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1. Introduction 

A famous result of Dieudonn~ ([2], Proposition 8, p. 37) and Grothendieck 
([7], p. 150) states that for compact metric resp. locally compact spaces X con- 
vergence of a sequence of tight Borel measures on every open set entails its con- 
vergence on all Borel sets; in other words: The family N(X) of all open subsets 
of X is a convergence class for tight Borel measures. 

It was rather natural that with recent developments within the area now called 
"Topology and Measure" this result became again of interest to various people 
(cf. [16, 15, 4, 5, 12, 11, 14]), where in [11, 14] there was even considered the 
case of measures taking their values in an abelian topological group; this will 
not be considered here. Rather we intend in the present survey to put emphasis 
onto a unified approach to several results on compactness and convergence of 
measures which will imply all the main theorems known up to now and various 
new results (cf. 3.7-3.13, 4.5, and 4.9), Among them there are the following gen- 
eralizations of the Dieudonn6-Grothendieck-Theorem [where (b), (e) and the 
second part of (c) are new]: 

(a) N(X) is a convergence class for tight Borel measures in any Hausdorff 
space X ([4, 12]); 

(b) N(X) is a convergence class for z-smooth Boret measures in any regular 
space X ([1]); 

(c) If No(X) denotes the exact open subsets of a topological space X, then 
go(X) is a convergence class for Baire measures ([11]); No(X) is a convergence 
class for z-smooth Borel measures provided X is a completely regular space ([1]); 

(d) No(X ) is a convergence class for regular Borel measures in any normal 
space X ([11]); 

(e) If Nr(X) denotes the regular open subsets of a topological space X, then 
~,(X) is a convergence class for z-smooth Borel measures provided X is a regular 
space ([ 1]); 
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(f) fq~(X) is a convergence class for regular Borel measures in any normal 
space X ([14]). 

Although the main ideas for proving these theorems are due to Dieudonn6 
and Grothendieck somewhat different additional methods have been applied for 
the proofs given in the papers just cited. 

As already remarked it is the main aim of this paper to derive these and general 
compactness results as well (cf. our main Theorems 3.1-3.5 in Section 3) in a way 
which we think of as being the most unified one. 

To make the paper as selfcontained as possible there is added an Appendix 
containing some known results (A1-A6) which are used within the text. 

2. Basic Definitions and Auxiliary Results 

Let X be an arbitrary non-empty set, g a a-field of subsets of X and M(X, ~) 
[M+(X, ~)]  the space of all countably additive realvalued [and nonnegative] set 
functions defined on M; elements of M(X, g/3) and M + (X, :~) will be called measures 
and nonnegative measures, respectively. For MC M(X, ~) let IMI: = {]#l :/~E M} 
where I#[ denotes the total variation of #s  M as defined in [8], Section 29. 
MC M(X, ~) is called bounded if M is bounded as a subset of the normed linear 
space (M(X, ~), ]]. II) with I1~11: = l~l(X) for pc MfX, ~). 

Furthermore B(X, ~) denotes the space of all bounded ,~-measurable real- 
valued functions defined on X. 

]N]~IR] denotes the set of positive integers [real numbers], X the complement 
of a subset A of X, Xa its indicator function, A1AA 2 the symmetric difference 
of A 1 and A2, and usually we shall write AI\A 2 instead of A~nA 2. 

By a paving (in X) we will understand a non-empty family of subsets of X. 
For pavings ~ '  we shall use a terminology resembling that of P.A. Meyer, e.g. we 
will say that o~' is a (u f)- or a (uc)-paving if~¢ is closed under finite or countable 
unions, respectively. 

For a paving ~1, ~7 denotes the paving of all A with A~ ~¢. 

General Convention 

If not specified otherwise we will tacitly assume that ~ is always a a-field of 
subsets of X, and that qf, o- ~ and J f  are certain subpavings of ~.  We assume also 
that sets denoted by letters B, C, F and H (with or without subscripts) are always 
elements of the pavings ~,  ~g, .~-, and 0~, respectively. 

In our applications X will be a topological space and we shall write usually 
in that case (X, fq(X)) denoting with ~(X) the class of all open subsets of X, and 
with .~(X) [~e'(X)] the class of all closed [compact] subsets of X. We will consider 
also the class ~ r ( X ) :  : {Gefq(X):(G~) ° =  G}= {F ° : F e ~ ( X ) }  of the so-called 
regular open sets, which is generally a proper subclass of if(X). Here A" [A °] 
denotes the closure [interior] of A C X. 

Furthermore, C(X) denotes the space of all continuous realvalued functions 
defined on X and .~o(X):={f-l(O):feC(X)} is the class of all exact closed, 
fq0(X): =~z-0(X) the class of all exact open subsets of X. 
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Finally, ~0(X) [~(X)]  denotes the Baire [Borel] a-field in X, i.e. the smallest 
a-field containing (q0(X)[(~(X)]; elements of M(X,~o(X))[M(X,~(X))] are 
called Baire [Borel] measures. 

As to our general presentation it turns out that with respect to the pavings 
cg, .~, and J f  a certain separation property as well as certain regularity properties 
of the measures are essential. This will be formalized in the following definitions. 

2.1. Definition. cg is called ( ~ ,  ~)-separating if for any H and F with H n F = 0  
there exists a pair C1, C 2 of sets in ~ such that ClnC2=0 and HCC 1, FCC 2. 

2.2. Definition. #eM(X, ~) is called ~--regular if for any A e ~  and any e > 0  
there exists F such that F C A and sup {Jp(B)t:B C A\F} < e. 

M(X, ~ ,  ~f) denotes the space of all ~- regular  measures. 
If X is a [Hausdorft~ topological space then #e  M(X, M(X)) is called regular 

[tight] if/l is ~(X)-regular [~(X)-regular] .  
2.3. Definition. I~e M(X, ~) is called ( ~ ,  ~)-regular if for any H and any 

~>0  there exists a pair C1, C2 of sets in ~' such that H c C  t c C 2  and 
sup {I~(B)[ : B C C2 \H } <~ E [equivalently: For any/7  ~ ~ and any e > 0 there exists 
a pair C', C' of sets in c6 such that C'cC"cH and sup{I#(B)E:BCIT\C'}<e]. 

2.4. Definition. (a) We shall say that :~ corresponds with ~ if F n C ~ -  for 
any F and C. 

(b) cg is called ~--filtering if {C:F C C} is filtering to the left (by inclusion) for 
all F. 

