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Absolutely P-Summing, P-Nuclear
Operators and Their Conjugates

Joel S. Cohen*

Pietsch [16] has introduced the notion of absolutely p-summing
operators between normed spaces. These operators provide a natural
generalization of the Hilbert-Schmidt operators between two Hilbert
spaces {[10, 16]). In addition, the theory of absolutely p-summing
operators has application in the general theory of Banach spaces [9].

This paper is basically a detailed study of the absolutely p-summing
operators and two new classes of operators, the strongly p-summing and
p-nuclear operators. The introduction of these two classes was motivated
by the following observations:

(i) Absolutely P-Summing Operators and Tensor Products. The concept
of an absolutely 1-summing operator goes back to the early work of
Grothendieck ([5], p- 155), where it is defined in terms of tensor products
with the space /,. Grothendieck defined an operator T to be «semi-
intégrale & droite» if the operator I ® T mapping ¢ &, Einto £,Q®, F is
continuous, where the ¢ and n topologies are the b}-eqmcontmuous and
projective topologies as defined in Schaefer ([21], p. 92-96). One can
show that an operator T is absolutely 1-summing if and only if it is
semi-intégrale a droite. For the case p> 1, one can show that every
operator T, such that IQT:/,®,E—~/, &, F is continuous, is also
absolutely p-summing; however, the converse is not true. We have
called the class of operators such that I® T is continuous the p-nuclear
operators. It is important to note that the p-nuclear operators discussed
here are not the same as the p-nuclear operators discussed in [11] and
[12] (see Theorem 2.7.1).

(ii) Conjugates of Absolutely P-Summing Operators. The absolutely
p-summing operators are not closed under conjugation. For example,
Pietsch ([16], p. 338) has shown that the identity operator I:£,—/,
is absolutely 2-summing; however, the conjugate operator I’ mapping
¢,into £, is not absolutely 2-summing. The strongly p-summing operators
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(1<pZX o) are a characterization of the conjugates of absolutely
1 1
g-summing operators (? + 7 = 1).

In Section IV we present a number of interesting applications and
open questions related to the present work. In particular we present an
operator characterization of inner product spaces (Theorem 4.2.2) and a
tensor product characterization of nuclear operators in Hilbert space
(Theorem 4.1.2).

Notation. Throughout the paper E and F will denote Banach spaces
and E’ and F' the continuous dual spaces. All linear operators are to be
considered continuous. The space of continuous linear operators
mapping E into F will be denoted by Z(E, F); the space #(E, F) is the
space of continuous bilinear forms on E x F. The symbol S(E) will
denote the sequences with values in E and F(E) will denote the sequences
with all but a finite number of terms equal to zero.

I. Sequence Spaces and Tensor Products

1.1. Sequence Spaces. We shall begin by discussing various spaces
of sequences with values in a Banach space E. These spaces will appear
in the definitions of the operators studied in the following sections.
A sequence {x;} with values in E is called weakly p-summable (¢,(E))
if for all x' e E', the sequence {x'(x;)} €/,. The space £,(E) is a normed
space; the norm is given by

’

31}, 1€p<w

O i/p
supi( X X(a)P) X s
8p({xi}) = {(i= ! )
sup {sup {Ix'(x)l - ||x'] = 13}, p=00.

The following theorem, due to Grothendieck ([ 7], p. 86-88), provides
a useful characterization of 7,(E).

1 1
Theorem 1.1.1. For l<p=<w and—p— + —EI- =1, there is an isometric

isomorphism between (,(E) and L (/,, E). For p= 1, £,(E) is isometrically
isomorphic with % (c,, E). In both cases, a sequence {x;} in¢,(E) is identified

with the operator T({c;})= Y, ¢;x;.
=1

i

A sequence {x;} is called absolutely p-summable (/,{E}) if the
sequence {||x;||} €Z,. The space ¢,{E} is a normed space; the norm is
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given by
0 t/ip
(£ 1xk) " 1p<o0
o, ({x;})=q 7!
swpllx.  p=co.

We have found it convenient to introduce the following additional
sequence space. A sequence {x;} is called strongly p-summable (£,{E})
. 1 1 -
if for all sequences {x{} € £,(E"), -P— + ; = 1, the series Z x;(x;) converges.

i=1

Theorem 1.1.2. The space £,{E) is a normed space; the norm is given by

o0

Z xi(x;)

i=1

o) = sup TEIE

Proof. Let {x;} € £,{E); we first show g,({x;}) is finite. The sequence
{x;} can be considered as the linear form F on £, (E’) defined by
F({xj})= ) xj(x,. Define a sequence {F,} of linear forms on Z,(E’)

i=1
n

by F,({xj})= ) xj{x). It is easy to see that each F, is continuous.

i=1
Furthermore it follows directly from the definitions for F, and F that {F,}
converges to F at each point of 7,(E'). By Theorem 1.1.1 £,(E') is complete;
therefore, applying the Banach-Steinhaus Theorem it follows that F
is continuous and g, ({x;}) = || F|| < co. One can now easily verify that g,
satisfies the properties of a norm. []

The relationships between the various sequence spaces are given in
the following theorem:
Theorem 1.1.3 ([3], p. 15).
(i) For 1Sp< 0, £,{E> S, {E} S/ (E) and ¢, S0, S 0,
(i) Forp=1,¢,{(E>=¢{E} and oy = 6,.
(iil} For p=o0, £ {E}={,(E) and a,, = &.
1.2. Tensor Products. We shall have occasion to consider a number

of norms in the tensor product E® F. The projective or n-norm ([22],
p. 434-445) is defined by |u|, = inf {Z x| y‘-ﬂl}, where the infimum is

over all representations of u = Y x;® y;in E®F. The e-norm is defined by

Ju], = sup{ 5y o) ] <1 1) 8 1}

We shall use the notations E®, F and E®, F to denote the tensor product
with the above norms. It is well-known ([22], p. 444) that the dual space
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for E®, F is given by #(E, F); the dual space for E®, F is given by J(E, F),
the integral bilinear forms on E x F ([22], p. 500). Using the sequence
spaces discussed in Section 1.1, we can define a number of other norms on

