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On the Homology Groups of Stein Spaces 

RAGHAVAN NARASIMHAN* (Princeton, N. J.) 

w 1. It is well known that if X is a Stein manifold of dimension n, then 
the singular homology groups Hk(X, Z)  are zero if k > n  and H~(X, Z)  
is free [1], [2]. Moreover if Y is a Runge domain on X, i.e. an open set 
which is holomorphicaUy convex with respect to X, then for any abelian 
coefficient group G, one has Hk(X mod Y, G)=0  for k>n .  

We shall prove, using the above results, that if X is an arbitrary Stein 
space (with singularities) of dimension n, then Hk(X, Z) is 0 if k>n ,  and 
torsion free if k =  n. The proof uses, in addition to the results mentioned 
above, the following fact: 

Any analytic set on a Stein space X has a fundamental system of neighbor- 
hoods which are Runge in X. 

We shall give two proofs of this fact. The first is based on the following 
theorem, which asserts, roughly speaking, that any analytic set on a Stein 
space can "almost" be blown down to a point. 

I f  X is a Stein space of finite dimension, A is an analytic set on X and U 
is any neighborhood of A, then there exists a holomorphic map f :X- -*C p 
such that f -  ~ (0) = A , f  [ X -  A is injective and f l X -  U is proper. Also, if, for 
example, X - A  is a manifold, f can be chosen so that its jacobian has 
maximal rank on X - A .  

In the last section, we give a method to find Runge domains (in parti- 
cular, domains of holomorphy) in C n with prescribed Hk(D, Z) when k 
is small. The results are the following. 

1. Given a finitely generated abelian group G and integers k > 1, n > k + 3, 
there is a Runge domain D in C ~ with Hk(D, Z ) ~ G .  

2. I f  G is any countable abelian group and k > 1, there is a Runge domain 
in Cn for  n > 2 k + 3  such that Hk(D, Z ) ~ G .  

The theorem on the vanishing of the homology groups in dimension 
> n of Stein spaces has also been obtained by L. KAUP, Eine topologische 
Eigenschaft Steinscher R/iume, Nachr. Akad. Wiss. G6ttingen, Math.- 
Phys. KI., 213 - 2 2 4  (1966). Further, K.-J. RAMSPOa'T [6] has constructed 
domains of holomorphy in C z with a given first Betti group. 

w 2. We begin with the following result. 

* Supported by the Air Force Office of Scientific Research through grant AF- 
AFOSR-1071-66. 
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Theorem 1. Let X be a Stein space of dimension n and A a (closed) 
analytic subset of X. I f  U is any neighborhood of A, there exists a holomorphic 
map f :  Y ~ C N with the following properties. 

1 . f - ~ ( 0 ) = A ;  

2.fJ X -  A is injective; 

3.f]  X -  U is a proper map into C N. 

Moreover, if the dimension of the Zariski tangent space to X is bounded 
on X - A ,  then f can be so chosen as to be a local imbedding at any point of 
X - A .  

Remarks. 1. It can be shown that one may always take N = n ( 2 n +  1) 
(if we only require properties 1 . -3 . ) .  There are some cases in which a 
smaller value of N can be obtained. For  example, if X is a manifold and 
A is a submanifold of codimension p, we may take N = p ( 2 n  + 1). 

2. If we take for A a single point, Theorem 1 reduces to the imbedding 
theorem of REMM~RT; see [4]. 

3. The presence of the neighborhood U is necessary. It is easy to show 
that if A is not compact and is nowhere dense, then, for any m a p f  of X 
into a locally compact space Yon which there is a point yo with f -  t (Yo) = A, 
the map f l  X - A - - ,  Y-{Yo} is not proper. Thus, a noncompact analytic 
set can never be blown down to a point. 

For  the proof of Theorem 1, we need some lemmas. 

Lemma 1. I f  A is an analytic set in a Stein space of dimension n, there 
is a holomorphic map ~o : X ~ C  "+1 with r (0)=A. 

This lemma is due to GRAtrERT [3]. It can be shown that there is a 
holomorphic map ~0: X--, C" with q~- ~ (0) = A; this result cannot be im- 
proved in general. 