2.5. Remarks. (a) Let W be (Jg, ~)-separating and pe M(X, .~) be ~-regular;  
then p is (Jr ,  cg)-regular; 

(b) (~,cg)-regularity of pe M(X, ~) implies its (~gt%c6')-regularity for any 
-~'  C,~ and ~ 3 ~ ' 3 ~ ;  

(c) I f ~  is a (w f)-paving then/~1, #2e M(X, ~, ~-) implies #1 - /~2e M(X, ~,  ~ ) ;  
(d) If rg is a (w f ,  nf) -pav ing  then (~,¢g)-regularity of #~, i=  1,2, implies 

(o;~(,~, W)-regularity of #~ - / ~ .  
Let us illuminate the preceding definitions by some important examples 

concerning topological spaces X = ( X ,  ~q(X)). Remember that #e M(X, ~(X)) is 
called z-smooth iff for any paving ~o C ~(X) filtering to the right (~oT) and any 
e > 0  there exists Ge~o  such that sup{ll~(B)l:~(X)~BCw~qo\G}<e. A tight 
measure is regular and z-smooth. By M(X, r), M(X, z), and M(X, t) we denote 
the spaces of regular, z-smooth and tight Borel measures, respectively. Before 
stating the examples let us remark that 

(2.5.1) /re M(X, ~, ,~)¢~[/~le M + (X, ~, ~ ) ;  
(2.5.2) Ire M(X, z)~l/~le M +(X, r); 
(2.5.3) /a~ M(X, ~) is (J( ,  c~)-regularc~l/tl is ( ~ ,  c~)-regular. 
(This follows from the well known fact (cf. [3], ItI. 1.5) that 

sup {lu(B)I: B c A } ~ I~I(A) < 2. sup {Iu(B)I: B C A } 

for any Ae~ . )  
2.6. Example. (a) Let (X, ad(X)) be a topological space, ~ =  ~(X), c~= fro(X), 

~ =,~0(X); then (6 is (~-, ~)-separating; 
(b) Let (X,~(X)) be a Hausdorff space, ~ = ~ ( X ) ,  cg=ff(X), ~ = ~ f f ( X ) ;  

then ~ is (~ ,  ~)-separating; if (X, if(X)) is a regular space, ~ is also ( ~ ,  ~-)- 
separating with ~ff = ,~(X); 
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(c) Let (X, N(X)) be a normal space, ~ = ~(X), ~ = No(X) or = N(X), ~ = ~(X);  
then ~ is (~f, ~)-separating w.r.t. ~ = ~  or = ~ .  

2.7. Example. (a) Let (X, N(X)) be a topological space and peM(X, No(X)); 
then (i) #e M(X, Mo(X), ~o(X)) and (ii) p is ( ~ ,  c4)-regular with respect to c6 = No(X), 

=~o(X) ;  
(b) Let (X, N(X)) be a Hausdorff space and/~e M(X, t); then # is ( ~ ,  cd)-regular 

with respect to ~ = N(X) and ~F = 3V(X); 
(c) Let (X, N(X)) be a regular space and #e M(X, ~); then (i) pc M(X, r) and 

(ii) # is ( ~ ,  ~d)-regular with respect to (d=N(X) and 2~F=~(X); 
(d) Let (X, N(X)) be a completely regular space and #e M(X, z); then # is 

Off, ~)-regular with respect to ~=(~o(X), o~P = ~(X)  or ~o(X); 
(e) Let (X, N(X)) be a normal space and #e M(X, r); then # is ( ~ ,  ~)-regular 

with respect to ~=No(X)  and ~=,~(X)  or = ~  and, under the same as- 
sumptions on (X, N(X)) and #, it is true that # is (iF, (d)-regular with respect 
to ~ = N(X) and ~ '  = ~(X).  

2.8. Example. (a) Let (X, N(X)) be a topological space; then ~ = ~ o ( X )  corre- 
sponds with (d= ~o(X) as well as ~ =.~(X) with ~ = No(X) or = N(X); 

(b) Let (X, N(X)) be a Hausdorff space; then ~-=::ff(X) corresponds with 
~=N(x). 

Proof of 2.6-2.8. As to 2.6 (a)-(c) cf. the proofs of the Corollaries 4, 7, and 10 
in [11]. 2.7 (a), (b), and (e) follow from 2.6 and 2.5 (a) (as to 2.7 (a) (i) cf. Proposition 
15 in [11]). 

Proof of 2.7 (c). According to (2.5.1)-(2.5.3) it suffices to prove the assertion 
for #~ M + (X, v). As (X, N(X)) is a regular space, for any Goe N(X) we have Go = wNo 
with No={G6N(X):G'CGo}T, hence for any ~>0 there exists G ~ N o  
such that #(Go\GO<e. Put G2: = G~ ; then G1C G: = G~ C Go and #(Go\G~)<e, 
which proves (ii). Simultaneously the proof so far shows that N(X)C~¢o: = 
{A~(X):V~>O3F~,~(X), G~N(X) s.t. FCACG and t~(G\F)<e}; but ~4 o is 
a a-field and therefore ~(X)=~¢ o which implies (i). Proof of 2.7 (d): As before, 
w.l.o.g. #~ M + (X, ~), and it suffices to prove that # is (oYg, ~)-regular w.r.t. (£ = No(X) 
and ~ = ~ ( X )  [cf. 2.5 (b)]. For any GowN(X), we have Go=~No with No= 
{G~ No(X): ~ G'~ .C~o(X ) s.t. G C G' C Go }1": It follows from the (w f)-closedness 
of No(X) and No(X) that No is filtering to the right; also ~NoCG o by definition 
of No. Hence it suffices to show that GoC wNo: As (X, N(X)) is completely regular, 
for any x¢ Go there exists f ~  C(X)s.t. 0 <  f~< 1, f~(x)= 1 and f~lGo_--0. Then 
f ~ : = ( L - ¼ ) -  and f 2 : = ( L - ½ )  + belong to C(X), 0 < f < l ,  {f>0}~No(X), 
i =  1, 2, and x~ {f~ > ½} = {f2 > 0} C {f~ > ¼} = {f~ = 0} C Go; hence x~ {f2 > 0}~ No 
and therefore x~wN o. Now, as #~M+(X,r), for any ~>0  there exists 
G~(~o s.t./~(Go\G~)<e which implies, according to the definition of No, that # 
is (Jg, cg)-regular w.r.t, cg= No(X) and ~ =~(X) .  Finally, the assertions in 2.8 
are immediate. 

2.9. Definition. (a) We shall say that ~o C ~  approximates ~¢oCM from below 
[above] with respect to #~ M+(X, ~) if 

inf{#(A\B):~ooBC A } =O[inf{#(B\A):~ooB3 A } =O] 
for every A e J o .  
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(b) We shall say that ~ o C ~  approximates ~ o C ~  from below [above] 
uniformly with respect to M C M+(X, ~) if 

for every Ae N o. 
Remark. If pe  M(X, ~) is (• ,  qq)-regular, then cg approximates 3gtf from above 

with respect to l#[. For an analogous result for families of measures see Lemma 2.17 
below. 

2.10. Definition. (a) MCM(X, J3) is said to be dominated by 2eM+(X,~)  
(M << 2) if for all/~e M 2(A)= 0 implies/~(A) = 0. 

(b) MCM(X, ~) is said to be uniformly dominated by 2e M+(X, ~) (M<<<2) 
if for any ~>0  there exists 5(e)>0 such that 2(A)<b(e) implies sup ]/~(A)i<e. 

2.11. Remark. (a) M << 2[M <<< 2] iff [Mt << 2[[MI <<< 2]. 
(b) M<<2 ifffor every / t~M and for any ~>0  there exists 6(!.,, e )>0  such that 

2(A) < 6(/t, e) implies i#(A)I < ~. 
2.12. Definition. M C M ( X , ~ )  is called equicontinuous if lira sup[/~(A,)]=0 

n ~  /a~M 

for each sequence (A,e 3),~N with A,$0 as n ~ oo. 
In the sequel M will always denote a subset of M(X, ~3) and as before we 

maintain our General Convention. 

2.13. Proposition. L e t M ~ : = {  v:=~2-m,.~N , ....... +'~t"- ,'tLm" :l"~meM'meN} "then 

(a) I f  .~ is a (wf)-paving then MCM(X,  ~,  .~) implies MrCM+(X, ~,  i f);  
(b) M C M(X, ~) implies M ~" C M + (X, z); 
(c) / f  c£ is a (w f)-paving which is J f  -filteritgl and if I~ is (Jr, ~)-regular for 

all l~e M, then v is (Jr, ~})-regular for all ve M ~. 

