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Abstract. It is shown that the process of resonant double 
electron capture in high energy He 2 + + He collisions can 
be approximately described by a sum over products of 
one-electron CDW amplitudes. The summation coeffi- 
cients are determined by stationary ground-state calcula- 
tions with CI wavefunctions. Total and differential cross 
sections are calculated and compared with experimental 
values. 

PACS: 34.10.+X; 34.70.+e 

1. Introduction 

For the simultaneous capture of both electrons in He 2 + 
on He collisions at impact energies around and above 
0.5 MeV some total cross sections have been measured 
several years ago [-1-4]. New data on the total capture 
cross section beyond 1.2 MeV were published by de Cas- 
tro Faria et al. [5]. At these high energies no differential 
data in the projectile angle had been published. Recently, 
Schuch et al. [6] published differential measurements at 
1.5 MeV together with total cross sections for 1.5, 4 and 
6 MeV impact energies. In this latter work, also an com- 
parison was made with the results of a formula which 
approximates the amplitude for the double capture pro- 
cess as a sum over products of one-electron capture am- 
plitudes. These amplitudes were calculated in the contin- 
uum distorted wave (CDW) approximation. The weight 
factors of these products were obtained in a static config- 
uration interaction (CI) calculation of the bound He 
ground-state. 

All other known theoretical calculations treat the 
double capture process essentially in the independent 
particle approximation. 

Theisen and McGuire [7] use a two state atomic ex- 
pansion for one active electron to be captured. Gayet 
et al. [8] and Gayet [9] apply the perturbation method 
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within the CDW model. The one-electron bound-state 
wavefunctions are of Hartree-Fock type or even hydro- 
genic. Crothers and McCarrol [10] describe the two elec- 
tron bound ground-state by a correlated wavefunction 
of Pluvinage-type [11] but calculate only single electron 
transfer within the CDW model. The authors mentioned 
use independent partile statistics to obtain the results 
for double electron transfer. 

The aim of the present work is to justify the method 
mentioned above and applied in the work by Schuch 
et al. [6]. In the next Sect. we give the details of our 
derivation and compare in the last Sect. with experimen- 
tal and other theoretical values. 

2. Theory 

2.1. The description of the ground-state 

We use atomic units. The ground-state solution of the 
stationary Schr6dinger equation 

t 4 ~ = E e  (1) 

with the two-electron Hamiltonian 

I. 1 z z + 1 (2) 
H= - ~  A I - ~  Az rl r2 r12 

is attacked by the CI method. Z is the nuclear charge 
(=2  for He) and rl, r2 and r12 are the distances from 
the nucleus and the interelectronic distance. With this 
Hamiltonian we may separate the spatial from the spin 
part in the wavefunction 

~(rl ,  rl ; sl, s2)= #(rl ,  r2). ~singlet (S1 , $2). (3) 

For the 1S ground-state ~ is symmetric and has to repre- 
sent a total angular momentum of zero. We expand 
in a sum of products of one-electron functions which 
themselves are solutions of an one-electron equation 
with a/-dependent effective nuclear charge. 
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(-t A (t+-!)Z)~,.~.,,;e(r)=e,t;z~,.t.,,;z(r). (4a) 

Z~( l+ l )  ~ 
e,,~;~= 2n ~ (4b) 

Instead of (4 a) we will in the following also use the short- 
cut notation 

_ 1 Zk 
A - r/~b~(r)= ek qSk(r). (4C) 

This set of one-electron functions is orthonormal and 
complete, in principle with inclusion of the continuum. 
Our choice of the effective nuclear charge in the form 
(I+ 1)Z is a little bit more restrictive than an also possi- 
ble, totally free variation for every t value. But, the latter 
procedure would lead to high effective charges, simulat- 
ing high one-electron energies. For those energies the 
CDW formalism, which we apply in the final Sect., will 
no longer work at impact energies in which we are inter- 
ested (see for instance [9J on this point). We may write 
for a S-state 

aS(rl,r2)= Z "~ 
nl,l;n2,1 nl,l;nl,l 

• ~ ( -  1)" {q~,~,l,m;2(rl) ~b,~,t,-,,;z(r2) 
m 

+(1 -- 5,~,,:) ¢,,,z,,,.z(r:) ¢,2,t,-m;z(ri)} (5) 

or with evident abbreviations and much shorter 

qS(rl, r2) = 2 Ck Ok~ (r0 qSk~ (r2). (6) 
k 

A finite sum of the form (5) or (6) is equivalent to a 
CI treatment of the ~S ground-state. The real coefficients 
Ck and the nonlinear parameter Z are determined varia- 
tionally. 

