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1. Introduction

A famous result of Dieudonné ([2], Proposition 8 p. 37) and Grothendieck
([7], p. 150) states that for compact metric resp. locally compact spaces X con-
vergence of a sequence of tight Borel measures on every open set entails its con-
vergence on all Borel sets; in other words: The family %(X) of all open subsets
of X is a convergence class for tight Borel measures.

It was rather natural that with recent developments within the area now called
“Topology and Measure” this result became again of interest to various people
(cf. [16, 15, 4, 5, 12, 11, 14]), where in [11, 14] there was even considered the
case of measures taking their values in an abelian topological group; this will
not be considered here. Rather we intend in the present survey to put emphasis
onto a unified approach to several results on compactness and convergence of
measures which will imply all the main theorems known up to now and various
new results (cf. 3.7-3.13, 4.5, and 4.9). Among them there are the following gen-
eralizations of the Dieudonné-Grothendieck-Theorem [where (b), (e) and the
second part of (c) are new]:

{a) 9(X) is a convergence class for tight Borel measures in any Hausdorff
space X ({4, 121);

{b) 4{X) is a convergence class for t-smooth Borel measures in any regular
space X ([1]);

(¢) If %4(X) denotes the exact open subsets of a topological space X, then
%,{(X) is a convergence class for Baire measures ({11]); %,(X) is a convergence
class for t-smooth Borel measures provided X is a completely regular space {[1]});

(d) 9,(X) is a convergence class for regular Borel measures in any normal
Space X ([11]);

(e) If 4 (X) denotes the regular open subsets of a topological space X, then
%/(X) is a convergence class for t-smooth Borel measures provided X is a regular
space ([ 1]);
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() 4(X) is a convergence class for regular Borel measures in any normal
space X ([ 14)).

Although the main ideas for proving these theorems are due to Dieudonné
and Grothendieck somewhat different additional methods have been applied for
the proofs given in the papers just cited.

As already remarked it is the main aim of this paper to derive these and general
compactness results as well (cf. our main Theorems 3.1-3.5 in Section 3) in a way
which we think of as being the most unified one.

To make the paper as selfcontained as possible there is added an Appendix
containing some known results (A1-A6) which are used within the text.

2. Basic Definitions and Auxiliary Results

Let X be an arbitrary non-empty set, # a o-field of subsets of X and M(X, %)
[M (X, #)] the space of all countably additive realvalued [and nonnegative] set
functions defined on 4; elements of M(X, 4) and M _ (X, %) will be called measures
and nonnegative measures, respectively. For MCM(X, %) let |M|: = {|y|: ue M}
where || denotes the total variation of ue M as defined in [8], Section 29.
MCM(X, ) is called bounded if M is bounded as a subset of the normed linear
space (M(X, %), ||-1) with Ju|: =|u|(X) for ue M(X, ).

Furthermore B(X, #) denotes the space of all bounded #-measurable real-
valued functions defined on X,

IN[IR] denotes the set of positive integers [real numbers], 4 the complement
of a subset 4 of X, y, its indicator function, 4;AA4, the symmetric difference
of A; and A,, and usually we shall write 4,\4, instead of 4,nA4,.

By a paving (in X) we will understand a non-empty family of subsets of X.
For pavings .o we shall use a terminology resembling that of P. A, Meyer, e.g. we
will say that .« is a (U f} or a (Uc)-paving if o is closed under finite or countable
unions, respectively.

For a paving ./, .« denotes the paving of all A with Ae .o/.

General Convention

If not specified otherwise we will tacitly assume that #Z is always a o-field of
subsets of X, and that ¥, # and 5 are certain subpavings of . We assume also
that sets denoted by letters B, C, F and H (with or without subscripts) are always
elements of the pavings 4, €, #, and #, respectively.

In our applications X will be a topological space and we shall write usually
in that case (X, #(X)) denoting with %(X) the class of all open subsets of X, and
with Z(X) [4(X)] the class of all closed [compact] subsets of X. We will consider
also the class %(X): ={Ge ¥X):(G)°=G}={F°:Fe #(X)} of the so-called
regular open sets, which is generally a proper subclass of %(X). Here 4°[A4"]
denotes the closure [interior] of ACX.

Furthermore, ((X) denotes the space of all continuous realvalued functions
defined on X and Z o(X):={f"Y0): fe C((X)} is the class of all exact closed,
%o(X): =Fo(X) the class of all exact open subsets of X.
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Finally, #8,X) [#(X)] denotes the Baire [Borel] o-field in X, i.e. the smallest
o-field containing %,(X)[9(X)]; elements of M(X, #yX)) [M(X, B(X))] are
called Baire [ Borel] measures.

As to our general presentation it turns out that with respect to the pavings
%, #,and A a certain separation property as well as certain regularity properties
of the measures are essential. This will be formalized in the following definitions.

2.1. Definition. € is called (#, #)-separating if for any H and F with HAF =0
there exists a pair C,, C, of sets in € such that C;nC,=# and HCC,, FCC,.

2.2. Definition. ye M(X, #) is called #-regular if for any Ac# and any ¢>0
there exists F such that FCA and sup {{u(B)|:BCA\F}<e.

M(X, B, F) denotes the space of all #-regular measures.

If X is a [Hausdorff] topological space then ue M(X, #(X)) is called regular
ftight] if g is #(X)-regular [ A (X)-regular].

2.3. Definition. ye M(X, %) is called (5, €)-regular if for any H and any
¢>0 there exists a pair C,, C, of sets in € such that H.C,CC, and
sup {|ju(B)|: Bc C,\H} <e [equivalently: For any He # and any ¢>0 there exists
a pair C, C" of sets in € such that C'cC"CH and sup {|u(B)|:BCH\C'} <¢].

24. Definition. (a) We shall say that & corresponds with ¥ if FnCe % for
any F and C.

(b) ¥ is called #-filtering if {C:F C C} is filtering to the left (by inclusion) for
all F.

2.5. Remarks. (a) Let € be (5, F)-separating and pue M(X, %) be F-regular;
then y is (o, €)-regular;

(b) (A, €)-regularity of pue M(X, %) implies its (", ¢')-regularity for any
HCH and BOE' OE;

) f F isa{w f)-paving then u,, y,€ M(X, 8, #)implies u, — e M(X, B, %),

(d I € 1s a (Uf, nf)paving then (#,¥)-regularity of u,i=1,2, implies
(H#, €)-regularity of y; — 5.