1 1
E®F. For 1§p§ooand;+ —q~==1wedeﬁne

w, ()= inf(g,({x;}) £,({y.})),
g,() = inf(o,({x.}) e,({».}),
d,(w= inf(ap({xi}) “q({yl'})) .
In each case the infimum is taken over all representations of u= Y x;®y,

in EQ F. The norms g, and d, have been considered by Saphar [120] and
Chevet [2]. The tensor product with the norm g,(d, or w,) will be denoted
by EQ, F (EQ, F or EQ,, F). The completion of the tensor product
with the norm t = &, Wy, d, “or g, is denoted by E &, F. In the following
theorem we list a number of important properties of the above tensor
norms,
Theorem 1.2.1.([3], p. 20).
() If u=xQy, then g,(u)=w,(W)=d, W)= | x| ||y
(ii) The magnitudes of the norms are related in the following way:

et N,
N

(iii) If p=00, go, () =w, ().

) If p=1, d,()=w,(u).

™) ulle=g:()=d(w).

In the next few theorems we develop the basic relationships between
the norms on the various sequence spaces and the norms on the tensor
product /,@E. It is well-known that /,QE can be considered as a
subspace of S(E). In fact ([14], p. 98), the mapping

is an algebraic isomorphism of £/, ®E into S(E). In most cases we shall
consider 7/, ® E as a vector subspace of S(E) without any specific reference

to ¢.
Theorem 1.2.2.([7], p. 87). Let 1 £ p < co. The space £,(E) induces the
e-norm on £, E.
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Theorem 1.2.3. Let 1 <p< 0.
(i) /,QECL,{E).
(i) £,<E> induces the projective (w) norm on{,QE.
Proof. (i) Let ¢ be the mapping from ¢, x E into S(E) defined by
qS({c} x)={c;x}. We show @ ({c 1x) €£,KE). If {x}} €7, (E)( +—;~-1)

we have

Z xj(c;x)

< ¥ leyxj()

J

(Z |c,.lv>“ﬂ (Z lx;(x)rf)“q for 1<p<oo
J J

2 lejf sup {ixj(0)} for p=1

< (Z zcjlf’)*f*’ e () 1]

Since {c,} € ¢,, the above inequality shows ) xj(c;x) converges. Therefore

1A

J
{¢;x} €£,{E>. Consequently, using the definition of the tensor product,
we conclude that ¢ maps £, ® E into £,{E).

(ii) It remains to show ¢,{E) induces the n-norm on ¢,@E. Let
u= Z {c.;}®x;€¢,QE. Since B((,, E)=ZL((,, E), it follows from
Theorem 1.1.1 that B(£,, E)=£,(E'). Therefore

. Xl = C ®x
ut @ . nsns1 (Z e} )
Be®({p.E)
= sup f ¢ X
| 25 o)

a, (i; {c:;} ®x,-) . O

Let 1 < p < oo. If we consider the norm induced on £, ® E as a normed
subspace of £,{E} we obtain another norm on the tensor product. We
shall use the notanon £, ®, E to denote the tensor product with this norm.

1
Theorem 1.2.4. Let 1 <p < 0 and—i~ + i 1. Thend (u) < |u| , S g,(4).

Proof. We shall show d () < ||ul,- The other inequality is proved
in a similar way ([3], p.25). Let u= Z {c;)}®@x,€/,QF and define

{oi 1" =(ci1s Cizs +vs €im» 0,0, -...). Since hm {c,,} ={c;;} in ¢, it follows
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from Theorem 1.2.1(i) that

lim d, ( Zi {am®x— Y {e} ®xg)
i= i=1

IIA

nlxlf}o .i df({c:}" = {c; D ®x)

= lim ¥ e~ {ey}] bl =0
This implies o

=4[ 3, tej@x)
. (1.2.1)

= }‘15130 dq(zn: {c,-j}'”®x,-).
i=1

Let {e;} be the standard basis in £,. Using standard manipulations for
tensor products we have

5-2::1 {c:;}"®x; = f: ;® (igl cijx,.).

i=1

Therefore from the definitions for the norm d,, we have

4lE rrex) = 4§ oo (£ e
< g,({e) (1221 i=il ¢ ”)1/1:

_ (jgl ign:1 o p)l/p
= a:p( ; {cij}"‘®x,~).

we obtain

i

8
p
Ina E

Therefore d () < [ju],. O
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It can be shown that all norms considered in the previous theorem
are equivalent when E is an %,; space (Theorem 3.2.5). Furthermore,
for p= g = 2, the three norms are equal if and only if E is an inner product
space (Theorem 4.2.2).

I1. The Operators n,(E, F), D (E, F), N,(E, F)

2.1. Basic Definitions and Properties. Let 1 <p< . An operator T
is absolutely p-summing (n,(E, F)) if there exists a constant C = 0, such
that for all finite sets x,, ..., x,, the inequality a,({Tx;}) < Ce,({x;}) is
satisfied. The smallest number C, such that the above inequality is
satisfied, is called the absolutely p-summing norm (n,(T)) of T.

A detailed study of = ,(E, F) is given by Pietsch [16]. We introduce
two related classes of operators.

(i) Let 1 <p<co. An operator T is strongly p-summing (D,(E, F))
if there exists C 2 0 such that ¢,({ Tx;}) £ Ca,({x;}).

(i) Let 1<p<oo. An operator T is p-nuclear (N,(E, F)) if there
exists C =0 such that g,({Tx;}) < Ce,({x;}). We shall denote the strongly
p-summing norm by D,(T) and the p-nuclear norm by N,(T).

