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Unstable Bundles and Branched Structures 
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Richard Mandelbaum 

1. Suppose M is a compact Riemann Surface of genus 9 > 1. The Picard- 
Jacobi variety J(M) of M can then be described as the group of analytically 
equivalent flat complex analytic line bundles over M. More explicitly we can 
identify the set of flat line bundles over M with the group H~(M, IE *) 
~-Hom(Th (M), (E*) ~_ (IE*) 2g. We then consider two flat line bundles analytically 
equivalent if they have the same image under the homomorphism i in the exact 
sequence of groups 

o ,r(M, (91'°)~-~Hl(M,~*)J~Hl(M, (9*) 

arising out of the sheaf exact sequence 

0 ,C*  i,(9" d-~(91'° ,0 

(where (.9* is the multiplicative sheaf of germs of holomorphic nowhere vanishing 
functions; (91'° is the sheaf of germs of holomorphic differentials of type (1, 0) 

1 (9* 1 and d is the mapping f - ~  d log f  of onto (9 ,o). Geometrically, of course, 
2~i 

analytic equivalence simply means that the flat line bundles determine the same 
analytic line bundle. 

In terms of representations of the fundamental group if we represent M as the 
quotient space U/G of" the unit disc modulo a group 6; ~ rr~ (M) of linear fractional 
transformations, then two representations c~,/~ Hom(G,~E*) are analytically 
equivalent if and'only if there exists a complex analytic mapping P: U-~E* 
such that P(ez) ~(e) =/~(e) P(z) for all g ~ 6; and z e U. In any case the equivalence 
classes of flat complex line bundles are simply cosets of the Lie subgroup 
6F(M, (9 ~'°) C (~E*) 2g and are all complex analytic submanifolds of (~.)2g analyti- 
cally equivalent to C g. Thus the group of flat line bundles on M turns out to be a 
~ 9  bundle over J(M). 

In Gunning [3, 4, 6] this construction is generalized to the set of flat complex 
vector bundles on M.In particular the cohomology set H ~ (M, SL (2, CE)), represented 
as the quotient space Horn (zct (M), SL (2, CE))/SL (2, ¢;)) is studied. This set, though 
not having a natural group structure does have a natural complex structure. 
Again as in the case of the line bundles, two flat vector bundles are analytically 
equivalent when they determine the same complex analytic vector bundle and, 
in terms of representations of the fundamental group, we again call 
~ , /~Hom(G,  SL(2,1E)) representing classes [~] and [/~] in HI(M, SL(2,C)) 
analytically equivalent if there exists a complex analytic mapping P: U , SL(2, lF) 
such that P(gz) o~(9) = ,g(9) P(z) for all O ~ G and z ~ U. If we restrict our attention 
to those representations not having scalar commutants we obtain a 6 9 - 6  
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dimensional complex manifold S£ Ha(M, SL(2,~)) which analytic equivalence 
foliates into complex analytic submanifolds of dimension 3 9 -  3. However as 
shown explicitly in Gunning [-3, 4] these submanifolds are not necessarily even 
topologically equivalent. A detailed description of the individual leaves in the 
above foliation is then a matter of some interest. In particular the leaf consisting 
of those flat bundles representing a maximally unstable analytic vector bundle 
corresponds to all possible projective structures subordinate to the complex 
structure of M. In the present paper we generalize this description and establish 
a correspondence between all leaves corresponding to irreducible bundles of 
any divisor order (not necessarily maximal) and the branched projective structure 
studied in [7, 8]. Our notation will be that 

2. Consider the commutative diagram 

0...~ Z 2 e 

of [1-3] and [7, 8] throughout. 

, SL(2, ~) u2 , PL(1, ~ ) ~ 0  

where we identify SL (2, (12) Fresp. PL (1, ~)] with the subsheaf of constant maps in 
? f ~ ( 2 , ~ )  [resp. ~ ' ( 1 ,  C)]. On the level of cohomology we then get 

Ha(M, Zz) #2 e, Ha(M SL(2, ~ ) )  , ~)) 

i ,  

Ha(M, 5f~(2 ,¢) )  ~' , Ha(M, ~Sf(1,~)) .  