Let us illuminate the preceding definitions by some important examples
concerning topological spaces X =(X, 4(X)). Remember that ue M(X, B(X)) is
called 7-smooth iff for any paving 4,C%(X) filtering to the right (¢%,1) and any
e>0 there exists Ge%, such that sup{|u(B)|:#(X)sBCu¥%,\G}<e. A tight
measure is regular and t-smooth. By M(X,r), M(X, 1), and M(X,t) we denote
the spaces of regular, t-smooth and tight Borel measures, respectively. Before
stating the examples let us remark that

(2.5.1) pe M(X, B, F)>|ule M (X, B, F);

(2.5.2) pe M(X, t)=ule M (X, 7);

(2.5.3) ue M(X, B) is (A, €)-regular<>{y| is (', €)-regular.

(This follows from the well known fact (cf [3], IIL. 1.5} that

sup {|uB)|: BC A} =|ul(A4) = 2-sup {|u(B): BC A}

for any 4e B))

26. Example. (a) Let (X, 9(X)) be a topological space, #=B(X), €=%(X),
F =F X); then € is (F, F)-separating;

(b) Let (X,%(X)) be a Hausdorfl space, #=%8(X), €=%(X), ¥ =H(X);
then % is (&, #)-separating; if (X, %(X)) is a regular space, ¢ is also (#, F)-
separating with # = % (X);
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(c) Let (X, %(X)) be a normal space, @ BX),C=9%(X)or =9(X), F =F(X);
then € is (#, #)-separating w.rt. # =F or =%.

2.7. Example. (a) Let (X, 4(X)) be a topological space and pe M(X, %,X));
then (i) ue M(X, B (X), F o X)) and (ii) p is (37, €)-regular with respect to € =% o(X),
H =F (X);

{(b) Let (X, 9(X)) be a Hausdorff space and ue M(X, #); then y is (¢, ¥)-regular
with respect to ¥ =%(X) and # = A "(X);

(c) Let (X, 9(X)) be a regular space and pe M(X, 1); then (i) ue M(X,r} and
{ii) p is (O, €)-regular with respect to € =%(X) and # =F(X)};

{d) Let (X, 4(X)) be a completely regular space and pe M(X, 1); then y is
{(H#, %)-regular with respect to ¥ =% X), # =F(X) or %,(X);

{e) Let (X, 9(X)) be a normal space and pue M(X r}; then p is (), €)-regular
with respect to €=%4(X) and # =F(X) or ~%~,(X) and, under the same as-
sumptions on (X, 9(X)) and g, it is true that u is {(#, €)-regular with respect
to €=%(X) and # = F(X).

2.8. Example. (a) Let (X, 9(X)) be a topological space; then &# = F (X) corre-
sponds with €=%,(X) as well as F =F(X) with € =% ,(X) or —g(X };

(b) Let (X, %(X)) be a Hausdorff space; then # =.#(X) corresponds with
€ =%9X).

Proof of 26-2.8. As to 2.6 (a)(c) cf. the proofs of the Corollaries 4, 7, and 10
in [117. 2.7 (a), (b), and (e) follow from 2.6 and 2.5 (a) (as to 2.7 (a) (i) cf. Proposition
15 in [11]).

Proof of 2.7 (c). According to (2.5.1)~2.5.3) it suffices to prove the assertion
for pe M (X, 1). As (X, 9(X)) is a regular space, for any G,e #(X) wehave G, =%,
with %,={Ge¥%(X):G"CGy}T, hence for any &>0 there exists G,e%,
such that u(G,\G,)<e. Put G,:=G%; then G,CG,=G4CG, and w(Gy\G,)<e,
which proves (ii). Simultaneously the proof so far shows that ¥(X)C.«/,: =
{Ae B(X):Ve>0IFe F(X), Ge¥9(X) st. FCACG and w(G\F)<e}; but o7, is
a o-field and therefore #(X)=./, which implies (i). Proof of 2.7 (d): As before,
w.lo.g ue M, (X, 1), and it suffices to prove that u is (#, €)-regular w.r.t. € =% ,(X)
and # =F(X) [cf 2.5 (b)]. For any Gye % X), we have G,= ¥, with 4,=
{Ge9y(X):3G € F(X)s.t. GCG CGy}1: It follows from the (U f)-closedness
of 9y(X) and %,(X) that ¥, is filtering to the right; also U%,C G, by definition
of 4,. Hence it suffices to show that G,C U%,: As (X, %(X)) is completely regular,
for any xe G, there exists f.e C(X)s.t. 0< £, <1, fix)=1 and f,|G,=0. Then
fir=(fi— 3~ and fr:=(f;~ 3" belong to C(X), 0= fi<1, {£i>0}e%(X).
i=1,2,and xe {f,> 3}={£,>0}C{f, 2 4}={f,=0}CG,; hence xe {f,>0}e%,
and therefore xe u%,. Now, as ue M, (X,7), for any &>0 there exists
Gie%,y st y{Gg\G,)<e which implies, according to the definition of %, that u
is (', €)-regular wrt. €=%,(X) and # =F(X). Finally, the assertions in 2.8
are immediate.

2.9. Definition. (a) We shall say that #,C% approximates o7, C% from below
[above] with respect to ue M _ (X, B) if

inf{u(A\B): B,3BCA}=0[inf {(B\A): B,3BD A}=0]
for every Ae.o/ .
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(b) We shall say that #,C# approximates &/,CZ from below {[above]
uniformly with respect to MCM (X, &) if

inf{zg&) u(A\B):goaBCA} =0 [inf{‘s‘:l}; u(B\A):@’OaBDA} =o]

for every Ae o/,

Remark. If pe M(X, B) is (#, €)-regular, then € approximates # from above
with respect to ||. For an analogous result for families of measures see Lemma 2.17
below.

2.10. Definition. (a) MCM(X, #) is said to be dominated by ie M (X, %)
(M < 4) if for all ue M A(A)=0 implies u(4)=0.

(by MC M(X, %) is said to be uniformly dominated by Ae M (X, ) (M << /)
if for any £>0 there exists d(e)>0 such that A(A4)<d(¢) implies su“;{) (A <e.

U

2.11. Remark. (a) M < I M << 7] iff M|<< A[|M] < A].

(b) M <A iff for every e M and for any £>0 there exists (1, £)> 0 such that
HA)< oy, ) implies |(4)] <e.

2.12. Definition. MCM(X, %) is called equicontinuous if lim su}g lw(A4,) =0

n— o e

for each sequence (A4, B),.n With A, [0 as n—c0.