In the above definitions we have excluded the cases D, (E, F), N, (E, F),
n,(E, F) and N_(E, F). If we formulate the analogous definitions we
observe,using Theorem 1.1.3, thatn (E, F)= #(E, F); D,(E, F)= ¥ (E, F);
Ny(E,F)=n,(E, F); and N_(E, F)= D_(E, F). Therefore, nothing is lost
by excluding these cases. In the following, when we refer to =,(E, F),
we shall assume 1 < p < oo; when we refer to D,(E, F) we shall assume
1 < p < oo; and when we refer to N,(E, F) we shall assume 1 <p < 0.

Theorem 2.1.1 ([ 3], p. 44).

(i) The spaces N,(E, F) and D ,(E, F) are normed linear spaces.

(ii) If T belongs to N,(E, F) (or D,(E, F)), then T is continuous and
IT| = N(T) (| T|| £ D(T)).

@iii) If T belongs to N(E, F) (or D,(E, F)) and S belongs to £(F, G),
then ST belongs to N,(E,G) (or D,(E,G)) and N,ST)Z|S| N,(T)
(D,(ST)<||S|| D,(T)).

(iv) If T belongs to £(E, F) and S belongs to N,(F, G) (or D,(F, G)),
then ST belongs to NE,G) (or D,(E,G)) and N(ST)SN,S)|T|
(D,ST)=D,(8) | ).

(v) If FisaBanachspace,thenD (E, F)and N,(E, F)are Banach spaces.

The definitions for the spaces n,(E, F), D,(E, F) and N,(E, F) have
been expressed in terms of sequences with all but a finite number of terms
equal to zero. One can, however, easily reformulate these definitions in
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terms of arbitrary sequences. Let Te Z(E, F). The operator T induces
an operator T mapping S(E) into S(F) defined by T({x})={Tx;}. One
can easily show Ten,(E, F)if and only if Tt o(E)—¢,{F} is continuous.
Furthermore, in this case, | T|| = =,(T). Analogous statements are true
for N,(E, F) and D,(E, F). Pietsch ([16], p. 349) has shown it is possible to
give a weaker formulation of the above statement. Indeed, an operator
T is in n,(E, F) if and only if T maps ¢ (E) into £,{F}. We do not require
that T be continuous. A slight modification of Pietsch’s proof shows the
analogous result holds for D,(E, F) and N,(E, F).

Theorem 2.1.2. .
(i) Anoperator T isin N,(E, F)if and only if T maps ¢ (E)into £,(F).
(ii) Anoperator T isin D (E, F)if and only if T maps £,{E} into £,,(F).

Theorem 2.1.3. Let 1 < p< co. An operator T € N,(E, F) if and only if
I®T:¢,Q,E—~¢,®, F is continuous. In this case (T)— H®T|.

Proof. Let Te N,(E, F). By Theorems 1.2.2 and 1.2.3 we can con-
sider £/,®, E as a normed subspace of £,(E) and £,®, F as a normed
subspace of £,(F}. Furthermore, one can easily show that T restricted
to £,®, E is equal to I@T. Let F(E) be the space of sequences in E with
all but a finite number of terms equal to zero. It follows that
F(E)</,®ECS/,(E). Since T:¢ (E)—¢,{F) is continuous and since T
obtains 1ts norm by taking the supremum over elements in F(E), it
follows that I®T is continuous and N,(T)=||T| = |I® T|. The con-

verse follows in a similar way. [

2.2. Relationships Between m,(E,F),D,(E,F) and N,(E,F). The
following theorem follows directly from Theorems 1.1.3 and 2.1.2.

Theorem 2.2.1.
(i) N,(E, F)SD,(E, F) and N,(T)Z D,(T).
(ii) N,(E, F)Sm,(E, F) and N,(T)Z n,(T).
(iii) If T belongs to n(E, F) and S belongs to D,(F, G), then the com-
position ST belongs to N(E, G) and N(ST)<r,(T) D(S).

1 1
Theorem 2.2.2. Let —p- + z =1,

(i) Let 1 <p < 0. An operator T belongs to n,(E, F) if and only if the
adjoint operator T’ belongs to D,(F', E’). In this case D (T") = n(T).

(ii) Let 1 <q = 0. An operator T belongs to D (E, F) if and only if the
adjoint operator T' belongs to n,(F', E'). In this case D (T) = n,(T").

Proof. (i) Let 1 £p< o and let T belong to n,(E, F); we must show
T’ belongs to D (F', E"). If y}, ..., y, is a finite set in F’ and if {x]} € £,(E")
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we have

x”(T’ ‘

T "(y')]

2.1
[T |t

= o,({T"x/ Do ({y})-

However, since T is absolutely p-summing, it follows that T is absolutely
p-summing and 7,(T) = n,(T") ([16], p. 345; [13], p. 87). Therefore

w,({T" X} S m(T) g, ({x7}) . (22.2)
Substituting Eq. (2.2.2) in (2.2.1) we obtain

LT
z T % G
=X

5 x:f(T'y,-)] <7 (T) £, () a ().

i=1

Taking the supremum over the unit ball in £,(E"), we obtain ¢,({T"y;})
S n,(T) o ({y:}). Therefore T" € D (F', E’) and

D,(T)=n,(T). (2.2.3)

Conversely, assume T’ belongs to D,(F', E'). Let x,, ..., x, be a finite
set in E and let {y;} belong to ¢, {F'}. It follows that

T iT=) = | X T'vix)

< o ({T"yip &({x})
< D (T (yiD) e, ({x:}) -
Since ¢£,{F'}=(¢,{F}), we take the supremum over the unit ball in

£,{F'} and obtam ap({Tx;}) S D(T") &,({x;}). Therefore T is absolutely
p-summing and

n(T)SD/(T). (2.24)

Combining Egs. (2.2.3) and (2.2.4) we obtain m,(T)=D,(T"). Part (i)
is proved in a similar way. [

The author has not been able to find a proof of the above result which
does not in some way require measure theoretic techniques. In the above
proof we need the fact that the bidual of an absolutely p-summing
operator is also absolutely p-summing. Pietsch ([16], p. 345) has proved
this fact using measure theoretic techniques. Alternately we could have
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proved the previous theorem by using the following result, from the work
of Grothendieck, which also requires measure theoretic techniques.
Recall a Banach space E has the metric approximation property if for
all finite sets x,, ..., X, in E, there exists an operator T with finite dimen-
sional range and | T{] =1 such that ||x,— Tx] <e for i=1,2,.