,/4'(M, PL(1 

Now it is clear that #~ - 1 (#~, (T)) 
by H I(M, Z2) 
order etc. it is 
the obvious 

= {v® Tiv~ Hi(M, Z2) ~- (Z2)2°}. Since tensoring 
preserves such things as irreducibility, indecomposability, divisor 
clear that we can extend such notions to /~(HI(M,  SL(2, C)) in 
fashion. Furthermore passing from H a (m, SL(2, ~E)) to 

H~(M, ~ ( 2 , ~ E ) ) a l s o  preserves divisor order and therefore the notion of divO 
can be extended to i,I~'~(Ht(M, SL(2, C)))CHX(M,~(1,~)). Thus we can 
speak of stable and unstable projective bundles in #*H~(M, 5/~o(2,4E)) in a 
fashion analogous to the same notion in H~(M, ~ ( 2 ,  C)). In the sequel we shall 
be primarily interested in the map i, above. Now H~(M, Z2) acts in a discrete 
fashion o n  Ht(M, SL(2, qE)) and to understand what analytic equivalence does 
in Ht(M, SL(2, C)) it will suffice to analyze what happens in ff~(H~(M, SL(2, ~))). 
We call I~'~(Ht(M, SL(2,~:)))the set of associated flat projective bundles and 
i,#~(H~(M, SL (2, C))) the set of assocociated analytic projective bundles. We 
recall that for any #~i,H~(M, SL(2,ff;)) we have that (1) - # < d i v # < # - I  
and (2) divO4=0~O is analytically indecomposable and if # = i , ( T )  then T 
is irreducible. A corresponding result also holds in the projective case. 

3. Before proceeding any further we review some of the facts about branched 
structures proved in [7, 8]. 

Let { U~, z~} be a coordinate cover for a Riemann surface M. Suppose for each 
~, W~ : U~ , Y~ is a meromorphic function on U~ to the open subset Y~ of the complex 
projective line P. We note that this implies W~:U, , Y~ is a locally branched 
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covering map, and we let Ow(p) denote the branching order of w at p. Suppose 
further that for each nonempty intersection U,n  U, there exists a meromorphic 
homeomorphism qS:o : Wo(U,~ U~),- W~(U,~ Up) such that W~ = 4~,~o Wa on 
U, n Ua. Then we shall say {U,, W~, ~b,a} is an analytic branched cover on M. 
An analytic branched structure on M is then simply an equivalence class of 
covers (where two branched covers are equivalent if their union is a branched 
cover). It is easily verifiable that branching orders are preserved by the above 
equivalence relation and we can speak of the branch points of a structure. 

By adding the restriction that all the homeomorphisms ~b,o belong to some 
pseudo-group G of meromorphic transformations of P we can also speak of 
analytic branched G-structures on M. The only such structures arise when 
G = PL (1, C) or when G = G A (1, C) and we call such structures projective or affine 
branched structures on the Riemann surface M. We note that if M has such a 
branched G-structure [q/], then we can always choose a representative branched 
G-cover { U,, W~} of M such that each U, has at most one branch point and no 
branch point p is in two or more distinct U,'s. Furthermore if U, has no branch 
points then W~ is in fact a homeomorphism. We call such a cover a restricted 
cover on M and henceforth tacitly assume all our covers are restricted. 

Now given a branched analytic cover {U~, W~} on M we can canonically 
associate to it the positive divisor ~({U,, W~})= ~ Ow,(p)'p (for some ~ such 

peM 
that p e U). If M is compact ~ Ow,(p)'p is a finite sum and therefore recalling 

peM 

that branching orders are invariants of the structure represented by {U,, W~} 
we have a map ~ :  {branched structure on M} ; {positive divisors on M}. Given 
a positive divisor ~ on M we shall say a branched analytic structure is of type 
if and only if, for some representative { U,, W~} of that structure, ~ { U,, W,} = ~). 
We let B({U,, W~})= deg ~ =  ~ Ow,(p) and call this the branching order of the 

p e r u  

structure. 
We let ~ ( M ) =  {space of branched projective structures on M}, pVz = {pro- 

jective structures of type ~ on M} for any positive divisor a), and for any positive 

. V ( B )  = U 
{~ ~ M (B) } 

integer B 
c 

(i.e. p V(B) is the space of all projective structures of total branching order B). 
Now by Theorem 5 of [8] each pV(B) is a constructible set. In fact for each 

partition a of the positive integer B there exists a complex analytic variety p Vn(a) 
such that pV(B) is the disjoint union of the pVn(a) for all partitions ~r of B. 