In the sequel M will always denote a subset of M(X, %) and as before we
maintain our General Convention.

2.13. Propesition. Let M*: = {v: =Y 2" i € M, me IN} ; then
melN [+ ””m “

(@ If # is a (Vf)-paving then MCM(X, #, F) implies M*CM (X, B, F);

(b) MC M(X, ) implies M*CM (X, 7);

(© If € is a (U f)-paving which is #-filtering and if u is (', €)-regular for
all pe M, then v is (A, €)-regular for all ve M*.

Proof. Let us prove (¢) and remark that (a) and (b) can be proved analogously.

em

Suppose that p is (#, 6)-regular for all ue M and consider v= ) 2 i
meiN m
Un€ M; then for any He 3 there exist sequences (C,).n and (C,,),n of sets

inést. HCC,,CC,,, neN, and
. (ﬂ 52,,\H) =0 for all me N, hence v (ﬂ @,,\H) =0;

therefore for any &> 0 there exists ke Ns.t. v( ) C,\H } <. Since ¥ is H -filtering
—— nsk

and HC () €, () Cop=1{J Gy, with |J C,,€%, it follows that v is (#,%)-
nzk

nsk n<k & n<k

regular for all ve M>.

2.14. Proposition.(cf. [4], 2.6). (a) If F is a (v f)-paving and if MCM(X, B, F)
[IMCM(X, v)] is uniformly dominated by le M (X, %), then there exists Ae M,
(X, B, F)[ie M (X, 1)] such that M << .

(b) If € is a (v f)-paving which is # -filtering and if M << A with yt being (#', €)-
regular for all ue M, then there exists ic M (X, #), A being (H, €)-regular, such
that M < 7.
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Proof. Applying A2 with M,:={ueM:|ull<k}, ke N, instead of M, and
using A1 it follows that M, is uniformly dominated by some A,e M C M* and also

that M is uniformly dominated by A1:= Y 2“"-ﬁ‘--—e (M?*)*; therefore the
= RS P
assertions follow from 2.13.
For the sequel the next concept proves to be essential; for one point sets M
it reduces to the concept of ”s-bounded” measures as introduced by Rickart in [13].
2.15. Definition. MC M(X, %) is said to be uniformly s-bounded with respect

to o C A if sup |(4,)]—0 as n— oo for each sequence (A4,),.n Of pairwise disjoint
peM

sets in &7,

2.16. Proposition. Let M CM(X, B, F) and € be a subpaving of #. We consider
the following assertions:

(a) [M] is uniformly s-bounded w.rt. F ;

(b) M is uniformly s-bounded w.rt. F ;

(c) |M| is uniformly s-bounded w.r.t. € ;

(d) M is uniformly s-bounded w.r.t. €.

Then (a)<(b)=>(c)=>(d). If, in addition, € is F-filtering and p is (F, €)-regular
Jor all pe M, then (c)=>(d).

Proof. Let us prove that (d) implies (c) whenever ¥ is # -filtering and u is
(# , 6)-regular for all ue M. The remaining assertions can be proved in an analogous
manner without the additional assumptions. Suppose to the contrary that (c)
does not hold; then there exist £¢>0, a sequence (Cp),. Of pairwise disjoint sets
in ¢ and a sequence (g, M), such that | {C)>¢ for all ke N hence by the
Z -regularity of y, there exist F,C C, with {u{F )| >¢/2, ke N. Now, since the g,
are assumed to be (¥, ¥)-regular, it follows from the remark preceding 2.10
that ¥ approximates % from above w.r.t. |g, i.e. there exist C,DF, with

Id(CAF D) < |ul(F )l — /2.

Since F,,C C,nC, and € is # -filtering there exists Cle € such that F,C C;C C,nC;
and |p(CIZ udF ) —1(C\F) > 5. This, however, contradicts (d), since the
sets Cy, ke N, are pairwise disjoint.

2.17. Lemma. Let M C M(X, B, F) and assume that each pue M is (F, €)-regular
where € is F-filtering. Then, if M is uniformly s-bounded with respect to €, it
Sfollows that € approximates F from above uniformly with respect to |M].

Proof. According to (2.5.1), (2.5.3), and 2.16 we may assume w.lo.g that
BEMCM (X, %8, F). f € does not approximate F from above uniformly
w.r.t. M, then there exist F and £>0 s.t.inf {sup WC\F):FC C}>s; furthermore

C

neM
we claim that there exist sequences (C,) . and {C,),. of sets in € and a sequence

(e M) st forallne N: () C,,. ,CC,, C,CC\C,. , (i) FCC, and (iil) x,(C,)> ¢
Since the C,, ne N, are pairwise disjoint, this contradicts the uniform s-bound-
edness of M w.rt. .

To prove our claim, note first that by (%, %)-regularity of ue M, there exists
Cy with FCC,; assume that Cy, ..., C,and, for k> 1, C), ..., Co_y and uy, ..., gt
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have been already constructed so that (i)-{iii} are fulfilled. According to the choice
of F there exists y,e M st. u(C\F)>¢ By the (#, ¥)-regularity of i one can
find D,, D\e¥% with FCD,CD} and p(D;\F)<u(C,\F)—e¢, hence pu(C,nD})=
il CANF) — i D}\F)>¢. By the & -regularity of g, we can find F,C C,nDj with
wdFd>e As € is F-filtering one can find sets C, and C,,, in € such that
F.CCCCnD, FCC, CCnD, and thus p(C)>e This proves our claim
and hence the lemma.

2.18. Lemma. Let & be a (U f)-paving and € be an F filtering paving. Let
MCM(X,#B,%) and assume that each pye M is both (#,%€)- and (€, €)-regular.
Then, if M is uniformly s-bounded with respect to €, it follows that F approximates
€ from below uniformly w.or.e. |M|.

Proof. Again wlo.g. we may and do assume that g§+MCM_ (X, B, F).
[f.7 does not approximate 4 from below uniformly w.r.t. M, then there exist De 4,

e>0s.t. inf { sup W(D\F):F C D} >¢; furthermore we claim that there exist sequences
neM

(F W)nenes (C G, C)pen Of sets in F and %, respectively, and a sequence (ut,€ M), S-t-
for all ne N:

n—1

(i) F,cC,chn () CY,
i=1

(i) sup w(C\F,)<e.270*"D
ueM

and

(iii) C,cCicC, and p(C)>¢/2.

Since the C,, ne N, are pairwise disjoint, this contradicts the uniform s-boun-
dedness of M w.rt. €.

