Investigation of the hyperfine structure of Ta I-lines (III)

H. Mocnik¹, B. Arcimowicz^{1,*}, W. Salmhofer¹, L. Windholz¹, G.H. Guthöhrlein²

¹Institut für Experimentalphysik, Technische Universität Graz, Petersgasse 16, A-8010 Graz, Austria ²Experimentalphysik, Universität der Bundeswehr Hamburg, Holstenhofweg 85, D-22043 Hamburg, Germany

Received: 18 September 1995

Abstract. By investigating the hyperfine structure of 41 Ta I lines we could determine the magnetic hyperfine interaction constants A and the electric quadrupole interaction constants B of 25 even parity levels and 32 odd parity levels. Additionally, we could classify one line. With 78 dipole allowed transitions which we tried to excite by laser light we obtained neither optogalvanic nor fluorescence signals. Therefore we conclude that some of the Ta I levels, listed in commonly used tables [e.g. Moore, Ch.: Atomic energy levels. Vol. III. Natl. Bur. Stand. (U.S.) Circ. No. 467. Washington, D.C.: U.S. GPO 1949], do not exist.

PACS: 35.10.F; 32.50.F; 32.20.J

1 Introduction

This work is a continuation of earlier hyperfine structure (hfs) investigations of Ta I lines [1-4] done by laser spectroscopy groups at Graz and Hamburg. Hfs constants were also determined by many other authors [5-17]. In this work we report on investigations of lines of the most abundant ¹⁸¹Ta isotope possessing the nuclear spin quantum number I = 7/2. The investigated lines lay in the yellow spectral region from 570 nm up to 610 nm.

2 Experiment

The tantalum atoms were produced by sputtering in a hollow cathode discharge where a mixture of Argon and Neon was used as carrier gas. For details we refer to [2-4]. The experimental setup was the same as used before [4]. Two counterpropagating laser beams made it possible to record Doppler-limited spectra showing Lamb-dips by recording either optogalvanic or laser-induced fluorescence signals. This allowed us to determine the frequency positions of the hyperfine transitions with high accuracy by means of a fit program [18]. In the cases where we could not obtain Lamb-dips we proceeded as follows: taking Gaussian or modified Lorentzian spectral shape functions for the hfs components, the hyperfine spectrum of a fine structure transition was calculated using estimated values of the hyperfine interaction constants involved. This model function was adjusted to the measured hyperfine spectrum by an interactive least squares fitting procedure [19]. The shape parameters, the hyperfine interaction constants and the intensities (of the well resolved) hyperfine components were free parameters of this least squares routine. In this way it was possible to determine the frequency positions of the hyperfine transitions with an accuracy better than 2 MHz in the cases of Lamb-dips and to about 10 MHz when Dopplerlimited signals were observed. The Doppler width amounted to about 600 MHz.

3 Results and discussion

By taking into consideration only the selection rules for dipole transitions – change of parity and $\Delta J = 0$ or ± 1 – all possible wavenumber differences (and from these differences all thinkable wavelengths) between all known Ta I levels taken from [20–22] can be calculated from the level energies. The conversion from the wavelength in vacuum to the one in air was done by using the dispersion formula of Peck and Reeder [23] for the refractive index *n* of air

$$(n-1) \cdot 10^8 = 8060.51 + \frac{2480990}{132.274 - \sigma^2} + \frac{17455.7}{39.32957 - \sigma^2}$$
(1)

Present address: * Politechnika Poznańska, Instytut Fizyki, Piotrowo 3, 60-965 Poznań, Poland