Now suppose ~ = {U~, W~, 4~,p} represents a projective structure in ~(M). 
We immediately note that the transition functions {~b,p} satisfy q~,a= q~-I 
and ~a~ba, = q~,v and therefore define a cocycle in ZI (q/, PL(1, C)). Furthermore 
equivalent representative covers define equivalent cocycles and this equivalence 
is preserved under refinement. We therefore clearly have a well-defined map 

By Theorem 6 of [8] J2 is in fact holomorphic on each pVB(a)C ~(M). 
For future use we introduce some notation. 
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Suppose k e Z such that - g  < k < g - 1. Then 

S= {Te Hi(M, SL(2, C))[ Thas only scalar commutants} 

Sk= { T e S l d i v T = k }  ; Sk+ = ~ S~; S,=So÷ . 
j>__k 

(1) 

(2) 

(S) " S* = i ,  , S~ = i , (S  k) ; S~+ = i,(Sk+ ) and ik=ilSk. (3) 

P =  #~(S) ; P, =.t(&); Pk+ = = (4) 
p ,  • (p); -'-I, P~ = i,(Pk) ; P~'+ = i,( Pk÷) ; P~* i,(P.) (5) 

We note that S = S_o+ and S. is the space of unstable flat vector bundles in M. 
By [3, 43 we have that S* =i,(H~(M, SL(2, ~))), that is any fiat vector bundle 
is analytically equivalent to one having only scalar commutants. 

Furthermore if ~eH~IM,  SL(2,1E))-S then d i v e = 0  and • is reducible. 
Now as we mentioned previously i , : S , S *  foliates S into a disjoint union of 
3 9 -  3 dimensional complex submanifolds of S. We will be perticularly concerned 
with those submanifolds lying above S*. 

We have 

Proposition 1. Let k be an integer with - 9  <__ k < 9 -  1. Then 

(1) T e Sk and T is irreducible implies 

u'~(T) ~ j2(pV(29 - 2 - 2k)). 

(2) 
T ~ Sk +. I f  k > 0 then 

In particular for 
pV(2g- 2 -  2k). 

(P ej2(pV(2g- 2 - 2k)) and 49 is 
T~Sk. 
k > 0 there is a 

irreducible implies ~=  la~(T) for some 

1 - 1  

Proof. (1) Let Te SR and represent Tby (T~) 

correspondence between Pk and 

= (a~ b~p 1 ~,c~a d~p] for some coordinate 

cover {U~} of M. Since div T =  k there exists a line bundle 

that ~-1 ® Thas a holomorphic cross-section h. Let {ha} = h2 

with c(0 = k such 

E F(M, ® T)) 

(hl~ (d/dz')(ha')t Then we find represent such a cross-section and let H, = h2~ (d/dza)(h2a)]" 

that det H, = ~ - ~ x ,  adetHa (where x denotes the canonical line bundle on M) 
so if det H, isn't identically zero we obtain (det H,)e F(M, 0(~-2x)) and therefore 
by [l, Theorem ll] ,  ~ vp(de tH, )=c(¢ -2~c)=2g-2-2k .  However letting 

p ~ M  

a~t~w ~ + b ~  w~= h lJh2~ in U= we see that w~= in U~a so that {w~} represents 
c~wp + d~t J 

a cross-section w of p~(T). Furthermore since d i v ( ¢ - l ® T ) = 0 ,  hi ,  and he, 
have no common zeros. Then observing that (d/dz,)w=w'=-(h2,)-2detH~ 
and (1/w,)' = (h 1,)- 2 det H, we see that 

B(w~) = ~ Ow,(p)= ~ vp(det H~)= 2 g -  2 -  2k 
p~m p ~ M  

and so by [7], #~(T) e pV(2g-  2 - 2 k )  provided detH~ doesn't vanish identically. 
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Now 
g~ if k _>_ 0 (meromorphic if k < O) with {G} not vanishing identically. Let f~ 

in U~. Then f~ ~ F(M, .~/[*(rl ® T)) [~F(M, C(rl ® T)) if k > 0]. Let F~ = ( ; i  ~ 

pick rl~ H~,M, tF_.*) so that r/¢ will have a holomorphic cross-section 
=g~ha 

f ~ l  

f d" 
Then an easy calculation shows that det F, = g2 det Ha and since g, is not identically 
zero we must show detF, is not identically zero to conclude the same fact about 
detH,. We argue by contradiction. 