To prove our claim, note first that the #-regularity of ue M implies that

there exist F,CD and p,e M s.t. p,(F)>e¢. It follows from 2.17 that there exists
Cte¥ s.t. F CCY and sup y(CH\F,)<e¢/d. As € is F-filtering choose C,e¥
peM

with F,CC,CCinD; hence p(C,)>¢ andsup g{C\F,)<¢g/4. Furthermore,
peM
by the (%, ¥)-regularity of y, there exists a pair C;, Cj of sets in €s.t. C, CC/C C,

and u,(C})>&/2, which proves our claim for n=1.
Now, assume that the quantities fulfilling (i)—(iii) have been already constructed

up to n=k Now DD U F.e #, hence according to the choice of D there exists

k
Hpo €M St phyy ( \ U ) > & Therefore, using the fact that (by the inductive
1

e _
assumption) sup,u((U )\(U ,)) <¢/2and U C/C U C.CD, one obtains

peM i=1 i=1
k

that u, . (D\ U C”) >¢/2, hence by the F-regularity of u,,., we can find

FroiCDn () Cf st s 1(Fiy ) >¢/2. Now, it follows again from 2.17 that there

i=1
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exists Cf,,e¥st F,,,CCt , andsup y(C}, \Fys1)<e2 %D As € is F#-
neM
filtering choose C,, ;€ ¢ with

k
Fri1CCu 1 CG i nD m G
i=1

Then sup p(Cyy \Frs1)<e-27%*2 hence (i) and (ii) are fulfilled for n=k+ 1.

neM -
Finally, since gy, (Cry )2 tyes 1(F iy 1)>¢/2 and since . is (4, €)-regular,
there exists a pair Cy, ,, Ci,, of setsin @ s.t. C, ., CCh 1 CCpypyand py . (Cii )>
£/2,1.e. (iii) holds also true for n=k+ 1.

2.19. Lemma. Let MCM(X, B, F) and assume that F corresponds with €.
If (a) € approximates F from above uniformly w.r.t. \M| and if (b} F approximates
{X} from below uniformly w.r.t. M|, then (a) and (b) together imply that F approxi-
mates € from below uniformly w.r.t. |M|.

Proof. Let C and >0 be given; according to (b) there exists F s.t. sup |u} (F) <e/2.

. ueM
Now, as # corresponds with ¢, FnCe #, and therefore (a) implies that there
exists C;s.t. FNCCC; andsupluyl (C,\(FNCO)<e/2. 1t follows that F :=

— ueM
FnC,e #, F,CCnF and sup ju| ((CHF)\F,)<¢/2, hence F; C C and

neM

sup |ul (C\Fy)<e.

neM

2.20. Definition. (a) Let 7 denote the topology in M(X, #) of set-wise con-
vergence on 4, i.e. 7, is the weakest topology in M(X, %) for which all mappings
p—u(A), Ae B, are continuous. In other words: If pue M(X, %) and if (up) is a
net in M(X, %), then (u,) J -converges to p((ug)o> p) iff py(A)— p(A) for all Ae B.

(b) n,e M(X, %), ne N, is said to converge on #,CA [to zero] if (1, (A))en 18
convergent in R [lim U(A)=0| for all Ae 4,

{c) B,C# is called a convergence class for MCM(X, %) (wrt. 7 if any
sequence (u,€ M), which converges on %, does also converge on %.

2.21. Proposition. If u,e M{X, B), neIN, converges on %, then there exists
ue M(X, B) such that y,- u; furthermore

(@) if & is a (v f)-paving then pe M(X, B, F) provided p,c M(X, B, F) for
allne N;

(b) ue M(X, 1) provided p,e M(X, 1) for all ne N;

(c) if € is a (U f)-paving which is # -filtering then y is (#, €)-regular provided
U, is (., €)-regular for all ne N,

Proof. The first assertion is Nikodym’s theorem {cf. A4). According to the
Vitali-Hahn-Saks-Theorem (A3) {u,:ne N} is uniformly dominated by
Je M (X, %), where according to 2.14 we may assume w.L.o.g. that le M (X, 4, F)
in case (a), le M, (X, 7} in case (b), and (A, ¥)-regular in case (c), whence the
assertion follows since 1 does also dominate the limit measure u.

From Lemma 10 in [10] (cf. A5) we obtain the following result.
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2.22. Lemma. Assume that € is a (\c)-paving and let p,e M(X, #), ne N, be
convergent on €; then {u,:ne N} is uniformly s-bounded with respect to 6.

Proof. Assume the contrary; then there exist >0, a subsequence (i, )in Of
(Hhmen and a sequence (Cp),. of pairwise disjoint sets in % such that inf |, (C)i>e.
keN

But this is in contradiction to Lemma 10 in [10] (cf. AS5) with by: =y, (C)) for i,
ke N

2.23. Proposition. Let u,c M(X, %), me N, and A,eB, neIN be such that
ATA[A,[A] as n— o then the following holds true:
(&) If {u,,-me N}< 4, thensupip,] (A\A4,)—0 |sup i, (4,\4)—=0] as n—o0;
meN meiN

(b) If (1t,fA e I convergent in R (convergent to zero) for all ne N, and if
sup |, AA\AN—0 [sup (A4, \ A —0| as n— oo, then (11,{A))en is convergent in R
meiN meN

{convergent to zero).

The simple proof of 2.23 is left to the reader.

2.24. Proposition. Let e M(X, B, %), ne N, be convergent on € [to zero],
where 6 is a (Vc)-paving. If € approximates F from above uniformly with respect
to {{u,l :ne N}, then p,, ne N, is convergent on B [to zero].

Proof. Let B and ¢>0 be given. By #-regularity of yu, there exists F, such

that F,CB and |u,| (B\F,)< % Furthermore, for every je N we can find a set C;

satisfying F;C C; and |u,|(C)\F) < ; 27U* D for all neN. Putting C:= | ) C;
€N

j
which pertains to % by assumption one obtains BACC(B\F,)u |} (C}\F ;) and
JeN
therefore |1, (BAC) < |u,| (B\F,)

+ >l (CAF) < %for all ne N.

JjeN
Since, by assumption, (u,(C)),n 1S convergent in R, we get
i, B) = 1 B)] =4 B\C)— 11,{ B\C)
+ 1B O) = p( BA O 2|11, [(BAC)

for all sufficiently large m, ne N Hence the sequence {i,(B)),.n converges in R.
In an analogous manner one can prove that the sequence (11,),., 1S convergent
on # to zero, if it is convergent on % to zero.

