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Abstract. We describe a model based recognition system, called LEWIS, for the identification of planar objects 
based on a projectively invariant representation of shape. The advantages of this shape description include simple 
model acquisition (direct from images), no need for camera calibration or object pose computation, and the use of 
index functions. We describe the feature construction and recognition algorithms in detail and provide an analysis 
of the combinatorial advantages of using index functions. Index functions are used to select models from a 
model base and are constructed from projective invariants based on algebraic curves and a canonical projective 
coordinate frame. Examples are given of object recognition from images of real scenes, with extensive object 
libraries. Successful recognition is demonstrated despite partial occlusion by unmodelled objects, and realistic 
lighting conditions. 

1 Introduction 

1.1 Overview 

In the context of this paper, recognition is defined as the 
problem of assigning the correct label to an object seen 
in a perspective view. Recognition is considered suc- 
cessful if the 2D geometric configuration of an object 
in an image can be explained as a perspective projec- 
tion of a geometric model of the object. In this paper 
we restrict ourselves to planar objects, although many 
man-made 3D objects can be decomposed into recog- 
nisable planar patches. 

A key aspect of the system is the use of the pro- 
jective transformation group to represent perspective 
image projections. Most object recognition systems 
use approximations to perspective, such as affine or or- 
thographic camera models. Such approximations are 
often valid, but viewing conditions where depth vari- 
ation of the object is significant compared to viewing 
distance, or those that consider a wide viewing angle, 
require a complete representation of the effects of per- 
spective image formation. 

Perspective, or central projection, does not exhibit 
the full range of geometric transformation possible un- 
der the projective model. For example, convexity is 
preserved under perspective projection (so long as the 
imaged object does not intersect the focal plane), but 
not under full projective transformation. However, the 
convenience of homogeneous coordinates, the conse- 
quent linearity of projective transformations, and the 
associated group properties motivate our use of projec- 
tive geometry throughout. The restrictions associated 
with perspective are introduced in the recognition pro- 
cess as part of hypothesis confirmation. It should also 
be noted that the parameters associated with internal 
camera calibration are implicit in projective projection, 
so object description and recognition is not dependent 
on camera geometry. 

The recognition system, which is called LEWIS (Li- 
brary Entry Working through an Indexing Sequence), 
is designed around the use of invariant indexing func- 
tions to represent each object class. An invariant is 
defined as a function which measures some geomet- 
ric properties of an object but whose value is inde- 
pendent of projective frame. These indexing functions 
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are computed from the geometric coordinates or co- 
efficients of a small group of image features such as 
points, lines and conics. The emphasis is on efficiently 
indexing a large model library, where the index keys are 
constructed frominvariant function values. In practice, 
the index derived from one view (a model acquisition 
view) can be used to access the object model in any 
subsequent view. 

Since these indexes can be derived from any view- 
point, it follows that any unoccluded view of the object 
can serve as a model. We derive the invariant values 
for the library from a typical view and also include in- 
formation which is needed for verification, such as the 
main geometric features of the object and the bounding 
box of the features. It is beneficial to acquire the model 
directly from an image since the resulting geometry re- 
flects the actual shape of the object, including rounded 
corners and other manufacturing artifacts. 

Invariant indexing functions are derived according 
to two approaches. In the first approach, algebraic 
invariants are based on classical results derived from 
the projective geometry of algebraic curves (Semple 
and Kneebone 1952). The fundamental invariant in 
projective geometry is the cross ratio, which is defined 
for four collinear points in terms of ratios of distances 
between the points. A similar invariant can be defined 
for four lines concurrent at a single point. More general 
algebraic invariants can be derived from configurations 
of conics, points and lines. For example, a cross ratio 
can be generated from two points and a conic; this 
arises because the line passing through the two points 
intersects the conic in two other collinear points. These 
and other algebraic invariants will be discussed in detail 
in section 2.2. 

The second approach to the construction of invariant 
indexing functions is the use of projective coordinate 
frames. In the projective plane, four points, no three 
of which are collinear, define unique projective coordi- 
nates for any other point in the plane. These projective 
coordinates are invariant to any projective transforma- 
tion of the plane. We can define a particular frame, usu- 
ally a fronto-parallel view, which we call the canonical 
frame. Invariant indexes are constructed from a sample 
of points on the boundary of the object when projected 
onto the canonical frame. The advantage of the canon- 
ical frame construction is that the object boundary does 
not have to be an algebraic curve. 

These ideas have been incorporated into a complete 
recognition system over the past four years. The sys- 
tem, LEWIS, has been tested on a large set of images 
and under varying levels of occlusion and clutter. The 

major issues which have been examined in the evalua- 
tion of LEWIS are: 

1. The dependence of recognition complexity on the 
number of models in the database. 

2. The discrimination power ofprojective invariant de- 
scriptions, particularly in the presence of clutter and 
occlusion. 

3. The effect ofiUumination, object surface properties 
and feature segmentation on invariant values. 

4. The practicality of constructing object models di- 
rectly from an example object view. 

We will explore these issues in later sections, but first it 
will prove useful to establish the framework for object 
recognition. In particular, we establish the benefits of 
a model library accessed by invariant keys. 

1.2 Recognition Framework 

Recognition consists of two process: the first is the 
identification of which object is potentially present in 
the scene; and the second is the establishment of a 
correspondence between the image and the identified 
model features. Often, these processes are not distinct, 
though together they can be partitioned into three stages 
that should be contained within any recognition system 
(these are similar to those defined in (Grimson 1990), 
p. 33): 

Grouping: what subset of the data belongs to a single 
object? 

Indexing: which object model projects tothis data su- 
bset? 

Verification: how much image support is there for th- 
is correspondence? 

Naturally, these stages represent an idealised decompo- 
sition; robust recognition generally requires numerous 
interactions between the stages. However, this struc- 
ture yields a productNe framework for defining and 
measuring the general characteristics of recognition 
systems. 

The aim of grouping (also called perceptual organ- 
isation (Lowe 1985), selection, or figure-ground dis- 
crimination) is to provide an association of features that 
are likely to have come from a single object in a scene. 
Image features which are exploited in grouping cover 
all levels of image segmentation, for instance: edgels; 
comers; algebraic features such as lines and conics; 
smooth curves represented as splines; and feature de- 
scriptions based on regions, such as texture. These 
features are typically grouped together using cues such 
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as proximity, parallelism (Binford 1981; Lowe 1985) 
collinearity and approximate continuity in curvature 
(Cox et al. 1992; Sha'ashua and Ullman 1988). In 
the work reported here, we exploit many of these tech- 
niques to generate feature groups from which invariant 
index functions are constructed. 

Indexing addresses the problem of model hypothesis 
generation. For a small number of models, for example 
two or three, it is reasonable to try simply to find image 
feature support for each model. This approach is typ- 
ical of many existing systems (Ayache and Faugeras 
1986, 1987; Grimson 1990; Huttenlocher 1988; Lowe 
1987; Murray 1987; Pollard et al. 1989). As the size 
of the model library increases, this approach becomes 
computationally too expensive. It is then more effec- 
tive to choose potential models from the library based 
on the observed image features. That is, image feature 
measurements are used to index into the model base. 
The work presented in this paper demonstrates that ef- 
ficient indexing strategies can be constructed, and that 
through using them, dramatic improvements in hypoth- 
esis generation efficiency can be achieved. 

The final stage is verification; Grouping and index- 
ing have hypothesised a match between an object and 
a small number of image features. This match is used 
to project the model onto the image. The validity of 
the model hypothesis and model-to-image feature cor- 
respondences is determined by searching for image 
features that have not been used in the construction 
of indexes. These are features that, for instance, have 
been missed by the grouping stage. The more features 
that can be found which are close to the projected model 
boundaries, the more likely it is that the initial hypoth- 
esis is correct. Once all possible correspondences have 
been accepted or ruled out, a conclusion as to the iden- 
tity of an object can be made. Generally, a hypothesis 
is considered successful if the error between projected 
model features and corresponding image features is 
below some threshold and a reasonable fraction of the 
object outline is covered by image features. 

There are three distinct algorithms that have been 
used to compute correspondence. In the first approach, 
interpretation trees (Ayache and Faugeras 1987; 
Brooks 1983; Ettinger 1988; Fisher I989; Grimson 
and Lozano-Prrez 1987, Murray 1987; Pollard et 
al. 1989; Reid 1991), the set of correspondences is 
grown incrementally according to a branch and bound 
search algorithm. Features are added according to their 
consistency with a model hypothesis associated with 
each node in the graph. Consistency is also a func- 
tion of the specific set of features defined by the 

path from the root of the search tree to the current 
node. 

The second approach, hypothes&e and test (Ayache 
and Faugeras 1986; Bolles and Horaud I987; Goad 
1983; Huttenlocher and Ullman 1987; Lowe 1987), 
generates model hypotheses exhaustively from the li- 
brary, although properties of small feature groups can 
be used to suggest initial trial feature correspondences. 
These hypotheses are tested by establishing model- 
dependent and priority ordered checklist of other fea- 
tures which must be present to satisfy the hypothesis. A 
set of focus features are defined for each object which 
are easily extracted and also provide maximum dis- 
crimination among object classes. 

The third approach, pose clustering (Cass 1992; 
Stockman 1987; Thompson and Mundy 1987), uses 
the concept of pose consistency to generate hypothe- 
ses. An object is projected onto an image under a single 
transformation acting on all points of the object. The 
image projection of an object is composed of a 3D 
Euclidean transformation (called pose), followed by a 
perspective mapping. The 3D pose can be computed 
from various model-to-image feature correspondences 
and should be the same for all correct correspondences 
from a single object. The search for correct correspon- 
dences is then the problem of finding clusters in pose 
space. 

The recognition system reported here shares many 
characteristics with these approaches, particularly in 
the stages of feature grouping and hypothesis testing, 
but differs considerably in how model hypotheses are 
generated and feature correspondences are established. 
Our approach to these stages centres on the use of index 
functions that we now define more formally. 

1.3 Indexing Functions 

The concept of the indexing function can be developed 
formally as follows: the index is considered to be a 
vector, M, which selects a particular model from the 
library. Each model consists of the set of significant ge- 
ometric features of the object boundary as well as ancil- 
lary information required for hypothesis confirmation 
such as, the bounding box of the features, pixel chains 
from which the boundary features are constructed, and 
perhaps texture or other details of the object surface 
properties. 

The model index is a function only of a set of pro- 
jected model features, F, that is M can be computed 
from any image projection of the model features. The 
practical consequence is that models can be constructed 
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simply by acquiring one or a few image views of the 
object in isolation. If Fmode 1 is the set of features actu- 
ally on an object, and T is the transformation from the 
object in an arbitrary pose onto the camera, then: 

M ( T (Fmodel)) = M (Fmodel). 

This equation states that the index function is (scalar) 
invariant(Forsythetal. 1991) to transformations of the 
object which result from different viewpoints. In the 
results reported here, the index functions are invariant 
to projective transformations of the image plane. Each 
element of the index vector M is an invariant measure 
computed from a group of model features such as con- 
ics, lines, points and plane curve segments. Ideally, the 
index function should uniquely retrieve a model from 
the library, but in practice it is likely that a small num- 
ber of models are retrieved with the same index. Even 
so, the search cost is considerably reduced below that 
of testing every member of the library. 