Proof Let us prove (c) and remark that (a) and (b) can be proved analogously. 
tu,.l 

Suppose that # is (~Y, ~)-regular for all pe M and consider v = ~ 2 - "  
,.~N 1 + IIp,.]l ' 

/~,,eM; then for any HE)~/ there exist sequences (C~,),~ and (Cz,),~v of sets 
in (d s.t. H C C~,C C:,, ne IN, and 

'/~"1 ( ~  C 2 , \ H ) = 0  for all me IN, hence v ( ~  Cz,\H ) =0;  

therefore for any e > 0  there exists ke Ns.t. v ( ~ .  ~'2, \H)<e.  Since cg is W-filtering 
/ 

and HC 0 C~,C 0 ~-'2, = ~ C2, with U Q,e~f ,  it follows that v is (W,c~)_ 
n<=k n<=k n~k n<k 

regular for all ve M ~. 

2.14. Proposition.(cf. [4], 2.6). (a) If  o~ is a (~ f)-pavino and if m c  M(X, ~,  o~) 
[McM(X,  v)] is uniformly dominated by 2~M+(X,~) ,  then there exists 7t~M+ 
(X, ~,  .~) [2~ M +(X, 0 ]  such that M <<< 2. 

( b ) / f ~  is a (~ f)-pavin 9 which is .~-filterincj and if M <<< 2 with It bein9 (3~, ~g)- 
regular Jbr all Ire M, then there exists 2e M+(X, ~), 7t being (ovi ~, cg)-regular, such 
that M<<< ~.. 
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Proof Applying A2 with Mk:={#EM:llpll<k},  k e n  instead of M, and 
using A1 it follows that M k is uniformly dominated by some 2ke M~ C M z and also 

that M is uniformly dominated by 2: = ~ 2 -k 2k c(MZ)Z; therefore the 
k~N 1 + II ;~kll 

assertions follow from 2.13. 
For the sequel the next concept proves to be essential; for one point sets M 

it reduces to the concept of 's-bounded" measures as introduced by Rickart in [ 13]. 
2.t5. Definition. MC M(X, ~) is said to be uniformly s-bounded with respect 

to d C ~  if sup t#(A,)I--'0 as n-- ,~  for each sequence (A,),~ N of pairwise disjoint 
~tcM 

sets in s¢. 

2.16. Proposition. Let M C M(X, :~, ~ )  and cg be a subpavin9 of ~. We consider 
the followin 9 assertions: 

(a) [M] is uniformly s-bounded w.r.t. ~.~ ; 
(b) M is uniformly s-bounded w.r.t. ~ ; 
(c) IMI is uniformly s-bounded w.r.t. 4 ; 
(d) M is uniformly s-bounded w.r.t. 4. 
Then (a)c~b)~(c)~(d). I f  in addition, cg is ~-filtering aml # is (~ ,  c£)-regular 

for all pc M, then (c)¢~(d). 

Proof Let us prove that (d) implies (c) whenever cg is ,~-filtering and p is 
(~ ,  q~)-regular for all pc M. The remaining assertions can be proved in an analogous 
manner without the additional assumptions. Suppose to the contrary that (c) 
does not hold; then there exist e>0,  a sequence (C~)~N of pairwise disjoint sets 
in c£ and a sequence (pkCM)k~ such that IPkJ (Q)>e  for all k E N  hence by the 
g-regulari ty of Pk there exist FkC Ck with Jpk(Fk)l >e/2, k~ N Now, since the Pk 
are assumed to be (~ ,  cg)-regular, it follows from the remark preceding 2.10 
that cg approximates .~ from above w.r.t. [#k[, i.e. there exist Q D Fk with 

[Itk[(C'k\Fk) < [pg(Fk)  [ - -  e/2. 

Since FkC CkC~ C'k and cg is if-filtering there exists C'~ cg such that FkC C~ C CkC~ C'k 
and ]Pk(C~)[_>-- #k(Fk)l -- ]pk[(C'k\Fk) > ~. This, however, contradicts (d), since the 
sets C~, kc IN, are pairwise disjoint. 

2.17. Lemma. Let M C M(X, ~,  i f )  and assume that each pc M is ( if ,  ~)-regular 
where :g is ~-filtering. Then, if M is uniformly s-bounded with respect to cg, it 
follows that rg approximates f f  from above uniformly with respect to IMI. 

Proof According to (2.5.1), (2.5.3), and 2.16 we may assume w.l.o.g, that 
O ~ M C M + ( X , ~ , ~ ) .  If c~ does not approximate f f  from above uniformly 
w.r.t. M, then there exist F and e > 0  s.t. inf{supp(C\F):FC C ) > e ;  furthermore 

c L ~ M  
we claim that there exist sequences (C~).~ and (C.),~ of sets in ~ and a sequence 
(#~c M).~N s.t. for all n6 N: (i) C~ + ~ C C., C'~ C C.\C~ + ~, (ii) F C C~ and (iii) p.(C'.) > ~. 
Since the C., n~ IN, are pairwise disjoint, this contradicts the uniform s-bound- 
edness of M w.r,t. ~. 

To prove our claim, note first that by (~ ,  ~)-regularity of p6 M, there exists 
C~ with FC C1 ; assume that C~ . . . . .  Ck and, for k>  1, C'1 . . . . .  C~,_ ~ and p~ . . . . .  p~- t 
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have been already constructed so that (i)-(iii) are fulfilled. According to the choice 
of F there exists #ks M s.t. #k(Ck\F)>e. By the (~ ,  cg)-regularity of/~k one can 
find Ok, O~sCg with ~,. and ~ F C D k C  k ktk(Ok\F)<2#k(Ck\F)-- G hence ]2k(Ck("lOk) ~> 

"-7" r #k(Ck\F)--#k(Dk\F)?>& By the ~,~-regularity of #k we can find FkCCk~D k with 
#k(Fk)>e. As ~ is ~-filtering one can find sets C' k and Ck+ ~ in cg such that 
FkCC'kCCRC"~D'k, FCCk+tCCk('hOk and thus #k(Ck)>~. This proves our claim 
and hence the lemma. 

2.18. Lemma. Let Y be a (w f)-paving and ~ be an .~-filtering pavin 9. Let 
M C M(X, ~ ,  o ~)  and assume that each #6 M is both (o~, off)_ and (~,cg)-regular. 
Then, if M is uniformly s-bounded with respect to ~, it follows that ~ approximates 
cg from below uniformly w.r.t. IM[. 

Proof Again w.l.o.g, we may and do assume that O+MCM+(X,M,o~). 
I f ~  does not approximate cg from below uniformly w.r.t. M, then there exist D~Cg, 
e > 0 s.t. inf / sup #(D\F): F C D} > e; furthermore we claim that there exist sequences 

F t # ~ M  

(F.).~ N, (C., C'~, C~).~ of sets in ~ and ~, respectively, and a sequence (#.~ M) .~  s.t. 
for all n~ N: 

n - 1  

(i) F .CCCDc~ ~ C;', 
i = l  

(ii) sup #(C. \F . )<e .2  -("+ ~) 
#~M 

and 

(iii) C'.C C~C C, and #,(C',)>~:/2. 

Since the C~, ne IN, are pairwise disjoint, this contradicts the uniform s-boun- 
dedness of M w.r.t. ~'. 