In the following theorem J(E, F)=(E®, FY is the collection of mtegra]
bilinear forms on E x F ([22], p. 500).

Theorem 2.2.3 ([5], p. 181). Let E' or F’ satisfy the metric approxima-
tion property. Then, the canonical mapping v:E' ®,F - J(E,F) is an
isometry.

We shall use this theorem in the proof of the following:
Theorem 2.2.4. Let 1 <p < 0. An operator T€ N,(E, F) if and only

1
if T'eN,(F',E) (; + -:}— = 1). In this case N,(T)= N/(T’).

Proof. Let Te N,(E, F). By Theorem 2.1.3, the operator I® T: £,®, E
~£,®, F is continuous with |I@ T|| =N,(T). Since (£, ®, F) =£,(F'),
it follows that (I ® T) maps £,(F')into J(/,, E). However, by Theorem 1.2.2
£,®, F' is a normed subspace of /,(F’). Furthermore, since 7, satisfies
the metric approximation property, £,®, E’ is a normed subspace of
J(¢,, E). Finally, (I ® T restricted to £, ® F'isequal to I® T'. Therefore,
I® T’1scontmuousandN (T)=|1® T | S TY|| = |I®T| = N,(T).
We conclude that T" e N, (F' E’y and

N(T)SN,(T). (2.2.5)

Conversely let T' belong to N(F',E’); we must show T belongs to
N,(E, F). Let x,, ..., x, be a finite set in E and let {y}} belong to £ (F’)
with ¢,({yi}) £ 1. We have

Z T’ yi(x)

X AT =

< N(T) sup (z |x"'(x,)|") e ()

€1 \i=1
N e

Taking the supremum over all sequences {y;} with ¢,({y;}) < 1, we have
6,({Tx;}) £ N(T") &,({x;}). Therefore T belongs to N,(E, F) and

N(T)SN/(T). (2.2.6)

Combining Egs. (2.2.5) and (2.2.6) we see N,(T)=N,(T"). O

The next corollary follows immediately from Pietsch’s work. Pietsch
([16], pp. 343, 345) has shown that absolutely p-summing operators are
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weakly compact and completely continuous (an operator T is completely
continuous if it takes weakly convergent sequences into strongly con-
vergent sequences).

Corollary 2.2.5.
() If TeDy(E,F), then T is weakly compact and the conjugate T’
is completely continuous.

(i) If Te N,(E,F), then T and T' are weakly compact and completely
continuous.

2.3. Integral Characterizations. One of the most useful and interesting
results for absolutely p-summing operators is the integral characteriza-
tion due to Pietsch ([16], p. 341). Ifan operator T is absolutely p-summing,
then there exists a positive Radon measure y, with ||u| =1, on the unit
ball Sz in E" such that

|Tx| <= (T)(Sj x'(x)P d,u)”".

Conversely, if there exists a constant C = 0 and a positive Radon measure
u, with ||u|| =1, such that

ITx| = c( [ X du)”",
SE’

then T is absolutely p-summing and 7,(T) £ C. By using Theorem 2.2.2
we obtain

Theorem 2.3.1. If TeD,(E, F), then there exists a positive Radon
measure p, with |u| =1, on the unit ball in Sp. in F” such that
| Tx], DT ||, where

ITxl=sup{ly(Tx):y e F' and | Y(Fdu=1).

Conversely, if there exists a constant C 20 and a Radon measure p, with
lell = 1, such that | Tx|, < C||x|, then T € D,(E, F) and D,(T)< C.

In the next theorem we shall present an integral condition which is
sufficient to guarantee that an operator T belong to N,(E, F). A straight-
forward calculation gives

Theorem 2.3.2. Let T be a continuous operator mapping E into F.
Suppose there exists a constant C20 and positive Radon measures p,
and p,, with |u,|| =1 and ||p,|| = 1, on the unit balls in E' and F”, such that

forall xin E and all y' in F', we have
W(TE)=C ( f P dﬂx) Y ”( § yome du:)” L.
Se SFr

Then T is p-nuclear and N,(T) < C.
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Theorem 2.3.3.([3], p. 77). Let T be an operator satisfying the con-
ditions of the preceeding theorem. Then T is the product of an absolutely
p-summing operator and a strongly p-summing operator.

It is not known if the statement in Theorem 2.3.2 characterizes
p-nuclear operators. However, if this were true every p-nuclear operator
would be the product of an absolutely p-summing operator and a
strongly p-summing operator.

2.4. Examples and Further Results. Pietsch ([16], p. 335) has shown
if py £ p,. then =, (E, F) S =, (E, F). From Theorem 2.2.2 we have

Theorem 2.4.1. If p, <p,, then D, (E,F)2D, (E,F).
We have not been able to prove or disprove a result similar to the

above theorem for N,(E, F). Furthermore, we do not have examples of
Banach spaces where N, (E, F)+ N, (E, F) for p; +p,.

Theorem 2.4.2. There exist Banach spaces such that
. 1 1
(l) np(Es F)#Dq(Es F)(';‘ + “q—' = 1)’ 1§P< oo,

(ii) N,(E, F)# n,(E, F),1<p<c0,

(iii) N,(E,F)+D,(E,F),1<p< 0.