The concept of an indexing function described above 
assumes that both the indexes for the model and for the 
object can be measured perfectly in a scene. In practice, 
the measurements are imprecise due both to modeling 
and imaging errorsk It is therefore necessary to provide 
a range of invariant values in the construction of the in- 
dex function. In LEWIS, the range is established by 
quantising the index space according to the observed 
variation in invariant values due to the effects just men- 
tioned. The quantised index value is denoted by Q and 
a quantisation is selected so that, 

Q(M(Fmodel) -1- Emodel) ~--- Q(M(Fimage) q- Eimage). 

Note that the quantisation function Q is the same for 
both the model and the image. This is a direct result of 
being able to acquire models from images. The error 
character is t ics  Emodel and Eimag e can also be assumed 
to be the same. 

Other recognition systems have also exploited index 
functions based on invariants. A system using projec- 
tive invariants is described by Nielsen for identifying 
and tracking mobile robots (Nielsen 1988). Early ver- 
sions of the system described here are reported by 
Forsyth et al. (1991). Indexing functions based on 
affine invariants have formed the basis for a number 
of planar object recognition systems, for instance the 
series of papers by Kalvin et al. (1986), Schwartz and 
Sharir (1987), Lamdan et al. (1988), Wayner (1991), 
Clemens and Jacobs (1991), Huttenlocher (1991), and 
Taubin and Cooper (1991). Other avenues of invari- 
ant research have been covered by Weiss (1988), 

Stein and Medioni (1992), Califano and Mohan 
(1992), Gueziec and Ayache (1993), and Rigoutsos and 
Hummel (1991). 

It is also possible to gain some of the advantages of 
indexing without using index functions that are strictly 
invariant. For example, Jacobs describes an approach 
to indexing 3D objects using one parameter families 
of index values in image transform space. One can 
then select models based on proximity to these index 
sets (Jacobs 1992). Another approach is the use of 
quasi-invariants (Binford and Levitt 1993), where func- 
tions are constructed that are not invariant under gen- 
eral perspective viewing, but are reasonably constant 
over most practical viewing conditions. The quasi- 
invariants that have been suggested are invariants of 
more restricted transformation groups such as affine 
and equiform (scaled Euclidean). Affine transforma- 
tions apply when the depth change along the object 
plane is small compared to the distance from the cen- 
ter of perspective. The equiform case occurs when the 
object plane is parallel to the image plane. 

1.4 Outline of the Paper 

Section 2 introduces the notation used in the rest of 
the paper, defines the algebraic and canonical frame 
invariants, and describes the segmentation and group- 
ing procedures used in LEWIS. Section 3 surveys the 
recognition architecture with results and statistics given 
for the systems working on real images. Finally, sec- 
tion 4 highlights weaknesses in the current approach 
and suggests directions for future research. 

2 Invariant Indexing Functions 

2.1 Notation 

When homogeneous coordinates are used points on the 
plane are represented by a triple x = (xl, x2, x3) r = 
Q.x, )~y, x)T where (x, y) r  are the standard Euclidean 
plane coordinates of the point and ~. is an arbitrary 
(non-zero) projective scale factor. Points in the projec- 
tive plane are equivalent for all values of )~. Lines are 
defined by I = (a, b, c) r = (/z s i n 0 , - / z c o s 0 , / x d )  r ,  
where 0 is the orientation of the line with respect to 
the x axis and d is the perpendicular distance of the 
line from the origin. /z is the projective scale factor 
for lines. The incidence of a point and a line in the 
projective plane is given by, ax~ + bx2 + cx3 = 0, or 
in vector notation, 1 • x = 0. 
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A conic is the set of points (Xi, Yi, 1) T that satisfy: 

ax 2 -t- bxiYi + cy~ + dxi --}- eyi + f = 0. (1) 

A more convenient representation of a conic uses a 
planar point x and a quadratic form c: 

xrCx = O, (2) 

where: 

b a 
2 

b 
C =  ~ C 

d e 

2 2 

d 

2 
e 

f 

(3) 

From now on, typewriter font denotes matrices, bold 
letters denote vectors, large letters denote model ob- 
jects and small letters denote image objects. For ex- 
ample, c is a model conic, X a model point, and c 
and x their images in a view where recognition is to be 
achieved. 

2.1.1 Projective Trans/ormations. A projective 
transformation T between two planes is represented as a 
3 x 3 matrix acting on homogeneous coordinates of the 
plane. It is a linear mapping on homogeneous points. 
A homogeneous representation means that only ratios 
of matrix elements are significant, and consequently 
the transformation has 8 degrees of freedom. Under 
imaging, this transformation models the composed ef- 
fects of 3D rigid rotation and translation of the world 
plane (camera extrinsic parameters), perspective pro- 
jection to the image plane, and an affine transformation 
of the final image which covers the effects of camera 
intrinsic parameters. The effects of radial distortion 
due to the camera lens are not modeled. 

All of the parameters of these separate transforma- 
tions cannot be recovered uniquely from a single 3 x 3 
matrix, since there are 6 unknown pose parameters, 
and 5 unknown internal camera parameters (these are 
camera centre, focal length, aspect ratio and the angle 
between the coordinate axes of the image plane). For 
plane to plane perspective transformations, there are 
therefore 11 unknowns but only 8 constraints. Fortu- 
nately, the invariant description, and model projection 
used in the recognition system, do not require explicit 
knowledge of either the pose or the internal camera pa- 
rameters. We need solve only for the independent pa- 
rameters of the projective transformation T. Note that 
projectivities form a group, and so most notably ev- 
ery action has an inverse and the composition of two 

projectivities is also a projectivity. Consequently, two 
images from different viewpoints of the same planar 
object are always related by a projectivity. 

The mapping of four points between two planes, of 
which no three points are collinear, is sufficient to deter- 
mine the transformation matrix T. Each point provides 
two linear constraints on the transformation parame- 
ters, therefore four independent points provide the re- 
quired 4 x 2 = 8 constraints. Corresponding points 
(xi, Yi) and (Xi, Yi) are represented by homogeneous 
3 vectors (xi, Yi, 1) T and (Xi, Yi, 1) 7'. The projective 
transformation x = TX, (IT! # 0) is: 

' 

k T31 T32 T33 J 

where ki is an arbitrary non-zero scalar. Note that in 
using this formulation we are unable deal with plane 
points lying on the ideal line; this is, however, unimpor- 
tant as in practice all of the points to be transformed 
lie within the finite and bounded image plane. For 
N > 4 points, singular value decomposition can be 
used to compute T. The computation can be formu- 
lated as minimising Hitrf subject to Iltll = 1, where 
t is the nine-element vector of transform parameters 
and A is a N x 9 element matrix of elements formed 
from the coordinates of the matched image and model 
points. 

Using similar algorithms, projectivities can be com- 
puted between sets of lines, or as shown in (Rothwell 
1994) for different combinations of points, lines and 
conics. The projective transformation of lines is closely 
related to that for points. Given the transibrmation ma- 
trix for points, T, lines transform according to 

1 = T-TL, 

where T -T is the inverse transpose of T. The transfor- 
mation of conics is as follows: given C and its respec- 
tive image conic c, and point transformation matrix T, 
is constrained by: 

c = x • T - r c r  -1 . (5) 

2.2 Algebraic Invariants 

There are three different algebraic invariants used 
within the recognition system for coplanar algebraic 
features: five lines; a pair of conics; and a conic and 
two lines. Their derivation is given, for example, in 
(Mundy and Zisserman 1992). There are many other 
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Fig. 1. Examples of similarity, affine and perspective images of a bracket. For each view the lines used to compute the invariants are marked 
in white. The pair of five-line invariants are computed using the determinant formulae given in this section, The invariant values for the images, 
and those actually measured on the object are shown in Table 1. The fact that they remain essentially invariant demonstrates the stability of the 
invariants under real imaging conditions. For reference, the values of affine invariants computed from area ratios are also given in the table. 

Table 1. I i and 12 are five-line invariants computed for the similar- 
ity, affine and perspective views of the bracket shown in Fig. 1. lal 
and la2 are affine invariants defined by the ratio of areas of triangles 
constructed from the points of intersection of the lines. The values of 
11 and 12 are consistent with those measured on the object and vary 
only slightly with viewpoint which demonstrates the practicality of 
deriving invariant measures from image features. Note that particu- 
larly for the image with substantial perspective distortion, the affine 
invariants lal and la2, vary considerably more than Ii and 12. 

11 h Ial 1~2 

Object 0.840 1.236 0.739 1.083 
Similarity 0.842 1.234 0.706 1.051 
Affine 0.840 1.232 0.743 1.066 
Perspective 0.843 1.234 0.623 0.949 

possible configurations (with points,  cubics,  etc.) that 
could also be used to generate invariants.  The  partic- 

ular configurat ions used in LEWIS  have been chosen 
because the const i tuent  geometr ic  features can be pro- 

duced directly and accurately from segmentat ion.  In 
contrast, points  are extracted mos t  accurately indirect ly  

by intersecting lines. 

2.1 .2  F ive  C o p l a n a r L i n e s .  Given  five coplanar  ho- 
mogeneous  l ines li, where  i 6 {1 . . . . .  5}, two func-  
t ionally independent  projective invariants  are defined 
using determinants  

IM431 IIvIsz~l IM4zllIM5321 
I ~ -  and 1 2 - -  (4) 

1~42a 11vI5311 IM43211M 5zi1' 

where vlijk = (1i, 11, lk). 
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Fig. 2. Similarity, affine and perspective images of a computer tape with the conics used to compute the invariants marked in white. The 

invadant values are given in Table 2. 

Table 2. The conic-pair invariants computed for the similarity, 
affine and perspective views of the computer tape shown in Fig. 2. 
Note the stability of the measured values with respect to change in 
viewpoint. 

11 /2 

Object 3.073 3.082 
Similarity 3.074 3.082 
Affine 3.072 3.080 
Perspective 3.070 3.078 

A major problem with the determinant formulae 
given in Eq. 5 is that the invariants can become 
undefined for certain geometric configurations. The 

determinant, IM/jkl vanishes when the lines li, lj and lk 
are concurrent. In LEWIS, grouping is used to elimi- 
nate configurations where both invariants are undefined 
so that one of the values of 11 and/2 can always be used. 
The grouping algorithm, described later, ensures that 
only the lines xi, i ~ {1, 3, 5} are allowed to be con- 
current. Since there is no determinant of M135 in 12, it 
will always be well formed, though 1i will sometimes 
fail. 

Examples of the invariants computed for real image 
distortions are demonstrated in Fig. 1, and the invariant 
values given in Table 1. The fact that the values remain 
constant over a change in viewpoint demonstrates the 
stability of the invariants under image noise. 
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Fig. 3. Similarity, affine and perspective images of a bracket with the conic and two lines used to compute the invariants marked in white. The 
invariant values are given in Table 3. 

Table 3. The conic and line-pair invariant computed for the simi- 
larity, affine and perspective views of the bracket shown in Fig. 3. 
Note the stability of the measured values with respect to change in 
viewpoint. For comparison, an affine invariant is also tabulated. In 
this case, la is defined by the ratio of the areas of atriangle and of the 
conic itself. One vertex of the triangle is located at the intersection 
point of the two lines; the other two vertices are defined by the points 
of tangency to the conic of the pair of lines through the first point 
that touch the conic. Note that la is significantly less stable than I .  

Object 1.33 0.398 
Similarity 1.33 0.389 
Affine 1.31 0.403 
Perspective 1.28 0.437 

2.2.1 
Ci, i 
ants. 

Two CopIanar Conics. A pair of conics 
e {1, 2} has two independent projective invari- 

These can be expressed in terms of ratios of 

eigenvalues (Quan et al. 1991), or equivalently 

Trace[el  1 C@ let 11/3 
I1 = and 

Ic=11/3 

Iz = Trace[clio@It211/3 

fc1 tl/3 

If the conics are normalised so that [cil = 1 the invari- 
ants take on the simpler form of: 

i ,  = Trace[o;'o ] and 12 = Trace[o ' t]. 