Lemma 2. I f  A is an analytic set on a Stein space of dimension n, there 
is a holomorphic map ~:X---,C 2"+1 such that tp(A)=0 and q J I X - A  is 
injeetive. 

Proof. Let E be the space of holomorphic functions on X which vanish 
on A equipped with the topology of compact convergence. E is a Fr6chet 
space. Further, for any pair of points a, b(~A, a+b,  there is gEE with 
g(a) 4:g(b) (one can, in fact, prescribe the values of g on a and b). 

For  a, bCA, a:~b, let E(a, b) denote the set of g EE  with g(a)~:g(b). 
It is immediate that E(a, b) is open and dense in E. Since the intersection 
of countably many open dense sets in a Fr~chet space is non-empty, we 
deduce: 

( .)  Given any countable set of points (av, bv), av, bvr a, ~eb,, there 
is g E E  with g(av)#g(bv) for all v. 
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Let now Y= ( X - A )  x ( X - A ) - A  {A being the diagonal in the product 
( X -  A) x ( X -  A)} and let ~1 e E  not be identically zero on any irreducible 
component of X not contained in A. Let II1 ={(x, y )e  Y] ~1 (x) = ~1 (Y)}. 
Clearly I11 is an analytic set of dimension < 2 n - 1 .  Choose a point 
(a~, b~) on each irreducible component Y~) of Yl ; then av, b,r a~ebv, 
so that, by (*), there is ~b2~E with q/2(av)Je~2(b~). Let 

)'2 = {(x, y) ff Y [ 01(x) - ~bl(y ) = 02 (x) - 02 (Y) = 0}. 

Then, since Oz ( x ) -  ~z(Y) does not vanish identically on any irreducible 
component of Y1, we have dim Y2<dim Y~-1 < 2 n - 2 .  Continuing in 
this way, we find qq . . . . .  O 2 , + l e E  with 

{(x,y)e  Yt~bj(x)-~bj(y)=O, j = l  . . . . .  2 n + 1 } = ~ .  

Clearly, if O=(ff l  . . . . .  q/2,+ l), we have if(A)=0,  ~ , I X - A  is injective. 

Lemma 3. Let X, A be as in Lemmas 1, 2. I f  the dimension of the Zariski 
tangent space to X is bounded on X - A ,  then there is a holomorphic map 
z : X ~ C  p (some p) such that z (A)=0  and Z is a local imbedding at any 
point of X -  A. 

The proof is similar to that of Lemma 2. 

Lemma 4. Let X be a Stein space of dimension n. Then there are 2 n +  1 
open sets ~I 1, ..., 1~2,+ 1 with the following properties. 

(a) Each Uj is the disjoint union of relatively compact open sets Uj,,, 
v = 1, 2 . . . . .  which form a locally finite family. 

(b) U Uj= X. 
J 

(c ) For any coherent sheaf J of ideals on X, the following approximation 
theorem holds for each j:  

Let K~ be a compact subset of Uj,~, let e~>0 and let s~eF(Uj,~, J ) .  
Then, there exists a section seF(X,  J )  such that 

Is(x)-s~(x)l<e, for x~K~,  v = l , 2  . . . . .  

The proof of this lemma follows from Theorem I and the proof of Theo- 
rem 2 in [4] if we note the following two facts. 

I. If X is Stein and Y an open subset of X which is Runge in X [i. e. 
holomorph-convex relative to X] then for any coherent sheaf of ideals J 
on X, the restriction map F(X,  J )  -~F(Y,  J )  has a dense image. 

1I. F(X, J )  is complete with respect to the topology of compact 
convergence. 

]t is now easy to prove Theorem 1. 