So suppose detF,  is identically zero. Then f~, and f2, are linearly 

and there exists constants an, G ~ (U*, 

Furthermore 

where 0~ = ¢, /g ,  e 6v,. 
we have [3, p. 78] that 

depende, nt 

(a~) for some 4,a e /,~. such that f~ = 4'~ c~ 

since f~=gaha and g, is not identically zero we get h,=Oa/\{aa] 
\ ] Ca 

In fact since div(~- ~ ® T) = 0 and h~ e F(M, (9(~- 1 ® T)) 
0a e (9~. Thus by [1, Theorem 11] 

v , ( ¢ . )  = (v,(O.g.))= Z v , (g . )= c ( ,O  = k . 
peM peM peM 

However since f~ e F(M, ./4'*(q® T)) we find that 

or 
~a Ca C# 

a,,¢, = rh~aC~a(aaaaa + b,,aca) 

GCa = rhtJCa(caoa~ + d,~c~) . 

But if we now let r,a=a~(Gt~aa+bapcp)Ga we can 
r = (r~t 0 e H ~ (M, C*) and (q~,) e F(M, ~g*(r)) [e F(M, (9(0) if 
since ~ba is not identically zero 

easily verify that 
k > 0]. But then 

vp(¢~) = c(r)= O . 
peM 

Thus if k 4:0 assuming det F, = 0 leads to a contradiction. 
So suppose k = 0. 
But then qS, e F(M, C(r)) implies r ~  1, and (~b , )~* .  But then f ,  is locally 

constant so ( f , )~F(M,~(rl® T)). Thus by [3, Theorem 18], r/® T is reducible. 
But r/is a flat line bundle so T must be reducible again giving a contradiction. 

(2) Now suppose ~ej2(pV(2g-2-2k) )  and irreducible. Then by [8] we 
can find a holomorphic cross-section w = {w~} of ~ such that B(w)= ~ Ow,(P) 

peM 
= 2 g -  2 - 2k. Fur thermore there exists a fiat vector bundle T~ H 1 (M, SL(2, (U)) 
such that # ~ ( T ) =  • and a flat line bundle q ~ H 1 (M, C*) such that r/® T has a 

holomorphic cross-section h = (h~)= \hzJ with hlJh2,= w,. By the construction 

of h in [8] we see that ~ vp(h,)= k. Thus div(r/® T ) >  k and since r/ is fiat, 
p~M 

div T >  k. Fur thermore since • is irreducible so is T and thus T e Sk÷. Now if 
k=>0 and divT=l>k.  Then by Part l we find #~(T)ejE(pV(2g-2-21)). 
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However by [8, Theorem 2] since 0 < l, k < 9 -  1 we have that 

J2 (p V(29 - 2 - 2 l))mJ2 (p V(29 - 2 - 2k)) = O. 

This gives a contradiction so div T = k. 
Lastly by [8, Theorem 3] J2 is injective 

Furthermore taking k > 0  guarantees that 
on pV(29 - 2 - 2k) for 0 < k < 9 - 1. 
j2(pV(29-  2 -  2k)) consists entirely 

of irreducible bundles. Then combining Parts (1) and (2) above gives a 1 -  t 
correspondence. 

Remark. Ifk = 0 we can still get a 1 - 1 correspondence between the irreducible 
bundles in P0 and p V ( 2 9 - 2 1 - , V ( 2 y - 2 ) .  We shall henceforth denote these sets by 
P6 and pV' (2g-2)  respectively (and similarly for So, S~, P~'). The subset of P; 
of analytically indecompasable bundles will be denoted by P; and the corre- 
sponding space of branched projective structure by pV"(29-2).  We note by 
[3, Theorem 30] that S~ = S~' and P~' = P~". In the case of k = 9 -  1 we get the 
following result first noted by Gunning in [ 1, 5]. 

Corollary 1. Suppose k -  g -  1. 
Then P*-I C H I ( M , ~ ( 1 , f f ~ ) )  c°nsists of a single element representable by 

A~(za)= "~(0 "a(zp) (d/dzt3) ~"P(ztJ))" on U, nUtj (for some representative cover {u,}, ~afll(zfl) 
\ - -  / 

where 2 = (2~p) e Hi(M, ~*) is any line bundle such that 22 = ~c) and Pg_ 1 corresponds 
precisely to the unbranched projective structures on M, pV(O) ~- C 3°- a. 