These invariants have been tested extensively during 
the development of the system reported in this paper, 
and have been found to have good noise characteristics. 
A simple example showing the measured invariants for 
similarity, affine and perspective views of the computer 
tape shown in Fig. 2 are given in Table 2. The small 



Planar Object Recognition using Projective Shape Representation 65 

0 

pl 

• p3 
p2 

a .  

1,4 

• p5 

(x,y) 

p5 

p3 1 p4 

pl p2 
:~ X - -- =- X 

0 1 

b. 

Fig. 4. One way of measuring the invariants of five coplanar points in a image (a) is to compute the projective transformation of four of the 
points Pi, i 6 {1, . . . ,  4} to reference points in the canonical frame (b). In this case the projection is to the corners of the unit square. Once this 
map is known P5 can also be transformed to the new frame and its coordinates (x, y) used as invariants. 

deviation of the invariants demonstrates their stabil- 
ity, more complete results are given in (Forsyth et al. 
1991). 

2.2.2 A Conic and Two Lines. For a conic c and two 
lines li, i 6 {1,2}, a single invariant can be computed: 

I = (ITc-112)2 

( I r e - a l l )  (ITc-II2)  " 

The invariant computed for the similarity, affine and 
perspective image sequence of the bracket is shown in 
Fig. 3. The corresponding invariant values in Table 3. 
Again the stability of the invariant form is demonstrated 
over a large range of viewpoints. 

We have found in practice that the conic and line 
pair invariant is not stable enough alone to provide suf- 
ficient discrimination for the class of  objects used in 
our experiments. Three independent invariants can be 
formed from three lines and a conic, using the lines 
two at a time. The combined index provides better 
discrimination as explained in section 3.5.1. 

2.3 Canonical Frame Invariants 

A canonical frame construction can be used to form an 
invariant signature for smooth planar curves. The rest 
of this section describes the construction of the signa- 

ture for a non-convex class of  plane curves; the work is 
a projective extension of that of  Lamdan et al. (1988). 

First, we illustrate the concept of  a canonical frame 
with a set of five coplanar points, four used as a projec- 
tive basis and the fifth to generate invariants. We then 
show how four distinguished points can be defined on 
a concavity in a plane curve. The rest of  the curve can 
then considered as a set of  individual points whose co- 
ordinates with respect to the projective basis define the 
signature. 

2.3.1 Mapping Five Points to the Canonical Frame. 
As four points define a projective mapping between 
two frames, the first four points of a set of  five can be 
used to define the map between the image frame and 
a standard measurement or canonical frame. The fifth 
point can then be mapped to the new frame in which 
its coordinates are projectively invariant. To ensure 
that the coordinates really are invariant, the first four 
points must always be mapped to a standard set of  four 
reference points in the canonical frame. The choice of 
these points is arbitrary: the corners of the unit square 
may be used (as in Fig. 4), or some other frame chosen 
according to noise performance. 

2.3.2 Mapping a Plane Curve to the Canonical 
Frame. The aim is to find four distinguished points 
(or lines) on a curve, and use these to define the 
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canonical frame curve 

~ image curve 

. . . . . . . . . . .  

A D 

(a) 

. . . . . . . . . . . . . . . . .  

(b) 

C 
~ 

1 

Fig. 5. (a) Construction of the four points necessary to define the canonical frame for a concavity. The first two points, (A) and (D), are 
points of bitangency that mark the entrance to the concavity. Two further distinguished points, (B) and (C), are obtained from rays cast from 
the bitangent contact points and tangent to the curve segment within the concavity. These four points are used to map the curve to the canonical 
frame. (b) The curve in the canonical frame. A projection is constructed that transforms the four points in (a) to the corner of the unit square. 
The same projection transforms the curve into this frame. 

projectivity T that can be used to take the whole curve 
to the canonical frame. The method is shown in Fig. 5: 
for the given concavity, the location of  the points of  
bitangency is determined as described in section 2.4.3. 
These are (A) and (D), and they segment the curve of 
interest from the rest of  the edge chain. This curve seg- 
ment is known as an 34 curve. The cast tangents are 
then determined, these are lines tangent to the 34 curve 
that pass through the bitangency points. The points of 
cast tangency are (B) and (C). The projection of  the 34 
curve into the frame using T is the curve signature; it is 
a projective representation of the original object curve. 

2.3.3 Discrimination. Examples of  the canonical 
frame construction for single views of  three different 
objects are given in Fig. 6. A single 3,t curve for each 
spanner and the pair of  scissors is marked in (a), (b) 
and (c), and these are projected into the same canon- 
ical frame in (d). All three canonical curves are dif- 
ferent and so the construction provides discrimination 
(although the spanner curves extracted from (a) and (b) 
are reasonably similar, they are sufficiently different for 
recognition purposes). 

2.3.4 Semi-LocaI Description. Non-globaldescrip- 
tions must be used if objects are to be recognised under 
occlusion; the canonical frame construction provides a 
semi-local object description. Furthermore, for gen- 
uine tolerance to occlusion, there must be a number 
of  different descriptors on each object so that there is 

not an excessive requirement for any single object re- 
gion to be visible. This is called redundancy. Single 
objects frequently possess large numbers of  bitangents 
(see Fig. 13); this provides a high degree of  redundancy 
as each bitangent can be used to derive a canonical 
frame. However, such a high degree of  redundancy is 
not required for recognition, and only a few bitangents 
are actually used for shape description. For the spanner 
in Fig. 6a, four suitable bitangents exist and bound 3,t 
curves. The four 3,4 curves are shown in Fig. 7. 

2.3.5 Stability. The final criteria discussed in this 
section is stability: if the construction is to be useful, 
similar frame curves must be obtained from different 
views of  the same object curve. Even if the curves 
are not identical, they should be sufficiently similar so 
that discrimination between objects is possible. This 
is the case for the canonical frame construction. Three 
very different views of  a spanner are given in Fig. 8 
(they vary by a full perspective distortion, and not just 
an affine one). The same 34 curve is marked in each 
image, and these are mapped to the canonical frame 
in (d). As can be seen, the construction is stable even 
over a wide change in viewpoint. 

2.3.6 Index Functions and Discrimination. The 
canonical frame curves are essentially projectively in- 
variant templates for the shapes, and so one may 
attempt 34 curve recognition using traditional curve 
correlation matching techniques with model curves. 
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Fig. 6. In (a)-(c) a single .M curve and the four distinguished points are marked on each object. The three curves are projected to the canonical 
frame and superimposed in (d). The scissor .M curve is obviously very different from each spanner, but in fact the two spanner curves are 
sufficiently different for recognition purposes. 

Fig. 7. Evenforasimpleobjectsuchasaspannerthereisasufficient 
degree ofredtmdancy when the canonical frame construction is used. 
Here, four useful .A//curves are shown that essentially cover the entire 
perimeter of the object, and yet each one is potentially a sufficient 
recognition cue on its own. 

Such techniques would lead to a linear search of the 
model library, so instead, an index is constructed from 
the signature. The goal is to compute a function of the 
signature that uniquely identifies the .A4 curve. The 
current solution is to use a few points along the sig- 
nature to construct the index. This data is adequate 
to distinguish the spanners and brackets used in our 
experiments. The complete signature is retained as 
part of the model description and used during verifi- 
cation as a more complete representation of the object 
shape. 

The invariant indexes used are constructed using the 
geometry of Fig. 9. This construction is similar to the 
technique of footprints (Lamdan et al. 1988), though 
points are used rather than areas. The drawback of this 
method for measuring invariants is the ambiguity oc- 
curring when a ray crosses the curve more than once. 
However, such multiple crossing did not occur for the 
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Fig. 8. (a)-(c) Three views of a spanner with the extracted .M curves and distinguished points marked. Note the very different appearance 
due to perspective effects. (d) Shows the canonical frame curves for the three different views. The curves are almost identical demonstrating 
the stability of the method. Of course, the same curve would result from a projective transformation between the object and canonical frame. 

model base used in our experiments. The vector of in- 
variant line lengths I is not used directly as an index. 
Instead, an index vector M is constructed from I us- 
ing a statistical classifier over all curves in the model 
base. There are two advantages of  this: first, the index 
is more discriminating than the "raw" lengths; second, 
the dimension of  the index can be reduced and so the 
computation of  an efficient hashing function is simpli- 
fied. The Fisher linear discriminant (Duda and Hart 
1973), which is an optimal linear classifier, is used 
for the computation of the index. The discriminant 
encodes information by minimising the intra-class vari- 
ance (that is over several examples of  the same curve) 
and maximising the inter-class separation. It does so 
by transforming the data to a new (orthogonal) basis, 
M ----- El, such that feature measurement variance is 

maximised under projection onto some of  the basis di- 
rections, and minimised onto others. 

Each basis coordinate is ranked by how much dis- 
crimination it yields. Then, enough of  the highest 
ranked coordinates are chosen to provide the desired 
separation between the classes. It was found that tak- 
ing seven elements of  the Fisher discriminant basis are 
sufficient to define and discriminate a projectively in- 
variant description for each curve class. An example 
of  the Fisher basis is shown in Fig. 10. A benefit of  us- 
ing the classifier for model learning is that an analytic 
understanding of  the statistical characteristics of  the in- 
variant measures is not required. Instead, a number o f  
examples of  a single class is built up over a number of  
images, and the classifier adjusts its action to account 
for the variation within each class. 
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Fig. 9. A set of n equally spaced rays are drawn from the point (½, 0) so that they intersect the curve signature. The aim is to construct an 

n-dimensional length vector I (I1 . . . . .  In)T, where li 1 = is the distance from the intersection point of the ith ray to the point (~, 0). This distance 
is projectivety invariant. Here n = 9. The invariant index M is related to I by M = El, where E is provided by a linear classifier. See text for 
details. 
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Fig. 10. Example of the Fisher Linear discriminant. The discriminant is trained here on only three classes, examples of two of which are 
shown (black-circles-dashed-line and grey-circles-dotted-line). In each case the curve is represented as a vector of canonical flame ray lengths, 
each component corresponding to a different angle (see Fig. 9). For each class a number of vectors, measured for the same curve with varying 
viewpoint, are included in order to model the intra-class variation. The first eigenvector weighting function produced by the discriminant is 
shown (white-circles-solid-line). The first invariant is determined as a scalar product of the eigenvector and the (mean) vector for each class. 
Clearly, this invariant will show good discrimination between the two classes shown. 
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2.4 Segmentation and Grouping 

LEWIS requires the segmentation of two different cate- 
gories of features from image data: lines and conics for 
the algebraic invariants; and Ad curves (images curves 
terminated with common tangents) for the canonical 
frame construction. The features are grouped depend- 
ing on the type of invariant that they form. 

The first step in the feature detection process is 
edge detection. We have used an implementation of the 
Canny edge filter (Canny 1986). The next process 
is segmentation, this can be broken down into three 
phases: 

1. The extraction of discrete edgel chains from the 
image. 

2. The location of breaks between features, and more 
generally the boundaries between each feature and 
other data. 

3. The accurate representation of image features. 

The first step is common for both the algebraic and 
smooth curve invariants. Single edge curves are ex- 
tracted from the edge image using a sequential edgel 
chain linking. The Canny algorithm produces edges 
with sub-pixel accuracy. This edgel position accuracy 
yields invariant values with smaller variances (about 
10% better) than those computed from integer pixel 
locations. The reason that using more precise edgel 
locations does not produce such a dramatic improve- 
ment in the quality of the measured invariants is that 
the representation process (principally fitting) is able 
to smooth out quantisation errors present in the integer 
edgel locations. 