Because of Lemmas 1, 2, 3, it is sufficient to prove that there is a holo- 
morphic map h : X - ,  0 with h (A)= 0 such that h [ X - U  is proper. 
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Choose open sets 1I 1 . . . . .  112,+x as in Lemma 4. Then, since Uj,~ is 
relatively compact  and U Uj, ~ = X, there exist compact sets Kj, ~ c Uj, ~ for 
which U Kj ~ = X. Let Li, ~ = Kj , , -  U, and let (p = ((pl, -.-, q~,+ 1): X ~ C "  + 1 
be such that ~0-1 (0)= A. Let J be the sheaf of germs of holomorphic 
functions vanishing on A. Since cp(Lj,,) does not contain 0 e C  "+1, there 
is a constant c~ > 0 such that 

c, maxJgt(x)[>v+l for xeL j , , ,  j = l  . . . .  , 2 n + l , v > l .  
l 

Now, by property (c) in Lemma 4, there exist holomorphic functions 
hj,~EF(X, J) ,  l < j < 2 n + l ,  l < / < n + l ,  such that for f i xed j  and l, we 
have 

]hj, l(x)--c~q~l(x)l<l for xELj, v,v>=I. 

Then, each hi, ~ vanishes on A and 

max lhj, t(x)]>v for x~Lj,~. 
l 

We see, since U Li ,~=X-  U, that, for any constant t>O, the set 

( x ~ X - U t  maxl hj,~(x)l<t} 
j , l  

is contained in 

U ULj,  v 
j v<t  

and so is compact. Thus the restriction of the mapping h : X ~ C  q, q= 
(n + 1) (2n + 1), defined by the hj,~ to X -  U is proper. 

This proves Theorem 1. 

As a corollary, we obtain 

Theorem 2. Let A be an analytic set in a Stein space X (of finite dimen- 
sion). Then A has a fundamental system of neighborhoods which are Runge 
inX. 

Proof. Let U be any neighborhood of A, and l e t f : X ~  C N be a holo- 
morplaic map with the properties stated in Theorem 1. Then f ( X -  U) is 
a closed set in C N not containing 0. Let Z be a polycylinder in C N with 
OeZ, Z c ~ f ( X -  U)=0.  Then f -  t ( Z ) =  V c  U a n d  A c  V. Since Z i s  Runge 
in C N, Vis Runge in X. {If Y, Y' are Stein spaces, Z '  ~ Y' a Runge domain 
and f :  Y ~  Y' is any holomorphic map, t h e n f - l ( Z  ') is Runge in Y; see 
[4].} 

w 3. In this section we give another proof  of Theorem 2. We shall use 
the following theorem, due essentially to OKA [5] in C". 1 

1 Dr. O. FORSTER has pointed out that one may use instead elementary properties 
of REI~ARDT domains. 
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Theorem of Approximation. I f  ~ is a Stein open set in C" and p is a 
plurisubharmonic function in f2, then the set 

{ x ~ O I p ( x ) < 0 }  

is Runge in f2; in particular, it is again a Stein open set. 

Let now X, A be as in Theorem 2 and let (p:X ~ C ~ be a holomorphic 
map such that q~- l (0)=A and let ~ b : X ~ C  r be a proper, injective holo- 
morphic map (which exists by [4]). L e t f : X - - * C  N, N = p + r  be the map 
given by f ( x ) =  (qa (x), ~ (x)) and let H be the subspace of CN= CPx  C r 
given by z = ( z  1 . . . . .  zp)=0. {We denote a point of C N by (z, w), where 
z = ( z  I . . . . .  zp)eC p, w=(w~ . . . . .  w,)~C'.}  Clearly f - I ( H ) = A .  Further, 
s incef  is a homeomorphism of X onto its image, for any open set U=  A, 
there is an open set f2 in C u, H c  t2, such that f -  1 (f2) = U. Hence it is 
sufficient to prove that there is an open set W, H c  W =  f2, which is 
Runge in C N. 

Clearly, there is a positive continuous function q(w)>0  on C'  such 
that the set 

{(z, w) e CNI max I zi [ < r/(w)} = f2. 
i 

We prove below (Lemma 5) that there is a plurisubharmonic function 
p(w)  on C'  such that 

1 
p (w) > log q (w--~-" 

Thus there is a plurisubharmonic function p on C r such that 

W= {(z, w) ~ cNI max 1 zil < e -"~w)} = f2. 

If we set q(z, w)= m ax  log Iz~l +p(w), q is plurisubharmonic on C N and 
W={(z, w)eCNIq(z ,  w)<0}, so that Wis Runge in C N by Oka's  approxi- 
mation theorem stated above. Thus, we have only to prove 

Lemma 5. Let  ct be any continuous function on C r. Then there is a pluri- 
subharmonic function p on C" with p (w) > ~t (w) f o r  all w. 