λ (Å)	Rel. int	Transition		Energies (cm ⁻	· ¹)
	[26/25]	Upper level	Lower level	Upper level	Lower level
5712.32	_	$5d^{3}6s(a^{5}F)7s e^{4}F_{5/2}$	$?^{0}_{7/2}$	44461.60	26960.46
5713.44		?07	$5d^4({}^3F)6s b {}^4F_{5/2}$	41010.07	23512.34
5746.71	23/60	$5d^{3}6s(a^{5}F)7s e^{6}F_{7/2}$	$5d^{3}6s(a^{5}F)6p z^{6}F_{7/2}^{0}$	43982.43	26585.93
5753.97	e antena	$5d^{3}6s(a^{5}F)7se^{4}F_{3/2}$	$5d^26s^2(a^3P)6pz^4P_{3/2}^0$	43964.50	26590.03
5755.81ª	30/40	?°/2	$5d^4(b^3G)6sa^4G_{11/2}$	43391.71	26022.74
5761.47	-	$5d^4(a^5D)6p y^6F_{3/2}^{0}$	$5d^4(a^5D)6s a^4D_{1/2}$	39587.81	22235.97
5779.28		$5d^{3}6s(a^{5}F)7se^{6}F_{11/2}$?0/2	47319.57	30021.20
5783.24	-/2	$5d^{3}6s(a^{5}F)6p z^{6}F_{1/2}^{0}$	$5d^{3}6s^{2}a^{4}P_{3/2}$	23355.41	6068.91
5794.09	_		$5d^4(a^5D)6sa^4D_{1/2}$	39490.14	22235.97
5797.65	-	$?_{7/2}^{0/2}$	$5d^4({}^3F)6s b {}^4F_{5/2}$	40755.90	23512.34
5816.51	25/40	$5d^{3}6s(a^{5}F)7s e^{6}F_{7/2}$	$5d^{3}6s(a^{5}F)6p \ge {}^{6}D_{5/2}^{0}$	43982.43	26794.76
5820.82	_	?02	$5d^4(b^3G)6s a^4G_{7/2}$	39936.13	22761.21
5825.09	_	?0	$5d^4(b^3G)6s a^4G_{11/2}$	43185.09	26022.74
5846.31		20/2	$5d^4(b^3H)6s a^4H_{9/2}$	38253.39	21153.33
5848.83	_	?0	$5d^{3}6s^{2}a^{2}G_{9/2}$	27783.0	10690.32
5856.98		20/2	$5d^4(b^3G)6s a^4G_{9/2}$	40981.79	23912.89
5861.36	dilate	$5d^{3}6s(a^{3}G)6p y^{4}G_{7/2}^{0}$	$5d^4(b^3G)6s a^4G_{5/2}$	38679.05	21622.92
5866.61	15/60	$5d^{3}6s(a^{3}H)6p z^{4}H_{11/2}^{0}$	$5d^4(b^3H)6s a^4H_{9/2}$	38194.22	21153.33
5874.81		?0/3/2	$5d^4(a^5D)6s a^4D_{1/2}$	39253.07	22235.97
5882.30	130/80	$5d^{3}6s(a^{3}H)6p z^{4}G_{11/2}^{0}$	$5d^4(b^3H)6s a^4H_{13/2}$	40510.38	23514.86
5895.16	, 	$5d^{3}6s(a^{5}F)7s e^{6}F_{11/2}$	$5d^{3}6s(a^{5}F)6p z^{6}F_{11/2}^{0}$	47319.57	30361.22
5904.29	_	$5d^{3}6s(a^{3}H)6p z^{4}H_{13/2}^{0}$	$5d^4(b^3H)6s a^4H_{11/2}$	39360.68	22428.56
5910.37		20/2	$5d^4(b^3H)6s a^4H_{7/2}$	37561.25	20646.54
5912.77		$5d^{3}6s(a^{5}F)7s e^{6}F_{1/2}$	$5d^{3}6s(a^{5}F)6p z^{6}F_{3/2}^{0}$	41151.26	24243.42
5925.83		?9/2	?9/2	42247.00	25376.41
5925.90	15/20	$5d^{3}6s(a^{5}P)6p y^{6}D_{7/2}^{0}$	$5d^36s^2 a^2F_{5/2}$	34094.66	17224.47
5944.82	-	20/2	$5d^4(a^5D)6s a^4D_{7/2}$	43391.71	26575.02
5960.13	18/7	$5d^{3}6s(a^{3}G)6p y^{4}G_{9/2}^{0}$	$5d^4(b^3G)6s a^4G_{9/2}$	40686.42	23912.89
5973.28		?5/2	?07	48290.45	31553.89
5990.12		?5/2	$?_{7/2}^{0}$	48290.45	31600.95
5993.18	-	$5d^{3}6s(a^{5}F)7s e^{4}F_{5/2}$	$5d^{3}6s(a^{5}F)6p \ z \ {}^{6}D_{7/2}^{0}$	44461.60	27780.62
6003.81		?0/2	$5d^4(a^5D)6s a^4D_{5/2}$	41197.67	24546.20
6009.89	25/40	$5d^{3}6s(a^{5}F)7s e^{6}F_{1/2}$	$5d^{3}6s(a^{5}F)6p \ z \ ^{6}D_{1/2}^{0}$	41151.26	24516.69
6059.33	-/2	?97	$5d^4(b^3H)6s a^4H_{7/2}$	37145.43	20646.54
6089.97	_	?9/2	$5d^36s^2a^2H_{11/2}$	31530.02	15114.14
6092.07	-/30	$?_{3/2}^{0}$?3/2	39253.07	22842.84

Table 1. Ta I lines where an excitation was possible. The classifications for these lines were taken from [20] and [21]. The relative intensities(rel. Int) were taken from [25] and [26]. Lines marked with "-" are calculated lines [24] which are neither listed in [25] nor [26]

^a Classification given in [26] is not correct

Table 2. Ta I lines where an excitation was not possible and which could not be observed as fluorescence lines