Even with hysteresis, single pixel breaks can occur 
in the edge chains. Such events are accommodated by 
directional look ahead in a sequential scan of the edge 
chain. As the quality of the edge data in the images of 
interest is generally quite good, single pixel look-ahead 
works well for the objects and illumination conditions 
used in our experiments. The details of the later stages 
of the segmentation process depend on the type of in- 
variant that is to be formed, and the different techniques 
are discussed below. 

2.4.1 Algebraic Features. Lines and conics are fit- 
ted to extracted edge chains using efficient incremental 
routines based on orthogonaI regression for lines and 
an improved version of the B0okstein algorithm for 
conic fitting (Bookstein 1979). Full details of the al- 
gorithms are given in (Rothwell 1994). An example 

segmentation is shown in Fig. 11 where it is seen that 
a reasonably complete description is obtained of the 
object boundaries. 

2.4.2 Grouping. Exploiting structure in the scene 
for grouping allows invariant indexing to have a 
low complexity with respect to the number of image 
features. The approach used makes use of the con- 
nectivity provided by the edge chains, this implicitly 
encodes proximity. 

For algebraic invariants, connectivity provides an as- 
sociation and also an ordering on the lines: invariants 
are formed from sets of consecutive lines within sin- 
gle edge chains at a cost that is linear in the number 
of lines in the scene, O (l). This type of grouping was 
also exploited by Huttenlocher who also achieved lin- 
ear grouping cost (Huttenlocher 1988). 

The use of algebraic curve features rather than iso- 
lated points and lines also reduces the combinatorial 
cost of grouping. In the case of the invariant formed 
by a conic and three lines the cost of grouping is O (cl3), 
where c is the number of conics and I the number of 
lines. This is for a case in which no image structure is 
assumed, if connectivity is reliable, the cost reduces to 
0 (cl). The grouping cost for the joint conic invariants 
is only O (ca). For the images under consideration l is 
in the order of a hundred, and c a few tens. 

2.4.3 The Canonical Frame. The canonical frame 
construction requires the accurate location of distin- 
guished points. Stable point constructions are achieved 
using curve bitangents and points defined by cast tan- 
gents. In order to form a projective coordinate frame, 
the canonical frame, four such distinguished points 
must be found. It is desirable to achieve a canoni- 
cal projection of the object boundary curve which is 
minimally distorted and has a roughly uniform vari- 
ance distribution due to image segmentation effects. 
In practice, this is achieved by placing the points in 
the canonical frame in positions that correspond to 
a fronto-parallel view of the object (Rothwell 1994) 
(yielding an equiform distortion of the object). 

Bitangent Location. Image bitangents are located us- 
ing the following four stage algorithm: 

• Eliminate points that lie on approximately straight 
portions of curve. These cannot correspond to actual 
points of bitangency and so should be ignored. 

• Find points on the same edge curve that have ap- 
proximately common tangents. 
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Fig. 11. (b) Extracted edge data (Canny) from (a); note that the edge detector fails to locate edges near shadows and that objects (such as the 
bracket on the right hand side of the image) have a finite thickness and so two edges are reported. The fitted conics and lines are shown in (c) 
where there is generally accurate location of both tangency and curvature discontinuities. 

• Check that such pairs of points do in fact correspond 
to bitangents. 

• Improve the locatisation of the bitangent points using 
quadratic interpolation. 

Straight portions of  curve are found by fitting a straight 
line to short segments of  the curve using orthogonal 
regression and testing the value of the fitting residual. 
Approximately straight portions will have a low resid- 
ual. The next step is to map the curve into its tangent 
dual space and look for self-intersections of  the dual 
curve. Bitangents, where a line is tangent to the curve 
at two points, correspond to self intersections in dual 
space as shown in Fig. 12. The mapping of a boundary 
curve into tangent dual space is based on the parameters 
of  arunning line fit to the curve. The fitted line is locally 
tangent at each point along the curve. The representa- 
tion of the dual space for a curve is essentially the same 

as a Hough space for lines and is parameterised by the 
slope, 0, of  the local tangent, and the perpendicular 
distance of the tangent to the centre of  the image. 

The dual space is quantised into discrete cells of  an- 
gle and distance. Since the image curve is discrete, at 
points of  high curvature the difference in tangent di- 
rection can vary significantly between adjacent points. 
This quantisation problem is overcome by linearly in- 
terpolating between consecutive points in dual space. 

Self intersections, and hence bitangents, are found 
using a voting scheme in the tangent parameter space. 
Two image points voting in the same quantised cell rep- 
resent a self-intersection. Due to small curve fluctua- 
tions, joint cell occupancy does not always correspond 
to actual bitangents. False bitangents are detected by 
examining regions of the image curve in the proxim- 
ity of bitangent points. The dual space provides the 
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inflection 

Image curve Dual curve 

Fig. 12. For continuous curves bitangents in the image correspond to self-intersections in the tangent dual space. Likewise inflections 
correspond to cusps. 

location of the bitangencies up to discrete pixel coor- 
dinates. Significant improvement in accuracy can be 
obtained by interpolating the bitangent locations be- 
tween the actual measured edgel locations. A local 
quadratic fit determines the location of the bitangent 
points to sub-pixel accuracy. This is done by rotat- 
ing the image data so that the initial estimate of the 
bitangent line is horizontal, and fitting (by regression) 
quadratics of the form y = ax 2 + bx + c to data sets 
either side of the two bitangent points. The cost used is 
the error in the y direction. The interpolated bitangent 
is the line simultaneously tangent to both parabolas. In 
the implementation the number of points used for each 
quadratic fit is 13 (6 either side of the hypothesised 
bitangent point). The data sets are centrally weighted 
using a Gaussian. The weighting was set empirically 
by observing how the quality of canonical frame con- 
struction changed as the number of points was altered. 

The bitangent detection scheme finds many bitan- 
gents along single image curves. This is demonstrated 
in Fig. 13. Due to excessive redundancy in the shape 
representation many of the bitangents can be eliminated 
from consideration, preferably those that are not stable: 

• Eliminate any bitangents that have their endpoints 
too close together. 

• Remove bitangents whose associated A4 curves are 
not very deep (only a few pixels). 

• Do not use tangents that cross the image curves. 
These tangents will be stable, but eliminating 
such tangents leads to a simpler canonical frame 
signature. 

Cast Tangents. A cast tangent is a ray from the bitan- 
gent point which is tangent to the 3//curve. The cast 
tangent is made unique by selecting the tangent ray 
making the largest angle with respect to the bitangent 
line. The construction is projectively invariant and cast 
tangents are found in a manner similar to that for the 
bitangent point, again, localisation of the contact point 
is improved by quadratic fitting. 

A sample segmentation for a simple view of a span- 
ner is given in Fig. 14, in which the bitangent and cast 
tangent points and lines are superimposed onto the ob- 
ject. The bitangent points bound the jr4 curves that are 
shown in (c). 

Grouping. The canonical frame construction has a 
linear grouping cost. This is because all of the features 
used to form the frame are ordered around single image 
curves. This result is identical to that of Huttenlocher 
(1988), and means that recognition using the construc- 
tion is very efficient. 

2.5 Errors in the Invariant Measurements 

Before an indexing scheme is implemented, the error 
distribution of the invariant functions must be deter- 
mined in order to determine whether a measured im- 
age index value is within an acceptable experimental 
error bound of the actual model value. The rest of this 
section describes a pair of experimental investigations 
into the expected sizes of the invariant errors (one for 
algebraic invariants and one for canonical frame invari- 
ants). For the algebraic case the empirical investigation 
is compared to an analytic calculation. 
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(b) 

(c) 

Fig. 13. In (b) it is shown that there are a large number of bitangents that can be found even for a simple object such as the spanner in (a). 
Each one enables the construction of a canonical frame curve, though only curves that do not cross their own bitangents are used. This reduces 
the level of redundancy. Bitangents that will not produce a stable construction are also deleted; this leaves the three bitangents shown in (c). 

2.5.1 Algebraic Invariant Errors. One can obtain 
a rough guide to the size of  expected errors under 
ideal imaging conditions by differentiating the invari- 
ant expressions, and assuming an isotropic noise dis- 
tribution; such analysis was done in (Forsyth et al. 
1991; Sinclair et al. 1993), and is also given here. 
The short-comings of  this type of  formulation become 
apparent when real images are observed. The only 
way to understand the errors that may be encoun- 

tered within a recognition system is to study real im- 
ages. All  theoretical analyses have to assume some 
error model in image measurements; frequently this 
is founded upon a Gaussian error in the locations of  
individual edge locations due to what is often called 
image noise. The results given below demonstrate 
that errors occur due to the behaviour of  the standard 
edge detectors used, and cannot be attributed to random 
noise. 
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Fig. 14. For a simple object such as the spanner shown in (a) there are two reliable .M curves that can be constructed. The bitangent and cast 
tangent points and lines are shown superimposed in (b). These are located to sub-pixel accuracy using the quadratic fitting method described in 
the text. The .At curves bounded by their bitangent points are shown in (c). The .M curves at the ends of the spanner are not used because their 
canonical frames cannot be determined stably. 

Empirical Investigation. The first and twenty-eighth 
images from the sequence used to do the tests are shown 
in Fig. 15. The rest of  the sequence of  fi fty images were 
constructed by rotating the object at 2 ° increments on 
the calibration table beneath the object. The lines fitted 
to the edge data, with the seven lines used to compute 
the invariants, are shown in Fig. 16. The direction 
of  rotation used to form the sequence is also marked. 
Three different five-line invariants were computed for 
each image of  the object using these lines. Note that 
the object  is specular, and is on a black background 
that is also somewhat specular. While  the images do 

not represent ideal imaging conditions, edge detection 
is expected to be quite reliable, since image step edge 
contrast is large over the entire boundary. 

The mean invariant values for the image set are 
shown in Table 4. These results show that the invari- 
ants are in fact very stable, with standard deviations 
less than 1.5% of  the mean values. From these results 
the error measurements that are used during recogni- 
tion and acquisition are chosen. For the former the aim 
is to eliminate as many false negatives as possible and 
so the error bound is high (that is 5%, which is welt 
above the 3cr mark), but during acquisition one should 
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Fig. 15. The first and twenty-eighth image in the fifty image sequence used to test the reliability of the invariants. The rest of the sequence 
was produced by rotating the calibration table by 2 ° between images. Three five-line invariants can be computed for this object using the seven 
longest lines. The twenty-eighth image is when line 3 (labelled on Fig. 16) becomes vertical and both lower and upper edges of the object are 
visible. From this viewpoint, the location of the edge boundary becomes ill defined. 

Fig. 16. The lines fitted to Canny edge data from Fig. 15a. The seven lines used to compute the invariants, and the direction of rotation, are 
marked. 

Table 4. The mean values for the three mvarimlts measured from 
the image sequence based on the images in Fig. 15. The standard 
deviation a is computed both as an absolute value, mid as a percent- 
age of the mean. Note that the 3a mark is well within 5% of the 
mean, and so such a bound could be used during recognition. During 
acquisition, we are more cautious, and use a tighter 3% bound on the 
allowable errors. 

11 ~ 13 

Mean (0.707, 2.252) (0.752, 1.492) (0.524, 3.043) 
a (0.0031, 0.0170) (0,0032, 0.0086) (0.0052, 0.0433) 
cr (%) (0.44, 0.76) (0.43, 0.58) (0.99, 1.42) 

be more  cautious so that only stable invariants are used 

(and so 3% is used, roughly  equal  to 2a ) .  