Proof. We may suppose that e > 0. Let fl be a continuous function on 
R § such that fl(I w [2)> ~ (w). We have only to find a positive increasing 
convex function ~ on R + such that ?( t )> f l ( t )  for t>0 ,  for then we may 
take p (w)=  7(1 wt2) �9 Let v > 0  be a continuous function for which 

t 

c +  s v ( s ) d s > f l ( t )  for t > 0  (c a constant).  
0 

We have only to put 
t 

r(t)=c + I u(s)cls, 
0 
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where 
u (t) = sup v(s). 

s--<t 

w 4. In this section, we apply Theorem 2 to prove the following result. 

Theorem 3. Let X be a Stein space of dimension n. Then, if Hk (X, Z) 
denotes the k-th singular homology group of X with integer coefficients, we 
have 

Hk(X,Z)=O for k>n ,  

Hn(X,Z) is torsion free. 

Proof. We proceed by induction on the dimension of X. Suppose that 
for any abelian coefficent group G we have Hk(A, G)=0 for k > d i m  .4 
for any Stein space A of dimension < n. Let h be a holomorphic function 
on X which is zero on the singular set of X but does not vanish identically 
on any irreducible component of X, and let A={xeXIh(x)=O}. Then 
A is a Stein space of dimension <n  and X - / I  is a Stein manifold of 
dimension n. Let Y be any neighborhood of A in X which is Runge in X. 
Then Y - A  is Runge in X - A ,  so that, by the proof of Theorem 1 in [2], 
for any abelian group G, we have H~(X-A  mod Y - A ,  G)=0 for k>n. 
Hence, by excision, 

Hk(Xmod Y , G ) = H k ( X - A  mod Y-A,G)=O for k>n.  

By Theorem 2, Runge neighborhoods form a fundamental system of 
neighborhoods of A. Further, the singular and the (~ech homologies of 
the pairs (X, A), (X, Y) coincide. Hence, by the continuity of t~ech 
homology, we deduce that 

Hk(X mod A, G)=lim Hk(X mod Y, G) =0  for k>  n. 
( 

Now, by induction, H k (A, G)= 0 for k > n. The exact homology sequence 
of the pair (X, A) shows that Hk(X, G)=0 for k>n. Since this is true for 
an arbitrary abelian group G, the universal coefficient theorem gives us 
the required result. 

Corollary. If X is a Stein space of dimension n, the singular cohomology 
groups H k (X, Z) = O for k > n + 1./llso H ~ + 1 (X, Q) = O. 

This follows from Theorem 3 and the universal coefficient theorem. 
Of course, Q can be replaced by any divisible group. 

It is not known if H~+I(X, Z)=O. This would involve proving that 
H~(X, Z) is free, which is the case if the singularities of X are isolated [2] 
or if H~(X, Z) is finitely generated. The question is open in general. 
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Theorem 2 and the above  coro l la ry  have also been ob ta ined  by  KAUP. 

w 5. This section deals  with the cons t ruc t ion  of  Runge  doma ins  D in 
C" with prescr ibed Hk(D, Z)  when k is small  c o m p a r e d  to  n. 

Lemma 6. Let U be an open set in R" and consider R" as a subset of 
C ~. Then there is a Runge domain D c C "  with U c D  such that U is a defor- 
mation retract of D. 2 

Proof. W e  denote  the coord ina tes  in C" by  z=(z~ . . . . .  z,), z j= 
x j+iy j  and R " = ( z ~ C " l Y j = O , j = l  . . . . .  n}. If U is an open set in R", we 
assert  that  there is a C ~ funct ion g on R" such tha t  

U = { x ~ R " l g ( x ) > O } ,  g ( x ) = 0  for  x ~ R " - U ,  

and such that  all derivat ives of g are bounded  on R". In  fact, let (Kv}, 
o 

v =  1, 2 . . . .  be a sequence of compac t  subsets of U w i t h  KvcK~+ ~, L) K, = 
X, and  let K 0 = 0. Let  q~, be a Coo funct ion with compac t  suppor t  in U, 
q~v(x)>0 for  x e K v - K ~ _ l ( v >  1). I t  is easily seen that  we may  take  

g(x)= ~ ,L q,v(x) 
V = I  

for  a sui table sequence 6~ > 0. 