$\overline{\lambda}$ (Å)	Transition		Energies (cm ⁻¹)
	Upper level	Lower level	Upper level	Lower level
5703.68	?0,	?5/2	42751.72	°25224.06
5704.36	?07/2	?5/2	44693.40	°27167.82
5705.69	$5d^4(a^5D)6p v^4P_{3/2}^{0}$?5/2	44689.31	*27167.82
5710.80	?9/2	?9/2	° 52723.73	35217.94
5711.23	$?_{5/2}^{0}$?3/2	42982.8	*25478.30
5712.12	$?^{0}_{7/2}$?5/2	39936.13	*22434.37
5712.23	2077	?5/2	44669.23	^a 27167.82
5719.21	23/2	?1/2	42178.76	^a 24698.70
5727.69	$20^{-}_{3/2}$?5/2	38545.70	^a 21091.53
5732.54	$5d^{3}6s(a^{5}F)7s e^{4}F_{9/2}$?0	^a 50509.7	33070.28
5734.77	?07	$5d^{3}6s(a^{5}F)7s e^{6}F_{1/2}$	*58583.88	41151.26
5740.05	$?_{7/2}^{0}$	$5d^36s^2 a^2 F_{7/2}$	34799.71	a 17383.12
5743.87	?1/2	$?_{1/2}^{0'}$	^a 61551.17	44146.16
5751.58	?3/2	?5/2	° 58391.76	41010.07

λ (Å)	Transition	Energies (cm ⁻¹)			
	Upper level	Lower level	Upper level	Lower level	
5755.07	?5/2	$5d^36s(a^3G)6p y^4G^0_{7/2}$	^a 56050.2	38679.05	
5755.79	$5d^{3}6s(a^{3}H)6p z^{4}G^{0}_{11/2}$?11/2	40510.38	^a 23141.4	
5756.63	?0/-	?3/2	42844.73	*25478.30	
5759.94	$5d^{3}6s(a^{3}G)6p y^{4}F_{5/2}^{0}$?5/2	38447.99	^a 21091.53	
5761.37	?5/2	?5/2	39786.52	°22434.37	
5761.88	?5/2	20	^a 61737.0	44386.40	
5764.19	$?^{0}_{7/2}$	$5d^4(b^3G)6s a^4G_{9/2}$	^a 41256.56	23912.89	
5773.35	?0/2	?5/2	44483.96	^a 27167.82	
5778.60	$?_{3/2}^{0}$?3/2	42778.70	^a 25478.30	
5779.92	?5/2	202	^a 56050.2	38753.75	
5780.42	$5d^{3}6s(a^{5}F)8sf^{4}F_{3/2}^{3/2}$	20 20 5/2	* 54440.57	37145.60	
5782.16	?0/2	$5d^{3}6s(a^{3}H)6p z^{4}I_{0/2}^{5/2}$	*55232.59	37942.84	
5793.24	202	?=====================================	32132.38	a 14875 70	
5803.49	$5d^{3}6s(a^{5}F)7s e^{4}F_{7/2}$	- 5/2 79	°47817.16	30590.95	
5803.54	? _{0/2}	20	*52723.73	35497.65	
5806.06	? <u>°</u>	9/2 9 _{5/2}	44386.40	°27167.82	
5810.01	$2^{5/2}_{72/2}$	- 5/2 9 5/2	39641.24	*27434 37	
5810.91	20	· 5/2 ?	41902.92	^a 24698 70	
5812.00	· 1/2 ?	-1/2 20	^a 61551 17	44350.10	
5817 71	· 1/2 20	* 3/2 2	42408 16	25224.06	
5818 30	¹ 3/2 2 ⁰	· 5/2 2	42408.10	20224.00 807167.90	
5829.40	$\frac{3/2}{20}$	$5d^{3}6s^{2}a^{2}D$	44550.19 220015.61	12865.07	
5851 21	$5d^{3}6s(a^{5}P)6n = 7^{6}P^{0}$	$5a$ $0s$ a $D_{5/2}$	21061 42	12003.97	
5857 37	$5a \ 05(a \ 1)0p \ 2 \ 1 \ 5/2 \ 7$	¹ 5/2 20	31901.42 361727 0	14073.70	
5857 56	¹ 5/2 2	¹ 7/2 90	01/5/.0 #61551 17	44009.23	
5858.02	+1/2 20	5d ⁵ a ⁶ S	28862.01	44403.90 211706 14	
5869 30	¹ 5/2 2	$5d^4(a^5D)6n \times 6D^0$	20002.01	11/90.14	
587638	$\frac{1}{2}$ 5 $d^{3}6s(a^{5}F)7sa^{4}F$	$Ju (a D) 0p x D_{1/2}$	850500.7	44316.10	
5881 51	$5a \ 0S(a \ F)/S \ e \ F_{9/2}$	9/2	44165 59	33497.13	
5882.81	¹ 7/2 20	⁴ 5/2 2	44103.38	² /10/.82 324609.70	
5884 51	¹ 3/2 20	$\frac{1}{5}d^{3}6_{2}(a^{5}E)7a^{6}E$	41092.04	41504.92	
5887.05	$\frac{^{1}3/2}{5d^{3}6s(a^{5}E)8sf^{4}E}$	$3a^{-}0s(a^{-}F)/s e^{-}F_{3/2}$	-28283.88	41594.83	
5588.40	$5u \ 0s(u \ r) \delta s \ r_{3/2}$	¹ 1/2 20	* 54440.57	3/401.40	
5806.43	¹ 9/2 20	27/2		33/40.18	
5005.08	¹ 3/2 20	¹ 5/2	421/0./0	*25224.00	
5905.08	¹ 3/2	¹ 3/2 20	42408.16	-254/8.30	
5000.56	$\frac{5/2}{5J^3}$	⁷ /2 20	*54481.09	37561.25	
5012.04	$3a^{-}0s(a^{-}r)\delta s - r_{3/2}$	$\frac{3}{2}$	* 54440.57	37523.54	
5017.01	19/2	$5a^{-}0s(a^{-}r) op z^{-}r \overline{7/2}$	*43493.24	20080.93	
5020 00	(3/2	$5a^{-}a^{-}5_{2}$	28089.31	°11/96.14	
5021.24	$\frac{(1/2)}{20}$	$5a^{-}(a^{*}D)6p \text{ y}^{*}P_{3/2}^{*}$	"61551.17	44689.31	
5047.00	$\frac{(7/2)}{5}$	⁹ /2	43533.3	-266/8.4	
5947.02	$5a^{-}6s(a^{-}F) + 8s f^{-}F_{3/2}$	/ 5/2 20	*54440.57	37630.09	
5951.74	^{(5/2}	² 3/2	*56050.2	39253.07	
3932.89 5060.80	(7/2 20	⁷ 5/2	42017.95	*25224.06	
5960.89	[/] 11/2		45057.34	*28285.99	
5962.97	? _{7/2}	$5d^{-}(b^{-}G)6s a^{+}G_{7/2}$	*39526.7	22761.21	
5977.32	⁷ 7/2	75/2	31600.95	*14875.70	
5981.70	¹ 5/2	?5/2	43880.84	*27167.82	
5982.05	? _{7/2}	$5d^{-}(a^{-}D)6s a^{-}D_{5/2}$	*41256.56	24546.20	
3980.19 5002.57	$r_{3/2}$?3/2	42178.76	*25478.30	
5993.57	$5a^{-} bs(a^{-}F) \delta s f + F_{3/2}$	<u>?3/2</u>	* 54440.57	37760.67	
6002.47	?5/2 ?5/2	?5/2	41879.23	°25224.06	
6004.04	$\frac{70}{3/2}$	25/2	43818.63	*27167.82	
6039.76	? <u>5</u> /2	?5/2	31428.05	*14875.70	
6044.79	$\frac{20}{5/2}$?5/2	37630.09	°21091.53	
6046.91	?9/2	$?^{0}_{7/2}$	*43493.24	26960.46	
6050.30	?5/2	? _{7/2}	* 56050.2	39526.7	
6051.35	$5d^{+}(a^{\circ}D)6p y^{\circ}F_{9/2}^{0}$?11/2	44806.64	°28285.99	