Proof. (i) Let 1=p£2 Pietsch has shown that the canonical
mapping I:£, -7, is in n,(/,,/;) for 1<p<oo, but the conjugate
I':fy—f isnotinmy(l,,0,), 1 S p=2([16], p. 338; [13], p. 83). There-
fore, by Theorem 2.2.2, I does not belong to D,(/,,/,,) for 2<q < .
In a similar way, the operator I' belongs to D,(¢,,¢,) for 2<g< oo,
but it is not in n,(/,, 7, ) for 1 Sp<2. Now let 2< p < oo. Consider the
operator I, = I.J defined by

f [——I-——if 2
\l’
£, .
In the above diagrams, I and J are the canonical mappings. Since J
is continuous, we can conclude that I, is absolutely p-summing for all
p=2. However, the conjugate mapping I,;/,—7¢, is not absolutely
p-summing. Indeed, if x;=(0,0,...,0,1,0,...) is the sequence with one
in the i*® position and zero elsewhere, it follows that

0 1/p
({0 = £ Itxale)

= limn'P= o0,

nr a0
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while

© i/p
&({xp)= sup (Z lX'(xe)l”) =1
Ien=1 \isy

x'edy

Consequently, I is not absolutely p-summing; therefore, by Theorem 2.2.2,
1 1
L ¢D (¢4, ¢,), -p- + ~‘-1- = 1. Inasimilar way Iye D (/,,¢ ) but Iy¢n (£ ,.£ ).

(i) and (iil). It is well-known that every completely continuous
operator mapping a reflexive space into a Banach space is compact.
Therefore, using Corollary 2.2.5, we can conclude that a p-nuclear
operator is compact whenever its domain or range is reflexive. Using
this fact, it follows that all the operators considered in part (i) cannot
be p-nuclear since they are not compact. Parts (ii) and (iii) follow from
this observation. []

The above examples show that strongly p-summing and absolutely
p-summing operators are not necessarily compact. Since I:£; -7, is
absolutely p-summing (1 £p< o) and since the conjugate I': £/, —»¢
is strongly p-summing (1 <p=< o), it follows that I'l:/, -/, is a
p-nuclear operator (1 < p < co0) which is not compact.

2.5. Nuclear, P-Nuclear and Integral Operators. In the next few
theorems we investigate the relationships between the nuclear, p-nuclear
and integral operators. Recall an operator T is nuclear if it can be

0

represented in the form Tx= ) a(x)y, where a,€FE’, y;eF and

i=1

Y llad |ly:]] < . The nuclear or trace norm is defined by

l(;(;"): inf{ii EARTA

tions of T. Recall an operator T can be considered as a linear form on

E®F' accordingtothe formula T ( Y x® y;f) = Y y{Tx,). An operator
i=1 i=1
T is integral if Te (E®, F'). We shall use the symbol J(T) to denote the
norm of T in (E®, F'Y.
Lemma 2.5.1. N,(E,F)= Z(E,F)n(E®,, F) and N,(T)= [T} w, (the
symbol | T|,,, denotes the normof T in(E®,,, F')).

Proof. Let Te N,(E,F) and let ucEQ®, F.If u= ) x;®y; is an
i=1

}, where the infimum is over all such representa-

arbitrary representation for uin E®,,  F’ we have

7(5 x @) = |3 ser
< N5 2,0

i=1
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By taking the infimum over all representations for u in E®,,  F’ we have
|T () £ N,(T) w,(u). Therefore, Te(E®,, FY and |T|,,, SN (T). The
converse is proved in a similar way. [

Theorem 2.5.2. Every integral operator is p-nuclear and N,(T) < J(T).

Proof. Let T bean integral operator. Then, by definition, T e (E®, F').
However, using Holder’s inequality one can easily show for ue EQF/,
|ul,<w,(u). From this observation it follows that Te(E®, FY.
Therefore, by the above lemma, T is p-nuclear and N(T)= J(T). O

Since every nuclear operator is integral we have

Theorem 2.5.3. Every nuclear operator is p-nuclear and N,(T) < &(T).

Unfortunately we do not have an example of a p-nuclear operator
which is not integral. In Section III we give sufficient conditions for
every p-nuclear operator to be integral. The identity mapping I:£, -4,
is a p-nuclear operator (1 < p < c0) which is not nuclear.

2.6. #' Forms and 2-Nuclear Operators. In this section we show the
2-nuclear operators coincide with the 5 forms introduced by Grothen-
dieck ([6], p.41). The following theorem is stated in [6] and [1] and
proved in [1].

Theorem 2.6.1. Let E and F be Banach spaces and let B(x,y) be a
continuous bilinear form on E x F. Then there exists a unique tensor norm
H# in EQ F with the following property; the bilinear form B(x, y) belongs
to (EQu F)'; with |B|x <1 if and only if B(x,y)=(¢(x),(y)), where
¢ is a linear mapping of E into a Hilbert space H, with |¢| <1, andpisa
linear mapping of F into H' with |y| £ 1.

1t can be shown ([1], p. 173-174) for uceE®Ft

only if there is a representation for u = Z x;® y; with Z X' ()2 < || x)|12
i=1

and Z Iy’ (7> < |y'||*. From this fact we have

<tifand

Theorem 2.6.2. Letue EQF'. Then |u|| o = w,(u).

A bilinear form B(x,y) on Ex F' is called an o' form if
B(x,y)€(EQu, F').

Theorem 2.6.3. A linear operator T mapping E into F is an ' form
if and only if Te N,(E, F).

2.7. The P-Nuclear Operators of Pietsch and Persson. In [12],
Pietsch and Persson have introduced a class of operators called p-nuclear
operators which differs from the p-nuclear operators discussed here.
A linear operator T is called p-nuclear (y,(E, F)) (in the terminology of

Pietsch and Persson) if it has a representation T(x)= ) a;(x) y;, where
i=1
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a,eE,y,eFand

(£ Iale) " <co.