2.25. Lemma. Let MCM(X, &) be such that i, —p,e M whenever pt, yu,e M
and consider # C# having the property that any sequence p,e M, ne N, which
converges to zero on H does also converge to zero on #; then K is a convergence
class for M.
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Proof. Let p,e M, ne N, be s.t. lim g, (H) exists in R for all He #. X (1,{Bo))nen
does not converge in R for some B, then there exists ¢>0 and for any ne N a
natural number m(n) s.t. |1,(Bo) — iy 4 mm(Bo)l >e. (+)

Let v,: = i, — My 4 mny; then v,e M and lim v,(H)=0 for all He # and therefore

nor oo

lim v {B)=0 for all Be %, which contradicts (+).

[ ande )

2.26. Lemma. Let (X, % (X)) be a topological space and p,e M(X, B(X)),
ne N, be (#(X), 9(X))-regular. Then the following holds true:

If () converges on 4(X) to zero, then {u,:ne N} is uniformly s-bounded
with respect to 4(X).

Proof. Assume to the contrary that {s,:ne N} is not uniformly s-bounded
w.rt %(X); then there exist ¢>0, a sequence of pairwise disjoint open sets G,,
ke N, and a subsequence (i, )ien Of (Up)per 8-t Il{nrg (G >e¢. By (2.5.3) all |u,, |,

ke N are (#(X), ¥(X))-regular, hence there exist pairs Gj, G; of open sets s.t.
G, G CGy and

tn ) GAGY =1y (GAGD<Ip, (Gl —&, ke N.

Put R,: =(Gp)°, ke N; then R,e %,(X), ( U Rm>amR;c( U Rm)anCZc GinG=0
m*k m+k
and |, (R 21, (G — 1, (G\GY) >¢ for all ke N, which contradicts the
assertion of Lemma 3.4 in [ 5] (see A6).
Let us conclude this section with the following lemma which is taken from
[1]} (Lemma 4.1.4).

2.27. Lemma. Let (X, %(X)) be a perfectly normal space and M C M(X, #(X)),
or let (X, 9(X)) be a completely regular space and M C M(X, t); then in both cases
the following holds true: If, for every uniformly bounded sequence of continuous
functions fj, je N, converging to zero at every point xe X, we have lim | fidu=0

jmo X
uniformly with respect to ue M, then M is uniformly s-bounded with respect to 4(X).

Proof. Assume to the contrary that M is not uniformly s-bounded w.r.t. ¥(X);
then there exist a sequence of pairwise disjoint open sets G,, ne N >0, and an
infinite subset N, of N, s.t. inf |y (G, )| >¢ for some u,e M; wlo.g we may take

neiNg
INo=IN Now, consider the first case, where (X, (X)) is supposed to be perfectly
normal and M CM(X, 4(X)). Then, for every ne N, there exists a sequence of
nonnegative continuous functions f, ,, ke N, s.t. f, 1xs, as k—oo. Hence for
every ne N there exists ke Ns.t.

G )l < l § fondits] +8/2; put fo: = f, . ne N,
X

If, as assumed in the second case, (X, 4(X)) is completely regular and M C M(X, 1),
then it follows that y; = sups#, with #,:={fe ((X):0< f <y, }. Since g, is
supposed to be t-smooth, there exist f,e # st (G )I< : § fidu,| +2/2.

X
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Therefore in both cases we did find a uniformly bounded sequence ( f,€ C(X)),en

converging to zero at every point xe¢ X, whence, by assumption sup } j f,,du! <g/2
ueM 1 X
for n sufficiently large; but this will yield a contradiction to inf|u,(G,)|>e¢.
nelN

3. Compactness in Spaces of Regular or 7-Smooth Measures

This section is concerned with compactness criteria in the space (M(X, 8, #), T )
which will cover for topological basic spaces X all criteria known to us up to now,
especially those given in [1] and [4] in the case of t-smooth and tight measures,
respectively. We shall make here consequent use of the concept of (#F, ¥)-regularity
as defined in 2.3 which turns out to be essential also for the unified presentation
of our convergence results in the next section.

Partially the proofs of the following theorem are taken from [1] and [4],
respectively.

3.1. Theorem. Let & be a (U f)-paving and € be a (wc, N~ f)-paving. Let M be
a bounded subset of M(X, B, #) and suppose that u is (F, €)-regular for all ue M.
Then the following assertions are equivalent :

(i) M is conditionally compact in (M(X, B), 7 );

(i) M is conditionally sequentially compact in (M(X, B), T );

(il M isuniformly dominated by some e M (X, B, F) (and every ve M (X, &)
dominating M dominates M uniformly) ;

(iv) For every uniformly bounded sequence f.c B(X,%), jeN, and every
feB(X, %) with the property that for all uc M and all F f;- xp— f - xr in |ul-measure,
we have lim | fidu= j fdu uniformly war.t. pe M ;

jrwo X

) M is umformly s-bounded wrt. F ;
(vi) For every monotone decreasing sequence (C,),n Of sets in € we have

inf sup |ui( \ )
neN peM keN
(vii) (a) # approximates € from below uniformly w.r.t.|M| and (b) M is uniformly

s-bounded w.r.t. €.

Proof. (ix=>(ii)<=>(iii): A simple proof for these equivalences is given in Theorem
2.6, Remark 1.8, and Corollary 2.7 of [4] (cf. Al, A2, and 2.14). (iii}=>(iv): Let
fi€eB(X,#), jeN, be uniformly bounded, C:= max {l,sup qup}fj(x)}}<oo,

JEN X,

and consider fe B(X, #)s.t. fxp— fxr in |ul-measure for all F and pe M; as u
is Z -regular, this implies |u| ({| f|> C})=0for all ue M, and therefore f'is integrable
w.rt. |ul. Now, assume (iv) to be wrong; then there exists a uniformly bounded
sequence fie B(X, #), je N, so that there exists ¢>0, an infinite subset IN,CIN
and p.e M, ne N,, with inf j( f,— Ndu,| >e. W.lo.g. we may assume Ny=N.

neMNg

Since {|u,|:ne N} << le M (X, ué’ F), thereexists F s.t. sup |14l (Fo) <&/4C. Hence,

for all ne N,|f(f,— Ndu,— § (fi— fdn,
| |
@inf | ] (o ] > o2

< [ 1fui—fldi,)<e/2 and therefore
Fo




204 W. Adamski et al.

On the other hand, if we define A,:= Z 2-m—ij|*ﬂ1|"ltl i it follows that
meN m

S teo— S xp, I Ag-measure, and {|u,,|:me N} << 4, [cf. Al and 2.11 (a)], hence
there exists 6> 0s.t. Ao(4) <3 implies sup |u,|(4)<&/8C. Now, as f,-yp,— f- Xz, in
melN