To prove our claim, note first that the ~--regularity of #e M implies that 
there exist F 1CD a n d / q e M  s.t. #1(Ft)>e. It follows from 2.17 that there exists 
C*le~ s.t. F1c C~ and sup #(C*\FO<e/4. As :~' is Y-filtering choose CteCg 

with F~CC1cC*c~D; hence #l(C1)>e andsup#(C1\FO<e/4. Furthermore, 
tt~M 

by the (~, ~)-regularity of #1 there exists a pair C], C~ of sets in cg s.t. (71 C (7~' C C1 
and #dG)>e/2, which proves our claim for n = 1. 

Now, assume that the quantities fulfilling (i)-(iii) have been already constructed 
k 

up to n=k. Now D3 0 Fie,N, hence according to the choice of D there exists 
i = l  

#k+ l e M S't'#k+ l (DI U=l Fi) > ~" Theref°re' using the fact that (by the 

assumption) sup# C i F~ <e/2 and U ~ G C  ~ GCD, one obtains 
#~M i = l  i i = 1  i = l  

l / ~, \ 

that#k+l(DlOC'i-"~)>e/2, hence by the o~-regularity Of#k+ 1 we can find 
\ ~ =1  / i 

k 

FR+ 1CO~ 0 C][ s.t. #k+ l(Fk+ 0>e/2.  Now, it follows again from 2.17 that there 
i = 1  
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• <E.2-(R+2~ ~_ exists C~+lEc~s.t. Fk+lCC~+l and sup p(Ck+ l\Fk+ l) . As cg is 
t~eM 

filtering choose Ck÷ 1~ ~ with 

k 

Fk+ICCk+ICC*+t~Dn ~ C'i'. 
i = 1  

Then sup#(Ck+l\Fk+l)<e.2 -(k+2), hence (i) and (ii) are fulfilled for n = k + l .  
,u~M 

Finally, since #k+ ~(CR+ 1)>#k+ I(Fk+ 1)>e/2 and since #k+ 1 is (:~, :¢)-regular, 
there exists a pair C~,+ 1, Cj~+ 1 of sets in ~¢ s.t. Cj~+ 1 ( Cj~+ 1 C Ck+ 1 and #k+ ~(Cj,+ a) > 
e/2, i.e. (iii) holds also true for n = k + 1. 

2.19. Lemma. Let M C M ( X , ~ ,  ~ )  and assume that ~ corresponds with 5f. 
I f  (a) ~ approximates ~ from above uniformly w.r.t. IMI and if (b) ~- approximates 
{X } from below uniformly w.r.t. IMI, then (a) and (b) together imply that ~ approxi- 
mates ~ from below uniformly w.r.t. IMI. 

Proof Let C and e > 0 be given; according to (b) there exists F s.t. sup I~1 (F) < ~/2. 
,uCM 

Now, as ,?T corresponds with cg, F n ( ; e  Y,  and therefore (a) implies that there 
exists C a s.t. F n C C  C 1 andsupl~l (Ca\(Fc'~)<e/2. It follows that Ft :  = 

Fc~Ca~ ~ ,  F1C CnF and sup l#l ((Cc~F)\F0 <e/2, hence F 1C C and 
~u~M 

sup 1~1 ( C k F 1 ) < g -  
/t~M 

2.20. Definition. (a) Let J ~  denote the topology in M(X, ~) of set-wise con- 
vergence on ,~, i.e..Y-~ is the weakest topology in M(X, ~) for which all mappings 
#--*#(A), A ¢ ~ ,  are continuous. In other words: If #~M(X,M) and if (/@ is a 
net in M(X, ~), then (po) ~-~-converges to #((/h~)~P) iff pa(A)~#(A) for all A ~ .  

(b) p ~  M(X, M), n~ IN, is said to converge on Mo CM [to zero] if (#.(A)),~ is 
convergent in IR t, ~Ilim°° #,(A) =0  ] for all A ~  0. 

(c) .~oC~ is called a convergence class for MCM(X,M) (w.r.t. Y~) if any 
sequence (#~  M) ,~  which converges on Mo does also converge on M. 

2.21. Proposition. I f  #.~ M(X, ~), n~ IN, converges on ~, then there exists 
#~ M(X, ~) such that # ,~# ;  furthermore 

(a) /f 0~" is a (w f)-paving then #~ M(X, ~,  ~ )  provided #,~ M(X, ~,  .~) for 
all n~ IN; 

(b) #e M(X, z) provided #,~ M(X, z) for all n~ IN; 
(c) if ~ is a (u f)-paving which is ~'-filtering then it is (~f~, ~)-regular provided 

#, is (gel, cg)-regular for all n~ IN. 
Proof The first assertion is Nikodym's theorem (cf. A4). According to the 

Vitali-Hahn-Saks-Theorem (A3) {#~:n~iN} is uniformly dominated by 
2~ M+(X, ~), where according to 2.14 we may assume w.l.o.g, that 2e M÷(X, ~,  ,~) 
in case (a), 2e M+(X, z) in case (b), and 2(~ ,  cK)-regular in case (c), whence the 
assertion follows since 2 does also dominate the limit measure #. 

From Lemma 10 in [10] (cf. A5) we obtain the following result. 
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2.22. Lemma. Assume that c~ is a (~c)-paving and let lt,,~ M(X, ~), n~ IN, be 
convergent on ~ ; then {p,:n~ IN} is uniformly s-bounded with respect to cg. 

Proof Assume the contrary; then there exist e>0,  a subsequence (p.~)k~ of 
(/z,)~ and a sequence (Ck)k~ ~ of pairwise disjoint sets in :6 such that inf Ip.~(C~)[ > e. 

k6N 

But this is in contradiction to Lemma 10 in [10] (cf. A5) with b~k: =g,,(C~) for i, 
k~IN. 

2.23. Proposition. Let /J,,E M(X, ~), m~ IN, and A , ~ ,  n~ ]I~ be such that 
A,~A [A.J,A] as n ~  ~ ; then the following holds true: 

(a) I f  { ~ : m ~  IN}<<< 2, then sup I#,,I (A\A~)~O [sup Ilz,.t (A~\A)~O] as n~oo  " 
m~N [ m~N ] 

( b ) / f  (#m(A~)),~ is convergent in IR (convergent to zero) for all n~ ~ and if 
sup I#,,(A\A,)I ~ 0  [sup tp,,(A,\A)i ~0]  as n ~  0o, then (/t,,(A)),,~ is convergent in IR 

1 
(convergent to zero). 

The simple proof of 2.23 is left to the reader. 

2.24. Proposition. Let ll,,E M(X, M, ,"J), ne IN, be convergent on c~ [w  zero], 
where ~ is a (~c)-paving. I f  c~ approximates ~ , f rom above uniformly with respect 
to {I/~.1 : n~ IN}, then #,, ne IN, is convergent on ~ [to zero]. 

Proof. Let B and ~>0 be given. By ~-regularity of Pn there exists F, such 

that F, CB and I~.l (B\F,)< ~. Furthermore, for every je  IN we can find a set Cj 

2 -Ii+l) for all n~IN. Putting C : =  U c~ satisfying FjC C~ and I~[ (Cj\F~)< 3. 
js~ 

which pertains to :6 by assumption one obtains BACC(B\F~)u ~ (C~\Fj)and 
jeN 

therefore [P.I (BA C) < I~1 (B\F.) 