The  value o f  12, computed  on the sequence  o f  lines 

2 through 6 is plot ted with an enlarged scale  in Fig.  17. 

The  shape o f  the graph is character is t ic  o f  all o f  the in- 

variant constructions.  The  graph can be  split  into three 

dist inct  regions:  

1. R e g i o n  A :  Al l  o f  the l ines are located reasonably  

wel l  by the Canny edge  detector,  and so the mea-  

sured invariants remain  constant.  
2. Region B: W h e n  the object  has been rotated so 

that l ine 2 becomes  vert ical  in the image,  the edge  

on the lower  surface paral le l  to it to becomes  visi-  

ble. The  edge detector  does not  find a p ronounced  
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Fig. 17. When the invariants (in this case the second value of the second invariant) are plotted in greater detail, a systematic error becomes 
apparent in their measurement. This is due to the edge detector becoming distracted towards spurious image features, and is not due to image 
noise. 

second edge in this orientation, but because of  its 
presence the intensity values no longer form a step 
edge at the correct feature, but instead a slope. The 
Canny output locates a position somewhere along 
the slope and not at the top edge. The fitted line is 
therefore incorrect and causes the invariant value to 
be measured erroneously. Notice that as the object 
is rotated more, the invariant value tends to decrease 
(though noisily), this is because the slope causes the 
fitted line to move further and further away from 
the correct edge. 

3. Region C: In this region the effect is more pro- 
nounced as edge 3 moves through the vertical. 
When the fitted line drifts off the actual geomet- 
ric edge, there is an obvious systematic error in the 
invariant measurement. 

As can be seen from the graph the systematic er- 
rors produced by the edge detector far outweigh any 
Gaussian or quantisation noise observed in the points. 
Such noise will still be present, though its effects are 
small compared to other errors. It could be observed 
more clearly by removing the effects of  the system- 
atic error. Note that other unmodelled image events, 
such as shadows and close proximity of other objects, 

will also hinder the extraction of  the planar geometric 
boundary. 

Analytic Investigation. The gross effects of  the sys- 
tematic error can be estimated by perturbing the invari- 
ant expressions. Given the expression for the second 
invariant: 

IM421 IIM5321 h -  
IM43211M5211' 

the aim is to determine the effect of, say, the third line 
on h .  If  the lines used to evaluate the expression are 
of  the form 1i = (ai, bi, 1) r ,  i e {1 . . . . .  5}, then: 

Oh 1M2451 
- -  - -  12 (b2 - -  b 3 ) ,  

Oa3 IMa321.1H4321 

012 1N2451 
- -  = 12 (a3 - -  a J .  
Ob3 IHg321.IH4321 

(6) 

The model for the error observed in the measurement of  
the fitted lines is a translation parallel to the line normal 
by 3. If  the gradient of the line is tan 0, by letting 

= 3 /cos  0 the equation of  the perturbed line is: 

a3 b3 
x + - - + l = 0 .  

1 - orb3 1 - e/b3 
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Fig. 18. The first and twentieth views of the spanner in the sequence are shown. The A'[ curve of interest is the left-most one in (a), and the 
distant one in (b). 
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Fig. 19. The first invariant measured for the image sequence in Fig. 18 is plotted as the spanner is rotated by 5 ° between images. Note in (b) 
that the edge detector produces a systematic error due to the it being distracted by the finite thickness of the object. 

This directly yields (Oa3/O3, Ob3/O3), from which 
can be estimated given a known AI2. 

From region C of  Fig. 17 the value of AI2 can be es- 
timated as 0.035, This is assumed to be due entirely to 
the movement of  13 and that all the other lines are mea- 
sured correctly. Applying the analysis yields a value of  

= 2 pixels for this AI2; this certainly is of the right 
order of  magnitude for the error in fit observed in the 
image sequence. 

2.5.2 Canonical Frame lnvariant Errors. An em- 
pirical experiment similar to that for the five line in- 
variant has been done for an object for which canonical 
frame invariants can be computed. Two images from 

the sequence used to measure the invariants are shown 
in Fig. 18. The value of the first invariant measured for 
each image is plotted in Fig. 19 against spanner orien- 
tation, which is varied through 180 ° in 5 ° increments. 
Note that the value of  the invariant is stable, but again a 
systematic error is apparent when the graph is observed 
in more detail. 

3 Recognition 

3.1 Overview 

An outline of  LEWIS is shown in Fig. 20. 
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Fig. 20. LEWIS has a single greyscale image as input and the outputs are verified hypotheses with associated confidence values. Many of the 
processes are shared by the acquisition and the recognition paths. The recognition system is similar to previous systems in all but the indexing 
and hypothesis formation stages (Grimson 1990). 

3.1.1 Feature Extraction and Invariant Formation. 
The goal of feature extraction is the formation of ge- 
ometric primitives suitable for constructing invariants. 
In the algebraic case this involves straight lines and 
conics, and for non-algebraic curves, 34 curves delin- 
eated by bitangents. The fitting and grouping processes 
were described in section 2.4. 

Once sets of grouped features, F, have been pro- 
duced, the invariants listed in sections 2.2 and 2.3 are 
computed. Each set of grouped features, or A4 curve, 
produces a number of invariants (one or more) which 
form a vector 2 M(F). Of course, if the object is oc- 
cluded to the extent that the number of features visible 
is insufficient for an invariant, then no index can be 
formed. 

The invariant vector formed by the above process 
(when quantised), represents a point in the multidi- 
mensional invariant space. Each object feature group 
is represented by a collection of points that define a 
region in the invariant space, the size of which depends 
upon the measured variance in the invariant value (see 
section 2.5). 

a preliminary recognition hypothesis is generated for 
the corresponding object. Each type of invariant (for 
instance that for five lines, or a conic pair) generate 
separate hypotheses. 

This process is made more efficient using a hash ta- 
ble that allows simultaneous indexing on all elements 
of the measurement vector. In the experiments to date 
there has not been any significant problem with colli- 
sions in the hash table. Hash table collisions 3 should 
not be confused with the intersection of object invari- 
ant measurements in index space. These intersections 
lead to erroneous hypotheses which cost some effort 
during the verification stage, but are usually elimi- 
nated. 

3.1.3 Hypothesis Merging. Because many invari- 
ants may actually correspond to the same object, and 
should therefore be covered by a single recognition 
hypothesis, joint hypotheses are formed prior to recog- 
nition by combining 'compatible' hypotheses. There 
are number of reasons why hypothesis merging is de- 
sirable: 

3.1.2 Indexing. The invariant values computed 
from the target image are used to index against invari- 
ant values in the library. If the value is in the library, 

1. Backprojection and searching for image support 
(verification) is computationally expensive and it 
is more efficient to validate several hypotheses of 
the same object together. 
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2. More features facilitate a more accurate least 
squares calculation of  the back projection transfor- 
mation (there are more matched model and image 
features), and consequently a reduced error in mea- 
suring image support. 

3. Many hypotheses indexing the same object in a sin- 
gle part of  the scene significantly increase confi- 
dence that the match is correct. 

During hypotheses merging, an interpretation tree is 
constructed for each object. The features used in the 
tree are the groups of  invariant features that were 
successful in indexing. The merging process utilises 
topology and geometric compatibility. The topological 
consistency (ordering and connectedness) is illustrated 
in Fig. 21. Geometric consistency is implemented effi- 
ciently by a second use of  invariants; this time joint 
invariants between the feature groups used to com- 
pute each individual hypothesis. This is illustrated in 
Fig. 22. 

Since topological relations are often unreliable it is 
possible that two hypotheses could be united into a 
single joint hypothesis even though they are totally un- 
related (for example one may represent a correct match 
and the other may have been caused by clutter). A list 
of  all the original hypotheses and all possible combina- 
tions of  compatible hypotheses is therefore maintained. 
The list is ordered by descending number of  simpte hy- 
potheses per joint hypothesis. Those with more sim- 
ple hypotheses are verified first, and if the match is 

12 11 

15 

Fig. 21. If the same model is indexed by a five-line invariant (due 
to lines 11, i ~ {1 . . . . .  5l), and a conic three-line invariant that is 
compatible with it (due to e and Ii, i c {2 .... ,4}), then it is wise to 
verify both hypotheses together. The invariants are compatible if the 
ordering of the image lines are consistent with those on the model; 
see text for details. 
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Fig. 22. For a pair of .M curves there are 8 distinguished points 
which could be used to form 2 x 8 - 8 = 8 different five point 
invariants. Rather than computing so many, which is unnecessary, 
invariants are computed between the four distinguished points of 
each Ad curve, and the 'central' point of the other. This yields 
four invariants, and does so using a symmetric construction. These 
invariants are sufficient to hypothesise compatibility. 

confirmed, other joint hypotheses that represent partial 
versions of  the hypothesis are deleted. If  the match 
is not confirmed only the joint hypothesis under con- 
sideration is deleted. The joint hypothesis formation 
stage can potentially cause an exponential number of  
hypotheses to be formed. However, in practice, delet- 
ing verified hypotheses keeps the verification process 
under control (as is shown later in Table 6). 

3.1.4 Verification. There are two steps involved in 
verification, both of which can reject a (joint) recog- 
nition hypothesis. The first is an attempt to compute a 
common projective transformation between the model 
features and the putative corresponding features in the 
target image. The second is to use this transforma- 
tion to project the entire model onto the target image, 
and then measure image support. 

Incorrect hypotheses arise because grouped image 
features happen to have an invariant value that co- 
incides (within the error bounds) with one in the li- 
brary. Also, because the invariants are not complete 
(completeness is defined in detail in Rothwell (1994)), 
structures with the same invariant may not be pro- 
jectively equivalent. The features used to produce the 
matching model and image invariants provide sufficient 
constraints to compute the projective transformation 
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between the model and image 4. In general, the pro- 
jective transformation is over determined as the fea- 
ture groups tend to provide more than the required 
eight constraints. Consequently, if a common trans- 
formation cannot be computed, the features are not 
projectively equivalent and the hypothesis is rejected 
(Rothwell 1994). 

Backprojection and subsequent searching involves 
the entire model boundary, not just the features used to 
form the invariant. Projected model edgels must lies 
close to image edgels with similar orientation (within 
5 pixels and 15°). In the case of algebraic features, two 
preliminary hypothesis filtering steps can be invoked: 

1. The model lines must project to within 15 ° of the 
image lines. 

2. The projected model conics must project to ellipses, 
and they must have similar circumferences and ar- 
eas to the image conics. 

Orientation in the target image is determined from the 
Canny edgel orientation. The orientation of the pro- 
jected model feature is determined as follows: 

1. For model edgels on straight lines the projected ori- 
entation of the line is used for each edgel. 

2. For model edgels on conics, the orientation is ob- 
tained from the projected conic via their polars 5 
which are close approximations to the tangents for 
edgels close to the conic. 

3. For other edgels, the orientation provided by the 
edge operator is used. This orientation is deter- 
mined in the target image by projecting the tangent 
line to the model. Model edgel orientations are 
less accurate (than a fitted line or conic), so a 30 ° 
threshold is used instead of 15 ° . 

If more than a certain proportion of the projected model 
data is supported (the threshold used is 50%), there is 
sufficient support for the model, and the recognition 
hypothesis is confirmed. The final part of the process 
is expensive as O (10 3) edgels need to be mapped onto 
the image. Efficiency in the distance computation is 
achieved by approximating the distance using the 3-4 
distance transform of Borgefors (1988). The distance 
transform is found by passing chamfer masks over the 
image, which is carried out within image preprocess- 
ing. An example of the 3-4 distance transform output 
for a simple image is shown in Fig. 23. 