Ao-measure, we obtain, given §,: = s/(4 sup |u| + 1), that A(Fon{l f,— f1> 0, H<d
HeM
for all nz=n, and therefore sup ju,[(Fon{lf,— f1>0,})<&/8C for all nz=n,.
meN

It follows that for all nzn,

Ff (fo—= dp,| £ ) 1fa— fldlis,]

Fonllfrn— 11> o0}

Forf]fn—flZd0} ueM
which contradicts (x).
(iit) =(v)—(vii): Obvious.
(iv)=(v): Let (F,),n be a sequence of pairwise disjoint sets in % ; then f,: =y,
ne N, converges pointwise to zero, hence for all F and ue M we have f,y;—0
in |u-measure, whence, by (iv), JH?@ U(F,)=0 uniformly w.r.t. ue M.

For the rest of the proof we may and do assume w.Lo.g. that MC M (X, &, F)
(cf. (2.5.1),(2.5.3), 2.11 (a), and 2.16).
(v)=-(vi): Assume (vi) to be wrong; then there exist £>> 0, a monotone decreasing
sequence (C,),. of sets in € and a sequence (u,e M), S.t. inf p, (C,,\ N Ck>>g.
ne keN

From this it follows that there exists a strictly increasing subsequence (1), Of
INs.t mf (GG, , )>e. By the F-regularity of the p, there exist F, with

Ay o+t

F,.CC \ mes, and g, (F)>¢, ke N; hence we arrive at a sequence of pairwise
dis;omt F,, ke N, with sup u(F)> ¢ for all ke N which contradicts (v).
ueM

(vi)=>(iii): According to Theorem 2.6, Remark 1.8 and Corollary 2.7 of [4]
(cf. A1, A2, and 2.14) it suffices to show that for any sequence (u,e M), it is
true that {,:ne N} is uniformly dominated by

. wn _Hn
gt ST
Suppose the contrary; then there exist some sequence (i,& M), and an e>0s.t.
for every 0>0 there exist Ae # and ne N with A(4)<d and u,(A4)>¢ whence,
by the #-regularity of u, one can find FCAs.t. (F)<d and p,(F)>¢e Now, by
2.13 (¢}, A is {#F, €)-regular, and therefore (cf. Remark precedmg 2.10) there exists
Cs.t. (CO)<d and p1,(C)> ¢. In that way, for §=27% one arrives at C, and n,c Ns.t.
HCy<27*and y, (C)>e Now, put C,: = | | C, ne N;then (C,),. is a monotone

kzn

decreasing sequence of sets in 4 with i(ﬂ G\ =0, since C)< Y 2750
N kzn
as n—oo; furthermore, u,,k( \ AKe ) U (C) Z 1, (Ch)>¢ for all ke N; but this

. . neN
contradicts (vi).
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{(vil)=(vi): Suppose (vi) to be wrong; then (cf the proof of “(v)=>(vi)") there
exist ¢>0, a monotone decreasing sequence (D,),. of sets in €, and a sequence
(Un€ M)yen 8-t 1 (DD, . ) >¢ for all neN; furthermore, we claim that there
exist sequences (C,),n and (C,),. of sets in & such that for all ne N:

(i) C,+,CC, and C,CC\C,,,, (i) C,CD, and sung U DNC,) < &/2 and (iii)

1 (C)>¢/2. Since the C,, ne N, are pairwise disjoint, this contradicts the uniform
s-boundedness of M w.r.t. €.

To prove our claim, put C,: =D, and suppose that C,, ..., C;, and, for k> 1,
Ci,...,C,_; have been already constructed so that (i}-(iii) are fulfilled; then,
since C,CD, and D, ,CD,, sup p{Dy MCenDyy ) <e/2, where CnD, . €%,

men

and hence by (vii}{(a) there exists F,C C,nD, 8.t sup i, ((Cn Dy NFI<e/2—
meN

sup f, Dy (MCynDy i ). Therefore we obtain () sup u, (D, \F}<e&/2, since
meN meN

fnug Ml Dies \F ) S ?nuﬁ EmDir 1\(Dis 1 0 C+ Sug Pl(Dy s 1 "C\F ) <e/2.

Furthermore, as F,C D, |,
PLCNF ) Z i DDy 4 1) — Sug U DNC) > e—¢/2=¢/2.

Since p, is (F, €)-regular, there exists a pair Cy, Cf of sets in € s.t. €} C CicF,
and g (F \Cy) < i C\F ) —£/2, and therefore u( C,n Cy) Z i CenF ) — i F A\ CP >
g/2. Now, C,: =CnC; and Cp: =D (nCnCF are sets in %, and (iii) holds
true for n= k. On the other hand, we obtain (i) from the fact that C,C C,, C,C C; C CF
and C,, , C G C¥; finally, (ii) (with n=k + 1} follows from (), since

Fil Gy i CDyyy

This completes the proof of 3.1.

3.2. Theorem. (cf. [ 1], 4.1.5). Let the assumptions of 3.1 be fulfilled and suppose,
in addition, that F is a (V [, n f)-paving. Then each of the assertions

(i)~(vii) in 3.1 is equivalent to the following assertion

(viii) (a) & approximates € from below uniformly w.r.t. IM};

(b) For every monotone decreasing sequence (F,),.n of sets in & we have
inf sup IHI(F,.\ N Fk> =0.
nelN peM keN

Proof. (viii)=>(vi): Suppose (vi) to be wrong; then there exist £>0, a monotone
decreasing sequence (C,),.x Of sets in %, and a sequence

(1u€ Mpep st (#) inf [, (c,,\ N ck)> e

neN keiN

By (viii) (a) there exist F, neN st. F,CC, and su}; (C\F,)<e-27"" 1 Let
ue

n
F:= [} F, ne N, then (F,),.y is a monotone decreasing sequence of sets in &,
k=1
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hence, by (viii) (b), sup |y (Fj,\ N F}‘) —0 as n— 0. Furthermore,

peM keN

sup [4/(C,\F,) < sup [u (U (CAF)) = X sup W€, \Fo)<of2

ueM pueM I=1 ucsM

for all ne N, and therefore

sup |u| (Cn\ N Ck)é sup |y (Cn\ g Fi)é sup [ul(C,\F,)

neM keN peM peM
+ sup |y (F;\ N F}c) <e
ueM keN

for n sufficiently large, which contradicts ().