+ ~ 1#~[ (Cj\Fj)< for all n~ IN. 
jeN 

Since, by assumption, (#~(C)),~ is convergent in IR, we get 

I#.(B) -/~m(B)l = I~t.(B\ C ) -  #m(B\ C) 

+ ~.(Bn 6 3 -  ~,.(B~ C)t < I~.I(BA63 

+ I#.,I(B~ 63 + I~.(C) - ~m(C)l < 

for all sufficiently large m, ne N, Hence the sequence (#,(B)),¢~ converges in IlL 
In an analogous manner one can prove that the sequence (/z,),~ is convergent 
on ~ to zero, if it is convergent on ~ to zero. 

2.25. Lemma. Let M C M( X, ~)  be such that ]AI--P2~M whenever tt l, # ze M 
and consider ~ C ~  having the property that any sequence pne M, ne iN, which 
converges to zero on 9f ~ does also converge to zero on ~ ;  then ~ is a convergence 
class for M. 
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Proof Let #,e  M, ne IN, be s.t. lim y,(H) exists in IR for all HE.~'. If (p,(Bo)),~ N 
n ~ o o  

does not converge in IR for some B o then there exists ~:>0 and for any n e N  a 
natural number m(n)s.t. Iy,(Bo)-y,+m(,)(Bo)]>e. (+)  

Let v,: =Y.-Y,+mt,); then v ,eM and lim v.(H)=0 for all H e : ~  ~ and therefore 
n - ~  oo 

lira v,(B)=0 for all B e ~ ,  which contradicts (+). 
tt  --* oo 

2.26. Ikmma. Let (X, t (X))  be a topological space and y,eM(X,~(X)) ,  
n6 IN, be (,~(X), i(X))-regular. Then the jbllowing holds true: 

I f  (Y,),~N converges on It(X) to zero, then {#,:n~ IN} is uniformly s-bounded 
with respect to i(X).  

Proof Assume to the contrary that {#,:ne IN} is not uniformly s-bounded 
w.r.t, i (X);  then there exist e>0,  a sequence of pairwise disjoint open sets Gk, 
ke IN, and a subsequence (Y,,)k~N of (p,),~ s.t. inf I/%(Gk) I > e. By (2.5.3) all IY,~I, 

k E N  

ke N are (~(X), t(X))-regular, hence there exist pairs G~,, G~ of open sets s.t. 
G CG C and 

• " ~ 7 " 0  ( a , , Put R k. =(Gk), k~ IN; then Rkei r (X ), ( ~ Rmlac~R~C \ ~ Rmt c~GkCGkc~Gk=O 
\ m ~ k  I m ~ k  I 

and I#,~(Rk)l>ly,~(Gk)t--)~J(Gk\G'~)>e for all keN, which contradicts the 
assertion of Lemma 3.4 in [5] (see A6). 

Let us conclude this section with the following lemma which is taken from 
[1] (Lemma 4.1.4). 

2.27. Lemma. Let (X, i(X)) be a perfectly normal space and M C M(X, ?2(X)), 
or let (X, i(X)) be a completely regular space and M C M(X, z); then in both cases 
the following holds true: (f, for ever), uniformly bounded sequence of continuous 
functions fj, je X converging to zero at every point xeX ,  we have lim ~ f j d y = 0  

j -~  rx~ X 

uniformly with respect to IrE M, then M is uniformly s-bounded with respect to i(X). 

Proof Assume to the contrary that M is not uniformly s-bounded w.r,t, i (X);  
then there exist a sequence of pairwise disjoint open sets G,, ne N, e > 0, and an 
infinite subset No of IN, s.t. inf Iy,(G,)t>~: for some #,,~M; w.l.o.g, we may take 

t ~ E N  O 

No = tN Now, consider the first case, where (X, if(X)) is supposed to be perfectly 
normal and M (  M(X, ~(X)). Then, for every ne IN, there exists a sequence of 
nonnegative continuous functions f,,k, keN, s.t. L,kTz,;. as k-~o~. Hence for 
every ne IN there exists k,e IN s.t. 

I#"(G")I < I! f"' k"dY" + e/2; put f , :  = f,, k., ne IN 

If, as assumed in the second case, (X, t(X)) is completely regular and MC M(X, ~), 
then it follows that Z ~ =  supdg, with rig,: ={ feC(X) :O<f<z~ . } .  Since y, is 
supposed to be z-smooth, there exist L e . ~ .  s.t. ty.(G.)I< I f ,  dy, +e/2. 
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Therefore in both cases we did find a uniformly bounded sequence ( f ,e  C(X)) ,~ 
converging to zero at every point x X, whence, by assumption sup ! I 

~ M  
for n sufficiently large; but this will yield a contradiction to inf I,u.(G.)l > e. 

nsN 

3. Compactness in Spaces of Regular or z-Smooth Measures 

This section is concerned with compactness criteria in the space (M(X, ~ ,  ~ ) ,  g s )  
which will cover for topological basic spaces X all criteria known to us up to now, 
especially those given in [1] and [4] in the case of z-smooth and tight measures, 
respectively. We shall make here consequent use of the concept of (.~', ~)-regularity 
as defined in 2.3 which turns out to be essential also for the unified presentation 
of our convergence results in the next section. 

Partially the proofs of the following theorem are taken from [1] and [4], 
respectively. 

3.1. Theorem. Let ,~ be a (u  f)-pavirg] and ~ be a (uc, • f)-pavinff. Let M be 
a bounded subset of M(X, ,~, ~ )  and suppose that # is (~-, c6)-regular for all #~ M. 
Then the Jbllowin9 assertions are equivalent: 

(i) M is conditionally compact in ( M(X,  ~), tits); 
(ii) M is conditionally sequentially compact in ( M(X, ~)), J'~) ; 
(iii) M is uniformly dominated by some 2~ M +(X, ~ ,  Y )  (and every w m +(X, ,~) 

dominating M dominates M uniformly) ; 
(iv) For every uniformly bounded sequence f j~B(X,  :~), j~ IN, and every 

f ~ B(X, ~ )  with the property that for all I~  M and all F f j. Xv--* f " )~v in [IJ[-measure, 
we have lira ~ fjd/~ = j" f d# uniformly w.r.t. #~ M;  

j ~  X X 

(v) M is uniformly s-bounded w.r.t. ,~ ; 
(vi) For every monotone decreasing sequence (C.),~ N of sets in ~ we have 

inf sup IP[ (C,\k('] N Ck)=0" 
n~N ~teM 

(vii) (a) ~ approximates off from below uniformly w.r.t. Iml and (b) m is uniformly 
s-bounded w.r.t, c~. 

Proof (i)~*(ii),~(iii): A simple proof for these equivalences is given in Theorem 
2.6, Remark 1.8, and Corollary 2.7 of [4] (cf. AI, A2, and 2.14). (iii)=~(iv): Let 
f j e B ( X , ~ ) ,  j~N,  be uniformly bounded, C : = m a x  t l ,  supsup]f~(x)l[<oe,  

t j eN  x~X ] 

and c o n s i d e r f e B ( X , ~ ) s . t ,  f~)~v~f)~v in IN-measure for all F and t~eM; as I~ 
is ~--regular, this implies I/~1 ({Ifl > C}) = 0 for all/~e M, and therefore f i s  integrable 
w.r.t. I~1. Now, assume (iv) to be wrong; then there exists a uniformly bounded 
sequence f ie  B(X, ~), j e  N, so that there exists e > 0, an infinite subset No C N 
and p,e  M, ne N o, with inf 1~ ( f , -  f )dp,[ > e. W.l.o.g. we may assume No = N. 

n~NO }x 1 
Since {1#,! :n~ N} <<< 2~ M +(X, ~ ,  ~) ,  there exists Fo s.t. sup I/t,t(~o)< ~/4C. Hence, 

for all neN,  l { ( f , - f ) d p , -  ~ ( f , - f ) d # , l <  ~ l f , - f l d l p ,  l<a/2 and therefore 
Fo I 

(*) i nf ~o ( f " -  f)dl~, > e12. 
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On the other hand, if we define 2 o ' =  ~ 2 - "  Ilx"l it follows that 
" ~  1+11~,.11' 

Jr, "2vo --+ f "ZVo in 2c-measure, and {l#,,l: me N} <<< 2o [cf. A1 and 2.11 (a)], hence 
there exists 6 > 0 s.t, 20(A ) < 6 implies sup I#"I(A) < e/8 (7. Now, as f ,  "ZFo--+ f" Zvo in 

mEN 

2c-measure, we obtain, given 6o: = e/(4\ supu~M II/i II + 1i,'} that 2o(Fon{If,- f l>5o})<6 

for all n>n o, and thereforesupllx"l(Foc~{lf,-fl>bo})<e/8C for all n>n o. 