If the projected model is too small in the scene it must 
have arisen from an object so far away that it would not 
be observed reliably. An upper bound on the size of 
the projected model can be computed by bounding the 

model by a box and projecting that to the image first; if 
it is too small, then the hypothesised object must be too 
small and so can be rejected. In practice the bounding 
box used is the perimeter of the acquisition image. 

There is a trade off involved in setting the support 
threshold. A heavily occluded correct match may have 
as much support as an incorrect match. Particularly if 
there is dense edge data (such as wood texture), then 
it is quite likely that a large number of edges may be 
close to, and have the same orientation as, the projected 
model edges. In a structured scene, a few erroneous 
straight lines of the right orientation will be sufficient 
to give over 50% support for a model, and so render 
a false positive. Obviously, any object which is over 
50% occluded will not be found by the recogniser. As 
the threshold is lowered, an occluded object is more 
likely to be found, but there will also be more false 
positives. On the other hand, if more than one invariant 
forms a hypothesis that passes verification, the level 
of confidence in the result is high. This is discussed 
further in section 4.1. 

3.2 Model Acquisition and Library Formation 

A model consists of the following: 

1. A name. 
2. A set of edge data from an acquisition view of the 

object for use in the backprojection stage of verifi- 
cation. 

3. The lines, conics and .M curves that represent the 
edge data. 

4. The expected invariant values and which algebraic 
features or 3,1 curves they correspond to. 

5. The bounding box of the model features. 
6. Topological connectivity relations between feature 

groups that will be used in the construction of joint 
invariants. 

The library is segmented into different sub-libraries, 
one for each type of invarimat. Each sub-library has a 
list of each of the invariant values tagged with an object 
name, and is structured as a hash table. 

One benefit of using only projective representations, 
rather than Euclidean, is that model acquisition can be 
done directly from images. No special orientations or 
calibrations are required. Acquisition is simple and 
semi-automatic (for instance, curves do not have to be 
matched by hand). It proceeds as follows: 

1. A number of images are taken of the isolated object 
from a variety of 'standard' viewpoints (for alge- 
braic invariants two images are used, generally for 
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Fig. 23. (a) Shows a simple scene with two objects in it. The output of the Canny edge detector is shown in (b). The 3-4 distance transform 
is computed for all edges over a certain strength and is displayed in (c); distance from the edge (white) is coded by intensity, with zero being 
black. (d) Shows, coded by intensity, the orientation of the edge nearest to a given image point. 

the canonical frame system more are required to 
compute the Fisher discriminant). 

2. The invariants are computed for each view. This in- 
volves the same segmentation and invariant compu- 
tation as used during recognition. For non-algebraic 
curves significant 3,4 curves are extracted. 

3. The invariant values are compared between views. 
The useful invariant shape descriptors will remain 
reasonably constant under a change in viewpoint. 
These are recorded in the modelbase. Any mea- 
sures that are not constant are due to features that 
do not form correct invariant configurations (for in- 
stance lines that are not coplanar), or are caused by 
unstable features. For matching values (within 3%, 
see section 2.5), the mean value is entered into the 
model library. 

4. Connectivity between algebraic features or Ad 
curves is utilised to form joint invariants to be used 
during hypothesis combination. 

3.3 Algebraic Invariants Examples 

The results reported here have been carried out with a 
model library containing over thirty objects. Typical 
"algebraic objects in the library are shown in Fig. 24. 
Recognition accuracy is excellent if the object bound- 
aries are not severely disrupted by shadows and specu- 
larities. On a SPARC IPX, edge detection takes i5 sec- 
onds; feature extraction 5 seconds; matching less than 
a second; and verification normally about 2 seconds. 

The first recognition example is a bracket in a scene 
with occlusion and clutter caused by other objects 
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Table 5. The invariants measured from Fig. 25 which are formed by features actually corresponding to bracket features. The second column 
shows the library values and the third column scene values. In the fourth column the deviations from the mean invariant values are given; this 
shows that the five-line invariant is very stable under real image conditions, and the conic,and-three-line invariant is reasonably stable. 

Invariant Library Scene Error % 

Five-line (0.8415, 1.2340) (0.842, 1.235) (0.1, 0.1) 
Conic-line (1.3410, 1.3080, 2.6285) (1.372, 1.291,2.676) (2.3, 1.3, 1.8) 
Conic-line (1.3080, 1.3025, 1.8850) (1.291, 1.287, 1.852) (1.3, 1.2, 1.8) 
Conic-line (1.3025, 1.3395, 2.5915) (1.287, 1.365, 2.604) (1.2, 1.9, 0.5) 

. / " - .  

bracket 

second largest striker plate 

/ J /  

calibration table base 

third largest striker plate 

large striker plate 

smallest striker plate 

rim cylinder pull large silencer clip small silencer clip 

Fig. 24. Nine of the models in LEWIS's model base (the edge data of the models is shown). 

(Fig. 25). All possible algebraic invariants are formed 
from configurations of lines and conics. The measured 
and the matching values are given in Table 5. From a 
scene such as this, a large number of possible invari- 
ants can be derived. It was found that two image five- 
line invariants matched model invariants of the bracket, 
with the second (incorrect) one ruled out during ver- 
ification. Three conic-and-three-line invariants were 
measured in the scene that matched the invariants of 
the bracket, and all these constituted correct matches. 

Incorrectly indexed hypotheses can be ruled out during 
verification when the hypothesised model is projected 
into the scene (all such hypotheses were ruled out in 
this case). For the bracket, 74.5% of the projected 
edges match to within 5 pixels and 15 ° of the image 
data. There is a second object from the model base, a 
spanner, also in the scene. This is correctly identified 
using three different invariants. In this case an 84.5% 
projected edge match is achieved with the model data 
also shown in white in Fig. 25. 
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Fig. 25. (a) Shows the bracket occluded in a scene. Some of the occlusion is due to an object not in the model library. In (b) the edge data 
from the first calibration scene are shown projected onto the test scene using the model to image transformation hypothesised by the match. The 
close match between the projected data (shown in white), and the scene edges shows that the recognition hypothesis is valid. Projected edge 
data from the model of a spanner are also shown as this was also recognised. 

Fig. 26. (a) Shows tile bracket occluded in a scene by objects not in the library. In (b) the edge data from an acquisition scene are shown 
projected onto the test scene using the model to image transformation hypothesised by the match. The close match between the projected data 
(shown in white), and the scene edges shows that the recognition hypothesis is valid. 

In Fig. 26 the bracket is recognised despite a signif- 
mant amount of occlusion (in this case there is only a 

59.3% edge match during verification). Figures 27 to 
45 show the system operating on a few test scenes with 
some of the match statistics shown. For Fig. 27, 1049 
invariants were computed which indexed 41 hypothe- 
ses. These were converted into 131 joint hypotheses 
that had to be verified, of which 13 were rejected by 
first stage verification, based on valid projective trans- 
formations, and 78 required the second stage, based 

on image support. For Fig. 28, 806 invariants indexed 

36 hypotheses, forming 44 joint  hypotheses of which 

23 needed the second verification stage after 13 were 

rejected by the first stage. 
In Table 6 various match statistics are shown that 

have been taken from a number of scenes (around 
100) similar to that of Fig. 26. In each case, a sin- 
gle object from the model library was in the scene, 
and it was recognised correctly in all except one in- 
stance which was when verification broke down due to 
a poor segmentation preventing a sufficient amount of 
edge support. The total number of indexes formed (an 
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Fig. 27. (a) Shows a scene containing two objects from the model base, with fitted lines (100 of them) and conics (27) superimposed in (b). 
Note that many lines are caused by texture, and that some of the conics correspond to edge data over only a small section. The lines form 70 
different line groups. (c) Shows the two objects correctly recognised, the lock striker plate matched with a single invariant and 50.9% edge 
match, and the spanner with three invariants and 70.7% edge match. 

Fig. 28. Another typical scene containing three objects from the model base. The recognised objects are outlined with 74.7% (2 invariants), 
84.6% (1 invariant) and 69.9% (3 invariants) edge matches for the objects from left to right. 58 lines and 14 conics were found. 
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Table 6. The average match statistics for using algebraic invariants 
within LEWIS taken over a large number of images. See the text for 
an explanation. 

Number of actual model instances 1.0 

Total number of indexes formed 1755.3 
Total number of individual hypotheses 60.4 
Total number of joint hypotheses 72.7 
Number not requiring any verification 5.9 
Number rejected by algebraic test 41.1 
Number rejected through full back projection 23.7 
Number of correct hypotheses 1.0 
Number of false positives 1.0 
Number of false negatives 0.0 

average of 1755.3), depends solely on the number of 
features in the scene, and the way in which they are 
grouped. This number roughly equates to the number 
of hypotheses that would have to be verified per model 
for a hypothesise and test technique. After indexing, 
these form only an average of 60.4 hypotheses, which 
constitutes a nearly thirty-fold reduction. Because of 
redundancy in the shape representation, multiple hy- 
potheses can occur for a single model instance. Joint 
hypothesis formation processing yields an average of 
72.7 joint hypotheses. 

Verification is performed once the joint hypotheses 
have been constructed. On average, 5.9 hypotheses do 
not have to be verified as their structures are subsumed 
by larger joint hypotheses. This means that only 66.8 
joint hypotheses actually require verification, which is 
similar to the original 60.4 individual hypotheses. It 
is clear that the joint hypothesis formation stage does 
not lead to an exponential number of hypothesis be- 
ing formed, and yet it provides improved recognition. 
Once the projectivity between the hypothesised mod- 
els and the image features has been computed, a check 
is made that the projected and image algebraic fea- 
tures are consistent (the preliminary filter). On aver- 
age this filter removes 41.1 hypotheses, 6.4 due to 
line correspondences, 4.9 for conic and line config- 
urations, and 29.8 for conic configurations. In the end, 
only 23.7 hypotheses have to be verified through full 
back projection, compared with the 1755.3 original in- 
dexes formed. 

In each case a single object should have been recog- 
nised. Essentially, a negligible number of false nega- 
tives are observed. One false positive, on the average, is 
successfully verified in a given image in addition to the 
correct model hypothesis. The false positive is partly 
due to the symmetry of some of the objects, where the 

projected boundary can achieve good support from the 
set of image features, even though the correspondences 
and object pose are incorrect (such as in Fig. 42). False 
positives also occur due to confusion between projec- 
tively similar objects, that is, the projective transfor- 
mation generates large shape equivalence classes. 

3.4 Canonical Frame Invariants Examples 

3.4.1 Classes. Typical (non-algebraic) objects in 
the library are shown in Fig. 29. The object .M curves 
are sufficiently similar (in all cases there are only two 
inflections) to allow a grouping of the library into a 
number of classes, see Fig. 30. Indexing is then hier- 
archical: first, sub-parts (classes) are indexed and ver- 
ified. For the class verification, rather than backproject 
the whole model curve, the .M curve alone is projected 
into the canonical frame. It is verified by measuring 
the difference in areas between the image class and 
the model class curves (computed using rectangular 
quantisation in the canonical frame). If the difference 
is sufficiently small, the hypothesis is accepted. This 
covers the non-completeness of the canonical frame in- 
variants. Second, if the class is accepted, hypotheses 
are generated for each of the models in that class. Joint 
hypotheses are then formed and verified by back pro- 
jection to the target image using the entire boundary 
model curve. 