Let  

p ( z ) = y ~ + . . . + y Z ~ - e g ( x ) ,  e > 0 .  

We see at  once tha t  the Levi fo rm of p is given by 

L(p) =- 

where 6~ ~ is the Kronecke r  del ta  and  

OZ g 

g~,= OxuOx, �9 

Since g~,  is bounded  on R", if e is sufficiently small ,  L(p) is posi t ive 
definite, so that  p is p lu r i subharmonic  on the whole  of cn. 

Let  
D = { z ~ C " l p ( z ) < O } .  

By O k a ' s  app rox ima t ion  theorem stated in w 3, D is Runge  in C ". Now,  
if x ~ R  ~ -  U, p(z)= y~ + ... + y2 >0, so tha t  D =  U •  R ". Hence 

D= {z=(x ,  y ) l x e  U, y2x + . . . +  y2, <e g(x)} , 

so tha t  U is clearly a de fo rmat ion  re t rac t  of D. 

z By a refinement of the argument used here, one can show that any Coo-manifold 
of real dimension n with a countable base is contained in a Stein manifold of complex 
dimension n as a deformation retract. 
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Lemma 7. Given a finitely generated abelian group G, there is a connected 
finite 2-dimensional complex K which can be imbedded in R4 for  which 

H I ( K , Z ) ~ , G .  

Proof. We assert that it is sufficient to construct K when G is cyclic. 
In fact, if G is the direct sum of cyclic groups G~ and K~ c R 4 corresponds 
to G~, one has only to consider a large line segment and attach the K~ to 
points of this segment so as to be mutually disjoint. 

If  G is infinite cyclic, we set K = S  1. If G = Z / m Z ,  we take for K the 
2-disc attached to S 1 by a map of degree m of its boundary onto S 1. To 
see that K can be imbedded in R 4 we proceed as follows. Consider the 
m a p f  of the disc [z[ __< 1 into C 2 given by 

f ( z ) = ( z m , ( 1 - l z ] ) z ) .  

Clearly, the restriction o f f  to I z [ = 1 maps with degree m onto the circle, 
and f is injective on I z [ <  1. This gives an imbedding of K into C : =  R 4. 

Theorem 4. Let G be any finitely generated abelian group, let k be an 
integer > 1 and let n be an integer > k + 3 .  Then there is a connected Runge 
domain D in Cn for  which Hk (D, Z)  ~ G. 

Proof. We assert that if n > k + 3, there is a connected finite complex 
L imbedded in R n for which Hk(L , Z ) ~ G .  In fact, by Lemma 7, there is 
a finite complex (connected) K c  R 4 with HI  (K, Z ) ~  G. The ( k - 1 ) - f o l d  
suspension S k- ~ (K) is then a connected finite complex imbedded in R k § 3 
for which H k (S k- ~ (K), Z) ,~ G. We have only to take for L the product of 
S k- 1 (K) by the (n - k -  3)-disc. 

Now, there is a neighborhood U of L in R n of which L is a deformation 
retract [any locally finite complex in Euclidean space has this property]. 
By Lemma 6, there is a Runge domain D in C" with the homotopy type 
of U. Clearly D is connected and Hk(D, Z)~,G. 

By using the fact that for an arbitrary countable abelian group G, 
there is a locally finite complex X of dimension k +  1 with Hk(X, Z)~,G,  
we prove, in the same way as above, the following: 

Theorem 5. l f  G is any countable abelian group, and k is an integer > I, 
there is a Runge domain D e C "  with Hk(D, Z)~-,G t f n > 2 k + 3 .  

Theorem 4 shows that for a Runge domain D in C n, H k (D, Z)  can 
have torsion if k < n - 3 .  It  is known [2] that if k > n ,  these groups are 
zero and Hn_ 1 (D, Z) is torsion free. It  is trivial that any countable free 
group can occur. All the domains constructed by our method have a 
torsion free Hn-2 as one sees by using the Alexander duality theorem. 
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