(Table 2 continued on the next page)

Table 2. (Continued)

λ (Å)	Transition		Energies (cm ⁻¹)
	Upper level	Lower level	Upper level	Lower level
6065.83	<u>90</u> 11/2	?1/2	41179.9	^a 24698.70
6070.06	?0 ?7/2	?5/2	37561.25	°21091.53
6086.73	?0 1/2	?3/2	41902.92	°25478.30
6095.52	20	?3/2	41879.23	°25478.30
6099.92	$5d^{3}6s(a^{5}F)7s e^{4}F_{7/2}$	202	^a 47817.16	31428.05
6100.90	?0 ⁷ 7/2	$5d^5 a^6 S_{7/2}^{5/2}$	28182.60	^a 11796.14

^a Marks levels to which combinations have not been observed

Table 3. Supposed fortuitous (really non existing) Ta I levels

Level	Energy (cm $^{-1}$)	
Even parity		
$5d^5 a^6 S_{5/2}$	11796.14	
?5/2	14875.70?	
?5/2	21091.53	
?1/2	24698.70	
?5/2	25224.06	
?3/2	25478.30	
?5/2	27167.82	
?11/2	28285.99	
?9/2	43493.24?	
$5d^{3}6s(a^{5}F)7s e^{4}F_{7/2}$	47817.16	
$5d^{3}6s(a^{5}F)7s e^{4}F_{9/2}$	50509.7	
?9/2	52723.73	
$5d^{3}6s(a^{5}F)8s f^{4}F_{3/2}$	54440.57	
?5/2	56050.2	
?1/2	61551.17	
?5/2	61737.0	
Odd parity		
?07/2	39526.7	
?07/2	41256.56	
?07/2	44669.23	
$?^{0}_{3/2}$	58583.88	

where the real number σ means the vacuum wave number of the transition, expressed in μm^{-1} .

In this work we tried to investigate a large number of these calculated lines [24] although many of them could be found neither in the MIT wavelength tables [25] nor in the NBS tables [26]. Table 1 shows all lines where the excitation was successful and the hyperfine structure could be determined. Lines for which no signals could be detected are compiled in Table 2. It turns out that a certain subset of the combining levels appearing in this table does not show any matching combination in the spectral region from 2000 Å to 10000 Å in the wavelength tables [25, 26]. These levels are listed in Table 3. We think that they are doubtful, perhaps introduced during the early classification work as fortuitous coincidences.

By evaluating the hyperfine structure of the 36 Ta I lines listed in Table 1 we could determine the hfs constants of 23 even parity levels and 31 odd parity levels. These A- and B-factors are listed in Tables 4 and 5.