It follows that for all n~no 

IS (fo- f ) + .  --< S I f . -  ildl#.l 
IFo F o r t { i f .  - f t  > Oo} 

+ ~ I f , -  fldlp, l < U 4 +  bo sup N#!I <e /2 ,  
Fo c~{ I f .  - f t  5- Ool u~M 

which contradicts (.). 
(iii) ~(v)-(vii): Obvious. 
(iv)~(v): Let (F,),~ N be a sequence of pairwise disjoint sets in ~ ;  then f,:  = ZF,, 

n~iN, converges pointwise to zero, hence for all F and /xeM we have f.zv-+O 
in [#xl-measure, whence, by (iv), lirn/x(F,) = 0 uniformly w.r.t. #E M. 

For the rest of the proof we may and do assume w.l,o.g, that MC M+(X, ~, .~) 
(cf. (2.5.1), (2.5.3), 2.11 (a), and 2.16). 

(v)~(vi): Assume (vi) to be wrong; then there exist e>  0, a monotone decreasing 
 eq o.co of io a seqoeo   

\ ! 

From this it follows that there exists a strictly increasing subsequence (nk)k~ ~ of 
INs.t. inf#,~(C,,~\Co~+,)>e. By the o~--regularity of the #,~ there exist F k with 

kEN 

FkCC,~\C,~+, and ll,~(Fk)>e,, k~N;  hence we arrive at a sequence of pairwise 
disjoint Fk, k~ IN, with sup/X(Fk)> e for all kE IN which contradicts (v). 

#t~M 

(vi)~(iii): According to Theorem 2.6, Remark 1.8 and Corollary 2.7 of [4] 
(cf. A1, A2, and 2.14) it suffices to show that for any sequence (# ,~M) ,~  it is 
true that {#x,:n~ IN} is uniformly dominated by 

2: = ~ 2-"  #x, 
,~N 1 + I1#.11" 

Suppose the contrary; then there exist some sequence (/~,~ M),~N and an ~>0  s.t. 
for every 3 > 0  there exist A~M and n~iN with 2(A)<5 and #x,(A)>e, whence, 
by the ,~-regularity of ix, one can find FCA s.t. 2(F)<3 and ki,(F)>e. Now, by 
2.13 (c), 2 {s (.~, cd)-regular, and therefore (cf. Remark preceding 2.10) there exists 
Cs.t. 2(C)< 5 and/x,(C)> e. In that way, for 3 = 2  -k, one arrives at C k and nk~ IN s.t. 
2(C~) < 2-  k and #x,~(Ck) ~> ,~. NOW, put C~ : = L) Ck, n~ 1N; then (C,),~ N is a monotone 

k>n 

decreasing sequence of sets in (d with 2 ( 0  C',] =0, since 2(C',)< ~ 2-k--+0 
i k >.>_n 

, , ~  , as n-+oo; furthermore,/x,, (Ck\ ~ (7', =li.,(Ck)=li,,(Ck)>e for all k~ IN z, but this 
k 

] 
contradicts (vi). 
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(vii)=~(vi): Suppose (vi) to be wrong; then (cf. the proof of "(v)=~(vi)") there 
exist e > 0, a monotone decreasing sequence (D,),~ N of sets in ~q, and a sequence 
(p,6M),e~s.t .#,(D,\D,+O>e for all n~iN; furthermore, we claim that there 
exist sequences (C,,),e~ and (C~),e N of sets in c£ such that for all n~ IN: 

(i) C,,+ ~ C C,, and C',C C,\C,+ ~, (ii) C, C D, and suppm(D,\C,)<e/2and(iii) 
men 

p,(C~) > e/2. Since the C~, n~ IN, are pairwise disjoint, this contradicts the uniform 
s-boundedness of M w.r.t, q(. 

To prove our claim, put C~: =D~ and suppose that C~ .. . . .  C k and, for k > l ,  
C~, ..., C~_~ have been already constructed so that (i)-(iii) are fulfilled; then, 
since CkC D k and D~+ ~ C D k, sup ~,,(D~+ l\(Ckf"~Dk+ ~))<g/2, where C~c~D~+ ~ecg, 

me~ 

and hence by (vii)(a) there exists FgC CkC'~Dk+ ~ s.t. sup p,,((CknD~+ O\Fk)<e/2-- 
meaN 

sup #,,(D k + ~ \(CkC~ D k + ~)). Therefore we obtain (,) sup #,,(V k + ~ \F~) < e/2, since 
men men 

sup ~,.(D k+ 1 \Fk) <= sup #,,(D k + 1 \(Dk + 1 ~ Ck)) + sup pm((Dk + 1C~ Ck)\Fk) < e/2. 
men melN men 

Furthermore, as FkC Dk+ 1, 

Itk(Ck\Fk) > #k(Dk\Dk+ 1)-- sup #,.(Dk\Ck) > ~-- e/2= ~/2, 

Since #k is (~ ,  ~)-regular, there exists a pair Ck, . . . .  C~k of sets in qq s.t. C k ( C k * C Fk 
and .IP \C"~ < " F thereforepk(CkmC~)~#k(CkC~Fk)--#k(Fk\C~)> #r~--k\ kl # k ( C k \  k) - -  e / 2 ,  a n d  ' - - ' 
e/2. Now, C'k:=Ckc~C'~ and CR+I: =Dk+lC~Ckc~C*RR are sets in ~, and (iii) holds 
true for n = k. On the other hand, we obtain (i) from the fact that C~, C Ck~ Ck C C'~ C C~k 
and Ck+ 1 ( CkC~ C* ; finally, (ii) (with n-- k + 1) follows from (.), since 

FkC Ck+ I C Dk+ I " 

This completes the proof of 3.1. 