2.2. The approximation of the double electron transition 
amplitude 

We treat the nuclear motion classically in the impact 
parameter approximation with straight line trajectories. 
The vector for the internuclear distance is given by 

R ( t ) = b + v t  (7) 

where v is the relative velocity and b the impact parame- 
ter. The motion of the two electrons is governed by the 
time-dependent Schr6dinger equation. We take the nu- 
clear centre of mass as origin of the electron coordinates 
r and denote by an index T or P the coordinates from 
the target and projectile nucleus, respectively. The transi- 
tion amplitude for the two-electron exchange is 

aze = lim (Xsl ~ + ) .  (8) 
t ~ o G  

Here, ~+ is the exact solution of the Schr6dinger equa- 
tion 

(9) 

with 

I i Z T  ZT Zp Ze 1 
Htota I = --2- A 1 - ~ A 2 -1- . (10) 

rT 1 rT 2 rP 1 rP 2 r 1 2  

For the He z+ + H e  standard system ZT=Zv=2.  The 
connection with the initial situation of two bound elec- 
trons at the target is given by 

lim ~i+(rl,r2,t)=)~i(r~,rz,t) .  (11) 

For Z~ we put 

. v 2 , v  

zi(rl, r2, t ) =  L+(rp~)L+(re~)qbT(rr~, rT2, t)e-'(~) t-,y(r~ +r2) 

(12) 

~b r describes the ground-state of the target as given by 
(6) and we have 

~r(rT1, rTa , t)----- q~(rT1, rr2 ) .e-i~g ' (13) 

with the (variationally determined) ground-state energy 
Eg. The CDW distortion factors L + take account of the 
Coulomb boundary conditions. 

L + (re)= e ~ / ~ F ( 1 - i r e )  1FI (ire, 1, i(vre+v.rv) ) (14) 

v~=Zp/v and 1F~ is the hypergeometric function. The 
motion of the target electrons relative to the origin is 
included in the translational factors of (12). Zy is built 
up in very much the same way as )6. 

• v 2 .¥ 
zf=L-(rT1)L-(rT2)~)l,(rvl,rv2,t)e-Z(2) t+'U(rz+r~) (15) 

L- (rT) = e~w-" F(1 + iVT) ~F1 (-- iVT, 1, -- i(vrT+ V" rr)) (16) 

with VT = ZT/V. 
We remark that we have from (1), (2), (4), (6) and 

the equation for ~bp corresponding to (13) 

~k Ck[ - A g k - I - ( Z P ' k l - Z p )  I~ -~ - (ZPk2-ZP)  I ' re2 r121] 

-~bk~ (re1) ~bk2 (rP2) e-~Eg t = 0  (i7) 

with A ek = E~--ek~ --eke. 
This equation holds true if the expansion of (6) is 

exact and is fulfilled in a variational sense if we truncate 
the expansion (6) for practical calculations. 

Let us define a one-electron scattering wavefnnction 
q~- (r, t) by imposing the fulfillment of 

- -  A Z T  rT ~ Ok ( r , t )= i -~Ok  (r,t) (t8) 



with the asymptotic condition 
. . v  .~2  

lim Ok- (r, t ) = L -  (rT) ~k(rp) e - 'a*t+'g'r- 'Yt. 
t ~ + c O  

(19) 

Because of (19), (15) we may equally well write for az~ 

a2~= l im  ~ ' C k ( ~ J l ~ ( r l , t ) O k z ( r z ,  t ) e - i A ~ t ] ~ i + ) .  (20) 
t--* + co k 

Here, as well as in (8) the brackets mean integration 
over the electronic coordinates. In the following it is 
of some advantage to use the Dirac notation for the 
abstract state vectors. Thus, indicating merely the time- 
dependence we have 