Besides these lines we investigated the hyperfine structure of the line $\lambda = 6059.333$ A which is listed in the MIT [25] table but for which no classification is given in [22, 23]. This line has been investigated both by optogalvanic detection and laser induced fluorescence spectroscopy. Wavelengths, energy levels, classification and the fluorescence lines used for detection are listed in Table 6. From the observed hfs spectra we have calculated A and B assuming plausible J-values for this line. The obtained hyperfine structure constants A and B were compared with a collection of hfs constants known from earlier measurements [2-18]. We could find three matching transitions among our calculated transition wavelengths [24]. Therefore a double blend situation occurred. The agreement of the observed A- and B-values with values determined earlier for the levels coming into consideration made it possible to classify this line beyond all doubt.

4 Conclusion

Although the hyperfine structure constants of many levels are measured by now only for a limited number of multiplets the A- and B-factors are known completely. As mentioned in a former paper [3], isotopic shifts between ¹⁸¹Ta and ¹⁸⁰Ta can not be explained with the electron configurations given in the tables of Moore [22]. Therefore we think that some of these configuration assignments are partially incomplete. Moreover, the list of levels is not complete, but contains on the other hand some levels which probably are not existent. A theoretical analysis on the basis of a parametrisation using experimental energy levels with the aim to calculate wave functions in intermediate coupling has to fail if not existing levels are introduced into such calculations. With the help of our results and more information [36] recently a fine structure analysis [37] could be performed for even parity levels of the configurations $(d + s)^5$, showing that only half of all existing tantalum levels of this configuration are identified till now. Therefore further spectroscopic investigations are needed to complete the knowledge of the Ta I level structure.

Table 4. A- and B-constants of measured levels with even parity and comparison with other authors

Config. desig.	Energy (cm ⁻¹)	A (MHz)		B (MHz)		Ref.
5d ³ 6s ² a ⁴ P _{3/2}	6068.91	379 379.27 378.7 379.0 376 372 374.4		1350 1348.7 1351 1349 1370 1411 1406	$\begin{array}{c} \pm 20 \\ \pm 0.6 \\ \pm 2 \\ \pm 2 \\ \pm 2 \\ \pm 26 \end{array}$	This work (DL) [14] [11] [17] [10] [5] [6]
5d ³ 6s ² a ² G _{9/2}	10690.32	327 333.6 326.7	$^{\pm 1}_{\pm 2.5}_{\pm 1.2}$	2138 2255 2146	$\pm 10 \\ \pm 182 \\ \pm 25$	This work [13] [2]
$5d^36s^2a^2H_{11/2}$	15114.14	289 289 289	$ \pm 1 \pm 4 \pm 2 $	4410 4411 4410	$^{\pm}_{\pm} {}^{10}_{\pm} {}^{151}_{\pm} {}^{50}_{\pm}$	This work [13] [4]
$5d^36s^2a^2F_{5/2}$	17224.47	368 379.5 368.4	$^{\pm 2}_{\pm 4.3}_{\pm 1}$	1940 2002 1939	$^{\pm 20}_{\pm 91}_{\pm 20}$	This work (DL) [13] [2]
5d ⁴ (b ³ H)6s a ⁴ H _{7/2}	20646.54	- 399 - 299.4 - 399.2 - 400.40	$\pm 1 \\ \pm 0.5 \\ \pm 0.1 \\ \pm 0.44$	1533 1534.7 1515.6 1546	$\pm 5 \\ \pm 2 \\ \pm 4.2 \\ \pm 17$	This work [2] [30] [31]
5d ⁴ (b ³ H)6s a ⁴ H _{9/2}	21153.33	731.5 731.5 734.5 731.7	$\pm 1 \\ \pm 5 \\ \pm 0.7 \\ \pm 1.6$	1275 1271 1496 1424	$\begin{array}{c} \pm \ 10 \\ \pm \ 100 \\ \pm \ 53 \\ \pm \ 31 \end{array}$	This work [2] [29] [31]
5d ⁴ (b ³ H)6s a ⁴ H _{11/2}	22428.56	836 829 836 832.8 834.4		1862 1817 1868 1878.6 1823	$\pm 15 \\ \pm 150 \\ \pm 60 \\ \pm 2.8 \\ \pm 54$	This work [2] [4] [30] [31]
5d ⁴ (b ³ H)6s a ⁴ H _{13/2}	23514.86	963 963.8 965.1	$ \pm 1 \\ \pm 3 \\ \pm 2.1 $	1729 1727 1719	$^{\pm25}_{\pm140}_{\pm49}$	This work [2] [29]
$5d^4(a{}^5D)6sa{}^4D_{1/2}$	22235.97	3993 3995	$\begin{array}{c}\pm1\\\pm2\end{array}$	0 0		This work [4]
5d ⁴ (a ⁵ D)6s a ⁴ D _{5/2}	24546.20	274 269.2 272.2 272.6	$\pm 1 \\ \pm 0.2 \\ \pm 1.6 \\ \pm 0.3$	- 837 - 827 - 876.9 - 867.5	$\pm 10 \\ \pm 3 \\ \pm 20.5 \\ \pm 2.4$	This work [27] [28] [29]
5d ⁴ (a ⁵ D)6s a ⁴ D _{7/2}	26575.02	1408 1402.4	$\begin{array}{c}\pm\ 2\\\pm\ 1.3\end{array}$	514 498	$egin{array}{c} \pm 20 \ \pm 21 \end{array}$	This work [29]
5d ⁴ (b ³ G)6s a ⁴ G _{5/2}	21622.92	- 478.3 - 478.5 - 478.1 - 478.92	$\pm 0.2 \\ \pm 0.1 \\ \pm 0.1 \\ \pm 0.03$	788 782.4 770.0 779.8	$\pm 20 \\ \pm 1.2 \\ \pm 2.8 \\ \pm 0.5$	This work [27] [28] [31]
5d ⁴ (b ³ G)6s a ⁴ G _{7/2}	22761.21	346 338 377.1 347.47	$\begin{array}{c} \pm \ 2 \\ \pm \ 6 \\ \pm \ 15 \\ \pm \ 0.76 \end{array}$	- 125 - 36 - 88 - 151	$\begin{array}{c} \pm \ 20 \\ \pm \ 70 \\ \pm \ 266 \\ \pm \ 15 \end{array}$	This work [4] [29] [32]
5d ⁴ (b ³ G)6s a ⁴ G _{9/2}	23912.89	814 814.0 811.1	$\begin{array}{c} \pm \ 1 \\ \pm \ 1.8 \\ \pm \ 0.5 \end{array}$	- 624 - 625 - 610	$\pm 10 \\ \pm 4 \\ \pm 12$	This work [1] [29]
$5d^4(b^3)6s a^4G_{11/2}$	26022.74	844	± 2	- 1257	<u>+</u> 10	This work
?3/2	22842.84	- 293 - 293.4 - 290.3	$ \pm 1 \pm 0.2 \pm 1.3 $	537 532.1 542.5	$\pm 10 \\ \pm 1.1 \\ \pm 61$	This work [30] [32]