@ 1/q
sup (T o) " <oo.

Hrils1\j=y

Theorem 2.7.1. Let 1 <p < c0.

(i) N,(£1,7.) is not contained in n,(¢,,{ ).

(i) Let H, and H, be Hilbert spaces. Then, n,(H,, H,) is not contained
in N,(Hy, Hy).

Proof. (i) The identity operator I:/,—¢, is in N,(¢,,/,) for
1 <p < oo, but it is not compact. However, each operator in 5,(¢,, £,) is
compact ([12], p. 24). Therefore, N, (¢}, ¢,,) is not contained in 71,(/;, ;).

(i) For H, and H, Hilbert spaces, n,(H,, H,) coincides with the
Hilbert-Schmidt operators ([12], p. 57). In Section I1I we show N,(H,, H,)
coincides with the nuclear operators. Therefore 5,(H;, H,) is not con-
tained in N,(H,, H;). O

For H; and H, Hilbert spaces, the p-nuclear operators discussed
here coincide with the nuclear operators. For this reason, it seems
appropriate to use the term p-nuclear for the operators discussed here.

IIL. Operators in &£ ,; Spaces

In this section we investigate the relationships between the various
classes of operators discussed in Section II when either the domain or
range is an %, space.

3.1. &%,; Spaces. Let E and F be Banach spaces. The distance d(E, F)
between E and F is defined by d(E, F)=inf{||T| | 7™ |}, where the
infimum is taken over all invertible operators in Z(E, F). The following
definition is due to Lindenstrauss and Pelczynski [9].

Definition 3.1.1. Let 1£p< o and 121<co. A Banach space is
called an &, , space if for all finite dimensional subspaces M C E there
exists a finite dimensional subspace N containing M such that d(N,/})< 4,
where n= dim(N).

It can be shown ([9], p. 283) that every L,(u) space is an £, space
for all A>1 and every space of type C(X), where X is 2 compact Haus-
dorff space, is an &, space for all 1> 1. Furthermore every .%,, space
is isomorphic to a subspace of an L,(u) space ([9], p. 284).

3.2. Absolutely Q-Summing Operators and Strongly P-Summing
Operators in £,, Spaces. In the next few theorems we shall discuss the
relationship between the absolutely g-summing operators and the
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strongly p-summing operators when either the domain or range is an
&, space. In the following lemma we use the well-known fact that an
operator T: E-» F with finite dimensional range can be considered a
number of E'QF.

Lemma 3.2.1. Let T have finite dimensional range.

(i) For 1£p< oo, Ten,(E,F) and n,(T) < g,(T).

(ii) For 1<p=co, TeD,(E,F) and D,(T)=d(T), ~;~ + 7;— =1,

Proof. The essential details for n,(E, F) are given by Pietsch ([17],
p- 239). The other cases are similar. []

In the next lemma, /} is n-dimensional Euclidean space (real or

complex) with ||(xy, ..., x,)|| = (i Ix,-l”)w
i=1

Lemma 3.2.2. Let—llj—+—2~=1and1<p§oo.

(i) Let T be an operator from £, into E. Then, T belongs to n,(/;, E)
and D(¢;, E) with D(T) = n,(T).

(ii) Let T be an operator from E into ¢;. Then, T belongs to D,(E, £}
and n(E,£}) and n(T) < D,(T).

Proof. (i) Since T has finite dimensional range, we can conclude
from the previous lemma that T belongs to n,(¢}, E) and D,(/}, E). Let
{e;}7-4 be the standard basis for /;. Since T is absolutely g-summing,
we have

(i{i I Te;ll“) <= (T) Sup (2 I (es)l“)”q

xeq

S (D).

n

If x4, ..., x,, is a finite set in £}, we can represent each x; as x;= ) a;;¢;.
Consequently, if {y;} ,(E"), we have =t

n

jg ,g a;;Y{(Tey)
( ) a;;I")m( (Tei)l';)”e . l<p<oo
jp 'flg yi(Te)l, p=oo
el L
i

|
Sz (L 1 Teillq)lf« eV} -

L x| 5
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Therefore, using Eq. (3.2.1), we have
Z Vi(Txy) | £ (T)e,({y;}) o, ({x;}) -
J

Taking the supremum over the unit ball in /,(F'), we have ¢,({Tx;})
£, (T) o, ({x,}). From this equation we conclude D,(T) S m (7).
{ii) Apply part (i) and Theorem 2.22. J

1
Theorem 3.2.3. Let 1 <p < oo and —p~ + —;{ =1,

(i) Let Ebean %,, space. Thenn (E, F)C D,(E, F)and D (T) £ An (T).
(i) Let F bean ¥, ; space. Then D (E, F) S n(E, F)and = (T) £ AD,(T).
Proof. (i) Fix 6 >0 and let x,, ..., x, belong to E. Since E is an ¥,
space, there exists a finite dimensional subspace M € E which contains
the linear subspace spanned by x, ..., x,, and an invertible operator
S:¢/m—M (dim(M)=m), such that |[S|[S™'|<d+4 Consider the

following diagram:
E-SF

b I

Sp{x1s s X} > M e—5—1£7 .

In this diagram, the operators I; and I, are the canonical inclusion
mappings and the operator T is defined by the equation T=T1, S.
Since T'e n(E, F), it follows that Te n,(¢7, F) and n(T) < ||S| |11 || ng(T)
< ||S|| =, (T). Therefore, using the previous lemma, we see that T'e D (77, F)
and D, ‘ﬁ“) Sn(T)||S| 7 (T). If we let y;= S™" x; in £7, we have
o,({Tx;}) = ,({Ty;})
=D, (T)a,({y})
=_<— ”S" nq(T) ap({yj}) .
Since x;= Sy;, we obtain
a,({Tx;) S [ 871 mo(T) aplfx})
é ('t + 6) ﬂq(T) ap({xj}) .
Therefore, T belongs to D,(E, F) and D,(T) <(4+ ) n,(T). Since this
expressions holds for all § > 0, it follows that D,(T) < =, (T) A.
Part (ii) is proved in a similar way ([3], p. 96-97). [
In a similar way one can prove

Theorem 3.2.4. Let 1 <p<co and let F be an &,; space. Then the

identity mapping
I®I:EQ, F-E®, F

is continuous with |[I®I| £ 4.
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Theorem 3.2.5. Let I <p< oc and let E be an ¥,, space. Then, the
norms g _(u), d,(u) and ||u|, are equivalent in £,QE.