Proof. The fact that P*_ ~ consists of one element can be found in Gunning 
[5, Appendix] while its explicit form is determined in [l,  Theorem21] or 
alternatively follows from Theorem I of this paper. 

4. If k 4: g -  1 then Pk* is no longer a point and ; V ( 2 g -  2 -  2k) no longer a 
simple vector space. The problem of determining the relation between fibers 
over Pk* and subvarieties of vV(2g - 2 - 2k) is thus much more complex. So suppose 
0 =< k __< g - 1. We can fiber both P~' and pV(2g - 2 - 2k) over the Jacobi variety 
of M and this leads to a simplification of our problem. In particular let J(M) 
be the Jacobi variety of M represented as J ( M ) =  {~eH~(M,~*)[c(~)=O} 
(see [1, Section 8]). If we pick any base point rn e M and define Jk(M) 
= {~ ~ H~(M, (9")1c(~)= k} we obtain a complex analytic isomorphism of J(M) 
= Jo(M) onto Jk(M) by mapping ~ in Jo to ~(k e Jk, (where (m is a point bundle 
as defined in [1, Section 7] and we suppress the (M) where possible.) Fixing 
m e M we shall refer to Jk as the k th order Jacobi variety of M. As in [2, Section 3] 
we can now define an analytic map ~k:M(k)~ Jk(M) (where M~k)= k th fold sym- 
metric product of M and we identify M (k~ with the space of all positive divisors 
of degree k on M) by sending ~ = p~ + ... + Pk ~ Mtk) to ~z = (p~...(p~ e A(M). 
Now by [7] any projective structure {U~, w~} in pVk is associated to a unique 
divisor ~({U,, w~}) in M tk~. We thus can define a map ~3 : pV(k)~ M (k~ such that 
~ -  ~(b) = pVb for t3 e M tkJ (where p Vb is the space of branched projective structures 
of type ~ as defined in [7]. Letting ~p- ~Pk ° ~ we thus get a map 

giving the desired "fibering" of 

p V(k) ~ ~ M(k) wk ........... ~ g k  

I1: 

pV(k) over Jk. 
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Now by Lemma 15 of [3] if 0 < k < 9 - 1 and • e S~' with ~ indecomposable 
then there exists a unique line bundle ~ C • with c(~) = k. We thus obtain a map 
fv : S~ ~ Jk and we let 2 = ~ o i : S k ~  S'~ ~ Jk" To transfer these maps to Pk we 
simply note that if q~ ~ Pk* then ~ will only be known up to a factor in the finite 
group H~(M, Z2). Thus we get corresponding maps 

2 = w o i: Pk _i ; p~ ~ Jk/H ~ (M, Z2) = .~. 

We let rt : Jk ' Jk be the natural surjection. We note that the map [~] ~ Jk "' X¢- 2 
e J2o-2-Zk is well defined (i.e. independent of choice of reEresentative of [~]) and 
in fact establishes a biholomorphic equivalence between J, and J20-2-2,. 

We can now break P, up as P ,=  ~ .  2-  t(O and we break up pV(2g - 2 -  2k) 
[¢] e J 

as v V ( 2 g - 2 - 2 k ) =  ~ 05-~(0. We shall denote 2-a(~) and 4 - ~ ( 0  
{~ e J 2 o  - 2 - zk} 

by Pm and vV(() respectively and let P~* = w- a(~). 

Theorem 1. Suppose 0 < k < O - 1. 
Let Yk = (/2 [pV(2#-- 2-- 2k)) -a for 

7k and y~ are bijections such that 
(1) The following diagrams commute 

k > 0 and ),~ = 0"zlpV"(29 - 2))- ~. Then 

i 

//2 ) Pk ' Yk 

t7 

,:,v<: ~,9- 2 -  2k) ~'~ p VI~2 -2) '0 

i 

S ,  t/ 
0 

gt ) pit 

~* , p*" 

,!o / 
M ( 2 O - 2 - 2 k )  2 4, M(20-2) 

) g - 2  - 2 k  9 - 2  " 

(2) 7k(Ptcj)=pV(K~-2) for any ~ [ ~ ] ~ w ( P ~ ' ) a n d  7~(Pt¢l)=pV(r,~ -2) for 
any ~ ~ [~] ~ w(P~'). 