(Table 4 continued on the next page)

Config. desig.	Energy (cm ⁻¹)	A (MHz)		B (MHz)		Ref.
$5d^4({}^3F)6s b {}^4F_{5/2}$	23512.34	- 411	<u>+</u> 1	- 609	± 10	This work
? _{9/2}	25376.41	984 983 984.1 983.7	$\pm 1 \\ \pm 0.1 \\ \pm 1.2 \\ \pm 1.1$	767 960 800 779	$\pm 10 \\ \pm 22 \\ \pm 24 \\ \pm 26$	This work [30] [33] [34]
$5d^{3}6s(a^{5}F)7s e^{6}F_{1/2}$	41151.26	- 3515.5 - 3514.7	$ \pm 1 \pm 1.5 $	0 0		This work [13]
5d ³ 6s(a ⁵ F)7s e ⁶ F _{7/2}	43982.43	1425 1453.0	$ \pm 1 \pm 5.4 $	- 571 - 637	$egin{array}{c} \pm 20 \\ \pm 59 \end{array}$	This work [13]
5d ³ 6s(a ⁵ F)7s e ⁶ F _{11/2}	47319.57	1413.5 1415.4	$ \pm 1 \pm 2.3 $	- 1295 - 1281	$egin{array}{c} \pm 10 \ \pm 12 \end{array}$	This work [34]
5d ³ 6s(a ⁵ F)7s e ⁴ F _{5/2}	44461.60	884	± 1	600	± 10	This work
?5/2	48290.45	- 828	± 1	- 666	± 10	This work

Table 4. (Continued)

DL, Doppler-limited data evaluation

Table 5. A- and B-constants of measured levels with odd parity and comparison with other authors