3.3. P-Nuclear and Integral Operators in %,;. Spaces. In the next
few theorems we shall investigate the relationship between the p-nuclear
and integral operators when the spaces considered are of type .£,;. We
shall need the following lemma.

Lemma 3.3.1, Let 1 <p< 0. Let E be a Banach space and F a finite
dimensional Banach space. Furthermore, suppose there exists an isomor-
phism S: F—¢7 (dimF = “Y <C. Then for ue EQF,
we have |lu, = w,(w) < [ul.C

Proof. Using Holder’s mequahty, one can easily show [Jul, S w,(u).

We shall show w,(u) £ Cllu|,. Let u= Z x;®y; belong to EQF and let
i=1

S be an isomorphism from F to £ with [[S]| [S™!]| < C. If {e;} is the

standard basis for £}, we can represent S(y)= Y a;e;,fori=1,2,.
j=1

If I: E— E is the identity mapping, we have

I®S)(w)= Z x,®S y;

- § o[ 0)

n
= z u}®e}’
i=1

uM

mn

where u;= Z a;;x;. Now, since [I®S™'|<|I][|s™!] and since
u={I®S" 1) (I ®S)(u}, it follows that
w,W) Zw,(IQS™) (I®S) (u))
157 1] wel@ ®8) ).
Therefore, by definition of the w, norm,

w, () < |87 &,({u) e,({e;))
! N (5 e 33.1)
<[5 sup (nf?é’f( th(u;)l) (j;ly(e;)l) ) (3.

I st
74 ye

We observe that

" 1/]

y'llst
y'efy

n

Y, X'()yle).

j=1

(332
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Combining Egs. (3.3.1) and (3.3.2) we obtain

wyW) S |S71 Sup Z X' (uy) y'(e;)
iz 0t

=57 la®s)u|,
=SS fulle < .

Therefore, w,(w) < Clju|,. O

1 1
Theorem 3.3.2. Let 1 <p< o0 and _I; + — = 1. Suppose either E is an

&, space or F is an &, , space. Then, for ue EQF, we have |ul, <w,(u)
< JjufleA.

Proof. The inequality |u|, < w,(u) follows from Hélder’s inequality;
we prove w,(u) < [[u] .4 Let F be an &,; space and let >0. If M is a
finite dimensional subspace of E and N is a finite dimensional subspace of
F, the symbol w,(u)y ey Will denote the w, norm on M@ N. From the
definition of the w, norm it follows that

wy(w) = infw,(W)ygn

where the infimum is taken over all finite dimensional subspaces M S E
and N CF such that ue M®N. Since F is of type %,,, for each finite
dimensional subspace N, there exist finite dimensional N’ 2 N such that
d(N', %) < A, where n' = dim(N'). Furthermore, with each subspace N',
there is an isomorphism Sy.:N'—¢7 such that |Sy| |S5'] £A+6.
Therefore, by the previous lemma,

w,(men < ||ull(1+6). (3.3.2)

From the definition for w,, we have
wy(u)= mg}g N women= gg . Wy (U)pen -

However, since N & N’, we have

wo(WpenZ W (Wpen -
Therefore, we can conclude that

w,(u) = Migiz;r Wo(Wmen -
Using Eq. (3.3.2), we have

w,(u) = b}g!)'v Wy{pen

< |ufl(A+9).
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Since & was arbitrary, we see w,(u) < |u].A. I E is of type #,;, the proof
follows in a similar way. []

Using Lemma 2.5.1 and the previous theorem we have

Theorem 3.3.3. Suppose either E is an £, space or F' is an &, space.

1
Then, the integral and p-nuclear operators coincide and = J(T)
S N(T)SH(T).
Since every Hilbert space is an &, space for all 1> 1 we have

Theorem 3.3.4. Let E or F be Hilbert space.
(i) For ue EQF, ||u|, = w,(w).
(ii) The integral and 2-nuclear operators coincide and J(Ty= N,(T).

IV. Applications and Open Questions

In this final section we present a number of interesting applications
and open questions related to the present work.

4.1. Characterization of Nuclear and Hilbert-Schmidt Operators. Let
E and F be Hilbert spaces. An operator T mapping E into F is a Hilbert-
Schmidt operator if for each orthonormal basis {e,} in E, Y. | Te,|| % < co.

Petczyniski [10] has shown T is Hilbert-Schmidt if and only if T € n,(E, F)
for 1 £ p< oo. By taking conjugates we have

Theorem 4.1.1. An operator T is Hilbert-Schmidt if and only if
TeD,(E F) for L<pZco.

An operator T is nuclear if and only if T(x)= ) 1,(x-e,) f,. In this
n=1

representation {¢,} is an orthonormal set in E, { f,} is an orthonormal set in
X

F,J,z0and } A4, < co. Modifying Pelczynski's methods we obtain
n=1
Theorem 4.1.2. Let 1<p<oo. If E and F are Hilbert spaces, an
operator T is p-nuclear if and only if it is nuclear.