+ c o  

]~+(t))=lZ~(t))+ ~ d t ' G + ( t - t  ') 

.{(Htotal(t')--ift,)l)~i(t')) ) ( 2 1 )  

with the retarded Greenfunction G + obeying 

( . ,ot . t ( t ) - i~--~)G+(t)=-5(t)  for t > 0  

G + (t) = 0 for t < 0. (22) 

We may define for every index-combination (k~, k~) in 
the sum of (20) one retarded Greenfunction G~,k~(t) by 

( Ho;k,,k--i G~,k2(t)=--6(t) for t > 0  

G~,,k~(t) = 0  for t < 0  (23) 

where we take Ho;k~,k 2 t o  be the operator 

zp, , 
H o ; k " k z = 2  --+ 2 r r ,  rT  2 rv,  rp~ 

+ Eg - ek~ -- eke. (24) 

We have underlined the parts which by means of (18) 
evolve [ @ ~ ) e - i ~  ~ in time. Further, we note that the 
difference 

H~:,,k2 = H t o t a l -  H0 ; k , , k~  = - -  A ~k -}- (ZP , k ,  - -  Z / , )  r;-i- 

1 i 
+ (Zv k~ - Zp) - -  + 

" r P  2 / ' 1 2  

(25) 

is just the expression appearing in (17)• In (21) we insert 
for G + ( t -  t') the identity 

+ o o  

G+(t - t ' )=G~,k2( t - t ' )+  ~ dt"Gk+,k2(t--t '') 
- o o  

• H~ , ,k~  (t") G + ( f '  - -  t') ( 2 6 )  

and the result is used to obtain from (20) for the transi- 
tion amplitude 
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a2e = lim ~ Z  Ck(~J~(t) tp~(t) e ' ~ " ' [Z , ( t ) )  
t-} co k k 

k - m  

+co +oo 

+ 2 C k  f dt' i dt" 
k -co -oo 

IGk~,k=(t--t ) 

+ (  • Hk~,k2(t )G (t '--t ')  Htotal(t')--i [Zi(t' 

= a (°) + a m + a (2). ( 2 7 )  

The first term a (°) vanishes since for t ~ ~ Z~ is a target 
state and 0~  0 g  is then located at the projectile nucleus. 
For the second term a (1) we note that the action of 

+ Gk,.k~(t--t') can be taken to the left and because of (23) 
and (24) we get 

+ c o  

a m = - i  2 C *  ~ dt '(tpZ(t ')OG(t')e-i~¢'[ 
k --co 

We apply the operator Htota I to the left. (18) together 
with the definition of H'k,.k~ by (25) lead to 

(~/~ (t') 0/~ (t') e -ia ~.t'] Hto,,l (t') 

• /,1, - ?,,~ ,I,- Q,~ e-idekt" 
- - l - ~  \ ~ k l ~ ¢ J t l S k 2 1  ] 

+ (OZ (t') 0/~ (t') e-*~""[ H'k,,k=(t'). (29) 

Therefore, for a part of the integrand in (28) the time 
integration can be performed. Noting again that at the 
upper time-limit we have orthogonality of ~ ~ with 
Zi we end with 

a(1)= lim Y' Ck(O~(t) O~-2(t) e - i~ t lz~( t ) )  
t--* - - ~  k 

+ c o  

- i ~  Ck ~ dt'(O[~(t')Ok-~(t') 
k - c o  

e--iAekt'[ r ~ t '  • Hkl,k2( t ) tZ,( ) )  

= a(1,1) + a (1, 2) (30) 

In the first contribution, a (1'1), we replace Zi with the 
help of (12), (13) and (6) by a sum (in coordinate represen- 
tation) 

z~(rl, rz, t) = ~  Cj Z J1 (rl, t) ; ~  (r z, t) e -IEgt (31) 
J 

r ¢  .¥2  

)~j(r, t) = L  + -~-r , - t  (rv) q~(rr) e 2 s . (32) 
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Therefore we have 

a (1'1)= lira ~CkCj( tp~e '"~[~j l ) (OLe~%'l~j~) .  (33) 