The efficiency of the indexing process can be demon- 
strated empirically: from a series of typical images an 
average of 56 .M curves were observed; 27.8% of these 
produced class hypotheses on indexing; and 23.9% of 
these were verified as classes (only 6.6% of the origi- 
nal number of .M curves). Note that although a large 
number of classes were hypothesised in the scene, only 
14.0% of the indexed hypotheses were later found to 
be incorrect. Based on these preliminary results (56 
A/t curves found in image, 10 model curves, no false 
positives) it would seem that there is not an excessive 
tendency towards false positives. 

3.4.2 Recognition Examples. The first example 
shown in Fig. 31 shows a simple unoccluded view of 
model 0. This object can be recognised using up to 
two classes. First, the classification algorithm locates 
classes 0 and 1 as marked in Fig. 3 lb, and uses these 
to form a single joint hypothesis by the procedure of 
section 3.1.3. The joint hypothesis is verified through 
backprojection in which 92.8% of the model outline 
is matched to image data. A 100% confidence is not 
found (as would be expected for an unoccluded object) 
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Fig. 29. For the model base consisting of the four spanners there are ten useful A4 curves. These are shown by thick lines and labeled (a) to (i). 
Due to the projective similarity of (e), (f) and (h), eight classes are sufficient to represent the local shapes of the spanners. The correspondence 
between the .M curves and the classes is given in the table. The global shape of each spanner is also required for recognition, this includes the 
geometric constraints between each class (see section 3.1.3 for details), and also the entire set of edge locations and orientation data; this is used 
for verification. 

because the Canny edge detector fails to extract and 
localise all of the object edges correctly. This results 
mainly from specularity on the object. The same effect 
can be observed in all of  the images in this section be- 
cause the objects are metallic. Another cause of  edge 
segmentation failure is due to the finite thickness of  
the objects, as discussed in section 2.5.1. Frequently, 
an edge extracted from the image can swap between 
portions of  the outline on the upper and lower surfaces 
of  an object. As the canonical construction is local this 
does not present a major problem, though its effects are 
occasionally noticeable. 

In Fig. 32 the recognition system is tested on a more 
complex scene where there is clutter and occlusion. 
A single class is found for model 3 (class 5), which 
is then localised correctly in the image to give 55.5% 
edge support. Although a total of  16 class hypotheses 

were formed, yielding 22 joint hypotheses, only the 
correct hypothesis was given sufficient confidence by 
backprojection (over 50% projected edge support). 

The canonical frame construction works very well 
under significant perspective distortion. This is demon- 
strated in Fig. 33. For this relatively simple scene three 
classes are found, and only one produces a hypothesis 
that passes through the object verification procedure. 
This gives an 83.6% edge match. As may be seen from 
Fig. 29, within the range of  typical signature variation, 
model 2 (which is the one identified in Fig. 33) is pro- 
jectively 2-cyclic 6. Thus, the spanner will always be 
projected into the image in two different poses differ- 
ing by the equivalent of a 180 ° rotation, and still match 
correctly. 

Figures 34 to 37 show further recognition examples 
in which the correct objects are always recognised. No 
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Fig. 30. The canonical curves for the four models shown in Fig. 29. Three images of each object were used and the curves superimposed; the 
very close match between each curve highlights the stability of the construction, Note the similarities between signatures (e), (f) and (h); these 
are essentially the same and are therefore represented by the same class. All the other signatures are in their own class. 

false positives were found in any of  the images, though 
this is not always the case. Although some instances 
have sufficient edge support the hypothesis is rejected 
based on size, as described in section 3.1.4. For exam- 
ple, model 0 was identified as subsequently rejected 
as shown in Fig. 35. Full details of the recognition 
performance are given in Table 7. 

The algebraic invariant and canonical frame repre- 
sentations can be independently applied to an image 
to recognise objects of  both types. Figure 38 shows 

an example of  recognition for both indexing methods 
together. 

3.5 Complexity 

The grouping cost incurred in forming the invariants 
was discussed in section 2.4. Here we first propose 
a simple model for recognition complexity, and then 
verify this experimentally. 
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Table 7. Matching statistics for Figs. 34 to 37. The number of  3,4 curves extracted from the images and how many class hypotheses result 
from indexing are shown. The class hypotheses are used to form joint hypotheses that are verified or rejected by the following tests: if a larger 
subsuming joint hypothesis has already been accepted; if a good model to image projectivity cannot be computed; if backprojection results in 
an impossible pose~ 

Figure # .Mcurves  # Classes #jh # N o  verification # Poor proj. # Poor pose 

34 42 13 18 0 1 5 
36 79 18 23 2 0 3 
37 99 24 39 4 1 2 

Fig. 31. (a) Shows an unoccluded view of model 0. The classifier correctly locates classes 0 and 1 in (b). These are used to form a joint 
hypothesis for model 0 which is verified using back projection that finds 92.8% image support for the model. This is the only model match 
found that has a reasonable pose (that is, the object is not too small). Note that very good registration of the object is achieved in (c), this is when 
both 3/ /curves  are used to compute the model to image transformation. Sometimes, as in (d), if a single .h4 curve is used the registration is 
good in the region of the curve, but extrapolates poorly over the rest of the object. In this case a single .M curve is still sufficient for recognition 

as a 68.9% projected edge match was found. 
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Fig. 32. For the occluded and cluttered view of the spanner (a), there are a large number of bitangents, (b). Note that bitangents are computed 
only along single continuous edgel chains and not between distinct curves. This further ensures a linear grouping cost. After 3,4 curve formation 
and indexing, a total of 16 potential class matches were found. However, the one that correctly identifies model 3, marked in (c), was the only 
one that produced a sufficiently high verification score (55.5%) to be accepted. 

3.5.1 Complexity Model. A major concern with the 
effectiveness of an indexing function is the probabil- 
ity that an image measurement taken from background 
clutter actually indexes a model. Often, it is suggested 
that the number of clashes produced within the hash 
table is important, but this is not the case. The hash 
table is simply an implementation of the index space, 
and should be designed so that only objects with match- 
ing image measurements are returned rather than those 
having only matching hash key values 7. 

Here an informal argument is given that determines 
the likelihood that a random measurement will index 

an actual model; it shows that the indexing paradigm 
is (non-asymptotically) constant time, or at least can 
be made so with judicious use of the indexes. Con- 
sider a measure for a set of features that forms an n 
dimensional index; assume that each dimension has 
the same behaviour. Let each index cover a segment 
on the real line from i0 to i0 + L (Fig. 39), and the 
quantisation along the line be 3, a constant quantity 
over the line segment s. There are b = L/3 buck- 
ets along the line, and so for n indexes and assum- 
ing that the measured invariants have a constant PDF 
over the invariant space 9, the probability of hitting 
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Fig. 33. Even under severe perspective distortion the recognition system performs well and finds model 2 with 83.6% confidence. Note that 
an affine description, such as the footprints in (Lamdan 1988), would fail in this case. 

Fig. 34. Single classes are sufficient to recognise the two model instances shown in (b). The redundancy of the canonical frame representation 
gives much better tolerance to occlusion than global shape methods. The left hand object gained 67.1% boundary support, and the right object 
81.6%. 

any cell at random is 1/b n. If there are )~ mod- 
els in the library, each with c~ shape descriptors, and 
each invariant can be measured up to an error of 
! ~ e / 2 ,  s 6 A/" (the set of natural numbers), there 
will be otEL entries in the table 1°. If it is assumed that 

these entries are spread uniformly over the hash ta- 
ble, the chances of indexing a model through noise is 
(~;~)lb n. 

This analysis means that there is an algorithmic com- 
plexity of O(kl + kzote)~/bn), where ks is the cost of 

edge detection, feature extraction and grouping (es- 
sentially constant), and k2 another constant dependent 
on the form of the invariants, etc. It can be seen 

immediately that by making n large, the term dependent 
on the number of models ,~, becomes arbitrarily small, 
and so recognition time tends towards ks, a constant. 



Planar Object Recognition using Projective Shape Representation 91 

Fig. 35. In Fig. 34 incorrect objects were identified. Here, model 0 
receives 77.9% edge match, but has a total projected object width of 
24.7 pixels, which is too small to be a reasonable Object projection. 

There are two problems associated with making n 
large: 

I. For algebraic invariants there is little control over 
n. If a minimal feature group is used there is no 
control, but by using larger structures n can be 
increased. However, the grouping task may then 
become harder. Alternatively one could index us- 
ing less discriminatory invariants and then group 
using results of this first indexing stage before form- 
ing higher order invariants and indexing a second 

time. For the invariants of other structures, such 
as canonical frame invariants, n can be made large 
(subject to the noise present in the curve), 

2. Making n too large means that the problem of 
constructing an efficient hashing function must be 
considered. 

During the development of LEWIS (Rothwell 1994) it 
was found that an invariant composed of a conic and 
two lines gave insufficient discrimination between ob- 
jects. However, as an example of the above argument, 
when an extra line was used to make n = 3 rather than 
n = 1 the invariant increased in utility. Because of 
the grouping heuristics used in the system there was no 
loss of efficiency but rather a marked improvement in 
performance. 

3.5.2 Empirical Assessment. The indexing tech- 
nique computes a number of invariants that is entirely 
dependent on the number of image features, though 
only a few of these will be turned into hypotheses on 
indexing. Indexing dramatically reduces the time taken 
for the entire recognition process. It was argued above 
that there should be a small linear growth in the num- 
ber of hypotheses created as the size of the model base 
grows. 

The linear growth is demonstrated in Fig. 40. The 
graph shows data collected over fifty evaluations of 
the recognition system in which a single model from 
the model base was placed in a scene and partially oc- 
cluded by other objects that are not in the model base. 

Fig, 36. Two classes are recognised and joined into a single joint hypothesis to recognise model 3 with 68.0% edge support. 
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Fig. 37. Both models 1 (91.4% support) and 3 (75.7%) are correctly recognised and projected into the image as shown in (b). 

Fig. 38. A demonstration that both types of invariant index can be used to recognise objects in a single image (by applying the invariant 
constructions independently within LEWIS). The bracket is indexed using algebraic invariants and the spanner is indexed using the canonical 
frame signature. 

Other non-library objects were also placed in the scene 
as clutter; Fig. 26 shows a typical scene. The average 
number of  hypotheses computed as more objects were 
added to the library is plotted. The first model added to 
the library always corresponded to the actual model in 
the scene. Although 15.8% of the hypotheses were for 
the correct model (this is for when a total of  33 objects 
were present in the library), as predicted by the theory, 
the shape of  the graph is predominately linear. The real 

benefit of  indexing becomes apparent when one con- 
siders how many hypotheses would be produced if an 
alignment technique were used (maintaining the same 
grouping methods). On average, over 2000 feature 
groups existed for each image, and so 2000 hypotheses 
would be produced for each model feature group in the 
library (generally there are four or five feature groups 
per object and so the situation would be far worse). 
This would result in about 7 x 104 hypotheses for the 
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Fig. 40. (a) The number of hypotheses that have to be verified varies with the number of models from the model base. The results show an 
average over fifty scenes containing only one object in the model base, but with other clutter and occlusion present. Over 2000 indexes are 
created for the scene, which corresponds to the number of hypotheses that would have to be verified per model feature group if an alignment 
paradigm were used. Therefore, there is a rapid linear growth in the number of hypotheses created as the model base is expanded. However, the 
number of hypotheses created through indexing remains substantially lower; the detail depicted in (b) demonstrates that approximately a low 
constant of proportionality linear growth is observed. This ties in with the theoretical prediction of section 35.1. 

entire m o d e l  base  compared  to less  than the 60  pro- 

duced  w h e n  i n d e x i n g  is used.  A s  these  all have  to be  

veri f ied it is c lear  that index ing  produces  a dramatic  

i m p r o v e m e n t  in the s y s t e m  eff ic iency.  