Config. desig.	Energy (cm ⁻¹)	A (MHz)		B (MHz)		Ref.
$5d^36s({}^5F)6p z^6F^0_{1/2}$	23355.41	- 1785 - 1784 - 1822 - 1786.5	$\begin{array}{c} \pm 2\\ \pm 2\\ \pm 6\end{array}$	0 0 0 0		This work (DL) [10] [5] [2]
$5d^{3}6s(a^{5}F)6p z^{6}F^{0}_{3/2}$	24243.42	594.5 594 593	$\begin{array}{c}\pm1\\\pm6\\\pm2\end{array}$	279 278 279	± 5 ± 5 ± 24	This work [3] [4]
$5d^{3}6s(a^{5}F)6p \ z^{6}D_{1/2}^{0}$	24516.69	4154 4155 4138 4147 4132	$\pm 1 \\ \pm 0.1 \\ \pm 16$	0 0 0 0 0		This work [3] [13] [5] [6]
$5d^{3}6s(a^{5}F)6p z {}^{6}F{}^{0}_{7/2}$	26585.93	1014 1014.6 1023	$\begin{array}{c} \pm \ 1 \\ \pm \ 0.8 \\ \pm \ 10 \end{array}$	106 116 108	$\pm 10 \\ \pm 15 \\ \pm 140$	This work [2] [13]
$5d^26s^2(a^3P)6p z^4P^0_{3/2}$	26590.03	1445.5 1445.7 1447.4	$^{\pm 2}_{\pm 0.8}_{\pm 11.1}$	227 231 233	$^{\pm 10}_{\pm 1}$ $^{\pm 55}_{\pm 55}$	This work (DL) [2] [13]
$5d^{3}6s(a^{5}F)6p \ z^{6}D^{0}_{5/2}$	26794.76	1035 1035 1034.4 1035.7 1036	$\begin{array}{c} \pm \ 1 \\ \pm \ 2 \\ \pm \ 1 \\ \pm \ 0.4 \\ \pm \ 2 \end{array}$	705 691 712 711.8 719	$\pm 15 \\ \pm 33 \\ \pm 15 \\ \pm 1.2 \\ \pm 12$	This work [15] [2] [17] [16]
? ⁰ _{11/2}	27783.0	1041.5 1042	$ \pm 1 \pm 1 \pm 1 $	447 427	$ \pm 20 \\ \pm 18$	This work [17]
?9/2	30021.20	439 439 445	$^{\pm 1}_{\pm 2}_{\pm 5}$	20 56 34	$^{\pm}_{\pm} \begin{array}{c} 10 \\ \pm 26 \\ \pm 71 \end{array}$	This work [16] [13]
$5d^{3}6s(a^{5}F)6p \ z^{6}F_{11/2}^{0}$	30361.22	671 671.4 673	${\pm 1 \atop {\pm 0.8} \atop {\pm 4}}$	569 571 489	$^{\pm 10}_{\pm 5}_{\pm 64}$	This work [2] [13]
$?^{0}_{9/2}$	31530.02	815	± 2	1045	± 20	This work
$?^0_{3/2}$	31553.89	198.5	± 2	- 760	± 20	This work
?07/2	31600.95	338 338	$\begin{array}{c}\pm2\\\pm2\end{array}$	1426 1431	$ \pm 20\\ \pm 40$	This work [4]

Table 5. (Continued)

Config. desig.	Energy (cm ⁻¹)	A (MHz)		B (MHz)		Ref.
$5d^{3}6s(a^{5}P)6p y^{6}D^{0}_{7/2}$	34094.66	1338	<u>+</u> 2	583	± 20	This work (DL)
$5d^{3}6s(a^{3}H)6p z^{4}H^{0}_{11/2}$	38194.22	860	±1	2351	± 10	This work
? ⁹ _{5/2}	37145.60	1474	± 1	- 752	± 10	This work
$?^{0}_{7/2}$	37561.25	569	± 2	220	± 20	This work
$?^{0}_{7/2}$	38253.39	374	± 2	725	± 15	This work
$5d^{3}6s(a^{3}G)6p y^{4}G_{7/2}^{0}$	38679.05	500.5 502.87 501.1 502.1	$\begin{array}{c} \pm \ 2 \\ \pm \ 0.27 \\ \pm \ 0.2 \\ \pm \ 0.2 \end{array}$	63 136.5 120 119	$\begin{array}{c} \pm \ 20 \\ \pm \ 14.2 \\ \pm \ 3 \\ \pm \ 47 \end{array}$	This work [31] [27] [34]
?03/2	39253.07	453	± 1	435	± 10	This work
$5d^{3}6s(a^{3}H)6p z^{4}H^{0}_{13/2}$	39360.68	1095 1085 1090.9	$\begin{array}{c}\pm2\\\pm4\\\pm3\end{array}$	2071 2277 2184	$^{\pm 20}_{\pm 198}_{\pm 170}$	This work [13] [2]
$?^{0}_{1/2}$	39490.14	1394	± 1	0		This work
$5d^4(a{}^5D)6py{}^6F^0_{3/2}$	39587.81	425.5	<u>+</u> 1	- 18	± 20	This work
$5d^{3}6s(a^{3}H)6p z^{4}G_{11/2}^{9}$	39936.13 40510.38	1182 934 933.3	${\pm 1 \atop {\pm 2} \\ {\pm 2} $	185 857 932	$\begin{array}{c} \pm \ 20 \\ \pm \ 50 \\ \pm \ 80 \end{array}$	This work This work [2]
$5d^{3}6s(a^{3}G)6p y^{4}G^{0}_{9/2}$	40686.42	584	± 1	- 922	± 20	This work
$?^{0}_{7/2}$	40755.90	656	± 2	- 316	± 20	This work
?07/2	40981.79	962	<u>+</u> 2	1101	± 20	This work
$?^{0}_{5/2}$	41010.07	35	± 2	1003	± 20	This work
$?^{0}_{3/2}$	41197.67	- 588	± 2	214	± 20	This work
? ⁰ _{9/2}	42247.00	1033 1030.4	$egin{array}{c} \pm \ 1 \ \pm \ 0.9 \end{array}$	1926 1962	$\begin{array}{c}\pm 20\\\pm 26\end{array}$	This work [29]
?011/2	43185.09	192 202	± 1 ± 2	1959 1663	$\substack{\pm 20 \\ \pm 40}$	This work [4]
$?^{9}_{9/2}$	43391.71	1130	± 1	- 501	± 20	This work

