackets is equal to V(i). 

Since limn_~ ~ V~(i, O) = V(i, 0), it follows that V(i, O) < V(i), and hence that 
v(~, o) = v ( i ) .  
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