Proof. 
7o is identical to that of 
Again by Proposition ! 
mutativity of the block 

"~k and 7~ are bijections by Proposition 1. Furthermore the proof for 
7k SO we concern ourselves only with the latter case. 
only two things must be checked. Firstly the com- 

Pk ~" ' V ( 2 9 -  2 -  2k) P 

and secondly that pV(x~-2)C Vk(Pt¢]). 
(a~,# b~# I 

So let T=(?' ,p)~ Pk be represented by T,#= \c,~# d,#) ~ Sk. We can then 

find 45 ~ H~ (M, ~ 5  °(1, C)) analytically equivalent to T and representable by 

• =(~,#)= (; 'P q ' " )  H~(M, 5: ~° (2, ~)) with ~,#s Jk(M)unique up to multi- 
\ 

W 
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plication by elements of H 1 ( M ,  2,). Then d(?) = let- 2. Referring back to  the 
proof of Proposition 1 we find that y k ( F )  = {w,) E pVB(detHal where 

the construction of the proof of Proposition 1. 
For Part (2) suppose {wa) E , v ( K ~ - ~ )  for some 5 E J,. Then {w,} E f i r  

some D E M ( 2 g - 2 - 2 k )  with ~(9) = x t e 2 .  NOW j2({w,}) = T E  H'(M,  PL(1, C)) 

and by Proposition 1, ?E P'. Then it suffices to show that if T E  Sk represents 

? then T is analytically equivalent to some map = j0 <_, t H ( M , . Y Y ( 2 , C ) )  
with (tap) a representative of 5 in J,. 

Writing w, = h,(za) we can assume that the ha are holomorphic functions of z, 
on U, where (U,, z,} is some representative analytic cover of M .  

Let T = (z:: F Sk and note wa = aapwp + 6.p for p~ UznL;. 

C a P ,  + da, 
Now 3 {w,) = C*v,{hh} = 2 g  - 2 - 2k. Then for p E Uan Ug letting HE@ = hb/h& 

we easily check that (Ha& H1(M, 8*) with c(H,,J= -deg3.  Now dwa/dwp 
h; dz, - 2 -  . =(caaws+dblS) - hb dzp =H&-,'rc$. Letting cap=capwa+d,B on U,n Up 

we have ( t a p ) €  H1(h4, O*) and c$ = uapHaa SO c(<) = k and v(D)= H-'  = 
1 d as desired. Now let r],@ = - - 4 dzs t a p  = C.p- 

Then in U, n Ug n U, we find 

Thus by [I, Section 41 ta-t qap E H1 ( M ,  0 ( t 2 ) )  and so by [3, Theorem 131 we have 

and 

This is analytically equivalent to ( T a p )  and we are done, 
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is as above then i,(T~),-~ 

We note that we have explicitly 

0 
theorem. In particular if k 

~2__ ~ -  x,a and i,(T)= 
0 

determined the form of i,(Sk), namely if 
! 

h' ~P 

= 9 -  1 then H,a is 
d 

dza ~ 

d 
dza 

using the notation of the 

equivalent to the trivial bundle, 

as stated in Corollary 1. 

5. We consider the consequences of Theorem i in some cases of low genus. 
Suppose 9(M)= 2 so that c0c)= 2. Thus k = 0  or k = g -  1 = 1. If k = 1 then 

we have the case of Corollary i and P* consists of one element while P1 ~ ~3. 
If k = 0  then P~--~ pV"(2) and P('el,.~pV"Oc~-2). Now by the Riemann-Roch 
Theorem if [~] 4:1 then dimHa(M, (9(~2)) = i and therefore by [3, Theorem i4] 
PE~" consists of at most one point for any [~] ~ J o - {  1 }. Analogously for such 
[~], ~-~(~) also consists of at most one point. Following the notation in [2] we 
shall let W{= { e J~lT(~)=dimF(m, g0(~))> r}, and G~" = tp-I(W[). Now G~ = M  (t) 
for any l and by Theorem 10 of [2] if 1 =< r < 9 we have M (~)- G 2 is analytically 
isomorphic to Wf t -  Wt z. In our case l =  2, Wz z = {to} and G~ is analytically iso- 
morphic to pa Then we find that both P*" and M ~2) . -o can be identified with the 
complex manifold obtained by blowing up J2 = W2 ~ at the point x and we can thus 
define a complex analytic isomorphism 6:P~" ~ M  (2~ such that the following 
diagram commutes 

e;'i etlJ 
y,, 

'vV(2)-pV 

P o * " -  PI] ~ M(2)-  G2 2 
l 

with 7" and 6 isomorphisms. 