3.2. Theorem. (cf. [1], 4.1.5). Let the assumptions of 3.1 be fulfilled and suppose, 
in addition, that o~ is a (w f ,  c~ f)-paving. Then each of the assertions 

(i)-(vii) in 3.1 is equivalent to the followin9 assertion 
(viii) (a) ~" approximates cg from below uniformly w.r.t. ]m[ ; 
(b) For every monotone decreasin9 sequence (F,),e N oj" sets in ~ we have 

inf sup 'PI(F,t ~ Fk) =0" 
nEN gteM 

Proof (viii)=~(vi): Suppose (vi) to be wrong; then there exist e > 0, a monotone 
decreasing sequence (C,),~ of sets in ~q, and a sequence 

(p,~M),~N s.t.(,)inftp,] (C, \  (~ Ck)>e. 
n~N \ \ ke~N 

By (viii) (a) there exist F,, n~iN, s.t. F, cC,  and sup[p](C~\F,)<e.2 -~-~. Let 
geM 

FI~: --- ~ F k, ne IN; then (F'~).~ is a monotone decreasing sequence of sets in ~-, 
k = l  
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hence, by (viii)(b), sup [Pl (F'.\('] F'k]-*0 as n ~ .  Furthermore, 
gem ] 

sup [#'( CnkF',) <= sup [p' ( O ( C , \F t )) < ~ sup 'p'( C l \F , ) < e/2 
~ e M  l l e M  1 = 1 1 = 1 t l e M  

for all ne N, and therefore 

+ sup[p[ F F k <e  
,ueM 

for n sufficiently large, which contradicts (,). 

3.3. Theorem. Let the assumptions o! 3.1 be fu(filled and suppose, in addition, 
that p is (~, c~)-regular for all pe M. Then each of the assertions (i)-(vii) in 3.1 
is equivalent to the following assertion (ix) M is uniformly s-bounded w.r.t, c~. 

Proof. (ix)=(vii) (b), and (vii) (a) follows from 2.18. 

3.4. Theorem. (cf. [1], 4.1.5). Let the assumptions of 3.1 be fulfilled and suppose, 
in addition, that ~ corresponds with cg. Then each of the assertions (i)-(vii) in 3.1 
is equivalent to the following assertion 

(x) (a) .~- approximates {X} j•om below uniformly w.r.t. ]m[ : 
(b) M is unijormly s-bounded w.r.t. ~'. 

Proof. (x)=:-(vii): Follows from 2.17 and 2.19. Since (vii) is equivalent to (iii), 
there exists 2eM+(X, ~,  .~)s.t. ]M[ <<<2, which implies (x). 

3.5. Theorem. (cf. [1], 4.l.5). Let the assumptions of 3.1 be fulfilled and suppose, 
in addition, that .~ is a (w f ,  c~ f)-pavirgl and that ~ corresponds with ~. Then 
each of the assertions (i)-(vii) in 3.1 is equivalent to the followin 9 assertion 

(xi) (a) <g approximates ~ from above uniformly w.r.t. I m[ ; 
(b) Y approximates {X } from below uniformly w.r.t. ]m]; 
(c) For every monotone decreasing sequence (F,),~ N of sets in ~ we have 

infsup Ipl ( F , \ k ~  F ~ ) = 0 .  
n e N  tt~M 

Proof. Note, that under the present assumptions, (i)-(vii) in 3.1 is equivalent 
to (viii) in 3.2. Now, the implication (xi)~(viii) follows from 2.19. On the other 
hand, since (viii) is equivalent to (iii), there exists 2eM+(X,~ ,  ,~-)s.t. tMI<<<L 
where w.l.o.g. 2 may be supposed to be (if ,  c¢)-regular by 2.14 (b), hence c¢ ap- 
proximates f f  from above w.r.t. 2(cf. Remark preceding 2.10). From this it follows 
that (xi) is implied by (viii). 

3.6. Remark. The assumption in 3.1 of M being a bounded subset of M(X, .~, ,~) 
was only needed to prove the equivalence of (i)-(iv). The equivalence of (iii) with 
each of the other assertions proved in connection with 3.1-3.5 holds true without 
the boundedness assumption on M. We remark also, that, for bounded M, the 
compactness criteria 3.1-3.5 characterize as well the so-called (cf. [3], IV. 9) 
weakly conditionally (sequentially) compact subsets of M(X, ,~, ,~); this follows 
from [4], 2.14 and 2.16. 
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Let us conclude this section by applying the results obtained so far to situations 
when X is supposed to be a topological space. In that case, using also 2.7 and 2.8, 
we obtain immediately the following corollaries, where we remark that in any case 
considered below ~ is a (uf)-paving and ~ is a (~c, ~f)-paving (cf. [6], 1.14 
for the (wc)-closedness of f¢o(X)). 

3.7. Corollary (cf. [1], 4.1.7). Let (X, c~(X)) be a topological space and let M 
be a bounded subset of M(X, ~o(X)). Then, taking M=Mo(X), J ~ = ~ o ( X )  and 
q,~= f~o(X), the assertions (i)-(xi) in 3.1-3.5 are all equivalent. 

3.8. Corollary (cf. [4], 3.7 and [1], 4.1.10). Let (X, (~(X)) be a Hausdorffspace 
and let M be a bounded subset of M(X, t). Then, taking M=M(X), ~=.~ff(X) 
and c~,= ~(X), the assertions (i)-(viii), (x) and (xi) in 3.1-3.5 are all equivalent and 
also equivalent to any of the following assertions 

(xii) .~ff(X) approximates ~ (X)  from below unijormly w.r.t. [M[' 
(xiii) .YI(X) approximates f#(X) from below uniformly w.r.t. [M! ; 
(xiv) (a) s~(X) approximates {X} from below uniformly w.r.t. IM[ ; 

(b) if(X) approximates ~ ( X )  from above uniformly w.r.t. !MI. 

Proof (iii)=>(xii), since m <<< 2e M +(X, t) [cf. 2.14 (a)]. (xiii)=:-(vii): It suffices 
to show that M is uniformly s-bounded w.r.t, fq(X). Let (G,),~ be a sequence of 
pairwise disjoint open sets; then, for G: = U G,e (¢(X) and any e > 0, there exists 

t t ~  

Ke.;C(X)s.t. KCG and suplPl(G\K)<e. Since K is compact, there exists 
gEM 

me N s.t. U G,C G\K, and therefore sup I F4(G,)< sup ]ltI(G\K)<e for all n>m. 
n >= m #~M /t~M 

From this and 2.17 it follows that (xiii) implies (xiv); on the other hand, (xiii) 
follows from (xiv) by 2.19. 

3.9. Corollary (cf. [1], 4.1.12). Let (X, (#(X)) be a regular space and let M be a 
bounded subset of M(X, z). Then, taking ~ = ~ ( X ) ,  ~,~=~,~(X) and ~=f#(X),  
the assertions (i)-(xi) in 3.1-3.5 are all equivalent. 

3.10. Remark. 3.9 yields a remarkable generalization of 3.11 in [4] as well as 
the following corollary will generalize 3.12 in [4]. 

3.11. Corollary(cf. [1], 4.1.13 and [4], 3.12). Let (X, fg(X)) be a completely 
regular space and let M be a bounded subset of M(X, z). Then, taking ~ = ~(X),  

= ,~(X) and ZJ = ~o(X) or = ~(X), the assertions (i)-(xi) in 3.1-3.5 are all equiva- 
lent and also equivalent to the following assertion. 

(xv) For every uniformly bounded sequence of continuous functions f,, ne IN, 
converging to zero at every point xe X, we have lira ~ f ,d#=O uniformly w.r.t. I~e M. 

t l ~  X 

Proo£ (iv)=~(xv): Obvious. (xv)=*-(ix): Follows from 2.27. 

3.1Z Corollary(cf. [1], 4.1.8). Let (X, ~¢(X)) be a normal space and let M be a 
bounded subset of M(X,r). Then, taking ~ = ~ ( X ) ,  ~ = ~ ( X )  and ~ = ~ o ( X )  
or=~C(X), the assertions (i)-~xi) in 3.1-3.5 are all equivalent. 