Thus, at least one part of the exact two-electron transi- 
tion amplutide is expressable as a sum over products 
of one-electron amplitudes. For  the third term a (2) in 
(27) we only remark that one can get rid of the Green 
function + " Gk,k~(t--t ) in applying it to the left which 
yields 

+ o o  + o o  

a(2)=-- iZCk ~ dt' ~ dt"(O~(t")OL(t")e  -ia~t'' 
k - m  - ~  

• IH'k~.k~(t")... (34) 

where the dots stand for the remainder from (27)• 
If the one particle transition amplitudes of (33) are 

calculated in a first order - in our case: in the CDW- 
approximation - ,  one has 

+ c o  

lim (OL ei~'tl Zj, T) = --i ~ dt (0k-  eiekt[ WklY~,r) 
- o o  

+ 0 o  

_ . J ~ k  ( 3 5 )  - -  t ' C O W ;  i e 

is the perturbation, 2j, r is defined by (32) with an 
additional index T, reminding of the localisation at the 
target. F rom (19) the definition of Zk,e as a distorted 
projectile one-electron wavefunction is evident. Perform- 
ing this CDW-approximation for a ~1' 1) it is only conse- 
quent to replace also in the remaining terms a (1'2) and 
a (2) the exact one-electron scattering functions Ok- by 
their asymptotic limit given in (19). But then in both, 
a (1'2) and a (2), a sum of the form given in (17) arises. 
Consequently, we drop these terms in the approxima- 
tion. This means in effect that we have 

. ( 1 ,  I) g~ a j  1 ~k~ a j 2  --' k2 
a2~---CDW = Z~ Ck Cj (36) ~ C D W ,  l e  C D W ; I e "  

k , j  

Since the amplitude depends only on Ib[=b the total 
cross section in the impact parameter approximation is 
obtained from the amplitude a (b) by 

a = 2 n  ; d b bla(b)[ 2 (37) 
0 

The differential cross section for the angular behaviour 
of the projectile in the laboratory system can be ex- 
pressed for our transition as 

( d a = M z  b ( l + i Z ~ ) J  0 2 M v b s i n  
df2 o 

(38) 

M is the projectile mass, O the laboratory polar scatter- 
ing angle and Jo the Bessel function of lowest order. 
The phase factor in the integrand takes care of the nucle- 
ar interaction (see for instance 1-12]). 

Table 1. Results of CI-calculations for the 1S ground-state of He; 
see text for further explanation 

Ansatz One electron functions Z Energy 
(notation: n l) Eg 

(1) ls t.6875 -2.84766 
(2) ls, 2s; 2p; 3d 1.7661 -2.87136 
(3) ls, 2s, 3s, 4s; 2p, 3p, 4p; 3d 1•7899 -2•87646 

O 
v 

¢t3 

b 

5 ~ .  ~ , ~ , ~ . 

, o - "  . . . . .  (z)  

2 

10-~4 

5 

I , I , I , I , ,I 

0 1 • 1 0  "~ 2 • 1 0  -'~ 3 • 1 0  -'l 4 • 1 0  -`* 

e~b ( r a d )  

Fig.  L Cross sections for double capture differential in the angle 
of the scattered projectile for He 2 + + He collisions at 1.5 MeV labo- 
ratory energy. The dots are experiments [6]. The curves corre- 
sponds to the different static wavefunctions of Table 1. The dashed 
curve is the result of folding the full curve with the experimental 
resolution 

3 .  R e s u l t s  a n d  c o n c l u s i o n s  

We applied our formalism to the reaction He z+ 
+ H e ( l l S ) ~ H e ( I I S ) + H e  2+ that is to say the reso- 
nance double electron exchange between the ground- 
states of the He target and projectile nucleus. For  the 
static CI calculations we give only the results of the finite 
expansions which were also used for the approximation 
of the amplitude via (36). 

The lines (1), (2), and (3) of Table 1 differ in the 
number of one-electron functions used in the CI-ansatz. 
Line (1) means that we have used one function of the 
configuration (ls) 2 and in line (3) we have 17 functions: 
10 for (ns, n's); 6 for (rip, n'p) and one for (3d) z configura- 
tions, respectively. It is clear that we can do much better 
as far as the total energy is concerned• But as the results 
for the differential and total cross sections reported be- 
low already show a fairly good convergence behaviour 
we did not increase the static basis. 