3.3. Theorem. Let the assumptions of 3.1 be fulfilled and suppose, in addition,
that u is (6, %6)-regular for all ue M. Then each of the assertions (i)—(vii) in 3.1
is equivalent to the following assertion (ix) M is uniformly s-bounded w.r.t. €.

Proof. (ix)=(vii) (b), and (vii) (a} follows from 2.18.

3.4. Theorem. (cf. [11, 4.1.5). Let the assumptions of 3.1 be fulfilled and suppose,
in addition, that % corresponds with €. Then each of the assertions (1)—(vii) in 3.1
is equivalent to the following assertion

(x) (@) F approximates { X} from below uniformly w.r.t. |M|;
(b) M is uniformly s-bounded w.r.t. €.

Proof. (x)=-(vii): Follows from 2.17 and 2.19. Since (vii) is equivalent to (iii),
there exists le M (X, 8, ) s.t. M| <« 4, which implies (x).

3.5. Theorem. (cf. [1], 4.1.5). Let the assumptions of 3.1 be fulfilled and suppose,
in addition, that & is a (U f, n f)-paving and that F corresponds with €. Then
each of the assertions {(iy-(vii) in 3.1 is equivalent to the following assertion

(xi}{a) € approximates F from above uniformly w.rt. |M|;

(b) & approximates { X} from below uniformly wr.t. |M|;
{c) For every monotone decreasing sequence (F ), of sets in F we have

inf sup || (F,,\ N F,‘) =0.

nelN peM kelN

Proof. Note, that under the present assumptions, {(i}-(vii) in 3.1 18 equivalent
to (viil) in 3.2. Now, the implication (xi)=>(viii) follows from 2.19. On the other
hand, since (viil) is equivalent to (iii), there exists le M (X, B, F)s.t. M| << 4,
where w.lo.g. 1 may be supposed to be (£, ¥)-regular by 2.14 (b), hence ¥ ap-
proximates # from above w.r.t. A(cf. Remark preceding 2.10). From this it follows
that (xi) is implied by (viii).

3.6. Remark. The assumption in 3.1 of M being a bounded subset of M(X, 4, F)
was only needed to prove the equivalence of (i}-(iv). The equivalence of (jii) with
each of the other assertions proved in connection with 3.1-3.5 holds true without
the boundedness assumption on M. We remark also, that, for bounded M, the
compactness criteria 3.1-3.5 characterize as well the so-called (cf. [3], IV. 9)
weakly conditionally (sequentially) compact subsets of M(X, %, %); this follows
from {4], 2.14 and 2.16.
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Let us conclude this section by applying the results obtained so far to situations
when X is supposed to be a topological space. In that case, using also 2.7 and 2.8,
we obtain immediately the following corollaries, where we remark that in any case
considered below & is a (U f)-paving and ¥ is a (Uc, N f)-paving (cf. [6], 1.14
for the {uc)-closedness of %o(X)).

3.7. Corollary (cf. [1], 4.1.7). Let (X, %9(X)) be a topological space and let M
be a bounded subset of M(X, B(X)). Then, taking B=%RByX), F=F (X) and
€ =% (X), the assertions (1)—{xi) in 3.1-3.5 are all equivalent.

3.8. Corollary (cf. [4], 3.7 and [1], 4.1.10). Let (X, 9(X)) be a Hausdor{f space
and let M be a bounded subset of M(X,t). Then, taking B=RB(X), F =X(X)
and € =%(X), the assertions (i)—{viii), (x) and (xi) in 3.1-3.5 are all equivalent and
also equivalent to any of the following assertions

(xii) #(X) approximates B(X) from below uniformly w.r.t. |M|;

(xiil) A (X) approximates 4(X) from below uniformly w.r.t. |M|;

(xiv) (a) " (X) approximates { X } from below uniformly w.r.t. |M|;

(b) 4(X) approximates X' (X) from above uniformly w.r.t. |M).

Proof. (iit)=>(xii), since M << le M (X, 1) [cf. 2.14 (a)]. (xiii)=>(vii): It suffices
to show that M is uniformly s-bounded w.r.t. 4(X). Let (G,),., be a sequence of

pairwise disjoint open sets; then, for G: = |} G,e%(X) and any &> 0, there exists
neN

Ke A (X)st. KCG and sup |u/(G\K)=<¢. Since K 1is compact, there exists
ueM

me Ns.t. U G,CG\K, and therefore sup |¢)(G,) < sup [uf(G\K)<¢ for all n=2m.
nzm peM neM
From this and 2.17 it follows that (xiii) implies (xiv); on the other hand, (xiii)
follows from (xiv) by 2.19.

3.9. Corollary (cf. [1], 4.1.12). Lert (X, (X)) be a regular space and let M be a
bounded subset of M(X,1). Then, taking B=%(X), F=%(X) and €=%X),
the assertions ()—(xi) in 3.1-3.5 are all equivalent.

3.10. Remark. 3.9 yields a remarkable generalization of 3.11 in [4] as well as
the following corollary will generalize 3.12 in [4].

3.11. Corollary(cf. [1], 4.1.13 and [4], 3.12). Let (X, %(X)) be a completely
regular space and let M be a bounded subset of M(X, t). Then, taking % =%(X),
F =F(X) and € =% (X) or =%(X), the assertions (iy(xi) in 3.1-3.5 are all equiva-
lent and also equivalent to the following assertion.

(xv) For every uniformly bounded sequence of continuous functions f,, ne N,
converging to zero at every point xe X, we have lim j [ du="0uniformly wr.t. ue M.

n—w X

Proof. (iv)=-(xv): Obvious. (xv)=>(ix): Follows from 2.27.

3.12. Corollary(cf. [17, 4.1.8). Let (X, 9(X)) be a normal space and let M be a
bounded subset of M(X,r). Then, taking B=R(X), F=F(X) and €=%(X)
or=%(X), the assertions (i)—(xi) in 3.1-3.5 are all equivalent.

3.13.Corollary(cf. [1}, 4.1.9). Let (X, 9(X)) be a perfectly normal space and let
M be a bounded subset of M(X,#(X)). Then, taking B=R(X), F=F(X) and
€ =%4(X), the assertions (i}~(xi) in 3.1-3.5 and (xv) in 3.11 are all equivalent.
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Proof. M(X, (X))= M(X, r), since (X, %(X)) is a perfectly normal space, hence
the assertion follows from 3.12 and the same argument as in the proof of 3.11.