Proof. From Theorem 2.5.3, we know every nuclear operator is
p-nuclear; we show the opposite inclusion. Let Te N,(E, F). Since E
and F are Hilbert spaces, T is compact; therefore, there exist orthonormal

sets {e,} in E and {f,} in F such that T(x)= ) 1,(x-e,) f,, where 1,20
n=1

©

and lim 4, = 0. We must show ¥ 4,< o0.Let R,(t) be the n'* Rademacher

n=1
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function defined by

k k+1
—_— k —_—
R (=1, 2,.<t< n
o 0 [= k t=1
> “‘2”3 -

where k=0,1,2,...,2"— 1 and n is a positive integer. For a fixed positive
integer m, define
Zk +1 )

2k+1

=Z (2,,,“ J 1.

where k=0, 1, ...,2" — 1. Pelczynski ([10], p. 358, Eq. 6) has shown for
x'eE’

and

am—1 Ip
(3w (ka’) <2mB,|v],

where B, is a constant depending only on p. Therefore
e,({x}) 2™ B, . 4.1.1)

In a similar way
e (Y} <2"B,. (41.2)

Now by direct computation we have
ot 2k +1 2k+1
Z ( (2m+})fn.ZR(2m+l )lfn)
k=0 n=1
2k+1
:(F )

(i
=53]

2m—1

Z - Tx) =
k=0

l\4a uMs uMa

)
k=0
Py
From Eq. (4.1.1) and (4.1.2) and the fact that T is p-nuclear we obtain

»(52)

2m-1

Z Ok Tx)
k=0

< g () & ({xi}) Np(T)
< 2maB, 2™ B, N,(T).

Therefore, for each m

T #n S BB, N,(T).
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ax
Since m is arbitrary we can conclude ) A, <oo which shows T is
nuclear. [] =1

It was mentioned earlier that the definition of an absolutely 1-summ-
ing operator can be traced back to the early work of Grothendieck. In
Grothendieck’s original formulation an operator T is called semi-
intégrale 4 droite if the mapping

IRT:¢,®,E~(,®,F (4.1.3)

is continuous. It is well-known that T e n,(E, F) if and only if T is semi-
intégrale & droite. Therefore, for E and F Hilbert spaces, Eq. (4.1.3)
characterizes the Hilbert-Schmidt operators. For the case p > 1, we apply
Theorems 2.1.3 and 4.1.2 and obtain the following result.

Theorem 4.1.3. Let E and F be Hilbert spaces. A mapping T is nuclear
if and only if the mapping IQT:(,® E—~{,®, F is continuous for
1<p<oo.

4.2. Characterization of Inner Product Spaces. A normed linear space

E is an inner product space if there is an inner product defined in E
such that ||x||2 = (x - x). In [4] the author has proven the following result.

Theorem 4.2.1. Let E be a normed space. Then E is an inner product
space if and only if for all Banach spaces F and for all absolutely 2-summing
operators T mapping E into F, the conjugate operator T’ is absolutely
2-summing and n,(T") <7, (T).

Kwapien [8], has given a similar characterization of spaces isomor-
phic to inner product spaces. Using the operators discussed here,
Theorem 4.2.1 can be restated as follows.

Theorem 4.2.2. Let F be a normed linear space. The following
statements are equivalent :

(i) E is an inner product space.

(ii) For all Banach space F, n,(E, F)< D,(E, F) and D,(T) < =, (T).

(iii) For all Banach spaces F, D,{F, E)S n,(F, E) and n,(T) S D,(T).

(iv) Letue £, ®E. Then g,(u)=d,(u)= ||u||, (| u], is the norm induced
on{,®E as a subspace of £,{E}.)

Problem. Let ue EQF. According to Theorem 3.34, |uf,=w,(u)
when either E or F is Hilbert space. It is interesting to consider the con-

verse question. Suppose E and F are Banach spaces and for ue EQF,
| u}l,=w,(u). Does this imply either E or F is Hilbert space?

4.3. Extension Theorems for Absolutely P-Summing Operators.
Saphar ([18], p. 134} has proven the following: Let E and F be Banach
spaces and let M be a closed subspace of E. Then, the canonical mapping
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M ®,, F into E®y, F is an isometry. This result can be restated in terms
of absolutely 2-summing operators as follows:

Theorem 4.3.1.([3], p. 63). Let Ten,(M, F). Then, there exists an
extension T, of T which is an absolutely 2-summing operator mapping E
into F" with n,(T)=n,(T,).

Using the results from Sections II and III we can show the analogous
result is not true for absolutely I-summing operators. Indeed, if such
a result were true every absolutely 1-summing operator T mapping a
Banach space E into a reflexive Banach space F would have a conjugate
T’ which is absolutely 1-summing. The examples discussed in Theo-
rem 2.4.2 show this is certainly not the case. We shall need the following
theorem which is also of independent interest.

Theorem 4.3.2. Let T be an absolutely {-summing operator mapping
C(X) (X compact, Hausdorff ) into F. Then T is absolutely {-summing and
(T Sy (T).

Proof. The space C(X) is an .#, , space for all A>1. The result
follows from Theorems 2.2.2 and 3.2.3. []

To show Theorem 4.3.1 is not valid for absolutely l-summing
operators we argue as follows. Let E be a Banach space, F a reflexive
Banach space and let Te n,(E, F). Let us assume an extension theorem
were valid. Let T, be an extension of T which maps C(Sz) into F and let I
be the canonical embedding of E into C(Sg). By Theorem 4.3.2, T, is
absolutely 1-summing and #,(T,) £n,(T,). Therefore, since T'=1'T,,
it follows immediately that 7" is absolutely 1-summing and =, (T") £ 7, (T).
However, if E=¢, and F=/{,, the canonical embedding I:¢, -7, is
absolutely 1-summing, but its conjugate I’ is not absolutely 1-summing.
Therefore, an extension T, does not exist.

Problem. Does there exist an extension theorem for absolutely
p-summing operators 1 <p<2,2<p<o0?

The author wishes to thank Professor John W. Brace of the University of Maryland
for his many helpful comments and suggestions.
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