DL, Doppler-limited data evaluation

Table 6. New-classified line, energy levels and observed fluorescence lines

λ (Å)	Rel. int.	Transition		Energy (cm ⁻	1)	$\lambda_F(\text{\AA})$	Energy (cm ⁻¹)	
	[20/25]	Upper level	Lower level	Upper level	Lower level		Upper level	Lower level
6059.333	-/2	? ⁰ _{5/2}	$5d^4(b^3H)6s a^4H_{7/2}$	37145.60	20646.54	2845.45 2691.31	37145.60 37145.60	2010.10 0.00

References

- 1. Baier, A., Behrens, H.-O., Guthöhrlein, G.H., Windholz, L.: Z. Phys. D23, 151 (1992)
- 2. Guthöhrlein, G.H., Windholz, L.: Z. Phys. D27, 343 (1993)
- Guthöhrlein, G.H., Helmrich, G., Windholz, L.: Phys. Rev. A49, 120 (1994)
- 4. Hammerl, H., Guthöhrlein, G.H., Elantkovska, M., Funtov, V., Gwehenberger, G., Windholz, L.: Z. Phys. D33, 97 (1995)
- 5. Schmidt, T.: Z. Phys. 121, 63 (1943)

- 6. Kamei, T.: Phys. Rev. 99, 789 (1955)
- Murakawa, K.: Phys. Rev. 110, 393 (1958); J. Phys. Soc. Jpn. 17, 891 (1962)
- 8. Büttgenbach, S., Meisel, G.: Z. Phys. 244, 149 (1971)
- Bürger, K.H., Büttgenbach, S., Dicke, R., Gebauer, H., Kuhnen, R., Träber, F.: Z. Phys. A298, 159 (1980)
- 10. Harzer, R.: Dissertation, Universität Bonn (1981)
- Duquette, D.W., Doughty, D.K., Lawer, J.E.: Phys. Lett. A99, 307 (1983)

- 12. Salih, S., Duquette, D.W., Lawler, J.E.: Phys. Rev. A27, 1193 (1983)
- 13. Langer, E.: Dissertation, Univ. d. Bw. Hamburg (1985)
- Persson, J., Berzinsh, U., Nilsson, T., Gustavsson, M.: Z. Phys. D23, 67 (1992)
- Persson, J., Berzinsh, U., Gustavsson, M., Nilsson, T.: 13th International Conference on Atomic Physics (ICAP), München 1992, Abstract A-58
- 16. Berzinsh, U., Gustavsson, M., Persson, J.: Z. Phys. D27, 155 (1993)
- 17. Wannström, A., Gough, D.S., Hannaford, P.: Z. Phys. D22, 723 (1992)
- 18. Schwarz, W.: Institut für Experimentalphysik der Technischen Universität Graz, Interne Berichte, Heft 11 (1989)
- 19. Harnisch, M., Berweger, E., Töpper, O., Krause, T.: Fitprogramm zur computerunterstützten Auswertung von HFS-Spektren. Hamburg: Universität der Bundeswehr 1995
- Klinkenberg, P.F.A., Berg, G.J. van den, Bosch, J.C. van den: Physica 16, 861 (1950)
- Berg, G.J. van den, Klinkenberg, P.F.A., Bosch, J.C. van den: Physica 18, 221 (1952)
- Moore, Ch.: Atomic energy levels. Vol. III, Natl. Bur. Stand. (U.S.) Circ. No. 467. Washington, D.C.: U.S. GPO 1949
- 23. Peck, R., Reeder, K.: J. Opt. Soc. Am. 62, 958 (1972)
- Hammerl, H., Windholz, L., Kügerl, J.: Interne Berichte Institut für Experimentalphysik, Heft 21, Technische Universität Graz (1994)

- Massachusetts Institute of Technology Wavelength tables. The M.I.T. press, fourth printing 1985
- 26. National Bureau of Standards, Monograph 145 Part I, 1975
- 27. Seebach, L.: Diplomarbeit, Universität der Bundeswehr Hamburg (1994)
- Zemmouri, O.: Diplomarbeit, Universität der Bundeswehr Hamburg (1994)
- 29. Wittenborn, K.: Diplomarbeit, Universität der Bundeswehr Hamburg (1994)
- Grams, B.: Studienarbeit, Universität der Bundeswehr Hamburg (1994)
- Weiner, W.: Studienarbeit, Universität der Bundeswehr Hamburg (1995)
- 32. Scheurer, U.: Diplomarbeit, Universität der Bundeswehr Hamburg (1994)
- Huth, A.: Diplomarbeit, Universität der Bundeswehr Hamburg (1995)
- 34. Denke, O.: Diplomarbeit, Universität der Bundeswehr Hamburg (1994)
- 35. Guthöhrlein, G.H., Mocnik, H., Windholz, L.: Z. Phys D (in press)
- 36. Different diploma thesis, Experimentalphysik, Universität der Bundeswehr Hamburg (unpublished)
- Dembczyńsky, J., Arcimowicz, B., Guthöhrlein, G.H., Windholz, L.: (to be published)