3.13.Corollary(cf. [1], 4.1.9). Let (X, ~¢(X)) be a perfectly normal space and let 
M be a bounded subset of M(X,~(X)) .  Then, taking ~ = ~ ( X ) ,  ~ = S ( X )  and 
~ = ~(X), the assertions (i)-(xi) in 3.1-3.5 and (xv) in 3.11 are all equivalent. 
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Proof M(X, ~(X))= M(X, r), since (X, N(X)) is a perfectly normal space, hence 
the assertion follows from 3.12 and the same argument as in the proof of 3.tl. 

4. Convergence-Theorems 

Besides the compactness results of the preceding section our general tools presented 
in Section 2 enable us also to derive in a rather straightforward way the results 
(a)-(f) mentioned in the introduction. To this extent we will consider first the 
question whether the (wc)-paving cg can serve as a convergence class for sequences 
tl, e M(X, ~ ,  ~ ) ,  ne N, and secondly we will study the same question w.r.t. (~,(X) 
[being aware that N,(X) is not even (wf)-closed]. 

A. The paving c6 as Convergence Class 

Suppose that there is given an arbitrary non-empty set X, a a-field N in X, an 
arbitrary subpaving f f  of ~ and a ~N-filtering (uc)-paving cg (~ .  Then the 
following theorem which is, for the present case of realvalued measures, 
a generalization of Theorem 1 in [11] [cf. 2.5 (a)] holds true. 

4.1. Theorem. Let p, e M(X, ~ ,  .~), ne IN, and suppose that all I~n are (~,  c~)_ 
regular. Then, whenever (#,),~ is convergent on % there exists pe MIX, ~)  being 
(~',c6)-regular, too, such that p , ~ p  [i.e. i im #n(B)=#(B)for all BeB]. I f  .~ is a 

(u f)-paving, then I~ is also W-regular. 

Proof. According to 2.21 it suffices to show that (~,),~ is convergent on ~. 
Since (p,),~ is convergent on c~, 2.22 implies that {p,,: ne N} is uniformly s-bounded 
w.r.t, c~. Now the assertion follows from 2.24 according to 2.17. 

Now, using 4.1 and 2.7, we are in the position of obtaining immediately the 
results (a)-(d) mentioned in the introduction. 

4.2. Corollary (cf. [11], Corollary 4). Let (X,N(X)) be a topological space: 
then go(X) is a convergence class for Baire measures. 

4.3. Corollary (cf. [t2] and [4], Theorem 5.2). Let (X, N(X)) be a Hausdotff 
space; then N(X) is a convergence class for tight Borel measures. 

4.4. Corollary (cf. [t] ,  4.2.13). Let (X, N(X)) be a regular space: then N(X) is a 
convergence class for z-smooth Borel measures. 

4.5. Corollary (cf. [1], 4.2.14). Let (X,N(X)) be a completely regular space: 
then go(X) is a convergence class for z-smooth Borel measures. 

4.6. Corollary (cf. [11], Corollary 7). Let (X, N(X)) be a normal space; then 
go(X) is a convergence class for regular Borel measures. 

4.7. Remark. As it was shown in [11], Example 8, 4.5 does not hold for regular 
instead of z-smooth Borel measures. 

B. The Paving N,(X) as Convergence Class 

Suppose that (X,N(X)) is a topological space, take ~=°d(X),  ~=N(X)  and 
let ~ be a (uf)-paving contained in ~(X). Then the following theorem holds true. 
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4.8. Theorem. Let It.6 M(X, ~,  ~) ,  ne ]b~ and suppose that p, is ( ~ ,  cg)-regular 
w.r.t. ~ = ~  and --~. Then, whenever (P,)n~N converges on ff~(X), there exists 
t~6 M(X, ~ ,  ~ ) ,  being also ( ~ ,  cg)-regular, such that l~,~ #. 

Proof According to 2.21 it suffices to prove that f¢~(X) is a convergence class 
for M:={#6M(X,~,~):#(~,*f~,cg)-regutar w.r.t. ~ = ~  and =~}.  To this 
extent [observing that by 2.5 (c) and (d) / ~ - p 2 E M  whenever #t, /~26M] it 
suffices by 2.25 to show that the sequence (#,) ,~ converges on 9~ to zero whenever 
it converges on ft,(X) to zero. But if (#,),~N is convergent on ff,(X) to zero, then, 
by 2.26, {/~,:n~ N} is uniformly s-bounded w.r.t, re(X), and therefore 3.3 (cf. 3.6) 
yields that {#, :n6 N} <<< 26 M+(X, ~ ,  ~) .  Since [#,l, n6 IN, are (~, ~}-regular 
(cf. 2.5.3), for every G6 if(X) there exist sequences (C,,),.~ and (C' ) . ,~  of sets in 
~ =~(X)s.t. C,C CCC G and sup t~.1 / G \ U  C,, ]=0 .  Now, consider R,,." =,C,.)'-~ o., 

/ 
then R,eff , (X),  C,,CR,,CG and therefore sup[ , , [ (G\ , ,y~ R,. )=0 .  Since ff,(X) 

is (nf)-closed,  it follows that l ira ~.(A)=0 whenever A is a finite union of sets 

in aJ,(X); hence by 2.23 it follows that 

and therefore l im  #,(G)= 0. Now the assertion follows from 2.24 according to 2.17. 

Next, using 4.8 and 2.7, we are again in the position of obtaining also the 
remaining results (e) and (t) mentioned in the introduction. 

4.9. Corollary (cf. [1], 4.2.18). Let (X, if(X)) be a regular space; then ff,(X) 
is a convergence class for z-smooth Borel measures. 

4.10. Corollary(cf. [14], Theorem 1). Let (X, if(X)) be a normal space; then 
~ ( X )  is a convergence class for regular Borel measures. 

4.1I, Remark. 4.9 generalizes Theorem 3.1 of [5]. 

Appendix 

AI (cf. [4], Remark 1.8 and Corollary 2.7). M C M ( X , ~ )  is uniformly dominated 
by some )~6M+(X,~) iff M is equicontinuous; in that case any v6M+(X,~)  
dominating M dominates M uniformly. 

A2 (cf. [4], Theorem 2.6). Let M be a bounded subset of M(X, ~). Then the 
following assertions are equivalent: 

(i) m is conditionally compact in (M(X, ~), JS); 
(ii) M is conditionally sequentially compact in (M(X, ~), J-~); 
(iii) M is uniformly dominated by some 26 M z and every v6 M +(X, ~)  dominating 

M dominates M uniformly; 
(iv) M is equicontinuous ; 
(v) Every countable subset of M is equicontinuous. 

A3 (Vitali-Hahn-Saks). Let p ,6M(X,~) ,  n611~ be convergent on ~ ;  then 
{#,: n6 IN} is uniformly dominated by some 26 M + (X, ~). 
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A4 ( N i k o d y m ) .  Let #heM(X,  M), ne IN, be convergent on ~3 ; then 

#(A):  = l i r a  # , ( A ) ,  

A~ t~, defines a measure. 

A5 (cf. [ 10 ] ,  L e m m a  10). Let bik be real numbers for i, k~ IN such that 

(~M bik) i~  

is convergent in [R for all subsets M of IN. Then lim bil = O. 

A6 (cf. [ 5 ] ,  L e m m a  3.4). Let #he M(X,  ~(X)),  ne IN, be convergent on ~,(X) to 
zero, and let ( g ~ ) ~  be a sequence of sets in ~,(X) with( U Rm]ac~g~=o for all 

\m* n / 
n~ IN; then l!m #n(Rn)---0. 
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