4, Convergence-Theorems

Besides the compactness results of the preceding section our general tools presented
in Section 2 enable us also to derive in a rather straightforward way the results
(a){f) mentioned in the introduction. To this extent we will consider first the
question whether the (U¢)-paving € can serve as a convergence class for sequences
u,e M(X, %, F),ne N, and secondly we will study the same question w.r.t. 4(X)
[being aware that %,(X) is not even (U f)-closed].

A. The paving € as Convergence Class

Suppose that there is given an arbitrary non-empty set X, a g-field 4 in X, an
arbitrary subpaving % of # and a #-filtering (Uc)-paving €C4A. Then the
following theorem which is, for the present case of realvalued measures,
a generalization of Theorem 1 in [11] [c¢f 2.5 (a)] holds true.

4.1. Theorem. Let y,e M(X, B, F), ne N, and suppose that all p, are (F,%)-
regular. Then, whenever (i), is convergent on €, there exists ue M(X, %) being
(F, €)-regular, too, such that > [i.e. }l_)ﬂ;j UB)=(B) for all Be B|. If F is a

(U f)-paving, then u is also F -regular.

Proof. According to 2.21 it suffices to show that (u,),.n is convergent on %.
Since (f1,),, 18 convergent on % 2.22 implies that {u,:ne N} is uniformly s-bounded
w.r.t. 4. Now the assertion follows from 2.24 according to 2.17.

Now, using 4.1 and 2.7, we are in the position of obtaining immediately the
results (a}+{d) mentioned in the introduction.

4.2. Corollary (cf. [11], Corollary 4). Let (X, %9(X)) be a topological space;
then 4 (X)} is a convergence class for Baire measures.

4.3. Corollary (cf. [12] and [4], Theorem 5.2). Let (X, %(X)} be a Hausdorff
space; then %9(X) is a convergence class for tight Borel measures.

4.4. Corollary (cf. [1], 4.2.13). Let (X, 9(X)) be a regular space; then 4(X) is a
convergence class for T-smooth Borel measures.

4.5. Corollary (cf. [1], 4.2.14). Let (X, 9(X)) be a completely regular space;
then 9(X) is a convergence class for t-smooth Borel measures.

4.6. Corollary (cf. [11], Corollary 7). Let (X,%(X)) be a normal space; then
G(X) is a convergence class for regular Borel measures.

4.7. Remark. As it was shown in [11], Example 8, 4.5 does not hold for regular
instead of t-smooth Borel measures.

B. The Paving %,X) as Convergence Class

Suppose that (X, %(X)) is a topological space, take #=%(X), ¥=%(X) and
let # be a (U f)-paving contained in #(X). Then the following theorem holds true.
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4.8. Theorem. Let p,e M(X, B, ), ne N, and suppose that u, is (¥, €)-regular
wrt. =% and =%. Then, whenever (). converges on 4{X), there exists
ue M(X, B, ), being also (#, €)-regular, such that y,—p.

Proof. According to 2.21 it suffices to prove that %,(X) is a convergence class
for M:={ue M(X,RB, F):(H,€)regular wrt. # =% and =%). To this
extent [observing that by 25 (¢) and (d) g, —pu,eM whenever u,, y,e M] it
suffices by 2.25 to show that the sequence (u,),.n converges on 4 to zero whenever
it converges on %,{X) to zero. But if (4,), is convergent on %,(X) to zero, then,
by 2.26, {u,:ne N} is uniformly s-bounded w.r.t. 4(X), and therefore 3.3 (cf. 3.6)
yields that {p,:ne N} << le M (X, &, F). Since |y, ne N are (¥, ¥)regular
(cf. 2.5.3), for every Ge %(X) there exist sequences (C,)men a0 (C,)men Of sets in
%=%(X)s.t. C,CC,CG and sup |u,| (G\ U c,,,) =0. Now, consider R,,: ={C,)°;

neiN meN

then R,e%,(X), C,,CR,CG and therefore sup |,u,,[(G\\ U R,,,)——-O. Since %,(X)

nelN meN

is (M f)-closed, it follows that 31-»1130 U {A)=0 whenever A4 is a finite union of sets
in 4,(X); hence by 2.23 it follows that

lim ,u,,( U R,,,) =0

n—+ oo meN
and therefore ,,an; 1,{G)="0. Now the assertion follows from 2.24 according to 2.17.

Next, using 4.8 and 2.7, we are again in the position of obtaining also the
remaining results {e) and (f) mentioned in the introduction.

4.9. Corollary (cf. [1], 4.2.18). Let (X, %(X)) be a regular space; then 4(X)
is a convergence class for T-smooth Borel measures.

4.10. Corollary(cf. [14], Theorem 1). Let (X, %(X)) be a normal space; then
% (X) is a convergence class for regular Borel measures.

4.11. Remark. 4.9 generalizes Theorem 3.1 of [5].

Appendix

Al {cf [4], Remark 1.8 and Corollary 2.7). MCM(X, #) is uniformly dominated
by some le M _ (X.%B) iff M is equicontinuous; in that case any ve M (X, %)
dominating M dominates M uniformly.

A2 (cf. [4], Theorem 2.6). Let M be a bounded subset of M(X, %#). Then the
Jollowing assertions are equivalent :

(i} M is conditionally compact in (M(X, #), T ),

{ii) M is conditionally sequentially compact in (M(X, #), T ),

(iii) M is uniformly dominated by some J€ M? and every ve M (X, %) dominating
M dominates M uniformly;

(iv) M is equicontinuous;

(v) Every countable subset of M is equicontinuous.

A3 (Vitali-Hahn-Saks). Let u,c M(X, %), ne N, be convergent on %, then
{u,:ne N} is uniformly dominated by some e M (X, ).
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A4 (Nikodym). Let p,e M(X, ), ne N, be convergent on & ; then
HA): = lim p,(4),

Ae B, defines a measure.
A5 (cf. [10], Lemma 10). Let b, be real numbers for i, ke N such that

(z bik)ieiN
keM
is convergent in R for all subsets M of N. Then llgfg b;=0.

A6 {cf. {5}, Lemma 3.4). Let p,e M(X, B(X)), ne N, be convergent on 9,(X) to
zero, and let (R,),n be a sequence of sets in %(X) with( U Rm)“mR’,‘, =@ for all

m¥n

ne N; then '}111;10 #AR,)=0.
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