4 D i s c u s s i o n  

W e  have s h o w n  h o w  the use  o f  invariants as i n d e x  func-  

t ions avoids  search at two  s tages  o f  the r e c o g n i t i o n  
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Fig. 41. Two objects from the model base are recognised correctly despite strong perspective distortion. 

process. First, indexes generate hypotheses which give 
direct access to models, avoiding a search through the 
model library. Second, at the hypothesis combination 
stage, invariants of the geometric relationships between 
feature groups, for instance a pair of 3d curves, permit 
the efficient construction of extended feature groups. 

4.1 Verification 

The final stage of recognition in most model-based sys- 
tems (Huttenlocher and Ullman 1987; Lowe 1987) is to 
verify model-to-image hypotheses. In the system de- 
scribed here, this is a layered process: first determine 
if there is a common projective transformation for all 
geometric components (lines, conics, .14 curves) of the 
joint hypotheses. Second, back project geometric fea- 
tures and measure image support. 

This strategy can fail, generally as a false positive, 
for two principal reasons. First, only projective ge- 
ometric structure is used and many object boundary 
shapes are equivalent up to a projective transforma- 
tion. In order to  discriminate further, it is necessary 
to assume viewing conditions where an affine transfor- 
mation is valid, or to use a calibrated camera which 
enables scaled Euclidean reconstruction. The second 
type of failure is associated with incomplete image sup- 
port, which is discussed in more detail in the next sec- 
tion. Examples of both these failure cases are given in 
Figs. 42 and 43. 

4.1.1 Image Support. Hypothesis validation based 
on image support is faced with two opposite failure 
mechanisms: too little support; or too much. When 

Fig. 42. The spanner from Fig. 27 is shown and recognised, but 
with the wrong orientation; due to texture in the image a 52.1% edge 
match is still found. 

the object boundary exhibits little image contrast, a 
significant fraction of the achievable perimeter is unre- 
coverable by edge detection algorithms. On the other 
hand, when the background is highly textured or clut- 
tered, high support can be achieved for an incorrect 
hypothesis. Two examples of the latter failure mecha- 
nism is shown in Fig. 45. 

Both of these problems are symptomatic of having 
too sparse a description for the object. Thus far we 
have relied just on the boundary curve of the object 
and have ignored any properties of the interior region. 
It is certainly reasonable to use our knowledge of the 
model coordinate frame in the image to extract view- 
point independent texture measures. Even very sim- 
ple measures would have eliminated the false positive 
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Fig. 43. An object from the model base which is superimposed in (b) can be recognised with over 50% edge support from the specularity on 
the pair of scissors in (a). 

Fig. 44. Six objects were recognised from image (a). The four correct matches are shown in (b), with the two incorrect given in Fig. 45. The 
worst of the four correct identifications had two invariants and 60.3% match. 

shown in Fig. 42. It is also possible that very sim- 
ple intensity measures on the internal object surface 
can be used. For example, the ratio of intensities in the 
neighbourhood of  step discontinuities is a reliable mea- 
sure of  albedo ratio (Nayar and Bolle 1993). Even very 
weak intensity measures for discrimination can be used 
to increase confidence in a hypothesis or to break ties 
between two very similar geometric configurations. 

There is also the open question of  whether a fea- 
ture should be used to support a hypothesis when it 
has already been used in a confirmed hypothesis, as 
illustrated in Fig. 45. 

When insufficient image support is found it will be 
necessary to invoke additional understanding of  scene 
of the form "this object is on top of  another, and there- 
fore occludes it". An understanding of  this kind can be 
used to guide a search for further object  features which 
support the explanation for missing features in the first 
object. 

4.1.2 Projective Transformation. One limitation of  
the full projective transformation is that unreason- 
able perspective projections are allowed. An exam- 
ple is shown in Fig. 43 where the entire object  is 
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Fig. 45. The two incorrectly recognised objects from the image in Fig. 44(a). Unlike the matches shown in Fig. 44(b) these two objects 
were hypothesised by only a single invariant, and had less than 52% image support. In both cases image support is provided by features that 
have already been used to verify hypotheses in Fig. 44(b). The straight line across each image is the projection of the line at infinity from the 
acquisition images. Its closeness to the image center indicates an unlikely object pose (see the discussion in section 4.1.2 for details). 

backprojected onto a thin specularity. To eliminate 
such projections, we propose a stratified solution in- 
volving progressively more knowledge of affine fol- 
lowed by Euclidean structure and ultimately, full per- 
spective camera calibration. 

1. Real Cameras.  For a physical camera the object 
must lie in front of the image plane. More precisely 
the object plane cannot intersect the focal plane (a 
plane parallel to the image plane, containing the 
optical center). This is captured by projecting the 
ideal line, that is the line at infinity, of the model 
image onto the target image. Any case in which 
the ideal line passes through the convex hull of the 
hypothesised image features can be ruled out, since 
objects are assumed to be finite. More generally, 
if the model ideal line is observed within the finite 
bounds of the image plane, the object pose must 
be sufficiently extreme that the hypothesis can be 
rejected. In our experiments, about 25% of false 
positives due to poor poses ruled out by this con- 
straint (see Fig. 45 and (Rothwel11994) for details). 

2. Similarity Structure. If the acquisition view is 
taken with the object in a fronto-parallel plane, one 
can calculate slant and tilt of the plane of the object 
in the target image. This pose calculation does not 
require full calibration of internal camera parame- 
ters. In the perspective case, the computation does 
not require focal length and in the affine case only 
the image pixel aspect ratio is required. 

3. Size, Two additional calibration parameters are es- 
sential for the computation of size. The first is dis- 
tance from the camera. In order to estimate this 
distance, an approximate knowledge of object area, 
a Euclidean measure, and focal length are required. 
The second calibration parameter is the physical 
size of pixels on the image plane. 

4.2 Future Work 

1. For non-algebraic curves there are other invariants 
available which do not require.A4 curves. Forexam- 
pie, Van Gool et al. (1991) exploit single inflections 
as distinguished points; Carlsson (1992), fits conics 
tangent to the curve at four points. The latter pro- 
cedure is applicable even to convex curves. There 
are numerous other covariant constructions (for ex- 
ample tangents between two curve segments) that 
can be utilised to generate distinguished points and 
hence invariants. The natural stage for integrating 
the various categories of invariant is at hypothe- 
ses combination. Again joint invariants between 
features involved in more global invariant group- 
ings can efficiently be used to build larger model 
hypotheses. This integration strategy is currently 
under investigation (Rothwell 1993b). 

2. Feature grouping based on sequential connectivity 
is a somewhat fragile process. It is easy to en- 
counter large gaps in the object boundary due to low 
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image contrast and occlusion. Any recognition al- 
gorithm will be adversely affected by these effects, 
however it is impossible to recover from these er- 
rors when the index is constructed based solely on 
the assumption of boundary connectivity. An im- 
mediate way to overcome this problem is to use as 
many feature groups as possible for a given object 
to derive a redundant description, however many 
object shapes do not have sufficient complexity to 
define more than a few independent feature groups. 

Current work is investigating how grouping can be 
improved for applications where segmentation pro- 
vides poor boundary connectivity, for instance in 
aerial reconnaissance scenes. The primary group- 
ing relations are proximity and collinearity. By con- 
structing a Delaunay triangulation of the set of line 
segment endpoints, it is computationally feasible 
to establish line segment sequences which are not 
actually connected topologically. Similarly, line 
segments which are reasonably close and collinear 
can also be grouped efficiently. 

3. we observe that a useful goal for image feature seg- 
mentation and grouping is to provide feature groups 
which support invariant computations, for exam- 
pie the algebraic curves and M curves used in the 
current system. As a consequence, the evolution 
and testing of new segmentation and grouping al- 
gorithms can be tested by an evaluation of the accu- 
racy and stability of resulting invariants. Addition- 
ally, the discovery of new invariant constructions 
will require the development of associated feature 
extraction algorithms. Since we know that the ro- 
bustness of recognition is largely dependent on the 
success of such group constructions, we can prof- 
itably focus research on this stage of the system. 

4. We have demonstrated a recognition complexity 
of low gradient linear growth with the size of the 
model base, and developed a statistical model of 
this performance. These results are still prelimi- 
nary, firstly because the model base is still relatively 
small (less that 50 models), and secondly because 
the objects are fairly similar. It is an open question 
as to whether this is simply clustering behaviour and 
if for a large model base (several thousand objects), 
recognition would remain asymptotically constant 
time. 

5. A number of recent papers have demonstrated that 
invariants of 3D structures, under 3D projective 
transformations, can be extracted from image pro- 
jections of the structure. These can be obtained from 
multiple views (Demey et al. 1992; Faugeras 1992; 

Hartley et al. 1992; Koenderink and Van Doom 
1991; Mundy and Zisserman 1992; Quan et al. 
1991) or from a single view (Forsyth et al. 1992; 
Forsyth 1993; Liu et al. 1993; Rothwell et al. 
1993a; Rothwell 1994; Wayner 1991). 

We propose to employ our experiences with 
LEWIS by building an improved recognition sys- 
tem called MORSE (Multiple Object Recognition 
by Scene Entailment) for 3D structures. To recog- 
nise such structures an improved architecture is 
required. For example: first, we require interac- 
tions between different types of invariants working 
simultaneously in a single image; second, fine- 
grained communication loops are required between 
the different processing layers than provided within 
the current grouping-indexing-correspondence ar- 
chitecture. These must be implemented in such a 
way as to ensure that the implications of each local 
conclusion are understood by all other layers. Fur- 
thermore, multiple representations of objects must 
be allowed by the model library. For instance, curve 
g on the spanner in Fig. 29 could be represented 
both as a concavity curve, and as a five line se- 
quence. Both representations should be included 
in the model library. 
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Notes 

1. This is not just  due to random image noise which is often con- 

sidered to be the sole cause of  error, but also due to events in 
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the image which are not modeled or expected. Examples of 
unmodeled image events are: specularities; surface texture; and 
impinging objects. 

2. At this stage in the processing, each feature group is used to 
form a separate M vector. Interactions between the groups are 
only considered later. 

3. A hash table collision occurs when a number of models have the 
same hash index. Such a collision can occur when the number 
of hash buckets is smaller than the model population or when 
the hashing function is not uniform and causes many models to 
hash to the same bucket. 

4. Unless the invariant exploits an isotropy. In this case, certain 
parameters of the transformation are unrecoverable because they 
do not affect the projected geometry, e.g. a circle under rotation 
about its center. 

5. For a point x and a conic C, the polar I of the point with respect 
to the conic is l=Cx. 

6. An object is projectively 2-cyclic if there is a view of the object 
for which it can be mapped onto itself with a 180 ° rotation. 

7. The function mapping index values onto hash keys is many-to- 
one. 

8. More exactly a logarithmic scale should be used as the errors 
in invariant indexes tend to be proportional to the invariant val- 
ues (Forsyth et al. 1991). 

9. This claimis a current topic of research, and should be compared 
to the work of Hopcroft et al. (Mundy and Zisserman 1992) and 
Maybank (1993). 

10. For efficiency reasons during recognition only a single cell will 
be read. Models are not stored in single cells, but in as many 
as defined by the range 8~ which is the expected measurement 
error. This contrasts with storing models in single ceils and then 
indexing over a range. 
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