So off the exceptional fiber the fibration P6', P~" corresponds precisely to the 
fibration pV"(2), M(z); that is the fiber over a point x~ P~" s.t. w(x)#: [1] is 
analytically isomorphic to pV~' for the unique ~ e M (z) such that ~p(~)= xw-2(x). 
In particular noting 4, 3 Theorem 30] we see that p V6' is in fact a manifold for 
any ~ ~ M (2)-  G~. 

Now suppose g = 3 so that c(x)= 4 and k = 0, I, 2. If k = 2 we again have the 
case of Corollary 1. Suppose k -  1. Then P1 "~ V(2) and P, corresponds to _ - - p  [~] 

2 " 1 2 2 pV(~:~ -z) for [~] e J~. Again m (2~- G2 is biholomorphlc to WE - I V /  and Wi 
C , onslsts of a finite set of points if M is hyperelliptic and is empty otherwise. If 
M is not hyperelliptic we thus find that M t2) is biholomorphic to W2 ~ C J2- 
Similarly if [~] e J1 is such that ~c( -2 e W2 ~ then by [3, Theorem i4] P~ consists 
of precisely one point and this can also be identified with W) and thus we can 
define an analytic isomorphism b l: 'M(2) such that the diagram 

P1 ~1 , pV(2)  

p~ ~ ~ M (2) 

commutes with Y t and ~1 both being isomorphisms. 



58 R. Mandelbaum 

We thus again find that the fibration P~ ,P~' corresponds precisely to that 
of pV(2)~M '2) so that the fiber over each x~ P*, which is a complex analytic 
manifold of Dimension 6 by [-3, Theorem 30] is isomorphic to pV~ for 
~ = ~ ( x ) e  M ~2). In particular we find that each such pVz is a manifold. 

Now if M is hyperelliptic then M t2) and P* will be identifiable with the 
minimal non-singular resolution of Wz 1 obtained by blowing it up at the finite 
number of points in its singular locus W2 z. It will thus still be possible to define an 
analytic isomorphism of P~' onto M ~2) however the commutativity properties 
enjoyed over non-hyperelliptic surfaces will now only be true for fiat bundles 
T ~ P~ such that tS0 o i(T) ¢ G2. 

Lastly suppose k=0 ,  so that P~' Z pV"(4). Here dimE(M, (9(t¢~- 2)) >= 2 for all 
[~] e Jo so we cannot improve upon the results of our theorem. 

In general we can make the following statement 

Corollary 2. Suppose 0 < k < g - 1 and m = 2g - 2 - 2k. Then 
(1) I f  m < g then G~ is a proper analytic subvariety of  M <m) and there exists a 

bijection 6 : P~ - w l(a l(W~))--, M (m) G 2 Z W 1  2 - - . -  - .  m -  W~ such that if P ,=  P~ 
- w-a(a- l (w~))  and; M "  = M c" l -  G~; P, = i- a(P~) and ~-I(M~'~))= pV(m) then 
the diagram 

, , f / (m) 

'[ 1" 
commutes with y, 6 being bijections. 

(2) There exists a proper analytic subset A of  the Teichmuller Space T o of  

Riemann Surfaces of  genus g such that M e  T ° - A  implies that if  m <  r + 3 / 
2 

k .i 

the above map 6 can be extended to all of  P~' in such a way that commutativity is 
preserved. 

Proof. Follows immediately Proposition 1 and .[11]. 
Thus we know that "in general" if 2 g -  2 -  2k is small enough the fibration 

P~' ,P~' will coincide with the fibration p V ( 2 g - 2 - 2 k ) ~ M  ~z°-z-zk) thus 
generalizing Gunning's results in [6]. The problem of extending in a natural 
manner map 6 of Corollary 2 from/6k* , ~,0 to a map P* ~ S ~m) is treated in I-9] 
however it is not clear whether commutativity still occurs in the new diagram 
thus obtained. It would thus appear that the bijection between pVtn and pV(x~-2) 
of Theorem 1 is the best result obtainable in the general case. Corresponding 
results for the case of affine bundles will appear in [ 10]. 
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