To calculate the one-electron CDW-amplitudes of 
(36) we used the published codes of Belkic et al. [12, 
13] with slight modifications. 

Figure 1 shows a comparison between the calculated 
differential cross section using the ansatz (1), (2), or (3) 
of Table 1, respectively, with the experimental measure- 
ment of Schuch et al. [6]. The impact energy is 1.5 MeV• 
The theoretical values demonstrate the rapid conver- 
gence mentioned above• The agreement with the experi- 



Table 2. Total cross section in cm 2 for double charge transfer in 
He 2+ +He collisions. The results using three different CI calcula- 
tions are compared with the experiment of Schuch et al. [6] 

Ela b Theory with CI Experiment 

MeV (1) (2) (3) [6] 

1.5 1 .1 .10  -20  1.44.10 -z° 1.52.10 .20 1.0.10 -2° 
4 2.9.10- z4 4.27.10- 24 4.82.10- 24 1.3.10- 24 
6 6.54.10 .26 1.0-10 .25 1.1-10 .25 0.54.10 .25 

I I I I I I I 

10 "17 ........ 
| " '" . . .  

" - . .  

b 10 "~j .... : "  

10 -== * I I I I I I I 
0 ,5 0 .6  0 .7  0 .8  0.9 1 1.5 

E (M V) 
Fig. 2. Total double capture cross sections for He 2 + + He collisions 
as function of the impact energy. Full curve: this work; dotted 
curve: independent-particle approximation (IPA) with HF orbitals 
[8]; dashed curve: IPA with hydrogenic orbitals [8]. Experiments: 
dots: [3]; squares: [4]; asterixes: [1]; triangle: [6]; open circles: 
[5] 

merit is good. In principle it is necessary to fold the 
theoretical values with the experimental angular resolu- 
tion function [6]. The effect of this folding procedure 
is a subpression of the theoretical curves for small projec- 
tile scattering angles, as can be seen by the dashed curve 
in Fig. 1. Values for angles beyond 0.1 mrad  are negligi- 
bly influenced by the folding procedure. The experimen- 
tal data points for angles below 0.1 mrad may be too 
high because of inclusion of the radiative electron cap- 
ture contribution (see [6]). N o  finer structure seems to 
be present in the data which could be an evidence for 
a dynamical correlation effect. For  instance a Thomas  
peak for double electron transfer would appear  at an 
angle of 01a b = 2.4.10-4.  But the small hump in the exper- 
iment as well as in the theory near this angle can not 
serve as a confirmation. Obviously the experimental re- 
sult of an integration over the angles should yield a total 
cross section which lies above the theoretical one. This 
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is not the case as can be seen from the first line of Table 2. 
In this Table our values are compared  with the total 
cross sections measurements of the same group (Schuch 
et al. [6]). The reason is that the experiments for differen- 
tial and total cross sections were performed independent- 
ly from one another. It  is believed [6] that the measured 
total cross sections are about  30% too low. Thus, the 
mentioned discrepancy is a sign of the difficulties to mea- 
sure the process in question with high accuracy. The 
theoretical values for the highest energies given show 
also rapid convergence and are roughly in agreement 
with the experiment. 

Finally, Fig. 2 gives the comparison of calculations 
with ansatz (3) for moderately high energies with further 
experiments and with two independent-particle C D W  
approximations of Gayet  et al. [8] which differ by ap- 
proximating the final electron wavefunction either by 
a product  of hydrogenic (upper curve) or H F  orbitals 
(lower curve) whereas the initial orbitals are of HF-type.  
It  should be mentioned that our results with ansatz (1) 
((i s)2-configuration alone) are quite similar to the lower 
curve. 

F rom this and also from the comparison of the col- 
umns labeled (1) and (3) of Table 2 we conclude that  
the better description of the initial and final wavefunc- 
tions by static correlations plays always a role, even at 
the highest energies. 

We are highly indebted to Dr. Antone Satin for fruitful discussions 
and for providing us with a version of a program to calculate 
one-electron CDW amplitudes. 
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